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— Abstract

Many techniques and tools exist to estimate the
power consumption and the temperature map of
a chip. These tools help the hardware designers
develop power efficient chips in the presence of tem-
perature constraints. For this task, the application
can be ignored or at least abstracted by some high
level scenarios; at this stage, the actual embedded
software is generally not available yet.

However, after the hardware is defined, the em-
bedded software can still have a significant influence
on the power consumption; i.e., two implementa-
tions of the same application can consume more or
less power. Moreover, the actual software power

manager ensuring the temperature constraints, usu-
ally by acting dynamically on the voltage and fre-
quency, must itself be validated. Validating such
power management policy requires a model of both
actuators and sensors, hence a closed-loop simula-
tion of the functional model with a non-functional
one.

In this paper, we present and compare several
tools to simulate the power and thermal behavior
of a chip together with its functionality. We explore
several levels of abstraction and study the impact
on the precision of the analysis.
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1 Introduction

Reducing power consumption of Systems-on-a-Chip is an important challenge. Clearly, portable

devices should save energy to maximize battery life, but other issues like heat dissipation [21],
voltage drop [11] or faster aging [14] due to overheating are also of growing importance.
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With modern CMOS processes, static power consumption, due to leakage current, is increasing.
Power-saving techniques like clock-gating, that act only on dynamic consumption are no longer
sufficient. More heavy-weight techniques like DVFS and power-gating are necessary to control the
consumption of the chip. These mechanisms use sensors for non-functional properties (temperature,
voltage, ...) to control the chip’s clock generators and power supply [37, 3]. The power management
policy itself is usually implemented in software.

Developing such power management policies requires an execution platform, including models
of sensors, actuators, and taking into account the feedback loop between actuators and sensors.
Low-level (RTL, gate-level or even SPICE) simulations are possible, but too late in the design flow
and their simulation is not fast enough for system-level simulation including non-trivial software.
On the other hand, an accurate model of power consumption and temperature requires a realistic
model of timing.

Virtual prototyping of Systems-on-a-Chip is a well-established practice. The standard techno-
logy for fast and early functional simulation is SystemC/TLM [1], implemented as a C++ library.
Several abstraction levels are possible: one can model the timing-behavior precisely, requiring
a relatively detailed model of the micro-architecture. Early in the design-flow, more abstract
simulations that completely abstract the micro-architecture and with a very loose notion of timing
are more applicable.

Estimating power-consumption and temperature on early virtual prototypes is needed to allow
early power-aware software development and optimize the power-consumption at the system-level.
A solution for system-level power and temperature analysis must satisfy several criteria: it must
be fast, to allow simulating non-trivial scenarios on the whole hardware+software system. It must
be applicable early in the design flow, hence should require a low development effort, and it must
be applicable on early, hence abstract, virtual prototypes.

This paper presents several solutions satisfying these three criteria to augment a functional
SystemC/TLM model with non-functional information, and to perform power and thermal
analysis using a dedicated solver. The tool LIBTLMPWT [25] uses a tight coupling between
the functional simulation and the non-functional solver, and exploits this tight coupling for
performance optimizations (pwt stands for PoWer and Temperature). We also developed an
approach that allows using an external solver as black box and in a separate process [10], and
showed how the cosimulation approach could be used with loosely-timed models [9], validated by
a case-study [16]. The present paper gives a global but detailed presentation of these different
approaches. It includes both improvements in presentation of previously published content and
unpublished results.

We focus on the cosimulation of an existing thermal model (Hotspot [28], ATMI [38] or
Aceplorer [31]) with a functional SystemC/TLM simulation. The internals of the thermal model
are out of the scope of this paper: we study the coupling of simulators, and the impact of the
modeling style in SystemC/TLM on the accuracy of the result.

More specifically, the contributions of this paper are:

A detailed presentation of the tool LIBTLMPWT. Although the tool itself was published
with a technical report [25], it was never presented in a peer-reviewed publication. The tool
provides a new method for power instrumentation with low performance overhead. It take
into account standard SystemC/TLM performance optimizations like temporal decoupling and
direct memory interface (DMI). The annotation mechanism is based on activity ratios, and
takes into account the frequency changes automatically. It is available as free software [27],
including the instrumentation API, the cosimulation engine, and a graphical user interface.
An analysis of different levels of abstraction, and their consequences on possible cosimulation
techniques, with a comprehensive state of the art.
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A method to model abortion following an interrupt in loosely-timed systems.
New experimental studies, including an analysis of the development cost.

2 Modeling Power Management Policies

2.1 Power Management in Modern System-on-Chips

Power consumption of a silicon chip comes mainly from two sources:

dynamic power comes from switching activity. One can see transistors and wires as small
capacitors that are filled-in and emptied when the corresponding value switches from 0 to 1 or
1 to 0. This consumption therefore depends on the capacitance of physical elements (hence, of
the physical process), and on the frequency at which values change, i.e. how much computation
is being performed by the component.

static power comes from leakage current. For a given hardware component, it depends on the
state of the power supply (on or off, and voltage), but is independent of the computation being
performed. The leakage current tends to increase when the size of transistors is reduced. Since
heating silicon increases its conductivity, the static power also increases with temperature.

A simple way to reduce dynamic power consumption is clock gating, which stops the switching
activity by stopping the clock. Clock gating can be applied automatically by the synthesizer in
many cases, and the problem has been studied extensively for decades (e.g. [2, 6]). Clock-gating,
however, is not sufficient in modern Systems-on-Chip, where static power is non-negligible, if not
dominant.

To reduce static power, heavier techniques have to be used. Dynamic Voltage and Frequency
Scaling (DVFS) allows reducing the voltage, hence both static and dynamic power, but requires a
lower frequency. Switching from a voltage/frequency couple to another takes time, hence the policy
behind DVFS is non-trivial, and is usually implemented in software (for example, the cpufreq
drivers in Linux count for around 20,000 lines of code). Another technique is power gating, which
consists in disabling the power supply of unused components. Power gating also takes time, and
the transitions from a mode to another may take time and consume a lot of energy (typically,
before shutting down a component completely, a part of the internal state may have to be saved
to some retention registers), hence the policy to chose whether to power-gate a component or not
is again non-trivial. In the sequel, we call power controller the set of hardware components that
directly control these physical mechanisms, and power manager the implementation of the policy,
usually done at least partially in software. Bugs related to power management, or power bugs, can
drastically increase the power consumption of a system, and discharge the battery of a mobile
phone in a couple of hours [40]. Worse, serious bugs in the power management policy can lead to
deadlocks, e.g., waiting for interrupts from a component which has been completely switched off.

The need for low-power is obvious for battery-powered devices, but it is also important for
permanently plugged ones like set-top-boxes: in addition to being environment-friendly, a low-
power system needs cheaper packaging and avoids the need for a noisy cooling system. Power
consumption cannot be evaluated precisely independently from temperature, as hotter silicon
consumes more (and consuming more in turn increases temperature).

Temperature peaks can physically damage the chip. Since high temperature increases silicon
conductivity, hence static power consumption, a temperature peak can lead to a consumption
peak, and therefore a voltage drop. If the voltage goes below the appropriate threshold, the system
may stop working. It is therefore critical to have thermal estimations before manufacturing the
real system to dimension the packaging and cooling system appropriately.

Also, high temperature gradients lead to faster aging of the chip [14]. To avoid peaks and
minimize gradients, the chips are usually equipped with several temperature sensors (typically
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one or more per core on a many-core platform [37, 3]), allowing the implementation of a software
control loop to regulate temperature.

2.2 \Virtual Prototyping for Power Aware Systems
2.2.1 Non-functional Models

A chip’s non-functional aspects can be modeled by specifying the power consumption of indi-
vidual components, the layout of components (called the floorplan), and the physical parameters
influencing heat dissipation (from a component to another, and from the chip to its environment).

For system-level simulations, modeling individual transistors precisely is clearly too low-level
and too slow. The physical parameters have to be abstracted into a set of operating modes for
each component, often called power-state [5, 7]. A power-state defines the power consumption (in
Watts, or the current intensity in Amperes), possibly as a function of temperature. The energy
consumption (in Joules, or the charge transported in Coulombs) is obtained by integrating the
power over time. When the power consumption of a power-state is constant, the integration is
simply a multiplication by a duration. A power-state is defined by several parameters:

Fixed parameters depend on the platform, but do not vary at runtime (we do not use the word
“static” to avoid confusion with “static power consumption”):

floorplan parameters: location of the module on the chip; used to compute the area of the
module, and the neighbor relations.

technology dependent parameters: physical values that depend on the technology used to
produce the physical chip; this includes capacitance, leakage current, influence of temperature
on the leakage, etc. Most of these values are common to all modules.

Runtime parameters depend on the platform’s activity and configuration:

FElectrical state is the voltage and frequency of the component. It is influenced by DVFS
and power-gating, and controlled by the power-controller.

Activity defines the computation performed by the component (e.g., waiting, computing,
...). The total power consumption related to activity can be expressed as K x F' x V2 x q,
where K is a fixed constant (depending on the number of gates and the capacitance of each
gate) taken into account in the technology dependent parameters, F' is the frequency, V' the
voltage, and « is the activity ratio. The activity ratio expresses the proportion of gates
involved. It varies from 0 (no activity) to 1 (all gates are active at each cycle).

Traffic is the amount of data processed by unit of time (e.g. number of transactions routed
for a bus, number of reads and writes for a memory, ... ).

Note that different parameters correspond to different kinds of models. Electrical state fit very
well in the power-state model: one only needs to model transitions from state to state. Activity
can be modeled in several ways: either an operating mode is modeled as a power-state with a
given activity ratio independently from the functionality, or the activity of the functional model
is observed during simulation and used in the non-functional model. Traffic has to be modeled
separately, since the traffic of a component usually comes from the activity of another component.
We cannot define power-states for traffic a priori and need to take into account the traffic of
the functional simulation. The solutions presented in this paper take all these parameters into
account.

Depending on the stage in the design-flow, the power consumption associated with a power-
state can come from different sources. At early stages of development, they can be target values
(i.e., that further development will consider as an objective), or extrapolation from previous



M. Moy, C. Helmstetter, T. Bouhadiba, and F. Maraninchi

// SystemC thread
void compute () {
while (true) {

set_activity (0); // Enter IDLE mode
wait (event);
set_activity (ACTIVITY_RATIO_RUN); // enter RUN mode
£0O;
wait (100, SC_US);
send_irq () ;

Figure 1 Simple Power-model of a Hardware Component (pseudo-code).

generations of the same component. Later in the design flow, they can be more precise estimations
based on RTL or gate-level simulations, and physical measurements when a prototype of the
chip is available. Our contribution is not to provide these parameters to the user, but to allow
exploiting these per-component parameters for a system-level simulation including power and
thermal management policy and software. Because of heat dissipation, and of the relationship
between power and temperature, the composition of the component’s parameters is non-trivial.

Tools like Docea Power’s Aceplorer [31] allow modeling a chip, taking into account both the
power consumption and the thermal aspects. The traditional way to use Aceplorer for simulation
is to define scenarios that define the sequence of modes for each component. The tool computes
the power consumption and the evolution of temperature (including the feedback of temperature
on power described above). Scenarios can be provided by hand, using UML’s activity diagrams,
or can be produced by a SystemC/TLM or RTL simulation.

In the scenario-based usage, the model does not allow the execution of power-aware software:
the SystemC or RTL simulation provides non-functional stimuli (typically dumped in a VCD
file for offline power/thermal analysis), but has no access to the result of the power and thermal
simulation. A temperature sensor, or battery monitor component could not be modeled. Our
contribution is to allow such closed-loop simulation.

2.2.2 Functional and Non-functional Models cosimulation

To illustrate the cosimulation concepts, let us first consider a very simple component, with 2
activity states. The component waits for an event in IDLE mode, and on reception of the event
performs a computation f that lasts 100 microseconds in mode RUN. A SystemC thread describing
this behavior is provided in Figure 1.

The principle of cosimulation is illustrated in Figure 2. The instrumented functional model
computes, at each point in time, the power state of each component. This power state information
is transmitted (a) to the power model, which uses this power state information together with
the temperature T obtained from the thermal solver (c¢) to compute the power consumption of
each component. The power consumption is used by the thermal solver (b) solver to compute
the derivative of the temperature. It is used together with the thermal model to compute the
evolution of temperature. The temperature (and possibly other non-functional information) are
transmitted back to the functional part and embedded software (d) through models of physical
Sensors.

Note that the scheme illustrated in Figure 2 contains two loops. We focus on the Functional /Non-
functional loop ((a) and (d) on the figure: the behavior is influenced by temperature sensors, but
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&
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cooling system. . . )

SystemC/TLM model of
hardware
Actual Software

Figure 2 Functional, Power and Thermal Models.

the temperature depends on the behavior). A second loop appears with Power/Temperature ((b)
and (c) on the figure: temperature increases as a consequence of power consumption, but static
power consumption increases when the temperature increases). This second loop is also managed
by our approach: when cosimulating with a black-box power/thermal solver like Aceplorer, the
solver deals with it internally. In LIBTLMPWT, the computation of power density can use the
temperature (it will actually use the temperature computed at the previous ATMI step).

2.2.3 Power-Aware Software Execution on a Virtual Prototype

To validate these power and thermal managers early in the design flow, one needs virtual prototypes
that allow execution of power-aware software. Among these models, various degrees of precision
can be achieved:

Purely functional: Even purely functional prototypes need models of temperature sensors: if
the embedded software reads a value from one of its registers, then the simulated platform
should include a component mapped at this address and returning a sensible value (possibly
an arbitrary constant).

Non-functional contracts: Some basic, but yet serious mistakes like reading from or writing to a
component which is switched off can be caught by assertions in the model. The assertions form
the contract [35] of the components, or of the hardware platform with respect to software.

Scenario-based models: To test some basic power management policies, one may need the non-
functional inputs to take different values. For example, if a platform triggers an emergency
stop when temperature goes above some threshold, then testing this functionality requires a
scenario where the temperature returned by the sensor crosses this threshold. This can be
done by returning a pre-defined sequence of values in the temperature sensor model.

Approximate models: When the policy to be tested is non-trivial, manually writing scenarios
is not feasible anymore. Not only the scenarios are too complex to be written by hand,
but realistic scenarios cannot be generated offline [41]. One needs an automated way to get
reasonable sequences of values. A simple thermal model can be sufficient: it will typically
let the temperature decrease when the system saves energy and vice versa. For example, a
software developer implementing a simple hysteresis policy (switch to power saving mode when
temperature is too high, and switch back to normal mode when the temperature crosses a low
threshold) can use this model to test that the mode switches are correctly performed. These
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models allow detecting some of the non-functional bugs in the embedded software (failure to
enter a low-power mode, polling instead of explicit wait for an interrupt, ...).

Precise models: To validate the parameters of a power management policy and get the actual
values for maximal temperature peaks and gradient, one needs a precise model. This implies
precision in the timing of the platform, and on the thermal model of the chip. Some degree of
precision is also needed to compare the efficiency of several power management policies.

We are interested in the last two. The following sections describe new tools to allow power
and thermal modeling on SystemC/TLM at different levels of timing granularity. In both cases,
the approach enriches a functional model with some power-state information, and cosimulates it
with a dedicated power and thermal solver.

The rest of the paper is organized as follows. We review related work in Section 2.3, and
then present our tools. Section 3 presents a cosimulation method implemented in LIBTLMPWT,
where the thermal solver is embedded in the simulation. Section 4 presents our techniques to deal
with loosely timed models without introducing simulation artifacts. In Section 5, we present a
prototype distinct from LIBTLMPWT based on similar ideas, that allows cosimulating a SystemC
simulation with an external power and temperature solver. We present our experimental results
in Section 6, and conclude in Section 7.

2.3 Related Work
2.3.1 Power-state Model

The power-state model we use has already been applied to SystemC in the TLM Power library
presented in [34, 55, 23]. TLM Power models a system-on-a~chip in SystemC/TLM, running the
actual software on top of a simulated hardware. The objective is to validate a power management
policy. We borrowed some ideas from TLM Power, but the latter does not allow temperature
management. Another approach using the power-state model on SystemC programs is presented
in [24], with advanced techniques for software integration like source-level simulation with back-
annotations. We extended the idea to support cosimulation with a thermal solver, including
closed-loop cosimulation where the software has access to non-functional values through sensors.
Also, [34, 55, 23, 24] target precisely timed models while we allow an analysis on temporally
decoupled or loosely timed models.

The power-state model is also used in [18] where the authors perform a thermal analysis to
evaluate and optimize the mean time to failure of a chip. [18] uses an abstraction of the software
as a task graph, unlike our approach which uses the concrete, actual software (i.e. a cross-compiled
binary executable).

The power-state model can also be used at a more abstract level, where the hardware and
the software are modeled with automata. Indeed, if the set of power-states is finite, then the
underlying formal model is the one of linear-priced timed automata [4]. On a simple enough model,
formal analysis is possible. For example, [19] formulates the thermal analysis problem as a hybrid
automata reachability verification problem, and solves it using model checking. [32] defines a
system-level analytical model to capture the consumption and thermal behavior of a chip with
Power Variability Curves, based on the framework of real-time calculus. These approaches cannot
be applied on a model precise enough to execute the actual software. Instead, the software is
modeled as a set of tasks, and the hardware architecture is not detailed. Power consumption is
considered to be a function of the executing software task, hence only processors are considered.
[32] computes guaranteed bounds on temperature peaks. The method is intended to be used at a
very early stage of the design. As opposed to this, we use SystemC/TLM models that model the
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hardware, but ezecute the actual embedded software (using either instruction set simulators or
source-level simulation [44]).

A concrete study of power-state models in Synopsys Platform Architect and Aceplorer is given
in [22]. Unlike the present paper, [22] focuses on the power/thermal analysis and does not consider
the cosimulation with a functional simulator nor software integration.

2.3.2 Low-Level Power Analysis

Our approach uses the power-state model, which assumes that the non-functional characteristics
like power-consumption are given for each component and each power-state. Other techniques, or
physical measurements, have to be used to find these values for each component. The power-state
model is used to compose the results at the system-level. The following techniques are lower-level
analysis techniques that can be used to calibrate a high-level power-state model.

[39] presents an analytical approach to dynamic power estimation of RTL descriptions. The
authors use the concept of entropy (from information theory) to estimate the average activity
factor. They consider only the combinatorial parts of a circuit.

The work described in [52] is a simulation method including the functionality and power
consumption. It focuses on instruction-level power consumption for software execution, describing
in details how to get the parameters of the power-model, with measures. It is limited to power-
consumption and does not take temperature into account. A case-study from Intel is described,
and the simulation results compared to measures on the real chip. The analysis is based on
Hamming distance, and this information is not available in most TLM models because they
abstract away details about transaction interleaving, signals switching and arbitration.

[13] provide a methodology for power characterization of the AMBA AHB communication Bus.
The resulting power characterization is based on monitoring some parameters of the functional
simulation. Accuracy of power estimation is gained at the expense of the functional model
abstraction level, and therefore at the expense of the simulation speed. Like for [52], it relies on
information that may not be available in TLM.

A technique for instruction level power modeling of processors is described in [51]. The intuitive
idea is to run repeatedly one instruction in a loop and measure the average power. The work
takes into account inter-instruction effect (switching from an instruction to another). Analysis
of assembly code can then associate power values with each basic block of the program. The
modeling approach targets software power optimization trough power-aware compilation. A similar
approach is described in [42].

[12] describes a methodology for deriving instruction-based dynamic power models from gate-
level simulations. The derived power models (in the form of look-up tables) are meant to be used
in system-level simulation models to allow for faster power simulation.

Industrial tools like Synopsys’s PrimeTime PX [49] allow a very detailed power analysis, but
these tools take as input the netlist of the circuit, which is not available at early stages of the
design-flow. They perform a detailed analysis hence run orders of magnitude slower than a TLM
model.

Several approaches are dedicated to the definition of power-state machines of individual IPs,
from data collected with low-level simulations. In some approaches, the structure of the machine
has to be known in advance, and the analysis of low-level simulations provides the consumption
values to be attached to the predetermined states. [17] proposes to run functional simulations of
an IP together with gate-level simulations, in order to synthesize both the structure of the power
state machine, and the consumption values attached to the states.
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2.3.3 Thermal Analysis

Several thermal solvers are available. Hotspot [28] can be used either as a standalone tool or
as a library. It takes as input the physical characteristics of the chip and a power-trace (power
consumption of each component as a function of time), and computes a thermal trace. ATMI [38]

follows a similar approach, with a focus on simplicity of integration. It is available only as a library.

3D-ICE [48] uses a similar model dedicated to 3D stacked chips. These tools do only thermal
analysis: in Figure 2, they can be used for step “Temperature model”, but need an additional
cosimulation engine to perform the complete simulation.

CTherm [33] proposes a cosimulation including functional (SystemC), power and thermal
(3D-ICE) models similar to ours (the thermal solver is triggered periodically from SystemC at a
user-defined pace). It does not allow Direct Memory Interface (DMI), temporal decoupling or
loose timing. However, it has some features like thermal checkpointing and automatic thermal
model generation that would be interesting to add to our tools.

Aceplorer [31] is an industrial tool which, coupled with AceThermalModeler, does both power

and thermal analysis (i.e. does both “Power model” and “Temperature model” in Figure 2).

Initially, it could get some power-state traces from an external SystemC/TLM model, but not
feed non-functional values back to the model. It did take into account the power/temperature
loop (arrows (b) and (c) on Figure 2), but did not allow a feedback loop from the non-functional
side to the functional model (arrow (d)). The AceTLMConnect [43] extension was added to the
tool based on our research prototype (as part of the joint project HeLP?!).

These thermal solvers solve several problems. They can perform a steady-state analysis (i.e.,
compute the state of the system after a long period of time with constant load), or transient
analysis (i.e., model the response of a system to a change). The steady-state analysis is useful
to analyze the overall characteristics of a chip, but is not sufficient to execute a software power
management policy, hence is not sufficient to solve the problem addressed in this paper. A
steady-state analysis does not need the detailed behavior hence it does not need our cosimulation
technique. We use the transient analysis of these tools, and feed it with information produced by
the functional simulation.

2.3.4 Standards and Formats

Some common languages/formats (e.g., UPF [29] and CPF [45]) for low power design are emerging
and allow to describe power intents (power domains, power network, power switches, etc.) of a
circuit. These formats can be the entry point of a code generation flow [36] that avoids hardcoding
non-functional values into the SystemC/TLM code, and could use a cosimulation like ours to run
the simulation.

2.3.5 System-Level Power and Thermal Simulation

A widely used tool for system-level simulation is gem5 [8]. The principles behind gemb and
SystemC/TLM are very similar: both are event driven simulators, and gemb can actually cosimulate
with SystemC. gemb is meant to be usable out of the box, and includes several instruction set
simulators and memory models, while SystemC only provides the building blocks to write such
simulators. gemb5 can be configured with different speed Vs accuracy trade-offs, but even the
speed-oriented configurations are more precise than the loosely-timed models we are targeting in
this paper. For example, gem5 does not support temporal decoupling.

1 ANR Arpége, 2009-2013, see http://www-verimag.imag.fr/PROJECTS/SYNCHRONE/HELP/

03:9

LITES


http://www-verimag.imag.fr/PROJECTS/SYNCHRONE/HELP/

03:10 Modeling Power Consumption and Temperature in TLM Models

T T vor e [pemoale ‘ Al
| VGA ! i

! PROCESSOR S | library

! module controller | module DVES : TOP |

i set_activity set_activity controller i module } T

! ‘:frcqucncy !

! ﬁ E ®voltage i ATMI

oyl —M™M_ AM A ! wrapper

| ‘ BUS add_activity pwt module 3 SC_THREAD
: interrupt | | TEMP. pwt MEMORY | PWt |

! controller SENSOR module .| module |4 -

| pwt module set_temperature M | graphlcal

| . l user interface

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3 Example of a minimal SoC model with its power and temperature extensions.

gemd can be augmented with a power model and cosimulate with a thermal solver like Hotspot
as done in [50]. Similarly to the present paper, [50] allows executing software that interact with
power-related sensors and actuators on the chip. However, the abstraction level is very different.
Our techniques allow for common optimizations on loosely-timed models: coarse-grained timing
with temporal decoupling (see Section 4.2), direct memory interface (see Section 3.3), including
traffic models. Also, to the best of our knowledge, gemb is not able to cosimulate with an external,
black-box, power and thermal solver (see Section 5).

3 Standalone Power and Temperature Modeling

3.1 Architecture Overview

We now present the approach followed by LIBTLMPWT, in which all power and temperature
computations are integrated into the SystemC/TLM model. As shown on Figure 3, each module
contains code to estimate its power consumption, then a centralized temperature solver gathers
power information and evaluates the temperature of each module. An optional graphical user
interface (GUI) allows monitoring and controlling the simulation.

Temperature evaluation is done using the ATMI tool [38]. Basically, ATMI takes as input a
floorplan, i.e. a list of areas described by their coordinates, and the initial temperature. During
simulation, ATMI computes the temperature of each area based on its power consumption,
expressed as a power density. This computation is done at a regular pace, such as once every
millisecond (SystemC time). The temperature computation must be centralized, because the
temperature of any area depends on the temperature of neighbor areas.

Since ATMI is packaged as a C library, it can be directly called from SystemC code. This is
done by a SystemC module, called the ATMI wrapper. At elaboration time, we register to this
module each SystemC module that is mapped to an ATMI area. This module contains a SystemC
thread that calls the ATMI library according to the ATMI pace during simulation.

The ATMI wrapper algorithm is schemed by Figure 4. Given the power densities, computing
the module temperatures is just a function call to the ATMI library. The resulting temperature
is propagated to the SystemC side by the wrapper after the call to ATMI. For any SystemC
module, it is possible to provide a callback method that is called each time the temperature is set.
For example, the temperature sensor module defines a callback method that raises an interrupt
when the temperature reaches some thresholds (for a concrete example of sensor providing this
functionality, see the High/Low-Temperature Interrupt Enable bits of the IA32_THERM_INTERRUPT
Register on Intel Architecture [30]). The main issue is to estimate the average power density
consumed during the last step elapsed. This estimation is done in the new pwt_module class.
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while (true) {
wait(atmi_step_duration); // System(C’s wait
for each module, compute its average power density during the last elapsed step.
atmi_simulator_step(atmi_instance, power_densities) // call ATMI
set module temperatures and call associated callbacks to trigger non-functional events

3

Figure 4 Basic algorithm of the ATMI wrapper.

In our model, the temperature transmitted to the SystemC modules, in particular to models of
the thermal sensors, is the temperature at the corresponding instant. If the actual sensor exposes
only a sampling of the temperature (e.g. the physical sensor samples temperature only every
second), then this sampling can be implemented in SystemC by the temperature sensor. Letting
the SystemC module chose the sampling rate makes the approach very flexible.

Each SystemC module that is mapped to an ATMI area must inherit from the pwt_module class.
This class stores several parameters, categorized following the classification given in Section 2.2.1
(fized parameters: floorplan and technology dependent parameters; runtime parameters: voltage,
frequency, activity ratio).

In order to define frequency and power domains, we allow the existence of PWT modules
not mapped on the floorplan. Such modules only provide the voltage and frequency parameters,
which are forwarded to their children modules. Other methods are disabled; in particular, they
have no power densities. For example, the chip on Figure 3 has one DVFS (Dynamic Voltage
and Frequency Scaling) controller and a single power domain. So, in TLM, the model of the
DVEFS controller is bound to the top module; the DVFES controller TLM module calls the methods
set_frequency and set_voltage of the top module, which in turn calls the set_frequency and
set_voltage methods of all its children PWT modules.

Given these parameters, the pwt_module class computes the power density, or more precisely,
its average value during the last step elapsed. The power consumption is computed as the sum of
the static and the dynamic power:

The static power is due to the leakage current, and it is proportional to the voltage and the
leakage current intensity. The intensity itself increases when the temperature increases; in the
current implementation, we use a linear approximation of the temperature effect, but a more
elaborated physical model would be easy to integrate in the tool.

The dynamic power corresponds to the cost of voltage changes in gates. It is proportional to
the frequency, to the number of gates involved (i.e., the activity ratio), and to the square of
the voltage. Moreover, it is proportional to a constant that depends on the capacitance per
gate and on the gate density.

In consequence, the general formula is of the form:

P:Pstatic + denamic:VXK1X(1+K2XT) + F><V2><04XK3,

where V' is the voltage, T is the temperature, F' is the frequency, « is the activity ratio, and K; are
static parameters depending on the module area and on the synthesis technology. Because PWT
modules contain the general formula, which involves explicitly the frequency and the voltage, the
power model manages DVFS by construction. Indeed, other approaches [34] let model developers
provide the actual power value, using their own function that may or may not take into account
that the voltage or the frequency may change. If needed, a module that has a specific power
model can also redefine the method that computes its power density and use an arbitrary formula
written in C++.
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3.2 Setting the Activity Ratio

Using the approach we present in this section, the main task to extend a TLM model with power
consumption and temperature estimations is to set dynamically the activity ratio of each module.
The pwt_module class provides two ways to set this ratio (sc_time_stamp() is the SystemC
function returning the current simulated time):

1. level-based: change the activity level, until the next call
void set_activity(float ratio, sc_time now = sc_time_stamp())
Set the activity ratio starting from now and until another level is set.
2. action-based: add some extra-activity for a fized duration
void add_activity(float ratio_increment,
unsigned nb_cycles,
sc_time now = sc_time_stamp())
Add some activity to the current level (more precisely, the level at date now), for a short
duration defined by a number of clock cycles.

In general, the first method is best suited for initiator modules whereas the second is better for
interconnects and target modules. For example, a processor TLM model will call the set_activity
method when it enters an idle state and when it becomes busy again. Using this method, we
get an activity-state based power model, as in [34]. If more accuracy is needed, one can develop
an instruction-based power model (like the one of [20]) on top of this API. The model would
use the second method and call add_activity for each instruction, with a ratio depending on
the instruction kind and the register values. Obviously, the second approach requires additional
manpower and will slow down the simulation.

Concerning interconnect and target modules (that receive transaction initiated by others, like
a memory component), the best solution is to call the add_activity method once per transaction.
In general, the ratio increment depends on the command (READ or WRITE) whereas the duration
(nb_cycles) depends on the transaction size. Note that it would be harder to use the activity-state
based method, because there is no local activity state (indeed, the activity depends on the external
initiators).

A naive implementation of the add_activity method would be to use two calls of the
set_activity method, as follow: remember the current activity level as current_ratio, set the
activity level to current_ratio + ratio_incr, increase the local date, and finally re-set the
activity to current_ratio. However, this implementation would not be reentrant, and pretty
slow. Reentrancy is mandatory for a bus or memory module: they can receive transactions from
several initiators whose non-functional effect overlap. On the contrary, our implementation of the
add_activity method is reentrant and fast.

The rationale for the parameter “sc_time now” of methods set_activity and add_activity
is to ensure the compatibility with temporal decoupling [53], when using the coding rules defined
in [1]. When temporally decoupled, the local date of a process is expressed as “sc_time_stamp() +
local_offset” (instead of “sc_time_stamp()”), allowing to advance the local time by executing
a low-cost “local_offset += T” instead of a costly “wait(T)”. This local offset is part of all
transactions, so it can be used by interconnects and target modules too. Consequently, to set the
activity ratio at the right date, the methods set_activity() and add_activity must be called
with the parameter now set to “sc_time_stamp() + local_offset”. Since this parameter has a
default value, it can be safely ignored for all processes that are not temporally decoupled.

The “now” parameter passed to the activity methods may be further in time than the next
ATMI step boundary. Indeed, some TLM modules modeled at a coarse-grained may simulate
a slice of time much longer than the ATMI time step before yielding back to the scheduler.
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Consequently, each PWT module contains a list of activity counters. The list head contains the
activity counter of the current ATMI step, and successive list elements store the activity of future
steps. The ATMI wrapper pops the front element once every step. The traffic model of [9] can be
implemented on top of this, but it is currently not part of the tool presented here.

3.3 Direct Memory Interface (DMI) Management

Motivated by simulation speed issues, some TLM modules use a technique called Direct Memory
Interface (DMI). The goal is to accelerate memory accesses. and the idea is to provide the initiator
(e.g., an ISS) with a pointer to the memory array. So, when accessing memory, the initiator will
directly use the memory pointer instead of generating a transaction. Given that a transaction

involves many indirect function calls plus routing in the interconnects, the speed gain is significant.

DMI is functionally correct but may bypass some side-effects, because the code related to timing
and power into the interconnects and the memory is no longer executed. For the timing issue, the
SystemC standard [1] suggests to provide the initiator with two durations: the read latency and
the write latency. Thus, the initiator can add the latency to its local offset when a memory access
is simulated. Because the latencies depend on the frequency, the DMI descriptor must be updated
every time the frequency is changed.

We use the same idea for power modeling. However, providing a single activity ratio increment
per transaction is not enough, since the activity increment must be added to each module involved
in the transaction. Indeed, if the additional activity was assigned to the initiator, then the initiator
temperature would be overestimated whereas the target components (e.g. bus and memory)
temperatures would be underestimated. Our solution is to add into the DMI descriptor a pointer
list of all PWT modules that are on the transaction path. Our DMI manager class provides a
method apply_side_effects(command, size) that increases the local time offset according to
the latency and call the add_activity method of all the PWT modules in the pointer list.

3.4 Graphical User Interface

We have developed a graphical user interface, providing basic simulations controls and some
monitoring features (see Figure 5). This GUI is implemented using the Qt framework, and run
in a POSIX thread distinct from the SystemC simulation. So, the SystemC simulation is slowed
down only when the GUI takes the main lock to update its values. Those value updates are done
ten times per second (wall-clock time).

On the control side, the GUI allows to pause the simulation (done by keeping the lock), or
to reduce the SystemC simulation speed (done by adding Unix usleep calls in the Posix thread
running the SystemC kernel).

For monitoring, the GUI provides the current temperatures as text values, a graph of the
floorplan where each module is coloured with respect to its temperature (from blue for cold, to red
for hot module). Additionally, a plot provides either the temperature or the power consumption
or the power density of each module depending on the time.

4 Thermal Analysis for Loosely Timed Models
4.1 Loosely Timed Models

Loose timing requires special attention. An obvious limitation of any power-state based model is
that if the timing is too imprecise, then a precise power analysis is not possible (as the power-state
model intrinsically needs timing to integrate the power values over time). Still, the timing can be
loose and be a reasonable approximation of reality.
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Figure 5 Graphical user interface.

In fine-grained models, the duration of a task execution is usually computed. For example, an
ISS is a way of computing a software task duration: the real binary (and thus the real algorithm)
is simulated instruction by instruction and memory access per memory access; the duration of the
task is then a sum of short durations corresponding to each instruction execution and memory
access. These short durations are defined in many modules: instruction cost in the ISS module
and memory access latencies and bandwidths in interconnect and target modules.

As opposed to this, loosely timed models can abstract durations completely and consider that
computations are done in zero-time, or use calibrated durations. This happens for example when
the algorithm used by the future hardware is still unknown, or when the simulated platform
uses an algorithm that is different from the hardware. For an image processing application, for
example, a coarse-grained model that considers an image as atomic can be calibrated with some
timing values close to the actual ones (e.g. considering that decoding one image takes X ms).
This estimated duration may possibly depend on some parameters, such as the image size.

Calibrated models cannot be very precise, as the actual performance can depend on interactions
that cannot be taken into account in calibration (e.g. conflicts on a shared bus). However, using
calibrated models is not less precise than using hand-written scenarios, which is a common practice
for power/thermal modeling in the industry. This section presents a set of techniques to write
approximate power and thermal models based on loosely timed functional models. We obviously
cannot recover information which is abstracted away by loose timing, but we avoid simulation
artifacts that would result from it.

In this section, we consider the case of coarse-grained modules; that is to say, a module which
contains abstract tasks whose duration is declared instead of computed. A typical example is an
hardware accelerator for graphical computation, such as image encoding or decoding. Such TLM
module models the functionality using an algorithm (such as the legacy code algorithm) which is
not the same as one used in the hardware.

The power consumption of a coarse-grained module can be defined easily by a discrete set of
activity states: for example one for idle and another for busy. However, because a coarse-grained
module performs memory accesses, it has an impact on memory and interconnect consumption
that must also be evaluated. Figure 6 shows a typical code for a coarse-grained module task.

More generally, the code is usually written as a sequence of computations, each of them being of
the form compute(); wait(...); commit(); . compute() is done in zero simulated time. wait(...)
lets the simulated time elapse. Its argument is the time the computation would take on the real
system. commit () is the functional effect of the computation, typically an interrupt or a transaction
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void compute() { // SC_THREAD
while (true) {

wait (start__event); // wait for a new request

in_data = read_block (...); // read all useful data (e.g., 1 image)
out__data = compute_task(in_data); // call legacy code

write_block (out_data, ...); // write all new data

wait (duration_task); // wait the duration task
end_event.notify (); // notify the client that the request is done

}

Figure 6 Example Code with Loose Timing.

to a control register. commit () is also called a synchronization point. More details can be found
in [15].

With a naive implementation, the read_block and write_block transactions are done at a
single SystemC time, thus creating an infinite peak of power consumption in the interconnect
and memory, followed by no additional consumption during duration_task. As a consequence,
in the model, the chip temperature will climb very fast and immediately fall back as fast. This
temperate peak may cross a threshold of the temperature sensors, thus generating an event for
the temperature manager. This event is an issue, because on the physical system there is likely no
such temperature peak, but instead a slow increase of the temperature spread among the whole
task execution.

Avoiding unrealistic peaks is relatively easy on the initiator’s side. The solution is to instrument
the complete compute(); wait(...); commit(); block of code. In the example of Figure 6 this
would mean adding calls to set_activity() at lines 3, 5 and 11.

4.2 Transactions from Coarse-Grained Modules

To illustrate the problems caused by loose timing, Figure 7 shows a possible execution of two
iterations of the loop. Vertical arrows represent transactions. The first line shows the transactions
that the actual system would perform. The second line shows how these transactions are simulated
on a loosely-timed model. In a naive model (Figure 7.(a)), the dynamic energy consumption of
the bus routing these transactions would be modeled at the simulated time when the transactions
are executed, hence we would get an instantaneous energy consumption at SystemC instants
(for clarity, the figure shows cumulative energy instead of power, which would be infinite). The
temperature model would therefore compute a peak that does not exist on the real system.

If the model uses a precise temporal decoupling, then the local dates of transactions can be
used instead of the global SystemC time. However, on a loosely timed system, this local clock
only provides a lower bound of the transaction start: the actual time of the transaction may be

at any time between the previous timing annotation and the next one, which is not known yet.

In the example of Figure 6, the TLM model has a clear read/compute/write separation, but the

actual system may use a pipelined algorithm where reads, computations and writes are interleaved.

This cannot be reflected by only adding annotations to the code. The best we can do is to assume
that transactions will be evenly distributed on the interval of time where they happen. This is
illustrated on Figure 7.(b): the analysis counts transactions over each interval of time, and when
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reaching a synchronization point, a frequency is computed, and this frequency is used instead of
individual transactions in the analysis.

We presented a first implementation of this principle in [9]. We describe below our new
implementation of this principle integrated in LIBTLMPWT, with an accurate management of
classical optimizations like DMI.

Firstly, interconnect and targets modules (mainly memory modules) must be able to recognize
such coarse-grained transactions. For this goal, we have defined a new extension type (following
the AST TLM guidelines for ignorable extensions). When a module receives a transaction with
this extension, its behavior is changed as follow:

the code to add a delay to the initiator local date is skipped
the extra-activity due to transaction is stored until the end of access date is known.
the current module is registered to a delayed-access manager.

Secondly, when the task is done and its execution duration is known, the coarse grain module
informs the delayed-access manger, which in turn calls back each module currently storing delayed
accesses. Actually, this is done by adding a line
DelayedActivityManager: :commit (task_duration) just before the statement
wait(duration_task). When interconnect and target modules are called back, they simply
spread the stored activity between the start of access and end of access date.

Additionally, the new extension for coarse-grained transactions allows to define a secondary
transaction size. The idea is that because the algorithm is not the real one, the access size in the
physical chip may be different from the one of the TLM platform. For a simple example, consider
a hardware module computing the next step of the Game of Life. In TLM, the implementation
will read then write the whole image. However, a hardware implementation will have to read some
pixel many times if it cannot buffer the whole image; the most naive implementation would even
read each pixel 9 times. On the write side, if the image is modified in place, then the hardware
may decide to write only pixels that change. Thanks to the secondary size provided with the
extension, the extra-activity can be computed on a better estimated size without changing the
functional model.

4.3 Interrupt Management

As explained in Section 4.1 and [15], a loosely-timed model can still be functionally faithful in
the presence of interrupts. For example, in Figure 6, in the execution depicted on Figure 7,
if an interrupt is received by the component executing compute at time 20, then in the real
system, the interrupt may abort any of read_block(), compute_task() or write_block(). In
the loosely-timed model, these 3 functions are executed in zero-time. The interrupt is received
during the call to wait(duration_task), and a check for pending interrupts is done after this
wait statement. The interrupt is therefore processed after the wait statement terminates. In
some sense, it is taken into account later than the real system, but the model is still faithful
because the interrupt is received before end_event.notify (), hence the functional effect of the
computation interrupted is not yet visible to other components. It is therefore acceptable to take
the interrupt into account at the next SystemC instant (at time 40 in our case) from the functional
point of view.

However, from the non-functional point of view, interrupts in loosely-timed models raise several
issues: even though we can manage them in a functionally faithful way, the timing of the SystemC
simulation does not match the one of the physical system. Consider a component executing
compute(); wait(50); commit(); starting at time ¢, to model a computation that takes 50 units
of time. Two cases are problematic:
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1. If the processor receives an interrupt at time ¢ + 20, and executes an Interrupt Service Routine
(ISR) isr() for 10 units of time at this point. The functional model executes compute () and
then isr(), but we need to model isr() as being executed in interval [t + 20,¢ + 30].

2. If the processor receives an interrupt at time ¢ + 20 which aborts the computation, then
compute() is executed completely in the functional model, and only a part (20/50) of its
execution must be taken into account in the non-functional analysis. In other words, we do
not need to actually cancel the functional computation because its functional effect is not yet
visible, but we must not consider the power consumption of a computation that is not done in
the real system.

To solve issue 1, we consider ISR as a special-case of software execution. First, we need to
execute the ISR at the right point in time, hence checking for the presence of pending interrupt
after the wait statement is no longer acceptable. Our approach replaces the call to wait (time)
between a computation and its functional effect with a wait(event, time), that either completes
when enough simulated time has elapsed, or can be interrupted by an event triggered by an
interrupt. This way, the interrupt service routine can be executed at the right point it time. The
frequency of transactions due to the normal computation is kept unchanged, but is not taken into
account during the execution of the ISR.

To solve issue 2, we need to instrument the abortion in the embedded software, and when we
encounter a task abortion, we reset the frequency for the processor (technically, this is implemented
by instrumenting longjmp to write to a magic address that is caught by the SystemC model and
transmitted to the power-model). This is implemented in the tool presented in [9] but not yet in
LIBTLMPWT.

5 Cosimulation with an External Power and Temperature Solver

5.1 Cosimulation Interface

When using the non-functional solver as a black-box it is no longer possible to execute a SystemC
process for each of its internal steps, since we cannot know when the steps should take place. In
this case, another cosimulation strategy has to be applied.

We implemented a cosimulation interface, presented in details in [10], that allows running a
functional SystemC/TLM platform with power annotations with an external non-functional solver
running in a separate process. We did our experiments with wrappers around ATMI [38] and
Hotspot [28] as external solvers, but the same interface was used to connect to the industrial
tool Aceplorer. This interface is now used by the commercial extension AceTLMConnect [43] for
Aceplorer. A small case study using the industrial implementation is presented in [16].

The cosimulation interface uses a simple request/response protocol, using Thrift [46] for
interprocess communication. The principle is the following: the simulation starts on the SystemC
side, and SystemC’s time drives the simulation. From time to time, the SystemC program requests
a non-functional simulation on a time interval. The non-functional solver performs the simulation
and returns the relevant values at the end of the time interval. In some case, the non-functional
simulation may return early, because the temperature crossed a given threshold, and a SystemC
event can be generated at the time the threshold is crossed.

5.2 Strategies Using the Interface

The same interface can be used with multiple strategies. In the lockstep strategy (Figures 8 and 9),
the functional/non-functional synchronization is performed at the end of each SystemC simulated
instant. A non-functional simulation is requested for the time interval between the current instant
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Figure 8 lockstep cosimulation strategy (for clarity, simulated instants are represented with a non-null
width; boxes on the SystemC line correspond to simulated instants and boxes on the P/T solver line to
intervals between instants).
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Figure 9 lockstep cosimulation strategy with interrupt (IT).

and the expected next simulation instant. In case a non-functional event is triggered (Fig 9), the
non-functional simulation stops before the end of the requested time interval, and a SystemC
event is notified, which creates a SystemC instant during which the functional part can react (e.g.,
by triggering an emergency stop if the temperature is too high).

When one can guarantee that no non-functional event is possible (either because the hardware
sensors are only passive components and cannot trigger events, or because we know for sure
that the condition will never be met), another strategy is possible: the functional-ahead strategy,
illustrated in Figure 10. In this case, the SystemC side runs without launching the non-functional
simulation until an access to a sensor is performed. When this happens, a non-functional
simulation is requested up to the current SystemC instant. This strategy is less flexible, but
requires considerably less request/response round trips, hence can be faster (especially when
SystemC and the non-functional solvers run on different machines).

A parallel strategy is also presented in [10].

6 Experiments

6.1 Development Cost

For the development and the evaluation of the LIBTLMPWT approach, we have developed a
demonstration platform based on a small FPGA system. The main components are a processor
(MicroBlaze) and a VGA controller. There are two memories, one for instructions and the other
for data, plus the usual devices: timers, UART, interrupt controller, etc. Compared to the initial

FPGA system, we have added in the TLM model a temperature sensor and a DVFS controller.

The whole TLM model uses the blocking TLM interfaces of [1], with the generic payload plus an
ignorable extension for DMI configuration. We reuse some open-source TLM code from SoCLib [47]
and SimSoC [26].
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Figure 10 functional ahead strategy, in the absence of interrupt.

We have applied some classic optimizations in the TLM model, so that the base simulation
speed is similar to the simulation speed of an industrial TLM model. In particular, we use temporal
decoupling in all places where it is useful; the processor and VGA controller models use the Direct
Memory Interface mechanism. When the processor is busy, the simulation speed is around 50
MIPS (million instructions per second).

The TLM model without power and temperature counts 5000 lines of code, and uses some
general development kits counting in total 1400 lines of code. In this version, the temperature
sensor and the DVFS controller modules are included but they have no behavior.

For the instrumentation of the platform itself, we have added about 100 lines of code. Note
that this is quite small compared to the platform size, showing that once the tools and data are
available, instrumenting an existing TLM model for power and temperature estimations requires a
very little cost. One must provide the physical values used in the power and thermal model; this
calibration task is out of this paper scope.

The core classes we have developed for power and temperature modeling counts 700 lines of
code (not including the ATMI library, which is 2700 lines long). Additionally, the graphical user
interface counts close to 600 lines.

6.2 Simulation Speed Overhead

To evaluate the simulation speed, we use our demonstration platform and make it run a benchmark
application. In this benchmark, the processor is periodically computing: it waits one second and
then computes during about 0.8 seconds (SystemC time). The application computes the “game of
life”, waiting 1 second between images. Additionally, the VGA controller is active and loads the
image buffer 60 times per second. Between two consecutive reloads, the VGA controller remains
idle for a few milliseconds.

The first time the model is simulated, the ATMI library computes some data in advance in
order to accelerate the simulation itself. Those data are cached in a file for future simulations.
Modifying the floorplan or some technology dependent parameters requires to compute this file
again. This computation takes about two minutes.

Simulating 10 seconds (SystemC time) takes:

3.4 seconds (wall-clock time) for the initial functional TLM model

6.4 seconds with power and temperature estimations (6.6 seconds with GUI), assuming that

the ATMI cache file was ready.
So, the simulation duration overhead is about +88%. We consider that it is a significant but
acceptable overhead: the performance remain in the same order of magnitude, and it should be
noted that the LIBTLMPWT approach is compatible with the common TLM abstractions and
optimizations, which allowed gaining several orders of magnitude compared to lower-level models
like RTL.
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Table 1 Effect of the ATMI step duration in LIBTLMPWT.

ATMI simulation standard deviation (o)

step duration processor VGA bus temp. sensor
0.25 ms | 15.3 s (+139%) | reference | reference | reference reference
0.5 ms 8.9 s (+39%) 0.01 °C 0.05 °C 0.09 °C 0.00 °C

1 ms 6.4s

(
(ref.) 0.03°C | 0.11°C | 0.12°C 0.01 °C
2 ms 5.2 (
(

19%) 0.06 °C 0.23 °C 0.15 °C 0.03 °C
28%) 0.13 °C 0.42 °C 0.19 °C 0.05 °C

4 ms 4.6 s

For example, DMI would need to be disabled if we did not take it into account. As expected,
running the PWT simulation with DMI but without the extension is quick (a5 seconds) but
incorrect: we have observed errors of more than 1 degree Celsius. If we disable DMI, then the
functional simulation consumes 9.1 seconds and the PWT simulation consumes 12.8 seconds. In
other words, without our extended DMI, the total overhead would be 9.4 seconds, i.e. +276% (5.7
seconds for disabling the DMI plus 3.7 seconds for power and temperature computations).

Looking at the profile obtained with callgrind+kcachegrind [54], we notice that there are
two performance-consuming spots: 1. computations internal to the ATMI library (=28% of
total simulation time), 2. applications of transaction side effects when using DMI (~=12% of
total simulation time). The pwt_module class has been implemented with the optimization of
this second performance-consuming spot in mind. These numbers show that the performance
overhead comes mainly from the temperature simulation (about 2/3 of the overhead), not from
the interfacing (about 1/3 of the overhead).

Concerning the time spent in the ATMI library, the user may optimize it by adapting the
ATMI step duration. The values above are given for a step duration of one millisecond. As shown
by Table 1, the longer the ATMI step is, the faster the simulation, at the cost of a loss of accuracy.
The temperature error is higher in modules whose power density changes at a fast pace.

6.3 Applications

Using the “game of life” benchmark previously presented, we can observe that temperature plots
are as expected. Figure 11 shows those plots at different time scales. Looking at a short time
range, we see that the VGA temperature fluctuates with an amplitude slightly above 1 °C; as a
consequence, the temperature sensor fluctuates too, but with a smaller amplitude. On the second
plot, we see that the processor temperature fluctuates at a slower pace, since it is computing about
one second every two. Moreover, other module temperatures evolve according to the processor
temperature. Finally, the third plot shows that the whole system takes about 100 seconds to reach
its maximum temperature. It is one reason why simulators must be fast enough: several minutes
of SystemC time can be needed to observe the relevant behavior.

One possible application of our tool is to detect non-functional errors in embedded software,
such as polling a device register instead of using idle mode and interrupts. Figure 12 shows what
happens if the previous benchmark uses polling instead of interrupts. The functional behaviour is
exactly the same, but we immediately see that the temperatures keep increasing and that the real
chip would overheat. Note that the bus temperature is higher during polling than during frame
computation due to the high polling traffic. The bug is obvious with temperature analysis, even if
the analysis is imprecise. It would be much harder to find without it.

Another application is the development and validation of the voltage and frequency management.
One simple solution to avoid overheating is to switch between two modes: a default fast mode
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Figure 11 Temperature plots for the “game of life” benchmark, with different time scales.
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Figure 12 Variant of the “game of life” benchmark using polling.

where frequency and voltage are high, and a backup low-power mode where voltage and frequency
are low. The power manager (i.e., a part of the embedded operating system) programs the
interrupts of the temperature sensor module according to two thresholds: the high threshold is
used to avoid overheating and causes the switch to the low-power mode, whereas the low threshold
determines when to switch back to the fast mode. Testing this algorithm on a pure functional TLM
model is impossible (see discussion in Section 2.2.3). It would require at least a scenario-based
model, but in this case, temperature sensor interrupts would occur at unrealistic dates which
would make the test more difficult. On the contrary, using the extended TLM model and its GUI
allows to check easily the power manager’s behaviour, as shown on Figure 13. Again, note that

the simulation must be at least 20 seconds long to be useful, which shows that simulation speed
matters.

Such temperature management based on low and high thresholds has some drawbacks; one
is that the frequent temperature changes may raise the failure rate of the system [56]. Another
approach is to use a PID controller. We have implemented this approach in the embedded software
of our demonstration platform. As shown by Figure 14, we see that the PID-controlled temperature
curve is smoother than the previous threshold-managed temperature curve. The first plot shows a
simulation with a badly tuned PID controller, where the VGA controller temperature oscillations
are amplified instead of smoothed, meaning that the gain parameters are likely too high.
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6.4 Influence of Loose Timing on Performance and Precision

This section describes cosimulation techniques implemented in the tool presented in [9, 10], but
not yet in LIBTLMPWT.

6.4.1 Granularity of the functional models

Figure 15 illustrates another experience with power consumption and temperature of the
MEMORY component. This experiment was done using the cosimulation approach presen-
ted in Section 4, distinct from LIBTLMPWT, hence the performance results are not directly
comparable with the previous sections. The functional behavior of the SoC is such that the memory
receives a lot of traffic in the first half of the simulation period represented, and nothing in the
second half. Fig. 15-(a) is the instruction-accurate simulation, on which the effect of this two-phase
behavior is clearly visible: the temperature increases because of high power consumption, and then
decreases slowly. Both Fig. 15-(b) and Fig. 15-(c) are obtained with a coarse-grained simulation,
but we can see that only (c) reproduces the profile of (a). The difference is the following: in (b),
the simulation is made in one big step (because there is no simulation instant in the middle), and
the power consumption is spread over the whole interval; in (c), the simulation is split into two
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Figure 15 The effect of coarse granularity on memory power consumption.

simulation intervals. What happens is that in (b) the functional and timed model itself is too
coarse. If the memory receives traffic in two well-differentiated patterns, it is probably because one
of the components has two distinct running modes that have been ignored in the model. It means
that the modeling of a component (like the software) can benefit from an explicit distinction
between running modes, even if the impact is not on the activity model of component itself, but
on the traffic model of another component.

6.4.2 Simulation speed

Table 2 is a summary of simulation speeds of the tool presented in [9, 10]. We distinguish the time
taken by the SystemC part (SC), the ATMI part, and the connection between them (between
parentheses is the number of exchanges between the simulators). The first line corresponds to an
instruction-accurate simulation, the second one to simulation where we execute 100 instructions
in a row, and the last one is the coarse-grained simulation based on logical synchronization points
and explicit purge statements. We observe a factor 7 between the first and the third ones. It is
also interesting to see that a lot can be gained on the side of the temperature simulator. ATMI
is a fixed-step simulator, and we may obtain better results with a variable-step simulator. Note
however that ATMI already uses a well optimized model, pre-computing the temperature response
to a pulse, and using a sophisticated optimization called event compression [38]. Moreover, ATMI
does not allow to ask for the evolution of temperature on time intervals smaller than 1ps. When
we execute the SystemC model one instruction at time, it represents a time interval of around
20 ns. It is useless to call ATMI for each of these small steps; a cache mechanism could be
implemented in the connection, to call ATMI only when several steps with a total of more than
1us have been executed on the SystemC side.

6.4.3 Interrupt Management

In Section 4.3 we explained how to model the abortion of a computation due to an interrupt
faithfully with respect to power consumption. Figure 16 illustrates the effect of the method on
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Table 2 Execution times and contributions of the simulator parts, for simulating 0.5s of the system.

Time spent in

Total SC ATMI | Connection | Number of exchanges
1-inst. 1028s | 48.8% | 41.2% 11% 15.7E+6
100-inst. 185s 52% | 94.5% 0.03% 0.15E+6
coarse-grained | 139s 5% 95% ~ 0% 128
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Figure 16 Modeling abortion.

MEMORY’s temperature and power, due to the traffic it receives. We use a variant of the
case-study where the power management policy just checks whether the temperature reaches
the upper threshold and reacts by canceling the current operation of the software; this results
in a much lower traffic on the memory. Fig. 16-(a) is the instruction-accurate simulation, which
shows a high power consumption before the interrupt, and then a much lower one. Fig. 16-(b) is
what we obtain with a coarse-grained simulation if we do not implement our method for modeling
abortion faithfully. Fig. 16-(c) is what we obtain if we do implement it: we correctly observe that
the temperature decreases when some functional behavior is aborted, resulting in a lower power
consumption on the memory.

7 Conclusion

We presented several methods for cosimulation of a functional SystemC/TLM model with a power
and a thermal model. LIBTLMPWT is a lightweight, integrated solution, that embeds ATMI as
a temperature solver. It is available publicly as free software [27]. The tool presented in [9, 10]
allows a cosimulation with an external solver, using inter-process communication to communicate
with it.

Obviously, none of these tools allows recovering precision that was lost by raising the level
of abstraction. If a component has a complex access pattern to a bus, and this pattern is not
modeled, then none of our techniques can accurately model it. This is not surprising, as this
would require guessing instead of modeling. Our contribution is, given a possibly loosely-timed
functional platform, to provide modeling tools to create a non-functional model that is as accurate
as it can be given the abstraction level of the functional platform.

03:25

LITES



03:26

Modeling Power Consumption and Temperature in TLM Models

The validation of these models is a difficult task. Ideally, we should compare the result of the
models with a real system, but this is much harder than it seems. Measuring the temperature
precisely can be done only on a chip without its packaging, which cannot run at full speed without
overheating. This is a non-trivial task for silicon manufacturers, and clearly out of reach for an
academic laboratory. Power-consumption measurements of individual components would require
an instrumented version of the chip (with more pins than the actual system). Instead of validating
our models against the real system, we compared several models at several levels of abstraction,
considering the lower-level ones as the reference. Indeed, our contribution is not to provide power
and thermal models, but to cosimulate them with a SystemC/TLM model. In other words, we
assume the availability and accuracy of a non-functional model, and plug the input and output of
this model on a functional simulation.

We experimented on a small but representative platform containing both hardware IPs and a
processor. It would be interesting to experiment on a larger platform containing a large number of
hardware IPs and/or a large number of processors (like many-core embedded processors or high-end
general-purpose processors for data-centers where power and temperature are also important
concerns). We do not foresee any fundamental issue with our cosimulation techniques: both the
SystemC/TLM functional simulation and the power/thermal solvers we use are already used
industrially at very large scales, and the cosimulation itself adds only a small overhead.

Using ATMI limits us to 2D designs. We are currently extending the interface to support
Hotspot [28], which is able to manage 3D chips. It would be interesting to test other thermal
solvers such as 3D-ICE [48]. Also, we focused on the cosimulation scheme, but a more integrated
design-flow can be envisioned, where dedicated tools would be used for individual components,
and the result used in the generation of our model. This is currently easy in theory but partly
manual.

We are now working on extending the approach to support loose power and temperature
annotations: when the precise values are not known, allow specifying an interval instead of possible
values for each parameter.
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