
Per Processor Spin-Based Protocols for
Multiprocessor Real-Time Systems∗

Sara Afshar1, Moris Behnam2, Reinder J. Bril3, and Thomas Nolte4

1 Mälardalen University, Västerås, Sweden
sara.afshar@mdh.se

2 Mälardalen University, Västerås, Sweden
moris.behnam@mdh.se

3 Mälardalen University, Västerås, Sweden
reinder.j.bril@mdh.se
Technische Universiteit Eindhoven, Eindhoven, The Netherlands
r.j.bril@tue.nl

4 Mälardalen University, Västerås, Sweden
thomas.nolte@mdh.se

Abstract
This paper investigates preemptive spin-based
global resource sharing protocols for resource-
constrained real-time embedded multi-core sys-
tems based on partitioned fixed-priority preemp-
tive scheduling. We present preemptive spin-based
protocols that feature (i) an increased schedulabil-
ity ratio of task sets and reduced response jitter
of tasks compared to the classical non-preemptive
spin-based protocol, (ii) similar memory require-
ments for the administration of waiting tasks as for

the non-preemptive protocol whilst only causing
(iii) a minimal increase of the minimal number of
required stacks per core from one to at most two,
and (iv) strong progress guarantees to tasks. We
complement these protocols with a unified worst-
case response time analysis that specializes to the
classical analysis for the non-preemptive protocol.
The paper includes a comparative evaluation of
the preemptive protocols and the non-preemptive
protocol based on synthetic data.

2012 ACM Subject Classification Computer systems organization~Real-time systems, Software and its
engineering~Multiprocessing / multiprogramming / multitasking, Software and its engineering~Real-time
schedulability
Keywords and Phrases multiprocessor, resource sharing, spin-lock protocols
Digital Object Identifier 10.4230/LITES-v004-i002-a003
Received 2017-02-06 Accepted 2017-10-10 Published 2018-01-08

1 Introduction

In this paper, we consider industrial real-time embedded multi-core systems. These systems
typically control dedicated hardware and have strict timing requirements, e.g. the system shall not
only provide responses to events within well-defined intervals, but also minimizes response-time
fluctuations to guarantee specified quality levels of control. Due to their embedded nature, these
systems are in many cases resource constrained for cost-efficiency reasons. For industrial real-time
multi-core systems, partitioned fixed-priority preemptive scheduling is the defacto standard, i.e.
tasks are statically allocated to cores, as exemplified by AUTOSAR [5], which is a standard for
the automotive industry. For global resource sharing, i.e. sharing of, e.g., data or memory mapped

∗ This work is supported by the Swedish Foundation for Strategic Research via the research program PRESS, the
Swedish Knowledge Foundation and ARTEMIS Joint Undertaking project EMC2 (grant agreement 621429).

© Sara Afshar, Moris Behnam, Reinder J. Bril, and Thomas Nolte;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 4, Issue 2, Article No. 3, pp. 03:1–03:30
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v004-i002-a003
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

03:2 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

I/O between tasks that are executing on different cores, AUTOSAR prescribes spin-based global
resource-access protocols, which is the focus of this paper.

Two main requirements of these systems include cost-efficiency (i.e. resource constraints) and
quality of control (i.e. jitter constraints). As a result of being resource constrained, resource usage,
such as the amount of memory shall be restricted. Given our focus on global resource-access
protocols for industrial embedded multi-core systems, we therefore aim at a high schedulability
ratio of task sets on individual cores and low memory requirements. In the context of single-core
systems, the stack resource policy (SRP) [6], which provides mutual exclusive access to shared
resources, allows tasks to share a single stack by preventing interleaved executions of tasks,
reducing memory requirements. The multiprocessor stack resource policy (MSRP) [18] generalizes
SRP from a single core to a multi-core, whilst maintaining the attractive property of allowing
tasks that are executing on the same core to share a single stack. MSRP essentially provides
non-nested, non-preemptive spinning (i.e. busy-waiting) and non-preemptive resource access to
global resources, and assumes first-in-first-out (FIFO) queueing of tasks that are waiting for those
resources. Non-preemptive spinning has as an attractive side-effect that the length of individual
global resource queues (and even the sum of the lengths of the global resource queues) is bounded
by the number of cores.

On the other hand, embedded systems have jitter constraints. Response time fluctuations, i.e.
response jitter, of control tasks may significantly degrade the control performance and, in the
worst case, make control systems unstable. Response jitter shall therefore be limited for critical
control tasks. The response jitter of a control task is bounded by the difference of the worst-case
and best-case response time of that task [25, 11]. Assuming (a lower bound on) the best-case
response time to be independent of a global resource sharing protocol, the bound on the response
jitter decreases when the worst-case response time decreases. To minimize response jitter, control
tasks are typically given the highest priorities in a system.

Unfortunately, non-preemptive spinning can impose a reduction in system schedulability, since
a task that is spinning on a global resource blocks tasks with a higher priority on the same core
that arrive during its busy-waiting time. Preemptive spin-based protocols reduce the blocking time
of tasks with a priority higher than the priority at which the waiting task is spinning. Moreover,
non-preemptive spinning may significantly increase the worst-case response time of control tasks
due to remote blocking of tasks with a lower priority than the control tasks. preemptive spin-based
protocols can reduce the blocking time of control tasks, thereby reducing their response jitter. In
this paper we focus on a set of spin-based protocols that offer low memory usage and confine
the length of the global resource queues to the number of cores the same as MSRP. Further
in this section, we explore preemptive spin-based protocols, and conclude the section with the
contributions.

1.1 Preemptive spin-based protocols
Before presenting the specific protocol considered in this paper, we first briefly describe this field.
In particular, we identified three main characteristics of preemptive spin-based protocols, being
the spin-lock priority, the ordering during waiting and the impact of preemption on ordering. We
subsequently consider memory requirements and progress guarantees in more detail.

1.1.1 Main characteristics
We use spin-lock priority to refer to the priority at which a task is spinning while waiting for a
global resource. Assuming a fixed spin-lock priority for a spin-based protocol, we identified that
there are five possibilities for tasks to use spin-lock priorities. Tasks can use a fixed spin-lock

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:3

priority (i) per core, (ii) per task, (iii) per resource, (iv) per request and (v) hybrid, i.e. combination
of any of the previous ones.

In the literature, preemptive spin-based global resource sharing protocols typically assume
that a task is spinning at the priority of the task itself, i.e. the task’s “own” or “original” priority
[3, 13, 22, 27, 29] and hence it can be preempted due to the arrival of any higher priority task.
We classify this protocol as of type (ii) and refer to it as OP (own priority).

The second and third characteristic concerns the ordering and the impact of preemption on
ordering. Traditionally, there are two main techniques to determine which task is allowed to access
a global resource when multiple tasks have pending requests, i.e. ordered (also termed queued) or
unordered. In case of ordered, first-in-first-out (FIFO) queueing or queueing based on the priority
of tasks are most common. While using priority-ordered resource queues may cause longer delays
for a set of tasks (low priority tasks), it can decrease the waiting times of higher priority tasks. In
fact, Wieder and Brandenburg [29] have shown that none of the queueing techniques dominates
the other.

For ordered, three policies are typically considered in the literature for handling tasks that are
residing in a global resource queue while being preempted during spinning, being de-queuing [13,
22, 3, 29], skipping [27] and the classic policy upon pre-emption, i.e. a task is neither de-queued
nor skipped. The two former policies are typically used in conjunction with the spin-lock priority
of type (ii), in particular with OP, allowing preempting tasks on the same core to access the
global resource before the preempted task. De-queuing implies that a task that is preempted
while spinning on a global resource is removed from the resource queue. It will again be put in
the global resource queue when it is allowed to continue spinning. As a result, it may have to
wait for, i.e. may be blocked by, additional remote tasks with later requests to the same global
resource. Skipping implies that the task remains in the queue, but is not amenable for selection
when the global resource becomes available. As a result, it may have to wait for an additional
remote task with a later request to the same global resource that has been granted the resource
while it was preempted. Under the classic policy, a task remains in the global resource queue
when preempted and it is granted access to the global resource when it is at the head of the queue
and the resource becomes available.

In this work, we consider spin-based protocols of type (i), where a fixed priority level is used
for spinning for all tasks that are allocated to the same core. Moreover, to be consistent with
MSRP, similar to MSRP [18], we assume FIFO-ordered queueing and the classic policy upon
pre-emption.

1.1.2 Memory Requirements
As we described previously [1], the traditional spin-based and suspension-based global resource
sharing protocols can conceptually be unified by viewing a suspension-based protocol as a spin-
based protocol that uses the lowest priority level on a core, i.e. a priority lower than any “original”
priority of tasks on that core. We refer to a suspension-based protocol as LP (lowest priority)
and to the non-preemptive spin-based protocol as HP (highest priority). The flexible spin-lock
model (FSLM) [1] allows the selection of an arbitrary priority level in the range of LP to HP, and
addressed both specific instantiations of type (i), e.g. LP and HP, and type (ii), i.e. OP. Next to
LP and HP, it also considered CP (ceiling priority), i.e. the highest priority of any task on a core
using a global resource. In this paper, we focus on a particular subset of spin-based protocols from
FSLM, i.e. those protocols that spin at a fixed priority per core in the range [CP,HP] (with a
slight misuse of notation, where we refer to both the protocol and its associated spin-lock priority
by means of the same identifier, e.g. CP). An attractive point of this subset of protocols is that
at most one task at any time on a core can either have a pending request on or access to a global

LITES

03:4 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

resource (see Lemma 12 in [1]). Using protocols from this range in combination with FIFO-ordered
queueing will confine the length of any global resource queue to m, where m is the number of
cores [1]. Using priority levels other than this range from the whole spectrum, such as of LP or
OP, may result in a higher number of pending requests for a global resource on a core and thus
longer queue sizes. Moreover, this subset of protocols can be used with a minimal increase of the
number of required stacks per core. Later, in Section 4, we show that using spin-lock priorities
from the range [CP, HP) requires an increase from one, for MSRP (i.e. HP) to at most two stacks.
This number is significantly lower than when using LP or OP which require in the worst-case n
stacks per core, where n is the number of tasks allocated to that core. We therefore leave the
study of the rest of the spectrum of spin-lock priorities as future work.

1.1.3 Progress Guarantees
As described above, the policies de-queueing and skipping are typically used for handling tasks
that are residing in a global resource queue while being preempted during spinning. Both policies
may, however, significantly increase the remote blocking time experienced by a preempted task.
Under the de-queueing policy, every time a task is preempted during spinning, it has to wait for
all the tasks that have been enqueued which the task was preempted. Therefore, the task may
have to wait in the worst-case for an additional amount of at most m− 1 remote tasks when using
FIFO-ordered queues. Under the skipping policy, in the worst-case, every time a task is waiting
for a global resource it may get preempted by a higher priority task just before it can get access
to the resource and thus it will loose the access to the next queued task. Therefore, it may be
delayed for an additional global resource access on a remote core. To feature the same strong
progress guarantee as non-preemptive spin-based protocols, such as MSRP [18], we use the same
policy as MSRP, where we keep the task in the resource queue upon preemption and immediately
grant the task access to the global resource when it becomes available. In this way, a task has to
wait for at most m− 1 remote tasks when requesting a global resource, thereby preventing extra
delays that can be imposed to a task under both de-queueing and skipping.

1.2 Main contributions and outline
This paper investigates preemptive spin-based global resource sharing protocols for resource-
constrained real-time embedded systems based on partitioned fixed-priority preemptive scheduling.
We focus on protocols with a fixed spin-lock priority per core, where the spin-lock priorities are
taken from the range [CP,HP]. By design, the protocols feature similar memory requirements
for the administration of waiting tasks as for the non-preemptive protocol and strong progress
guarantees to tasks.

This paper has five main contributions. Firstly, we prove that these protocols feature a
minimal increase of the minimal number of required stacks per core from one to at most two.
Secondly, we introduce a special spin-based protocol from the introduced range, denoted by ĈP,
where we (i) prove that it dominates the classical non-preemptive spin-based protocol and all
spin-based protocols that use spin-lock priorities between ĈP and HP, (ii) show by means of
examples that CP and ĈP are incomparable. This means that ĈP performs always equal to or
better than HP, unlike CP. Although ĈP does not dominate CP, still we show that there are
cases in which ĈP performs better than CP. Thirdly, we provide a unified worst-case response
time analysis for these protocols that specializes to the classical analysis for the non-preemptive
protocol. Moreover, we show that our new analysis provides tighter blocking bounds for CP than
the analysis in [1]. Fourthly, we show that there may exist an intermediate spin-lock priority
within the range [CP, ĈP] that can make a task set schedulable if CP and ĈP cannot, which can
be found via a simple linear search. Finally, we perform a comparative evaluation of HP, CP and

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:5

ĈP, based on the schedulability ratio of task sets and the improvement in response times of tasks.
The remainder of this paper is organized as follows. Sections 2 summarizes related work

and Section 3 presents the system model. In Section 4, we prove that the minimal number of
required stacks per core for the spin-based protocols under consideration increases to at most
two. Section 5 proposes a new spin-based protocol ĈP. We subsequently present a generalized
worst-case response time analysis for the protocols in Section 6. A theoretical comparison of HP,
CP, and ĈP is presented in Section 7. In Section 8, a comparative evaluation of HP, CP, and ĈP
is presented. We conclude the paper in Section 9.

2 Related Work

A non-exhaustive amount of work has been done on spin-based resource sharing protocols. In the
following we briefly present the most related synchronization protocols used for multiprocessor
systems.

Mellor-Crummey and Scott [23] investigate scalable spin-based protocols to minimize the
network transactions that lead to contention, with a focus on non-preemptive spin-based protocols
with FIFO-ordering. This work later inspired Craig and Johnson [13, 21] to use a priority-ordered
variant. Whereas Craig [21] mainly focuses on non-preemptive spin-based protocols, Johnson[13]
also investigates preemptive spin-based protocols with FIFO-ordering, using the de-queueing
technique upon preemptions. There are extensions of these works[22, 3] that used a preemptive
version with FIFO-ordering. Another work which has used a preemptive spin-based protocol is by
Takada and Sakamura [27] which is based on a skipping policy. As described above, we neither
use a de-queueing technique nor a skipping technique, because they expose tasks to longer remote
blocking delays.

The Multiprocessor Stack Resource Policy (MSRP) was introduced by Gai et al. [18] for
partitioned systems based on a non-preemptive spin-based protocol. MSRP is an extension of
the Stack Resource Policy (SRP) [6] for multiprocessors and was the first work which carried
out a formal blocking analysis for a spin-based protocol. Global resource waiting queues are
FIFO-ordered under this protocol.

Devi et al. [16] introduced a non-preemptive spin-based protocol for global scheduling under
the EDF policy. Faggioli et al. presented the Multiprocessor Bandwidth Inheritance (M-BWI)
protocol [17], an extension of the Bandwidth Inheritance (BWI) protocol, for reservation-based
scheduling and preemptive spinning. Under their protocol not only a spinning task can be
preempted but also lock holder tasks may be preempted which leads to longer delays for releasing
a resource compared to non-preemptive resource accesses that we use. M-BWI can be used in
open systems where tasks can dynamically be added or removed. The resource queues used in
M-BWI are FIFO-ordered.

The Flexible Multiprocessor Locking Protocol (FMLP) introduced by Block et al. [8] combines
both spin-based and suspension-based protocols. Thus, it is categorized of type per-resource
spin-based protocols in our classification described in Section 1.1.1. Tasks spin non-preemptive on
so-called “short resources” and suspend on so-called “long resources”. FMLP uses FIFO-ordered
global resource queues and has been introduced for both partitioned and global scheduling. The
partitioned FMLP, was later extended for fixed-priority scheduling in [10].

A recent work by Wieder and Brandenburg [29] has investigated both preemptive and non-
preemptive spin-based protocols under four different queue handling policies: FIFO and unordered
spin-based protocols, and priority ordered spin-based protocols with FIFO-ordered and unordered
tie breaking. They use a de-queueing technique in order to avoid transitive arrival blocking
problem which occurs in combination with FIFO-ordered queues and preemptive spin-based

LITES

03:6 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

protocols, where tasks spin with their original priority (which we refer to it as OP). Transitive
arrival blocking occurs when a task waiting in a global resource queue is preempted by a higher
priority task on the core that require the same global resource, thus the higher priority task has
to wait for that lower priority task. This problem does not occur for the spin-lock priority levels
considered in this paper, since spinning is performed at a priority level equal to or higher than the
priority of any task using a global resource. Wieder et al. [29] achieve tighter blocking bounds
using mixed-integer linear program (ILP) techniques to bound the maximum cumulative blocking
imposed to a task. We show later in Section 6.4 how ILP can be used for the set of spin-based
protocols considered in this paper. In this paper, we investigate alternative spin-lock priorities
that can improve schedulability, reduce memory requirements, and reduce response jitter.

The Multiprocessor resource sharing Protocol (MrsP) is a preemptive spin-based protocol that
is proposed by Burns and Wellings [12]. MrsP is an extension of PCP [26] for multiprocessor
fixed-priority partitioned scheduling where each global resource on each core is associated with a
ceiling that is the highest priority among the tasks that request that resource on that core. Since
ceiling of resources are used as the spin-lock priority for tasks on a core, unlike the spin-based
protocols considered in this paper, MrsP uses spin-lock priorities of type (iii) mentioned in
Section 1.1.1. Another key difference of this protocol from the protocols considered in this paper is
that the critical sections are preemptive. Moreover, a helping method [28] has been used for MrsP
where a spinning task donates its spinning time to a task that has locked the resource but cannot
proceed since it has been preempted on its core. Under this method the preempted task migrates
to a core where a task is spinning to lock the same resource and access its locked resource there.
Global resource queues are FIFO-based under this protocol.

3 System Model

Our system consists ofm identical processors executing a set of n sporadic tasks using fixed-priority
partitioned scheduling. The set of tasks allocated to a processor Pk is denoted by TPk . Each
task τi is presented by < Ci, Di, Ti > and consists of an infinite sequence of jobs. Ci denotes
the worst-case execution time of task τi. Ti denotes the minimum inter-arrival time of τi and
Di denotes the relative deadline of τi. We assume constrained deadlines tasks, i.e. Di ≤ Ti. The
priority of the task τi is denoted by πi where πi ≥ 1. Ui denotes the utilization of a task τi and
is calculated as Ui = Ci/Ti. We assume that a task τi has a priority higher than task τj , i.e.,
πi > πj , if i > j, e.g. π2 > π1. We assume tasks with unique priorities on each processor.

Tasks in the system may use local or global resources. Local resources are those that are
accessed only by tasks on the same processor, whereas global resources are accessed by tasks on
different processors. The section of a task that uses global and local resource is called global
and local critical section (gcs,lcs), respectively. The sets of local and global resources which are
accessed by tasks on a processor Pk are denoted by RL

Pk
and RG

Pk
, respectively. Similarly, we

denote the set of local and global resources that are accessed by jobs of a task τi as RSL
i and

RSG
i , respectively. Further, Csi,q denotes the worst-case execution time among all requests of

any job of a task τi for a resource Rq. Moreover, nG
i,q denotes the maximum number of possible

requests by any job of a task τi for a specific global resource Rq. The set of tasks on a processor
Pk requesting access to a specific resource Rq is denoted by TPk,q. Nested resource access is not
the focus of this paper. A complete set of notations can be found in Table 1 in Appendix A.

Based on the partitioned fixed-priority scheduling schema, we categorize the delay that can be
introduced to any task due to resource sharing in this paper into two general blocking notions: (i)
priority inversion blocking (pi-blocking) [24, 26] and (ii) remote blocking. Pi-blocking happens due
to tasks assigned on the same core. When a lower priority job on the same core is scheduled while

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:7

a higher priority task is pending but not scheduled, the lower priority task causes a pi-blocking to
the higher priority task. A job of a task is pending when it has arrived but not finished. Remote
blocking, on the other hand, is the type of blocking that a job of a task experiences due to waiting
for obtaining a global resource that is in use by a task on a remote core. The maximum duration of
remote blocking experienced by a task is referred to as spin-lock time under a spin-based protocol
(see Definitions 10 and 11).

In this paper, we denote the Bi as the total pi-blocking that is imposed to a task τi and we
exclude the spin-lock time of τi from this term.

We assume negligible run-time overhead for the analysis step. We will leave investigation of
such overheads for th next step towards implementation of the protocol.

3.1 General Definitions
Below, we present a set of definitions which will be used in the rest of this paper.

I Definition 1. The highest priority level on a processor Pk is denoted by πmax
Pk

as follows,
πmax
Pk

= max
τi∈TPk

{πi}. This is the spin-lock priority used for the HP spin-based protocol (see

Section 3.4.1).

I Definition 2. Ceiling-based resource-access protocols (such as SRP) assign a ceiling to any local
resource Rl ∈ RL

Pk
, where ceilPk(Rl) = max{πi| τi ∈ TPk ∧Rl ∈ RS

L
i }. [6]

I Definition 3. We denote the highest local ceiling of any regular1 local resource on a processor
Pk as πL

Pk
, where πL

Pk
= max{πi|τi ∈ TPk ∧RS

L
i 6= ∅}, i.e., πL

Pk
∈ [1, πmax

Pk
].

I Definition 4. We denote the highest local ceiling of any global resource on a processor Pk as
πG
Pk, where πG

Pk
= max{πi|τi ∈ TPk ∧RS

G
i 6= ∅}, i.e., πG

Pk
∈ [1, πmax

Pk
]. This is the spin-lock priority

used for the CP spin-based protocol (see Section 3.4.2).

I Definition 5. We denote the highest local ceiling of any resource on a processor (either local or
global) Pk as πLG

Pk
, where πLG

Pk
= max(πL

Pk
, πG
Pk

), i.e., πLG
Pk
∈ [1, πmax

Pk
]. This is the spin-lock priority

used for the ĈP spin-based protocol (see Section 5).

I Definition 6. When a task spins on a processor to acquire a global resource, its priority might
change during spinning depending on the spin-based protocol that is used. The spin-lock priority
of a spin-based protocol σ is denoted by πspinσ

Pk
which denotes an arbitrary spin-lock priority level

that is used for every task when it spins on a processor Pk. We simply use πspin
Pk

if we do not refer
to a specific spin-based protocol. In this paper, we consider πspin

Pk
∈ [πG

Pk
, πmax
Pk

].

I Definition 7. We denote the spin-lock priority used by a task τi as πspin
i . According to our

system model, πspin
i = πspin

Pk
where {∀τi ∈ TPk |RS

G
i 6= ∅, k = 1, ...,m}

I Definition 8. We refer to pi-blocking that is imposed to a task τi ∈ TPk by lower priority tasks
on the same core that request local resources as local blocking due to local resources (LBL) and
global resources as local blocking due to global resources (LBG).

I Definition 9. The LBG delay that is imposed to a task τi ∈ TPk is divided into two different
sections: (a) spin-delay blocking of an LBG which is due to spinning of a lower priority task that
can preempt τi and (b) global resource access blocking of an LBG which is due to non-preemptive
access of a lower priority task to a global resource. Note that a LBG delay does not necessarily need
to contain the spin-delay part, e.g., when the lower priority task access the resource immediately.

1 We define a special (local) spin resource Rspin
Pk

in Rule 21.

LITES

03:8 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

I Definition 10. The maximum time that any task on a processor Pk has to spin to acquire a
global resource Rq ∈ RG

Pk
is referred to as spin-lock time to acquire Rq and is denoted by spinPk,q,

which is the maximum imposed remote blocking to acquire Rq.

I Definition 11. The maximum time that a task τi has to spin to acquire all its global resources
is referred to as spin-lock time of task τi and is denoted by spini, which is the maximum imposed
remote blocking to τi for acquiring all its global resources .

Under spin-based protocols usually the execution times of tasks are inflated by the spin-lock
time [18, 20, 1] as presented by the following definition.

I Definition 12. The inflated execution time of a task τi is denoted by Ći and is calculated as
Ći = Ci + spini.

I Note 13. By definition (see Definition 4), ∀πi > πG
Pk
| τi ∈ TPk =⇒ Ći = Ci since spini = 0.

I Definition 14. Davis et al. [15] defined: algorithm A dominates algorithm B, if all of the task
sets that are schedulable according to algorithm B are also schedulable according to algorithm
A, and task sets exist that are schedulable according to A, but not according to B. Moreover,
algorithms A and B are incomparable, if there exist task sets that are schedulable according to
algorithm A, but not according to algorithm B and vice versa. Since resource sharing protocols
are part of scheduling algorithms, these definitions also apply for spin-based protocols in this
paper. Based on this conclusion, if a task set is schedulable by both algorithms and the worst-case
response times of tasks under spin-based protocol 1 is always smaller than or equal to under
spin-based protocol 2 and there is at least one task that has a strictly smaller worst-case response
time under protocol 1 compared to protocol 2, then by reducing the deadline of this task we create
a new task set for which it is schedulable under protocol 1 but not 2 anymore which infers the
dominance of protocol 1 over 2. Inferred similarly, spin-based protocols 1 and 2 are incomparable
if a task set is schedulable under both protocols and there is a task that has a strictly smaller
worst-case response time under one compared to the other and vice versa.

3.2 Resource Sharing Rules
This section presents the resource sharing rules based on FSLM [1] for any spin-based protocol
with πspin

Pk
∈ [πG

Pk
, πmax
Pk

]. The key idea is that a task τi waiting for a global resource, will busy wait,
i.e. spin, whenever the resource is not available using a specific priority level in the aforementioned
range. However, the priority level on which the task spins is fixed for a core; see Definition 6.

I Rule 15. Local resources are handled by means of the SRP uniprocessor synchronization
protocol [6].

I Rule 16. For each global resource, a FIFO-ordered queue is used to enqueue the tasks waiting
for the related resource.

The key idea behind using FIFO-ordered queues for global resources is to use a similar setup as
the existing protocols (HP and CP), so that the comparison is feasible.

I Rule 17. Whenever a task τi on a processor Pk requests a global resource that is in use by
another processor, it places its request in the associated resource queue and spins. The task will
spin with a priority level πspin

Pk
(Definition 6).

I Rule 18. When a task is granted access to its requested global resource on a processor Pk, its
priority is boosted in an atomic operation to πmax

Pk
+ 1, i.e., it access the resource immediately and

executes non-preemptively on the core.

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:9

𝑅𝑃𝑘
𝑠𝑝𝑖𝑛

is locked

𝑃𝑘

𝑅𝑃𝑘
𝑠𝑝𝑖𝑛

is released -global resource requested

-global resource released

-normal execution

-spin-delay/lcs of 𝑅𝑃𝑘
𝑠𝑝𝑖𝑛

-gcs

-global resource granted

-local resource granted
-local resource released

Figure 1 Spinning on Pk is viewed as locking a special local resource Rspin
Pk

.

I Rule 19. The priority of the task is changed to its original priority as soon as it finishes the
global critical section where it becomes preemptable again.

I Rule 20. When the global resource becomes available (i.e. it is released), the task at the head of
the global resource queue (if any) is granted the resource.

The analysis of blocking bounds and all claims regarding the considered spin-based protocols
in this paper are based on our system model and presented resource sharing rules.

3.3 View on spinning and global resource access
Under a spin-based protocol a task spins whenever it is blocked on a global resource. In classical
spin-based protocols such as MSRP [18, 20] (which we refer to it as HP) as soon as a task is
blocked on a global resource, its priority is increased to the highest on its assigned core. The task
maintains this priority until it releases the resource. In this paper, we use a different approach
which is increasing the priority of the task in two steps. In the first step, i.e., as soon as the task
on a processor Pk request a global resource, its priority is increased to πspin

Pk
. In the second step,

i.e., as soon as the task is granted access to the global resource, its priority is boosted such that it
becomes non-preemptive (see Rule 18). The idea behind increasing the priority of the blocked task
in two steps is to allow the high priority tasks on the core, which may even not use any (global)
resource, to proceed when a lower priority task is waiting.

Conceptually, we can view spinning as accessing a "virtual" local resource (similar to a local
pseudo resource [18]). Under a local resource sharing protocol when a task acquires a local resource
its priority is raised to the ceiling of the resource, which is higher than or equal to the task’s own
priority. Since we only consider spin-lock priorities that are higher than or equal to the priority of
any task using a global resource on the core based on our system model (Definition 6), we can
treat spinning in the same way as acquiring a regular local resource by assigning the ceiling of
such local resource equal to the priority during spinning. The benefit of such a view is that a local
resource sharing protocol can take care of changing the priority of the task for spinning which
removes the need for operating system to take such an action. Moreover, such a view simplifies
validating the analysis. Having this in mind, we refer to such a virtual resource as spin resource
and denote it for a processor Pk as Rspin

Pk
. Rule 21 is the outcome of such a view.

I Rule 21. For each processor Pk a special (local) spin resource Rspin
Pk

is dedicated. Every task
τi on Pk that wants to request a global resource Rq, first locks Rspin

Pk
where, ceilPk(Rspin

Pk
) = πspin

Pk
.

The global resource access of Rq is nested within the local spin resource access of Rspin
Pk

. The spin
resource is released after the global resource is released.

Figure 1 illustrates nesting of the global critical section within the local critical section of the
special local resource Rspin

Pk
. As can be seen, for a task the access time to the local spin resource

consists of two parts: (1) the time that the task non-preemptively access a global resource and (2)
the time that the task is spinning to acquire the global resource. Based on this and according to
Rule 21 and the fact that the maximum time that a task may spin to acquire a global resource Rq
is spinPk,q (see Definition 10), hence we can reformulate Definition 9, as follows.

LITES

03:10 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

τ2

τ1

τ3

τ4

- normal execution

- preempted

0 5 10 time

Legend:

- task activation

- resource requested - granted

- lcs - gcs

- released

- spin-delay/lcs of R
spin

Pk

- blocked

Figure 2 Task τ4 experiences both a spin-delay and a global resource access blocking delay of an LBG.

I Definition 22. Any LBG that is imposed to a task on a processor Pk is due to non-preemptive
access to a global resource of a job of a lower priority task that is nested within an access to
the special spin resource Rspin

Pk
. The maximum duration of such blocking is equal to spinPk,q +

max ∀q,j:τj∈TPk
∧Rq∈RSG

j ∧πj<πi

Csj,q.

In Figure 2 it can be seen that a task τ4 experiences two types of blocking delay from lower
priority tasks, due to both local resource access as well as global resource access. In the time
interval [3, 4) ∪ [8, 10) τ4 experiences LBL from τ3 that has arrived earlier and has requested a
local resource with a ceiling higher than or equal to τ4’s priority. In the time interval [4, 8) it
experiences LBG from τ1 that has arrived earlier and has requested a global resource. τ1 has
issued its request for a global resource at time 0.5, however has got blocked on the resource since
the resource has been in use on a different processor. Thus when τ1 is granted access to the global
resource at time 4 it preempts τ3 and execute its gcs non-preemptively (see Rule 18). By viewing
spinning as access to a special local resource Rspin

Pk
on processor Pk, the time duration in which τ1

is spinning can be viewed as an lcs duration which τ1 access Rspin
Pk

with a ceiling equal to π2.

3.4 Recap of Existing Analysis and Lemmas
In this section we briefly present the blocking analysis of the two existing spin-based protocols
each of which uses a fixed spin-lock priority from the introduced spin-lock range in the system
model, i.e., [πG

Pk, π
max
Pk

].

3.4.1 HP Spin-Based Protocol
Under HP, πspinHP

Pk
= πmax

Pk
(recall Definitions 1 and 6) which makes a task non-preemptive while

spinning. This protocol has been introduced by Gai et al. [18]. Below we present the blocking
delays that occur under this protocol.

LBL (Definition 8) imposed to a task τi ∈ TPk due to normal local resources is denoted as BL
i

and is upper bounded as follows:

BL
i = max

∀j,l:πj<πi∧ τi,τj∈τPk
∧ Rl∈RSL

j ∧ πi≤ceilPk (Rl)

{Csj,l}.
(1)

LBG (Definition 8) imposed to a task τi ∈ TPk is denoted as BG
i and is upper bounded as

follows:

BG
i = max

∀j,q:πj<πi∧τi,τj∈TPk
∧Rq∈RSG

j

{Csj,q + spinPk,q}. (2)

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:11

The total pi-blocking imposed to a task τi ∈ TPk is denoted by Bi and is upper bounded as
follows:

Bi = max{BL
i , B

G
i }. (3)

spinPk,q (Definition 10) and spini (Definition 11) are upper bounded as follows [20]:

spinPk,q =
∑
∀Pr 6=Pk

max
∀τj∈TPr,q

Csj,q. (4)

spini =
∑

∀q:Rq∈RSG
i ∧τi∈TPk

nG
i,q × spinPk,q. (5)

For simplicity, under HP the execution times are inflated with the spin-lock time of the task.
The inflated execution time of a task τi, Ći is calculated according to Definition 12 where spini
incorporated in it is calculated by (5).

3.4.2 CP Spin-Based Protocol
Under CP π

spinCP
Pk

= πG
Pk

(recall Definitions 4 and 6) which makes a task to be non-preemptive
while spinning for any task that uses a global resource on the core. This protocol has been studied
previously [1]. Below we present the blocking delays that occur under this protocol.

LBL (Definition 8) imposed to a task τi ∈ TPk for CP is upper bounded similar as in HP,
according to (1).

LBG (Definition 8) imposed to a task τi ∈ TPk is upper bounded as follows:

BG
i = max

∀j,q:πj<πi∧τi,τj∈TPk
∧Rq∈RSG

j

{Csj,q + spinPk,q|(πi ≤ πG
Pk

)}. (6)

The total pi-blocking imposed to a task τi ∈ TPk Bi is upper bounded as follows:

Bi =
{
BL
i +BG

i if πi > πG
Pk

+ 1
max{BL

i , B
G
i } if πi ≤ πG

Pk
+ 1

. (7)

I Note 23. spinPk,q and spini are calculated as in (4) and (5), respectively and the inflated
execution time of a task τi, i.e., Ći is calculated according to Definition 12.

I Note 24. If πG
Pk

= πmax
Pk

then CP is equal to HP, hence (7) and (6) specialize from (2) and
(3), respectively.

3.4.3 Recap of Useful Lemmas
Here we repeat some lemmas presented previously [1] that will be used in this paper.

I Lemma 25. A job of a task τi ∈ TPk experiences at most one LBL (recall Definition 8) from
any lower priority task when SRP is used for local resource sharing (Property of SRP [6]).

I Lemma 26. A job of a lower priority task τj cannot issue any resource request after any job of
a higher priority task τi on the same core arrives, where πi ≤ πspin

i (Lemma 2 in [1]).

I Lemma 27. A job of a lower priority task τj can cause pi-blocking to any job of a higher priority
task τi at most once, where πi ≤ πspin

i (Lemma 3 in [1]).

LITES

03:12 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

I Note 28. According to Definitions 6 and 7 based on our system model, {∀τi ∈ TPk |RS
G
i 6=

∅ =⇒ πspin
i = πspin

Pk
≥ πG

Pk
}. Since by definition, i.e., Definition 4, πG

Pk
is the highest priority of

any task requesting a global resource therefore, for any such task τi that uses a global resource
πi ≤ πG

Pk
. Thus, πi ≤ πspin

i . As a result Lemmas 26 and 27 are valid based on our system model
as well.

4 Number of Stacks

In this section we present the maximum number of required stacks for tasks that use a spin-lock
priority πspin

Pk
where πspin

Pk
∈ [πG

Pk
, πmax
Pk

]. It has been shown by Gai et al. [18] that HP spin-based
protocol (MSRP) allows using a single stack for all tasks on a core. Here, we show that a spin-based
protocol that uses any spin-lock priority in the range πspin

Pk
∈ [πG

Pk, π
max
Pk

) allows using of only
two stacks for scheduling all tasks on a core. For this purpose, we show that (i) all tasks with
a priority at most πspin

Pk
can share one stack, and (ii) all tasks with a priority higher than πspin

Pk

and smaller than or equal to πmax
Pk

can share another stack. It has been shown [19] that if task
executions are non-interleaved then it is possible to use a single stack for scheduling all tasks.
Therefore, it is enough to show that executions of tasks in group (i) and similarly in group (ii)
are non-interleaved. Non-interleaved execution means that if a job of a task τi preempts a job
of a task τj , the job of τj cannot execute before the job of τi is finished. Thus, we present such
a property by Lemmas 30 and 31 for the execution of tasks in the two above mentioned groups.
First we recapitulate the outcome of using SRP in Lemma 29 which will be used in those two
lemmas.

I Lemma 29. The local resource sharing protocol SRP ensures that once a job is started, it cannot
be blocked due to a local resource until completion; it can only be preempted by higher priority
jobs. [6]

I Lemma 30. For any task τi ∈ TPk where πi ≤ πspin
Pk

a job of a lower priority task which is
preempted by a job of τi cannot execute until the job of τi is finished.

Proof. Proof by contradiction. Let us assume a job of τi preempts a job of a lower priority task
τj with priority πj at time t1, and before τi is finished at time t3 τj preempts τi at time t2. This
implies that at time t2, the priority of τj must have been raised to or above τi’s priority. Three
situations may happen for τj so that its priority is raised: (1) τj accesses a local resource Rl where
ceilPk(Rl) > πi, (2) τj is granted access to the special local spin resource πspin

Pk
due to a request

for a global resource Rg (see Rule 21) where πspin
Pk

> πi and (3) τj accesses a global resource Rg
and becomes non-preemptive (see Rule 18). In Cases (1) and (2), τi is blocked by τj at time t2
which cannot happen according to Lemma 29, having in mind that SRP treats the local spin
resource similar to any other normal local resource. In Case (3) the priority of τj has been raised
to πmax

Pk
+ 1 at time t2. According to Rule 21 τj must first have locked the spin resource, let us

assume at time t0. τj cannot issue any request after arrival of τi at time ta (Lemma 2 in [1]; see
Lemma 26), thus t0 < ta. Further, it is obvious that t1 ≥ ta therefore it is inferred that t0 < t1.
This implies that the priority of τj is raised to πspin

Pk
when it locks Rspin

Pk
at time t0 until t2 where

it gets access to Rg. Therefore, τi could only preempt τj at time t1 if its priority has been raised
higher than πspin

Pk
. The only situation that τi’s priority is raised higher than πspin

Pk
is when it is

granted access to a global resource (see Rule 18). However, according to Rule 21, in order to
access a global resource τi must have locked the local spin resource Rspin

Pk
at time t1 as well. This

is not possible since τj is already holding Rspin
Pk

at time t1. We therefore conclude that τj could
not have preempted τi at time t2 which means that it cannot execute until τi is finished. J

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:13

𝐶𝑃, 𝜋𝑃𝑘
𝐺

 𝐶𝑃 , 𝜋𝑃𝑘
𝐿𝐺

C

B

A

priority level

ranges

𝐻𝑃, 𝜋𝑃𝑘
𝑚𝑎𝑥

Figure 3 Priority ranges when πG
Pk

< πL
Pk

I Lemma 31. For any two tasks τi, τj ∈ TPk where πspin
Pk

< πi, πj ≤ πmax
Pk

a job of τj which is
preempted by a job of τi cannot execute until the job of τi is finished.

Proof. According to Definition 6 πspin
Pk
≥ πG

Pk
thus, by definition (see Definition 4), any task with

a priority higher than πspin
Pk

does not use any global resource. therefore, τi and τj may only share
local resources. Hence, this lemma can be inferred based on Lemma 29. J

I Theorem 32. It is enough to use only two stacks for scheduling tasks on a processor Pk when
selecting spin-based protocols with a spin-lock priority in the range [πG

Pk, π
max
Pk

).

Proof. It is shown by Lemmas 30 and 31 that tasks of group (i) as well as tasks of group (ii) have
non-interleaved executions, respectively. This implies that tasks of each group can use a single
stack. However, tasks of group (i) cannot share the same stack with group (ii). This is due to
the fact that if a task τj from group (i) is blocked on a global resource, i.e., it has locked the
spin resource with ceiling πspin

Pk
but has not yet been granted access to the global resource, it can

be preempted by a task τi from group (ii). If τj is granted access to the global resource before
τi is finished, it raises its priority to πmax

Pk
+ 1 and therefore will preempt τi. This means that

the execution of τi and τj will not be interleaved and cannot share the same stack. We therefore
conclude that all tasks on Pk can be scheduled using two stacks. J

5 A Special Spin-Based Protocol ĈP

In this section we introduce a special spin-based protocol from the range [CP, HP] which we
denote by ĈP. This protocol uses the lowest priority for spinning such that no other task at the
same core using either a local or global resource can preempt during spinning, i.e., π

spin
ĈP

Pk
= πLG

Pk

(recall Definitions 5 and 6). We show in Section 5.1 that ĈP dominates HP and all spin-based
protocols that use spin-lock priorities in between. In Section 5.2, we show by means of an example
that CP and ĈP are incomparable.

When πL
Pk
≤ πG

Pk
, then according to Definition 5 πLG

Pk
= πG

Pk
, having in mind that πG

Pk
is

the spin-lock priority of CP [1]. Therefore, ĈP only differs from CP when πL
Pk
> πG

Pk
. By this

observation we introduce three priority ranges based on these two key priority levels, as illustrated
in Figure 3 which later are elaborated in Sections 7 and 8. We specify these ranges as follows:
(A) ∀π | π > πLG

Pk
, (B) ∀π | πG

Pk
< π ≤ πLG

Pk
and (C) ∀π | π ≤ πG

Pk
where π denotes an arbitrary

priority level on a processor Pk.

5.1 Dominance of ĈP over HP and In-Between Spin-Based Protocols
We show by means of Lemma 33 that, following our proposed spin-lock model, ĈP dominates all
spin-based protocols that use a spin-lock priority higher than πLG

Pk .

LITES

03:14 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

I Lemma 33. ĈP dominates any spin-based protocol that uses a spin-priority level higher than
what is used by ĈP, including HP.

Proof. To prove this we assume an arbitrary spin-based protocol σ with a spin-lock priority
π

spinσ
Pk

higher than that of ĈP, i.e., πspinσ
Pk

> πLG
Pk

on Pk. Let us assume that a lower priority
task τj incurs an LBG to a task τi. According to Definition 22, the LBG delay incurred to τi
is divided into two parts: (a) delay due to a non-preemptive access to the global resource by τj
and (b) delay due to the remaining access to the special local spin resource Rspin

Pk
with ceiling

πspin
Pk

(Definition 21). Since the access to a global resource is non-preemptive (Rule 18) hence the
incurred LBG delay regarding case (a) is incurred to τi under any spin-based protocol, thus under
both ĈP and σ. However, the remaining access to the spin resource by τj will only block τi, i.e.,
τi will incur LBG delay regarding case (b) if and only if πi ≤ πspin

Pk
where πspin

Pk
= πLG

Pk
under ĈP

and πspin
Pk

= π
spinσ
Pk

under σ spin-based protocol. Let us assume three different possible priority
ranges for a task τi on Pk being: (i) πi ≤ πLG

Pk
, (ii) πLG

Pk
< πi ≤ πspinσ

Pk
and (iii) πi > π

spinσ
Pk

. τi will
experience the delay of type (b) using both spin-based protocols σ and ĈP under the condition
of case (i) since πi ≤ πLG

Pk
< π

spinσ
Pk

and will not experience it using both spin-based protocols
under the condition of case (iii) since πi > π

spinσ
Pk

> πLG
Pk

. Thus, for a task under conditions
(i) and (iii), there is no difference in using either of the spin-based protocols. Looking at the
condition of case (ii), however, τi experiences the delay of type (b) using protocol σ but does not
experience the delay using ĈP. This implies that the response time of τi is smaller when using
ĈP compared to when using σ. Hence, when the task set is schedulable under ĈP, we can make
the task set unschedulable under σ by reducing the deadline of τi (see Definition 14). As a result,
ĈP dominates σ. Since σ can be any spin-based protocol where πLG

Pk
< π

spinσ
Pk

, it can be concluded
that ĈP dominates any spin-based protocol with a spin-lock priority higher than that of ĈP, i.e.,
also HP since πLG

Pk
< πmax

Pk
. This finishes the proof. J

From Lemma 33, we draw the following conclusion.

I Corollary 34. If πG
Pk

= πLG
Pk

< πmax
Pk

, then CP dominates HP.

5.2 ĈP and CP incomparability
Next, we show by means of an example that CP and ĈP are incomparable (Definition 14).

I Example 35. In the example depicted in Figure 4 which consists of two scenarios a task set
is scheduled on two processors P1 and P2 where TP1 = τ1, ..., τ6 and TP2 = τ7. T1 = T7 = 100,
T2 = 100.2, T3 = T4 = 101 and T5 = T6 = 106, moreover, D1 = 9, and the deadline for the rest
of the tasks is 20. For each task τi, the given task specifications are specified in the format (Ci,
Csi,l, Csi,g). For the following tasks these values are the same under both scenarios. τ1: (4, 0, 3),
τ2: (1, 0, 1), τ4: (3, 0, 0), τ5: (1, 1, 0) and τ6: (1, 0, 0). Note that value zero implies that the
task does not use that specific resource. Under scenario (1), τ3: (2, 1, 0) and τ7: (7, 0, 5). In
scenario (1) τ4 misses its deadline under ĈP. In scenario (2), τ3: (4, 4, 0) and τ7: (4, 0, 1), and
τ4 misses its deadline under CP in this scenario.Given the tasks resource requesting specification
under both scenarios πspinCP

Pk
= 2 and π

spin
ĈP

Pk
= 5. Since in each scenario τ4 misses its deadline

using either CP or ĈP, thus according to Definition 14 CP or ĈP are incomparable.

6 Generalized Analysis

In this section we derive a general blocking analysis for selection of any arbitrary fixed spin-lock
priority from FSLM where πspin

Pk
∈ [πG

Pk, π
max
Pk

]. To provide the maximum blocking delay to a task,

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:15

τ 4

105 110 115 120100

τ 7

3

2

1

4

(a). CP

6

5
D 4

Original priority

(b). CP

τ 1 τ 1

τ 6

τ 5

τ 3 τ 3

τ 2

τ 1

τ 4

τ 7

3

2

1

4

6

5
D 4

τ 1 τ 1

τ 6

τ 5

τ 3

τ 2

τ 1

Holding 𝑹𝒍:

Access to resource is granted :Task is arrived :Resource is released : Request to resource :

Spinning :Holding 𝑹𝒈:

Deadline:

LBG :LBL :Interference :

Original priority

τ 4

τ 7

3

2

1

4

(a). CP

6

5
D 4

Original priority

(b). CP

τ 1 τ 1

τ 6

τ 5

τ 2

τ 1

τ 3τ 3

τ 4

τ 7

3

2

1

4

6

5
D 4

τ 1 τ 1

τ 6

τ 5

τ 2

τ 1

τ 3

τ 4

(1). Scenario1 (2). Scenario2

105 110 115 120100

105 110 115 120100 105 110 115 120100

P1 P1

P1 P1

P2 P2

P2 P2

Original priority

Figure 4 Incomparability of CP and ĈP. πspinCP
Pk

= 2 and π
spin

ĈP
Pk

= 5 in both scenarios. Scenario (1):
τ4 misses its deadline under ĈP but not under CP. Scenario (2): τ4 misses its deadline under CP but not
under ĈP.

we need the maximum number of occurrence of each type of blocking i.e., LBL and LBG, to a
task , and the incorporation of it with the maximum length of such blocking. To do so, we first, in
Section 6.1, present the maximum possible number of blocking as well as the identified type (i.e.,
LBL/LBG) that a task may experience. Next, in Section 6.2 we calculate the maximum amount
of such blocking using the identified number and type of blocking provided in Section 6.1.

6.1 Number and Type of Blocking
In this section we show by means of Lemmas 37 and 39, and Corollaries 36 and 38 the maximum
number and type of blocking a task τi experiences under three determinant cases: (i) πL

Pk
< πi,

(ii) πi ≤ πspin
Pk

and (iii) πspin
Pk

< πi ≤ πL
Pk

. It is enough to investigate the amount of blocking under
the three aforementioned cases since other cases which appears under the assumption πL

Pk
≤ πspin

Pk

falls under one of the above mentioned categories. As an example under such assumption, the
cases πL

Pk
< πi ≤ πspin

Pk
and πi ≤ πL

Pk
both falls under Case (ii).

Any LBG delay imposed to a task on a core Pk is due to a global resource access of a lower
priority task which according to Definition 22 is nested within the access to the local spin resource
Rspin
Pk

on Pk. According to SRP any job of a task can be blocked for at most one (outermost) local

LITES

03:16 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

critical section of any lower-priority task (Lemma 25). Rspin
Pk

is treated by SRP similar as any
other regular local resource on Pk, thus, Lemma 25 can be extended to the following corollary.

I Corollary 36. A job of any task τi ∈ TPk can experience at most one LBG from any lower
priority task.

Next, we present the type and the maximum number of blocking that a task experiences under
Cases (i) and (ii).

I Lemma 37. A job of a task τi ∈ TPk experiences at most one either LBG or LBL due to normal
local resources from any lower priority task under Cases (i) πL

Pk
< πi or (ii) πi ≤ πspin

Pk
.

Proof. Under Case (i), by definition, τi cannot experience any LBL delay due to a normal local
resource. However, it still can experience blocking due to the local spin resource. Since according
to Definition 22 access to the special local resource contains an access to a global resource. Thus
τi, in the worst-cases, experiences LBG which according to Corollary 36 is at most one from
any lower priority task. Therefore, the lemma is valid for this case. According to Lemma 25, τi
experiences at most one LBL from lower priority task due to requesting local resources. Since
under Case (ii), πi ≤ πspin

Pk
and remembering from Rule 21 that πspin

Pk
is the ceiling of the special

local spin resource on Pk, thus such an LBL to τi can be due to acquiring the local spin resource
by a lower priority task. In other words, the imposed LBL to τi can be either due to a normal
local resource or the spin resource on Pk. Moreover, since the access to the spin resource contains
an access to a global resource, if τi experiences an LBL due to the local spin resource then it
experiences an LBG. This concludes that τi experiences at most one either LBL due to a normal
local resource or an LBG. This finishes the proof. J

To further realize the scenario of Lemma 37 let us assume that in the example in Figure 2
there exists another task τ0 with priority lower than that of τ2 besides τ1 which also arrives earlier
than τ2 and uses the same local resource as τ3. It is easy to observe that either τ1 could issue its
request for the "special" local resource Rspin

Pk
which has a ceiling equal to 2 and delay τ2 upon its

arrival or τ0 could for its normal local resource with ceiling equal to 3.
Next, we present the type and the maximum number of blocking that a task experiences under

Case (iii). According to Corollary 36, a task τi experiences at most one LBG from lower priority
tasks. According to Definition 22 an LBG to a task is due to non-preemptive global resource
access of a lower priority task which is always nested within an access to the special spin resource
Rspin
Pk

. Unlike in Lemma 37, a task τi with a priority πspin
Pk

< πi , cannot experience LBL due to
the special spin resource Rspin

Pk
where ceilPk(Rspin

Pk
) = πspin

Pk
(Rule 21). However, since the access

to global resource is non-preemptive (i.e., the priority of the task is raised higher than any task
when the resource is granted, see Rule 18), thus, in the worst-case, τi experiences the resource
access delay of an LBG from a lower priority task. Further, τi can experience at most one LBL
a from a normal local resource when πi ≤ πL

Pk
where according to Lemma 25 it can be at most

one from any lower priority task. Therefore, the following corollary is drawn from Lemma 25 and
Corollary 36.

I Corollary 38. A job of a task τi ∈ TPk experiences at most one LBL from lower priority tasks
due to a normal local resource and one resource access delay of an LBG from any lower priority
task under Case (iii) πspin

Pk
< πi ≤ πL

Pk
.

The scenario of Corollary 38 can be remembered from Figure 2 where τ4 experiences LBL from
τ3 and resource access blocking of an LBG from τ1.

Next, we identify the set of lower priority tasks from Lemma 38 that causes LBL delay to a
task τi under (iii).

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:17

I Lemma 39. If a job of a task τi ∈ TPk experiences both an LBL and a resource access delay of
an LBG then the LBL is caused by job of a lower priority task τl where πl > πspin

Pk
.

Proof. Let us assume that τi experiences LBG by the lower priority task τm due to a request for
the global resource Rq which is issued at time tm, and it experiences LBL by the lower priority
task τl due to request for the local resource R` which is issued at time tl.

According to Lemma 26 and having in mind Note 28, these requests are issued before τi’s
arrival at time ti, thus, tl < ti and tm < ti. However, one of the possible three following cases can
be valid for tl and tm: (i) tl = tm, (ii) tl < tm, or (iii) tm < tl. According to Rule 21, τm first
locks the special local resource Rspin

Pk
before locking Rq. Moreover, according to SRP, access to a

local resource happens at the time of request. Thus, both τl and τm access R` and the special
local resource Rspin

Pk
at times tl and tm, respectively. Further, according to Lemma 25, one LBL

can happen to τi at any time which rules out the case (i), i.e., tl 6= tm. Moreover, τl causing LBL
to τi implies that it raises its priority to ceil(R`) at time tl where ceil(R`) ≥ πi. Therefore, no
task with priority lower than that of τi can run in the interval [tl, ti]. This rules out case (ii).
Therefore, case (iii) is valid. τm first locks Rspin

Pk
at a time t0 with t0 ≤ tm and raises its priority

to the ceiling of this resource, i.e., πspin
Pk

(Rule 21). Therefore, in order to τl be able to run at time
tl > tm, it must be that πl > πspin

Pk
. This finishes the proof. J

The scenario of Lemma 39 can be remembered from Figure 2 where τ4 experiences both an
LBL and LBG delay from τ3 and τ1, respectively where π3 > πspin

Pk
= 1.

6.2 Amount of Blocking
In this section first we present maximum deuration of LBL and LBG delay that a task experiences
by Corollary 40 and Lemmas 41 and 42. Finally, Theorem 43 concludes the total worst-case
blocking delay calculation experienced by a task.

Maximum LBL duration experienced by a task is presented by the following corollary that is
driven from Lemma 25.

I Corollary 40. The maximum LBL blocking duration experienced by a task τi ∈ TPk is formulated
as follows.

BL
i = max

∀j:πj<πi∧τi,τj∈τPk
BL
i,j , (8)

where BL
i,j is denoted as the maximum LBL delay duration imposed to a task τi ∈ TPk by a local

lower priority task τj and is calculated according to SRP specification [6] as below:

BL
i,j = max

∀l:Rl∈RSL
j

∧πj<πi≤ceilPk (Rl)

{Csj,l}. (9)

In the following, we present the maximum LBG duration experienced by a task from a lower
priority task.

I Lemma 41. The maximum LBG blocking duration experienced by a task τi ∈ TPk from any
job of a local lower priority task τj using a spin-based protocol where πspin

Pk
≥ πG

Pk
is denoted as

BG
i,j(π

spin
Pk

) and is calculated as follows.

BG
i,j(π

spin
Pk

) = max
∀q:Rq∈RSG

j
∧πj<πi

(
Csj,q +

{
spinPk,q if πi ≤ πspin

Pk

0 otherwise

)
, (10)

where spinPk,q =
∑
∀Pr 6=Pk

max
∀τj∈TPr,q

{Csj,q} as in (4).

LITES

03:18 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

Proof. Since LBG is a type of pi-blocking (see Definition 8), thus, according to Lemma 27 (and
having in mind Note 28), any job of a lower priority task τj can cause LBG to any job of a higher
priority task τi at most once. Further according to Definition 22 the maximum duration of such
a delay is spinPk,q + max ∀q,j:τj∈TPk

∧Rq∈RSG
j ∧πj<πi

Csj,q. However, the access to the special local resource

Rspin
Pk

by τj where ceilPk(Rspin
Pk

) = πspin
Pk

can preempt τi only if πi ≤ πspin
Pk

. Based on this (10) is
derived. J

Next, we present the maximum LBG duration experienced by a task from all lower priority
tasks.

I Lemma 42. The maximum LBG blocking duration experienced by a task τi from local lower
priority tasks using a spin-based protocol where πspin

Pk
≥ πG

Pk
is denoted as BG

i (πspin
Pk

) and is
calculated as follows.

BG
i (πspin

Pk
) = max

∀j:πj<πi∧τi,τj∈TPk
{BG

i,j(π
spin
Pk

)}, (11)

where BG
i,j(π

spin
Pk

) is calculated according to (10).

Proof. Follows immediately from Corollary 36 and Lemma 41. J

I Theorem 43. The worst-case total pi-blocking experienced by a task τi ∈ TPk when πG
Pk
≤

πspin
Pk
≤ πmax

Pk
is denoted by Bi(πspin

Pk
) and is calculated as follows.

Bi(πspin
Pk

) =



{
a if πL

Pk
< πi

b if πi ≤ πL
Pk

if πL
Pk
≤ πG

Pk
c if πL

Pk
< πi

d if πspin
Pk

< πi ≤ πL
Pk

e if πi ≤ πspin
Pk

if πG
Pk
< πL

Pk

(12)

where,

a = c = BG
i (πspin

Pk
), (13)

b = e = max(BL
i , B

G
i (πspin

Pk
)), (14)

d =max
(

max
∀j:πj<πi
∧πspin

Pk
<πj

∧τj∈TPk

{BL
i,j}+BG

i (πspin
Pk

), max
∀j:πj<πi
∧πj≤πspin

Pk
∧τj∈TPk

{BL
i,j}

)
, (15)

and BL
i,j, BL

i and BG
i (πspin

Pk
) are calculated according to (9), (8) and (11).

Proof. We prove the calculation of the terms a, b, c, d and e under clauses (a), (b), (c), (d) and
(e), respectively.
Proof of Clauses (a) and (c): when πL

Pk
< πi a task τi cannot experience any LBL due to normal

local resources, thus, BL
i = 0. However, according to Corollary 36, τi can experience at most

one LBG delay which its maximum duration according to Lemma 42 is (13).

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:19

Proof of Clauses (b) and (e): according to the conditions of Clause (b) ∀τi|πi ≤ πL
Pk

, it is valid
that πi ≤ πG

Pk
since πL

Pk
≤ πG

Pk
under this clause. Further, since πG

Pk
≤ πspin

Pk
(Definition 6) thus,

πi ≤ πspin
Pk

under the conditions of Clause (b), which is the same as the condition of Clause (e).
According to Lemma 37, τi experiences at most one either LBL or LBG from lower priority
tasks when πi ≤ πspin

Pk
. Thus, both terms (b) and (e) are inferred based on Corollary 40 and

Lemma 42 which introduce the maximum amount of such blocking.
Proof of Clause (d): we assume that the term d is constructed by three elements λ1, γ and

λ2 such that λ1 = max∀j:πspin
Pk

<πj

∧τj∈TPk

{BL
i,j}, γ = BG

i (πspin
Pk

) and λ2 = max∀j:πj≤πspin
Pk

∧τj∈TPk

{BL
i,j}. We

construct three cases (i), (ii) and (iii) for each of which we present a worst-case blocking delay
that is imposed to τi under this clause.
Case (i): since under the condition of Clause (d) πspin

Pk
< πi ≤ πL

Pk
, thus, according to

Corollary 38 and Lemma 39, τi experience in the worst-case both a resource access delay
of an LBG and an LBL from a lower priority task τj where πspin

Pk
< πj . By considering

Lemma 42 and (9), this leads to τi experience at most a blocking equal to λ1 + γ.
Case (ii): on the other hand, it is true that according to Lemma 25 a task can experience at

most one LBL from any lower priority task. By looking at (8), it is easy to see that the
maximum LBL imposed to τi can be rewritten as max(λ1, λ2).

Case (iii): furthermore, according to Corollary 36, it is also true that a task can experience at
most one LBG from any lower priority task which based on Lemma 42 the maximum of
such delay is the term γ.

All the three aforementioned cases are valid. However, the only way to find the maximum
imposed delay to a task is to find the one that gives rise to the maximum blocking imposed
to τi since they are overlapping cases. According to Lemma 25 the blocking delay derived
under case (i) and case (ii) cannot both be imposed to τi. Similarly, according to Corollary 36
the blocking delay derived under case (i) and case (iii) cannot both be imposed to τi as well.
Further, occurrence of blocking delay of case (ii) and (iii) is case (i). Therefore, to find the
maximum delay imposed to τi we present β that gives the maximum delay imposed under each
of the three cases where, β = max(λ1 + γ, γ,max(λ1, λ2)) = max(λ1 + γ,max(λ1, λ2)). Let us
assume two scenarios: (1) λ1 < λ2 and (2) λ2 ≤ λ1. Under scenario (1), β = max(λ1 + γ, λ2)
which is the same as term d in (12). On the other hand, under scenario (2) β = λ1 + γ.
However, since under this scenario it is derived that λ2 ≤ λ1 + γ, thus, max(λ1 + γ, λ2), i.e.,
term d, gives similar result as β here. As a result both scenarios (1) and (2) can be presented
with the term d. This finishes the proof. J

It is easy to observe that the total pi-blocking to a task τi ∈ TPk , i.e., Bi(π
spin
Pk

) in (16) presented
by Corollary 44 gives similar terms as in (12) under those conditions.

I Corollary 44. Bi(πspin
Pk

) for a task τi ∈ TPk is presented as follows.

Bi(πspin
Pk

) = max
(

max
∀j:πj<πi
∧πspin

Pk
<πj

∧τj∈TPk

{BL
i,j}+BG

i (πspin
Pk

), max
∀j:πj<πi
∧πj≤πspin

Pk
∧τj∈TPk

{BL
i,j}

)
, (16)

I Note 45. Similar to HP and CP, spinPk,q, spini are calculated as in (4) and (5), respectively
and the inflated execution time of a task τi, i.e., Ći is calculated according to Definition 12.

LITES

03:20 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

6.3 Tighter Bounds under CP
In this section, we show by means of Lemma 46 that the new analysis for calculating the blocking
terms given in (16) provides tighter bounds for CP compared to the analysis using (7), i.e. as
given in [1].

I Lemma 46. Maximum blocking imposed to any task τi under CP spin-based protocol, gives
tighter bounds using (16) compared to the blocking analysis given using (7), i.e. as given in [1]in [1].

Proof. We define the maximum blocking under CP that is presented in Section 3.4.2 by (7) as
Bold
i and the maximum blocking under CP that is calculated by (16) as Bnew

i .
By looking at (7), Bold

i is calculated differently, as presented by the following clauses that
depend on the priority πi of τi and the spin-priority πG

Pk
:

(i) if πG
Pk

+ 1 < πi then Bold
i = á+ b́,

(ii) if πi = πG
Pk

+ 1 then Bold
i = max (á, b́),

(iii) if πi ≤ πG
Pk

then Bold
i = max (á, b̃),

where á is the same as (8), i.e., á = max ∀l:Rl∈RSL
j

∧πj<πi≤ceilPk (Rl)

{Csj,l}, b́ = max
∀j,q:πj<πi

∧τi,τj∈TPk∧Rq∈RS
G
j

Csj,q and

b̃ = max
∀j,q:πj<πi

∧τi,τj∈TPk∧Rq∈RS
G
j

{Csj,q + spinPk,q}.

We investigate each clause separately. From (16) let us assume Bnew
i = max(a + b, c) where

a = max
∀j:πj<πi

∧πG
Pk
<πj∧τj∈TPk

{BL
i,j}, b = max

∀j:πj<πi∧τi,τj∈TPk
{BG

i,j(π
spin
Pk

)} calculated from (10) and c =

max
∀j:πj<πi

∧πj≤πG
Pk
∧τj∈TPk

{BL
i,j}. It can be observed under the condition of clause (i) that the set where BL

i,j

is specified in a, i.e., ∀j|πj < πi ∧ πG
Pk
< πj is smaller than the set to specify BL

i,j in á where it
is ∀j|πj < πi. This implies that a ≤ á. It also can be observed that b = b́ since the condition
πi ≤ πspin

Pk
= πG

Pk
is not valid in (10) under this clause. Moreover, it can be seen that the set

to specify BL
i,j is smaller for c than á, which leads to c ≤ á. As a result, Bnew

i ≤ Bold
i under

clause (i).
It can be observed that under the condition of clause (ii) a = 0, b = b́ and c = á, thus
Bnew
i = max(0+ b́, á) which means Bnew

i = Bold
i under clause (ii). Furthermore, it can be observed

that under the condition of clause (iii) a = 0, b = b̃ since the condition πi ≤ πspin
Pk

= πG
Pk

is valid
in (10) under this clause and c = á, thus Bnew

i = max(0 + b̃, á) which leads to Bnew
i = Bold

i under
clause (iii). This finishes the proof. J

6.4 Use of ILP
In this section we discuss the benefit of using optimization approaches such as mixed-Integer linear
program (ILP) for bounding the maximum cumulative blocking imposed to tasks similar to [29]
by Wieder and Brandenburg. Wieder and Brandenburg [29] showed that any blocking analysis
that is based on inflation of the worst-case execution times of tasks with remote blocking can be
pessimistic by a factor of Ω(φ · n) where φ ≈ dWRi

Th
e and τh is a higher priority task that spins

and delays a lower priority task τi (Theorem 1 [29]).
Based on such a result, the tasks on a core with a priority within the range (πG

Pk
, πmax
Pk

] do not
suffer from such pessimism since, by definition, tasks in this range do not use any global resource
(see Note 13). Therefore, using ILP could not tighten the blocking analysis for this range of tasks
nor could benefit our comparative evaluation later in Section 8. Based on the results derived from
Corollaries 49, 50 and 51 we show that it is enough to consider the tasks with a priority within

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:21

the above mentioned range when comparing the effectiveness of different spin-based protocols
with a spin-lock priority from the same range.

However, ILP can tighten the blocking imposed to tasks on a core with a priority within the
range [1, πG

Pk
], where 1 is the lowest possible priority level that a task can have on a core, since for

this range of tasks the worst-case execution times are inflated with the remote blocking parameter
in case those tasks use global resources. For tasks on a core with a priority within the range [1, πG

Pk
]

selecting any spin-based protocol that uses a spin-lock priority within the range [πG
Pk
, πmax
Pk
− 1]

will give the same blocking bound as when using HP (see Lemma 47 in Section 7.1). Therefore,
for the tasks with a priority in the range [1, πG

Pk
] the same ILP constraints that has been presented

for FIFO-ordered non-preemptive spin-based protocols [29] could be used to tighten the blocking
bounds. Therefore, for the simplicity of the experiments we use the traditional analysis based on
inflation of worst-case execution times of tasks when the schedulability of a core is checked for the
set of tasks with a priority lower than this range.

Moreover, the holistic analysis of spin locks [9] encompasses pessimism due to inflating tasks’
execution times [29] which has been overcome by the ILP-based analysis presented in [29]. However,
since ILP cannot tighten the analysis for the set of tasks considered in our comparative evaluation,
therefore, holistic analysis cannot as well. Thus, we do not consider this analysis approach here as
well.

7 Properties of Spin-Based Protocols

In this section we specify the set of tasks on a processor for which the selection of any two
spin-based protocols from the triple (HP, CP, ĈP), yield the same worst-case blocking bounds
for a task τi. This facilitates the evaluation of the results, later, in Section 8. First, we present
Lemmas 47 and 48 under which we show, respectively, that for selection of any two spin-lock
priorities from the range [πG

Pk
, πmax
Pk

] where one is smaller than the other, for a task τi with a
priority either (a) lower than the priority of both or (b) higher than the priority of both if τi
does not use any local resource, using either spin-lock priorities will lead to the same blocking
bounds for τi. This will help us to specify the set of tasks for which using either CP or HP, using
either ĈP or HP and using either either CP or ĈP will lead to the same blocking bounds that we
present by Corollaries 49, 50 and 51, respectively.

I Lemma 47. Assume two different spin-based protocols σ1 and σ2 on Pk, with spin-lock priorities
π

spinσ1
Pk

and πspinσ2
Pk

, respectively, where πspinσ1
Pk

, π
spinσ2
Pk

∈ [πG
Pk
, πmax
Pk

] and πspinσ1
Pk

≤ π
spinσ2
Pk

. For
any task τi ∈ TPk where πi ≤ π

spinσ1
Pk

, using either σ1 or σ2 will yield the same value for the
worst-case blocking Bi.

Proof. We assume Bi which is calculated by (16) is equal to max(A+B,C) where A, B and C
are
A = max ∀j:πj<πi

∧πspin
Pk

<πj∧τj∈TPk

{BL
i,j}, B = BG

i (πspin
Pk

) and C = max ∀j:πj<πi
∧πj≤πspin

Pk
∧τj∈TPk

{BL
i,j}. It is easy

to see that A = 0 for any task τi that πi ≤ π
spinσ1
Pk

. Moreover, B is the same when using either
σ1 or σ2 due to the fact that the condition πi ≤ πspin

Pk
in (10), which is the set from which B is

derived, is satisfied using both σ1 or σ2. Further, C is also the same when using either σ1 or σ2

since the sets ∀j : πj ≤ π
spinσ1
Pk

and ∀j : πj ≤ π
spinσ2
Pk

, which are the sets from which C is derived
when σ1 and σ2 are used, respectively, are the same and leads to ∀j : πj < πi. J

I Lemma 48. Assume two different spin-based protocols σ1 and σ2 on Pk, with spin priority levels
π

spinσ1
Pk

and πspinσ2
Pk

(remember Definition 6), respectively, where πspinσ1
Pk

, π
spinσ2
Pk

∈ [πG
Pk
, πmax
Pk

] and

LITES

03:22 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

π
spinσ1
Pk

≤ πspinσ2
Pk

, and πLG
Pk
≤ πspinσ2

Pk
. For any task τi ∈ TPk where πspinσ2

Pk
< πi, then using either

σ1 or σ2 will lead to the same worst-case blocking results.

Proof. By assuming Bi calculated by (16) equal to max(A+B,C) similar as in proof of Lemma 47,
it is easy to see that A = C = 0 since by πLG

Pk
< πi, by definition τi does not use any local resource

which leads BL
i,j = 0 in (16). Further, the condition of πi ≤ πspin

Pk
in (10), which is the set from

which B is derived, is not satisfied under both σ1 and σ2, thus Bi is the same under both σ1 and
σ2 knowing that by definition, ∀τj |πG

Pk
< πj < πi ⇒ RSG

i = 0. J

7.1 CP versus HP

In the following, we specify the set of tasks on a processor Pk that have the same blocking bounds
for CP and HP.

From Lemma 47 the following corollary can be drawn.

I Corollary 49. For any task τi ∈ TPk where πi ≤ πG
Pk
, (i.e., τi’s priority is in range C in

Figure 3) then using either CP or HP will lead to the same blocking bounds.

7.2 ĈP versus HP

In the following, we specify the set of tasks on a processor Pk that have the same blocking bounds
for HP and ĈP.

From Lemma 47, we draw the following conclusion.

I Corollary 50. For any task τi ∈ TPk where πi ≤ πLG
Pk

, (i.e., τi’s priority is in ranges B or C in
Figure 3) then using either ĈP or HP will lead to the same blocking bounds.

7.3 ĈP versus CP

In the following, we specify the set of tasks on a processor Pk that have the same blocking bounds
for CP and ĈP. This simplifies the comparison of the two protocols later in Section 8.

From Lemmas 47 and 48, we draw the following conclusion.

I Corollary 51. If πG
Pk
≤ πLG

Pk
, for any task τi ∈ TPk where πi ≤ πG

Pk
, or πLG

Pk
< πi (i.e., τi’s

priority is in range C or A in Figure 3) then using either CP or ĈP will lead to the same blocking
bounds.

We already have shown in Section 5.2 by means of an illustrative example that CP and ĈP
are incomparable. The same result is also achievable based on the worst-case response time using
(16) for calculating the blocking term.

I Example 52. The blocking term and worst-case response time of task τ4 in Example35 for
scenario (1) and (2) are denoted by Bsc1−CP

4 , WRsc1−CP
4 and by Bsc2−CP

4 , WRsc2−CP
4 for CP

and by Bsc1−ĈP
4 , WRsc1−ĈP

4 and by Bsc2−ĈP
4 , WRsc2−ĈP

4 for ĈP, respectively. Their values for
τ4 under scenario (1) are as follows: Bsc1−CP

4 = 4, thus WRsc1−CP
4 = 9 and Bsc1−ĈP

4 = 8, thus
WRsc1−ĈP

4 = 13, and under scenario (2) are as follows: Bsc2−CP
4 = 7, thus WRsc2−CP

4 = 12 and
Bsc2−ĈP

4 = 4, thus WRsc2−ĈP
4 = 9. Therefore, τ4 misses its deadline using ĈP in scenario (1)

and using CP in scenario (2).

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:23

7.4 Key Trade-Off Factors
In this section, we elaborate the trade-off factors between CP and ĈP. According to Corollary 51
only if a task’s priority level is within range B, then using ĈP and CP may lead to different
schedulability results. Note that, ĈP exists only when πG

Pk
< πL

Pk
(see Section 5). It can be

observed that the maximum blocking imposed to a task τi with a priority within range B calculated
by (16) results in term e in (12) when ĈP is used and term d when CP is used. Thus, to compare
the maximum blocking delay under CP and ĈP, we should compare (14) and (15). By looking
at these two terms, it can be observed that using CP may cause an extra LBL term besides the
LBG term compared to using ĈP. On the other hand, according to (41) the LBG term can be
smaller under CP compared to ĈP since spinPk,q term is zero for a task τi in range B if CP is
used. In other words, such a task has to wait for its lower priority task’s spin-lock time under ĈP
but not under CP.

Followed by the discussion above, a task τi may experience one extra LBL if CP is used,
whereas it may experience longer LBG if ĈP is used since it has to wait for the spin-lock time of
a lower priority task. These two parameters determine the trade-off factors of the two protocols.
One conclusion from this discussion is that if the extra LBL is not imposed under CP, then CP
outperforms ĈP since under ĈP a task may be delayed longer due to the spinning of lower priority
tasks.

7.5 Intermediate Spin-Based Protocol
In Sections 5.2 and 7.3, we showed that CP and ĈP are incomparable by means of both a trace
example and analysis in Examples 35 and 52, respectively. In this section, we show for the same
example using a third scenario (Scenario 3) through the analysis results that if CP and ĈP cannot
make a task set schedulable on a core, there may exist an intermediate spin-lock priority within the
range (CP, ĈP) that can make the task set schedulable. Under a third scenario (3) we denote the
blocking term and worst-case response time of a task τi under CP by Bsc3−CP

i and WRsc3−CP
i ,

under ĈP by Bsc3−ĈP
i and WRsc3−ĈP

i and under a third protocol which we call C̃P by Bsc3−C̃P
i

and WRsc3−C̃P
i , respectively. Under scenario (3) we again use dedicated task specifications

(Ci, Csi,l, Csi,g) for task τ3 and τ7, i.e., τ3: (2, 2, 0) and τ7: (7, 0, 5). πspinCP
Pk

= 2, π
spin

ĈP
Pk

= 5

and π
spin

C̃P
Pk

= 3. The blocking terms and respective worst-case response times of τ4 under this

scenario are as follows: Bsc3−CP
4 = 5, thus WRsc1−CP

4 = 10 , Bsc3−ĈP
4 = 8, thus WRsc1−ĈP

4 = 13,
and Bsc3−C̃P

4 = 3, thus WRsc1−C̃P
4 = 9. Therefore, since τ4 misses its deadline under both CP

and ĈP but not under C̃P, thus the task set is schedulable under C̃P only. To determine such
spin-lock priority, if any, the priority levels between CP and ĈP need to be explored linearly,
applying worst-case response time calculations using (16). Please note that finding ĈP limits
the search. In general, spin-lock priorities in the range (CP, ĈP) do not necessarily dominate
HP., whereas ĈP does. Moreover, whenever a task set is schedulable by CP and ĈP, this does
not imply that the set is also schedulable by all, some or even any spin-lock priority in the range
(CP, ĈP). We have performed an experiment which shows that out of 8000 task sets C̃P could
only schedule 2 more task sets compared to both CP and ĈP.

8 Evaluation

In this section we present the experimental results of comparing HP, CP and ĈP. According to
Corollaries 49, 50 and 51, it is enough to compare the worst-case response time of tasks of range
B in Figure 3 when comparing CP and ĈP, range A when comparing ĈP and HP and range

LITES

03:24 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

A ∪B when comparing CP and HP. In our experiments, we therefore only consider tasks in the
related range, effectively ignoring tasks that have identical results under the compared protocols.
As we discussed in Section 6.4, using ILP cannot tighten the blocking bounds for this range
of tasks. Therefore, for simplicity, we use the traditional worst-case response time analysis [4]
for all tasks on a core. We run two types of experiments. In our first type of experiments we
calculate the improvement in worst-case response time of tasks of one protocol compared to the
other. We use RTI (a, b) to denote the response time improvement under protocol a compared to
protocol b. Since the response jitter of a task is bounded by the difference of the worst-case and
best-case response time of that task [25, 11] and the best-case response time being independent of
a global resource sharing protocol, the bound on the response jitter decreases when the worst-case
response time decreases. Therefore, response time improvement of tasks are directly correlated
with response jitters. We denote RTI i(a, b) for a task τi as (WRbi−WRai)

max(WRa
i
,WRb

i
) × 100, where WRa

i and
WRb

i denote the worst-case response time of task τi under protocols a and b, respectively. For
a randomly generated task set, we show the percentage of tasks as a function of RTI (a, b). We
have performed the experiments for how different system parameters as the number of processors,
task set utilization, number of tasks per core and local and global critical section lengths can
affect the RTI (a, b). Due to space constraints, we only illustrate RTI for changing the numbers
of cores as well as local critical section lengths here. Further results can be found in [2]. In the
second type of experiments, we compare the system schedulability under HP, CP and ĈP. We
perform the response-time analysis [4] to check the schedulability of task sets according to [18].
For this experiment we have generated 200,000 task sets for 4-processors. We denote PS(C) as
the percentage of the schedulable systems under condition C, e.g., PS(HP∧CP∧¬ĈP) denotes the

percentage of systems that are schedulable under both HP and CP but not under ĈP. This
percentage is calculated based on the number of systems that are schedulable under any of the
three aforementioned spin-based protocols.

8.1 Experimental Setup

In each experiment we randomly generate task sets for each processor. The number m of processors
is selected from the set {4, 8, 12, 16}. For each experiment 1000 schedulable task sets under the
considered protocols are generated. The task set size is the same for each processor and is selected
from the set {20, 40, 60}. Tasks are randomly selected to be dedicated to ranges A, B and C
in Figure 3 such that at least one task is dedicated to priority ranges A and B each in order to
implement ĈP and CP protocols for the sake of comparison. The task set utilization is also the
same for each processor and is selected from the set {0.4, 0.6, 0.8}. The UUnifast algorithm [7]
is used to generate the utilization of each task. The period of each task is randomly generated
from the range [10, 150] ms with a granularity of 10 ms. The worst-case execution time of a task
is calculated by Ci = Ui × Ti. Deadlines of tasks are selected randomly according to a uniform
distribution in the range [Ci + α× (Ti − Ci), Ti] with α = 0.5 as the default [14]. The maximum
number of accesses to local and global resources for each task is 4. The local and global critical
section lengths (lcs and gcs) are generated according to Csq = β × Ci, where β is selected from
the set {0.1, 0.2, 0.3}. The number of local resources per processor as well as number of global
resources per task set is set to 3.

In our basic system configuration which is used for both types of experiments in Sections 8.2
and 8.3, the number of processors is set to m = 4, the task set utilization per core is 0.6, the
number of tasks on each processor is 20, and β = 0.2.

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:25

RTI(CP, 𝐻𝑃)% RTI(CP, 𝐻𝑃)%

0

5

10

15

20

25

30

35

40

45

50

-30 -20 -10 0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
B

 % 2 Processor

4 Processor

8 Processor

12 Processor

16 Processor

0

5

10

15

20

25

-30 -20 -10 0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
B

 % lcs 10% C

lcs 20% C

lcs 30% C

(a) (b)

Figure 5 RTI for CP versus HP for (a) different number of processors m, and (b) different values of
lcs.

8.2 Results for Response Time Improvements
For these experiments bar charts will be used to visualize the results, and the presented graphs
show the distribution of the tasks for the calculated RTI . The X-axis in the graphs represents
RTI (a, b) and the Y-axis shows the percentage of the examined tasks that have that improvement.
Note that, values in the X-axis present a non-continuous range. A bar in a graph that presents
RTI (a, b) with xi as X value and yi as Y value shows that yi% of tasks have an improvement in
the range (xi−1%, xi%] in their response times under protocol b compared to protocol a. Note
that a positive RTI value for a graph representing RTI (a, b), shows that response times under
protocol b are larger compared to protocol a. Similarly a negative RTI value shows that response
times are smaller under protocol b compared to protocol a. The results in Figures 6, 5 and 7
show the variation in distribution of tasks for the calculated RTI values for different numbers
of processors. More experimental results are available in [2] from which similar conclusions are
derived as from the graphs presented here.

8.2.1 Evaluation Results of CP versus HP

Figure 5 shows that CP improves response time of tasks up to 90% compared to HP. In more
detail, it can be observed from Figure 5.(a) that increasing the number of cores leads to more
tasks having larger response time improvement under CP compared to HP. For m = 2 around
1% of tasks have up to 20% improvement. The same trend was also obtained by increasing the
global critical section lengths for which the results can be found in [2]. This results are confirmed
by revisiting (16) where increasing the number of cores and global critical sections is positively
correlated with spinPk,q included in BG

i (πspin
Pk

) which is zero for the compared tasks under CP and
not under HP. Moreover, Figure 6.(b) shows that by increasing the local critical section lengths,
CP’s performance decreases compared to HP with regard to response time improvement. This is
due to the fact that by increasing the local critical sections BL

i,j increases. The same trend was
also obtained by increasing the number of tasks per core [2]. The reason is that by increasing
the number of tasks on a core, the number of tasks in range B may increase as well, which in the
worst-case leads to in an increase in the first BL

i,j term in RHS of (16). This term is zero under HP.
Increasing the task set utilization did not show a significant improvement. The reason is that by
increasing the task set utilization the execution time of tasks are increased leading in an increase
in both local and global critical section lengths which seems to nullify the effect of each other.
The interesting observation is to have both positive and negative RTI values in the graphs which
shows response time improvement under both CP and HP. This confirms the incomparability

LITES

03:26 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

RTI(CP, 𝐶𝑃)%

0

5

10

15

20

25

30

35

40

45

-30 -20 -10 0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 B
 % 2 Processor

4 Processor

8 Processor

12 Processor

16 Processor

RTI(CP, 𝐶𝑃)%

0

5

10

15

20

25

30

35

40

45

-30 -20 -10 0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 B
 % lcs 10% C

lcs 20% C

lcs 30% C

(a) (b)

Figure 6 RTI for CP versus ĈP for (a) different number of processors m, and (b) different values of
lcs.

claim of CP and HP which we previously have shown by examples [1]. In conclusion, the sum of
the percentages for the positive values is larger than the sum of the percentages for the negative
values from graphs. Hence, overall with the given system configuration in these experiments, CP
introduces less delays to tasks compared to HP.

8.2.2 Evaluation Results of CP versus ĈP
Figure 6 shows that, in general, CP improves response time of tasks compared to ĈP which can
reach up to 80%. However, it can be observed that when the number of cores are small ĈP could
improve response time of tasks up to 20%. In more detail, it can be observed in Figure 6.(a) that
for m = 2, roughly 45% of tasks have up to 10% response time improvement under ĈP compared
to CP and around 3% have up to 20% improvement. Similar trend is achieved here as well by
increasing the number of cores, global critical and local critical sections, task set size and utilization
similar to when comparing CP and HP. The reason is that for all tasks of range B the spin-lock
priority under ĈP is higher than their priority similar to spin-lock priority under HP, when
comparing CP versus ĈP compared to when comparing CP and HP. The interesting observation
here is that both positive and negative RTI values exist which confirms the incomparability of
CP and ĈP previously shown by the example in Section 5.2. In conclusion, overall with the given
system configuration in these experiments as well, CP introduces less delays to tasks compared to
ĈP.

8.2.3 Evaluation Results of ĈP versus HP
Figure 7 shows that ĈP improves response time of tasks up to 90% compared to HP. Figure 7.(a)
illustrates that by increasing the number of cores ĈP outperforms HP more, in terms of response
time improvement. The reason is that for tasks of range A, spinPk,q = 0 under ĈP and not under
HP. The interesting observation here is that there are no negative RTI values in any of the related
graphs meaning that response times cannot be improved under the HP compared to ĈP which
confirms dominance of ĈP compared to HP proven by Lemma 33.

8.3 Schedulability Results
In the second type of experiments, the schedulability under HP, CP and ĈP is investigated. The
results show that in general from the schedulable systems, a higher percentage are schedulable
under CP compared to the other two protocols, i.e., PS(CP) = 99.6%, PS(ĈP) = 76.2% and

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:27

RTI(𝐶𝑃,HP)%

0

10

20

30

40

50

60

-10 0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
 %

2 Processor

4 Processor

8 Processor

12 Processor

16 Processor

RTI(𝐶𝑃,HP)%

0

5

10

15

20

25

30

35

-10 0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
 %

lcs 10% C

lcs 20% C

lcs 30% C

(a) (b)

Figure 7 RTI for ĈP versus HP for (a) different number of processors m, and (b) different values of
lcs.

6
0

.9
 %

1
4

.8
 %

2
3

.9
 %

0
.4

 %

schedulable systems

𝐶𝑃

 𝐶𝑃

𝐻𝑃

Figure 8 Schedulability percentage under HP, CP and ĈP.

PS(HP) = 61.4%. The results show that most of the schedulable systems were schedulable under
all three protocols, i.e., PS(CP∧ĈP∧HP) = 60.9%. Moreover, this results also confirms that ĈP
dominates HP, i.e., all systems that were schedulable under HP were also schedulable under
ĈP, however a percentage of tasks were only schedulable under ĈP and not under HP which is
presented by PS(ĈP)∧¬HP = 14.8%. These schedulability results have also been illustrated in
Figure 8. Note that the values in the graph, illustrate the schedulability of area in which the value
is located.

9 Conclusion and Future Work

In this paper, we investigated spin-based protocols for resource and jitter constrained embedded
multi-core platforms with the aim to improve the cost-efficiency and quality of control as well
as schedulability performance. We have focused on fixed-priority partitioned scheduling which
is the industry’s preferred scheduling approach. For such systems, non-preemptive spin-based
protocols have shown a good performance in improving the systems costs by offering use of one
shared stack for running all tasks residing on a core. However, they have shown a poor efficiency
in preserving the control and schedulability quality of those systems. To address these aspects, we
have investigated preemptive spin-based protocols which give a better promise to pertain all these
factors. Further, we showed that the selection of priority upon which a task spins is significantly
important since it affects the blocking duration and hence the response time and response jitter of
tasks. We have presented spin-lock priorities for preemptive-spin-based protocols for which the
response time of tasks and hence the corresponding response jitters are decreased compared to
when using the non-preemptive spin-based protocol.

We focused on spin-based protocols where a fixed spin-lock priority is used for spinning of
any task on the core in combination with FIFO-ordering policy where under a classical technique
tasks are kept in the queue upon preemption. From this type we focused on a special range that

LITES

03:28 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

offer attractive properties where spinning occurs at a priority at least the highest ceiling of any
global resource which is the spin-lock priority of an existing spin-based protocol CP. Selecting
from this range keeps the remote blocking bound as well as the resource queue size confined to a
factor that is the number of cores in the system, similar to non-preemptive spin-based protocols.
It also guarantees that the number of some resources such as stack used per core is not increased
considerably compared to the non-preemptive spin-based protocols. In this paper we introduced
a special spin-based protocol from this range, called ĈP where we showed that it dominates
the traditional non-preemptive spin-based protocol HP, and all spin-based protocols that use a
spin-lock priority between those used by these two. Further, we showed that ĈP and CP are
incomparable, thus we have provided the blocking analysis for the considered range of spin-locks
in order to enable the comparative evaluation of these incomparable protocols. The new analysis
turns out to give tighter blocking bounds than those previously presented for the CP protocol.

Finally, we showed that if a task set is unschedulable under both CP and ĈP on a processor,
there may exist a spin-based protocol that uses a spin-lock priority in between of those used by
CP and ĈP which can make the task set schedulable. The complexity of finding such spin-based
protocol, if any, is linear and can be a small value. The experimental results showed that, in
general, CP can provide better schedulability results compared to HP and ĈP. Moreover, the
results showed that although ĈP and CP are incomparable, under specific system configurations
tasks can obtain up to 70% improvement in their response times under CP compared to ĈP.
Similarly, tasks can gain up to 90% improvements in their response times under CP and ĈP
compared to HP. It can be viewed from the evaluation results that in general, more tasks can
have shorter response times under CP than under HP and ĈP.

Towards optimizing the spin-based protocols for tasks, we would like to look at the following
steps: optimizing the spin-lock priority (i) per processor, (ii) per task, (iii) per resource and (iv)
per resource access. In this paper we have focused on step (i) for a specific range of spin-based
protocols. We leave the later steps as future work.

References
1 Sara Afshar, Moris Behnam, Reinder J. Bril, and

Thomas Nolte. Flexible spin-lock model for re-
source sharing in multiprocessor real-time systems.
In Proceedings of the 9th IEEE International Sym-
posium on Industrial Embedded Systems, SIES
2014, Pisa, Italy, June 18-20, 2014, pages 41–51.
IEEE, 2014. doi:10.1109/SIES.2014.6871185.

2 Sara Afshar, Moris Behnam, Reinder J. Bril, and
Thomas Nolte. On per processor spin-lock pri-
ority for partitioned multiprocessor real-time sys-
tems. Technical report, Mälardalen Real-Time Re-
search Centre, Mälardalen University, 2014. URL:
http://www.es.mdh.se/publications/3766-.

3 James H. Anderson, Rohit Jain, and Kevin Jef-
fay. Efficient object sharing in quantum-based
real-time systems. In Proceedings of the 19th
IEEE Real-Time Systems Symposium, Madrid,
Spain, December 2-4, 1998, pages 346–355. IEEE
Computer Society, 1998. doi:10.1109/REAL.1998.
739768.

4 Neil C. Audsley, Alan Burns, Mike M. Richard-
son, Ken Tindell, and Andy J. Wellings. Apply-
ing new scheduling theory to static priority pre-
emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993. doi:10.1049/sej.1993.0034.

5 AUTOSAR release 4.1, specification of operating
system, 2013. URL: http://www.autosar.org.

6 Theodore P. Baker. Stack-based scheduling of re-
altime processes. Real-Time Systems, 3(1):67–99,
1991. doi:10.1007/BF00365393.

7 Enrico Bini and Giorgio C. Buttazzo. Measur-
ing the performance of schedulability tests. Real-
Time Systems, 30(1-2):129–154, 2005. doi:10.
1007/s11241-005-0507-9.

8 Aaron Block, Hennadiy Leontyev, Björn B. Bran-
denburg, and James H. Anderson. A flexible real-
time locking protocol for multiprocessors. In 13th
IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications
(RTCSA 2007), 21-24 August 2007, Daegu, Ko-
rea, pages 47–56. IEEE Computer Society, 2007.
doi:10.1109/RTCSA.2007.8.

9 Björn B. Brandenburg. Scheduling and Locking in
Multiprocessor Real-time Operating Systems. PhD
thesis, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA, 2011. AAI3502550.

10 Björn B. Brandenburg and James H. Anderson.
An implementation of the pcp, srp, d-pcp, m-pcp,
and FMLP real-time synchronization protocols in
litmusrt. In The Fourteenth IEEE Internationl
Conference on Embedded and Real-Time Comput-
ing Systems and Applications, RTCSA 2008, Kao-
hisung, Taiwan, 25-27 August 2008, Proceedings,

http://dx.doi.org/10.1109/SIES.2014.6871185
http://www.es.mdh.se/publications/3766-
http://dx.doi.org/10.1109/REAL.1998.739768
http://dx.doi.org/10.1109/REAL.1998.739768
http://dx.doi.org/10.1049/sej.1993.0034
http://www.autosar.org
http://dx.doi.org/10.1007/BF00365393
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1109/RTCSA.2007.8

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:29

pages 185–194. IEEE Computer Society, 2008. doi:
10.1109/RTCSA.2008.13.

11 Reinder J. Bril, Elisabeth F. M. Steffens, and
Wim F. J. Verhaegh. Best-case response times
and jitter analysis of real-time tasks. J. Schedul-
ing, 7(2):133–147, 2004. doi:10.1023/B:JOSH.
0000014069.63823.e7.

12 Alan Burns and Andy J. Wellings. A schedula-
bility compatible multiprocessor resource sharing
protocol - mrsp. In 25th Euromicro Conference on
Real-Time Systems, ECRTS 2013, Paris, France,
July 9-12, 2013, pages 282–291. IEEE Computer
Society, 2013. doi:10.1109/ECRTS.2013.37.

13 Travis S. Craig. Queuing spin lock algorithms
to support timing predictability. In Proceedings
of the Real-Time Systems Symposium. Raleigh-
Durham, NC, December 1993, pages 148–157.
IEEE Computer Society, 1993. doi:10.1109/REAL.
1993.393505.

14 Robert I. Davis and Marko Bertogna. Optimal
fixed priority scheduling with deferred pre-emption.
In Proceedings of the 33rd IEEE Real-Time Sys-
tems Symposium, RTSS 2012, San Juan, PR,
USA, December 4-7, 2012, pages 39–50. IEEE
Computer Society, 2012. doi:10.1109/RTSS.2012.
57.

15 Robert I. Davis and Alan Burns. A survey of
hard real-time scheduling for multiprocessor sys-
tems. ACM Comput. Surv., 43(4):35:1–35:44, 2011.
doi:10.1145/1978802.1978814.

16 UmaMaheswari C. Devi, Hennadiy Leontyev, and
James H. Anderson. Efficient synchronization un-
der global EDF scheduling on multiprocessors. In
18th Euromicro Conference on Real-Time Systems,
ECRTS’06, 5-7 July 2006, Dresden, Germany,
Proceedings, pages 75–84. IEEE Computer Society,
2006. doi:10.1109/ECRTS.2006.10.

17 Dario Faggioli, Giuseppe Lipari, and Tommaso Cu-
cinotta. The multiprocessor bandwidth inheritance
protocol. In 22nd Euromicro Conference on Real-
Time Systems, ECRTS 2010, Brussels, Belgium,
July 6-9, 2010, pages 90–99. IEEE Computer Soci-
ety, 2010. doi:10.1109/ECRTS.2010.19.

18 Paolo Gai, Giuseppe Lipari, and Marco Di Natale.
Minimizing memory utilization of real-time task
sets in single and multi-processor systems-on-a-
chip. In Proceedings of the 22nd IEEE Real-Time
Systems Symposium (RTSS 2001), London, UK,
2-6 December 2001, pages 73–83. IEEE Computer
Society, 2001. doi:10.1109/REAL.2001.990598.

19 Paolo Gai, Giuseppe Lipari, and Marco Di Na-
tale. Stack size minimization for embedded
real-time systems-on-a-chip. Design Autom. for
Emb. Sys., 7(1-2):53–87, 2002. doi:10.1023/A:
1019795414875.

20 Paolo Gai, Marco Di Natale, Giuseppe Lipari,
Alberto Ferrari, Claudio Gabellini, and Paolo

Marceca. A comparison of MPCP and MSRP when
sharing resources in the janus multiple-processor
on a chip platform. In Proceedings of the 9th IEEE
Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS 2003), May 27-30, 2003,
Toronto, Canada, page 189. IEEE Computer Soci-
ety, 2003. doi:10.1109/RTTAS.2003.1203051.

21 Theodore Johnson and Krishna Harathi. A pri-
oritized multiprocessor spin lock. IEEE Trans.
Parallel Distrib. Syst., 8(9):926–933, 1997. doi:
10.1109/71.615438.

22 Leonidas I. Kontothanassis, Robert W. Wis-
niewski, and Michael L. Scott. Scheduler-conscious
synchronization. ACM Trans. Comput. Syst.,
15(1):3–40, 1997. doi:10.1145/244764.244765.

23 John M. Mellor-Crummey and Michael L. Scott.
Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput.
Syst., 9(1):21–65, 1991. doi:10.1145/103727.
103729.

24 Ragunathan Rajkumar. Synchronization in Real-
Time Systems: A Priority Inheritance Approach.
Kluwer Academic Publishers, Norwell, MA, USA,
1991.

25 Ola Redell and Martin Sanfridson. Exact best-
case response time analysis of fixed priority sched-
uled tasks. In 14th Euromicro Conference on
Real-Time Systems (ECRTS 2002), 19-21 June
2002, Vienna, Austria, Proceedings, pages 165–
172. IEEE Computer Society, 2002. doi:10.1109/
EMRTS.2002.1019196.

26 Lui Sha, Ragunathan Rajkumar, and John P.
Lehoczky. Priority inheritance protocols: An ap-
proach to real-time synchronization. IEEE Trans.
Computers, 39(9):1175–1185, 1990. doi:10.1109/
12.57058.

27 H. Takada and K. Sakamura. Predictable spin lock
algorithms with preemption. In 11th IEEE Work-
shop on Real-Time Operating Systems and Soft-
ware (RTOSS’94), pages 2–6, 1994. doi:10.1109/
RTOSS.1994.292571.

28 Hideyuki Takada and Ken Sakamura. A novel
approach to multiprogrammed multiprocessor syn-
chronization for real-time kernel. In Proceedings
of the 18th IEEE Real-Time Systems Symposium
(RTSS ’97), December 3-5, 1997, San Francisco,
CA, USA, pages 134–143. IEEE Computer Society,
1997. doi:10.1109/REAL.1997.641276.

29 Alexander Wieder and Björn B. Brandenburg. On
spin locks in AUTOSAR: blocking analysis of fifo,
unordered, and priority-ordered spin locks. In
Proceedings of the IEEE 34th Real-Time Systems
Symposium, RTSS 2013, Vancouver, BC, Canada,
December 3-6, 2013, pages 45–56. IEEE Computer
Society, 2013. doi:10.1109/RTSS.2013.13.

LITES

http://dx.doi.org/10.1109/RTCSA.2008.13
http://dx.doi.org/10.1109/RTCSA.2008.13
http://dx.doi.org/10.1023/B:JOSH.0000014069.63823.e7
http://dx.doi.org/10.1023/B:JOSH.0000014069.63823.e7
http://dx.doi.org/10.1109/ECRTS.2013.37
http://dx.doi.org/10.1109/REAL.1993.393505
http://dx.doi.org/10.1109/REAL.1993.393505
http://dx.doi.org/10.1109/RTSS.2012.57
http://dx.doi.org/10.1109/RTSS.2012.57
http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1109/ECRTS.2006.10
http://dx.doi.org/10.1109/ECRTS.2010.19
http://dx.doi.org/10.1109/REAL.2001.990598
http://dx.doi.org/10.1023/A:1019795414875
http://dx.doi.org/10.1023/A:1019795414875
http://dx.doi.org/10.1109/RTTAS.2003.1203051
http://dx.doi.org/10.1109/71.615438
http://dx.doi.org/10.1109/71.615438
http://dx.doi.org/10.1145/244764.244765
http://dx.doi.org/10.1145/103727.103729
http://dx.doi.org/10.1145/103727.103729
http://dx.doi.org/10.1109/EMRTS.2002.1019196
http://dx.doi.org/10.1109/EMRTS.2002.1019196
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/RTOSS.1994.292571
http://dx.doi.org/10.1109/RTOSS.1994.292571
http://dx.doi.org/10.1109/REAL.1997.641276
http://dx.doi.org/10.1109/RTSS.2013.13

03:30 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

A Table of Notations

Table 1 Table of notations

Notations Description

Pk processor k
τi task i
Ci worst-case execution time of τi

Ći inflated execution time of τi

Ti minimum inter-arrival time of τi

Di relative deadline of τi

πi priority of τi

TPk set of tasks allocated to processor Pk

Rq resource q
RL

Pk
set of local resources accessed by tasks on Pk

RG
Pk

set of global resources accessed by tasks on Pk

RSL
i set of local resources accessed by jobs of τi

RSG
i set of global resources accessed by jobs of τi

Csi,q worst-case execution time in all τi’s requests on Rq

nG
i,q maximum number of requests of a job of τi for a global resource Rq

TPk,q set of tasks on Pk that request Rq

WRi worst-case response time of τi

BRi best-case response time of τi

RJi response jitter of τi

πmax
Pk

highest priority level on Pk

ceilPk (Rl) ceiling of Rl on Pk

πL
Pk

highest local ceiling of any local resource on Pk

πG
P k highest local ceiling of any global resource on Pk

πLG
Pk

highest local ceiling of any (local or global) resource on Pk

πspin
Pk

an arbitrary fixed spin-lock priority for any task on Pk

π
spinσ
Pk

spin-lock priority of spin-based protocol σ of Pk

LBL local blocking due to local resources
LBG local blocking due to global resources

spinPk,q maximum remote blocking (i.e. spin-lock time) for any task on Pk to acquire Rq

spini maximum total remote blocking (i.e. spin-lock time) for τi to acquire all its resources
Rspin

Pk
the "virtual" local spin resource on Pk

BL
i LBL imposed to a task τi under an arbitrary spin-based protocol

BG
i LBG imposed to a task τi under an arbitrary spin-based protocol
Bi total pi-blocking imposed to a task τi under an arbitrary spin-based protocol

Bi(πspin
Pk

) total blocking to a task τi ∈ TPk under a spin-based protocol with spin-lock priority πspin
Pk

	Introduction
	Preemptive spin-based protocols
	Main characteristics
	Memory Requirements
	Progress Guarantees

	Main contributions and outline

	Related Work
	System Model
	General Definitions
	Resource Sharing Rules
	View on spinning and global resource access
	Recap of Existing Analysis and Lemmas
	HP Spin-Based Protocol
	CP Spin-Based Protocol
	Recap of Useful Lemmas

	Number of Stacks
	A Special Spin-Based Protocol CP^
	Dominance of CP^ over HP and In-Between Spin-Based Protocols
	CP^ and CP incomparability

	Generalized Analysis
	Number and Type of Blocking
	Amount of Blocking
	Tighter Bounds under CP
	Use of ILP

	Properties of Spin-Based Protocols
	CP versus HP
	CP^ versus HP
	CP^ versus CP
	Key Trade-Off Factors
	Intermediate Spin-Based Protocol

	Evaluation
	Experimental Setup
	Results for Response Time Improvements
	Evaluation Results of CP versus HP
	Evaluation Results of CP versus CP^
	Evaluation Results of CP^ versus HP

	Schedulability Results

	Conclusion and Future Work
	Table of Notations

