
Randomized Caches Can Be Pretty Useful to Hard
Real-Time Systems
Enrico Mezzetti1, Marco Ziccardi1, Tullio Vardanega1, Jaume Abella2,
Eduardo Quiñones2, and Francisco J. Cazorla2,3

1 University of Padova
{emezzett,mziccard,tullio.vardanega}@math.unipd.it

2 Barcelona Supercomputing Center
{jaume.abella,eduardo.quinones,francisco.cazorla}@bsc.es

3 Spanish National Research Council (IIIA-CSIC)

Abstract
Cache randomization per se, and its viability for
probabilistic timing analysis (PTA) of critical real-
time systems, are receiving increasingly close atten-
tion from the scientific community and the indus-
trial practitioners. In fact, the very notion of intro-
ducing randomness and probabilities in time-critical
systems has caused strenuous debates owing to the
apparent clash that this idea has with the strictly
deterministic view traditionally held for those sys-
tems. A paper recently appeared in LITES [17]
provides a critical analysis of the weaknesses and
risks entailed in using randomized caches in hard

real-time systems. In order to provide the inter-
ested reader with a fuller, balanced appreciation
of the subject matter, a critical analysis of the be-
nefits brought about by that innovation should be
provided also. This short paper addresses that need
by revisiting the array of issues addressed in the
cited work, in the light of the latest advances to the
relevant state of the art. Accordingly, we show that
the potential benefits of randomized caches do offset
their limitations, causing them to be – when used
in conjunction with PTA – a serious competitor to
conventional designs.

2012 ACM Subject Classification Computer systems organization~Real-time system architecture, The-
ory of computation~Probabilistic computation, Computer systems organization~Special purpose systems
Keywords and phrases Real-time systems, probabilistic WCET, randomized caches
Digital Object Identifier 10.4230/LITES-v002-i001-a001
Received 2014-08-04 Accepted 2015-02-10 Published 2015-03-23

1 Introduction

Timing analysis techniques aim at deriving upper bounds to the worst-case execution time (WCET)
of a software program or parts of it. Timing analysis techniques are generally classified as either
static or measurement-based [19]. Static WCET analysis techniques try to compute a provably
trustworthy WCET bound for a given program from an abstract model of a processor and the
source or executable of the program. Measurement-based analysis aims to contain the intrinsic
pessimism of static techniques, by measuring the execution of small program fragments (typically
basic blocks) run on the target hardware, and then combining them into WCET values using
structural information on the program under analysis.

The recent advent of approaches based on probabilistic arguments [6, 5] suggests that the
family of timing analysis techniques can also be usefully classified in relation to their using either
deterministic (DTA) or probabilistic reasoning (PTA). Four distinct approaches can then be
singled out in that respect: static and measurement-based deterministic timing analysis (SDTA
and MBDTA), on the one end of the spectrum; static and measurement-based probabilistic timing
analysis (SPTA and MBPTA), on the other [1].

© Enrico Mezzetti, Marco Ziccardi, Tullio Vardanega, Jaume Abella, Eduardo Quiñones, Francisco J. Cazorla;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 2, Issue 1, Article No. 1, pp. 01:1–01:10
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v002-i001-a001
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de


01:2 Randomized Caches Can Be Pretty Useful to Hard Real-Time Systems

As a precondition to computing sound and tight bounds to worst-case execution time, DTA
and PTA alike postulate predictability in the timing behavior of the system of interest, from both
the processor and the application perspective (whether top-down or bottom-up). Yet they do
so with different flavors. Deterministic approaches require or assume execution platforms whose
hardware and software components can be accurately abstracted into a fully deterministic model.
Conversely, probabilistic methods allow combining deterministic and randomized timing behavior
in processor resources [15], to produce WCET estimates that are guaranteed to be exceeded only
with a given (arbitrarily low) probability of occurrence.

Cache memories indeed are one of the processor resources whose timing is randomized in the
context of use of PTA [12, 13]. This notwithstanding, PTA should not be understood as a timing
analysis method for randomized caches [1]. Conversely, time randomization (applied to cache
memories, but not only) should be regarded as an enabling factor to PTA.

In a recent work, Reineke [17] has critically reviewed the impact of randomized caches on
timing analysis [12, 13], raising an array of serious concerns and concluding that randomized
caches are harmful for hard real-time systems. While the author’s concerns are valid and need to
be addressed, the conclusions arrived at are negatively slanted by failing to equitably consider the
benefits that randomized caches do bring about.

In this short paper we review the observations and conclusions made in [17], extending them in
a way that: (1) the advantages of using randomized caches in hard real-time systems are captured
and understood; (2) recent results, appeared subsequently to Reineke’s cited work, are recalled
to mitigate some of the author’s concerns; and (3) finer-grained reasoning compounded by the
fresher perspective provided by the point above, is presented for the original conclusions that we
deemed too general.

Overall, our work provides substantive arguments to contend that randomized caches used
together with PTA should be regarded as competitive alternatives to conventional caches used
together with DTA. This is especially true in scenarios where set-associative caches are used
in the target processor (which is very common indeed) and timing analysis is performed with
measurement-based approaches: there, randomized caches together with MBPTA increase the
user’s ability to compute trustworthy and tight WCET estimates with less effort.

2 Recap of Main Arguments Against the Adoption of Randomized
Caches

The arguments made against the adoption of randomized caches in hard real-time systems in [17]
follow a rather schematic flow. The random replacement and placement policies are in fact
evaluated for efficiency and precision against their deterministic counterparts – Least Recently
Used (LRU) replacement and modulo placement – with respect to both static (SDTA and SPTA)
and measurement-based (MBDTA and MBPTA) WCET analysis techniques. The reasoning uses
both fully associative and set-associative caches.

The relevant observations and conclusions are recalled below. In the interest of brevity, in the
following narrative we do not use verbatim quotes from [17], but rather our own interpretations of
the author’s observations and conclusions.

2.1 Random Replacement in Fully Associative Caches and SPTA

The first part of the argument considers fully associative caches and develops a comparison between
a predictable deterministic replacement policy (LRU) and an instance of random replacement



E.Mezzetti, M. Ziccardi, T. Vardanega, J. Abella, E. Quiñones, and F. J. Cazorla 01:3

(Evict on Miss, EoM).1 After commenting on the correctness of the formula bounding the hit
probability (originally proposed in [20] and recently improved in [9]), the superiority of LRU is
claimed, building on the following two main observations:

O1 – LRU Dominates EoM on Reuse Distance. LRU always guarantees better hit probabilities
than EoM when the analysis exploits reuse distances.2

O2 – Current SPTA Cannot Exploit Stack Distance. When LRU replacement is used in place
of Random replacement, current cache analyses – used with SDTA – can benefit from bounding
stack distances3 that can be arbitrarily lower, hence more accurate and less pessimistic, than
reuse distances.

The conclusion drawn in this regard is that:

C1 – LRU Replacement is Always Preferable to EoM. With simple, state-of-the-art analysis
methods, LRU replacement is preferable to Random replacement in S*TA.

2.2 Random Replacement in Fully Associative Caches and MBPTA

The mirror argument against EoM in MBPTA builds on the restrictive assumptions made in the
early (still immature) formulation of it presented in [8]. Namely, a variant of the method limited
to single-path programs, with known worst-case initial state and no input dependence.

The conclusion here is that:

C2 – Deterministic Replacement Enables More Efficient MBPTA. (Under restrictive assump-
tions) a single execution with LRU is sufficient to exhibit the worst-case behavior against hundreds
in MBPTA with Random replacement, which makes deterministic replacement far more efficient
for MBPTA than Random replacement.

2.3 Random Placement in Set-associative Caches and SPTA

In contrast to fully associative caches, set-associative caches rely on mapping memory blocks
to cache sets. In discussing placement policies, [17] compares the classic deterministic modulo
placement policy (MOD) with random placement (RAND). The author argues the superiority of
MOD over RAND on the observation that the formula for the computation of hit probabilities
suffers from weaknesses similar to those noted in the replacement case, in that RAND analysis
fails to account for existing dependencies.

A counterexample is presented to sustain that:

1 Note that, from the PTA perspective, LRU exhibits a degenerate hit probability, which is either 0 or 1, but
nothing in between.

2 The notion of reuse distance captures the number of cache accesses that occur in-between two consecutive
accesses to the same address. For instance, in the sequence of accesses a, b, c, b, a, the reuse distance for the
second occurrence of access a is 3.

3 The notion of stack distance captutes the number of unique addresses accessed in-between two consecutive
accesses to the same address. For instance, in the sequence of accesses a, b, c, b, a, the stack distance for the
second occurrence of access a is 2.

LITES



01:4 Randomized Caches Can Be Pretty Useful to Hard Real-Time Systems

O3 – The Independence Assumption Fails. With RAND, hit probabilities depend on prior
accesses to the same set, which breaks the independence hypothesis4 and compels the user to
always assume zero probability of hit.

And therefore:

C3 – Random Placement Nullifies SPTA. Random replacement cannot be adopted in so far as
SPTA cannot handle conditional probabilities.

2.4 Random Placement in Set-associative Caches and MBPTA
Random placement is claimed inappropriate for MB*TA approaches as caches may exhibit
extremely poor performance for unfortunate, yet very rare, mapping (conflict) conditions. With
MB*TA, therefore, one should either capture those cases in the measurement observations, thus
incurring possibly massive overestimation, or ignore (and miss) them, thus becoming unsound.
Moreover, those extreme cases, being so far apart, may even cause the statistical test on identical
distribution to fail [10]. In any such case, MBPTA will fail.

The firm conclusion here is that:

C4 – Random Placement is not Adequate for MBPTA. Random placement causes MBPTA
to fail.

3 Arguments in Favor of Randomized Caches

In the following we first systematically analyze each claim made in [17] and recalled in Section 2,
and then provide specific arguments in support of randomized caches and their use in probabilistic
timing analysis approaches.

Revisiting C1 (O1+O2)

It is indeed correct to say that, if we limit ourselves to the reuse distance metric, current state-
of-the-art SPTA approaches cannot do better than LRU. Observation O2 is therefore accurate,
in the sense that current SPTA does not exploit stack distances. Yet, no intrinsic trait of SPTA
allows making final claims on this matter, as further improvements, such as e. g. those outlined
in [4, 3], may well arrive at mitigating that limitation.

As noted in [17], current SPTA approaches cannot do better with information on reuse distances
considered in isolation. However, having information on individual reuse distances implies also
having global knowledge on all reuse distances. Interestingly, the hit probability of an access
may benefit from the information on the reuse distances of all the accesses that have occurred
within its reuse distance. As observed in [4], full knowledge on the reuse distances of all accesses
in a sequence (as assumed by SDTA) allows information to be derived on the cache contention.
The cache contention con(el, T ) of an access el in a sequence T is conceptually defined in [4] as
the number of accesses within the reuse distance of el that have been assigned a non-zero hit
probability. All accesses in con(el, T ) are assumed to use their own separate location in memory
(see [4] for a formal definition of con). Using this information, a more precise lower bound to

4 Independence in this context refers to whether the outcome of one cache access depends or not on the output
of previous accesses. For instance, the fact that a previous access is a miss leads to an eviction, which may
decrease the hit probabilities of subsequent accesses.



E.Mezzetti, M. Ziccardi, T. Vardanega, J. Abella, E. Quiñones, and F. J. Cazorla 01:5

Table 1 Comparison of random and LRU hit probabilities for all accesses in the sequence
a, b, c, d, f, a, b, c, d, f when reuse and stack distances of all accesses are known (same information) in a
cache with associativity 4.

a b c d f a b c d f
stack distance ∞ ∞ ∞ ∞ ∞ 4 4 4 4 4

P (hitLRU ) 0 0 0 0 0 0 0 0 0 0
P (hitrandom) 0 0 0 0 0

(
3
4

)4 (
3
4

)4 (
3
4

)4 0
(

3
4

)4

the hit probability of an access is provided in [4], captured by Equation 1, where k is the reuse
distance and N is the associativity of the cache. It is important to observe that con(el, T ) ≤ k.

P (hitrandom(el)) =
{

0 con(el, T ) ≥ N(
N−1

N

)k otherwise
(1)

Table 1 reports an example taken from [4] where, building on contention information, random
replacement is shown to outperform LRU, even when the latter relies on stack distance.

From the example in Table 1 one can conclude that LRU together with SDTA does not always
outperform random replacement together with SPTA.

Conclusion C1 was sustainable at that time of its writing. Yet, more recent advances [4, 3]
show that it does not hold in the general case. In fact, it is overly difficult to determine whether
one approach does always outperform the other, as this may largely depend on the particular
system and its domain of application. Hence, no absolute claim can soundly be made against
either approaches on the basis of the current state of the art.

Revisiting C2

The claim that random replacement is not efficient with MB*TA rests on the assumptions
made in the initial formulation of MBPTA [8]. Considering those assumptions, conclusion C2
in [17] maintains that a single measurement would be sufficient to hit the WCET if deterministic
replacement is used, instead of several hundreds with MBPTA.

LRU has been shown to provide better average performance than random replacement [12, 18].
However, systematic pathological cases may well occur with LRU (cf. [18, 16]), which cause it
to behave much worse than random replacement. An example case follows. Consider a loop
traversing a vector whose size is N + M cache lines where N is the cache size expressed in lines.
Under LRU, if M = 0 the vector fully fits in cache and all accesses (except cold misses) are hits.
This is the best case and no other replacement policy can do better. If M > 0 instead, and each
cache lines holds a single element of the vector, all accesses are misses.5 Consider now vector V [],
with N = 2, M = 1, and a sequence of accesses V [1], V [2], V [3] in a loop, where V [i] stands for
the ith position in V . At any iteration after the first one, when all accesses always miss, V [1]
misses and replaces V [2], V [2] misses and replaces V [3], V [3] does so with V [1]. In that case, there
is no way to hit any line because they are systematically evicted before they can be reused. We
refer to this phenomenon as pathological LRU behavior. Thus, if M > 0 any other replacement
policy cannot do worse than LRU. For instance, under random replacement there is always a

5 If each cache line contained D distinct data items, then there would be 1 miss and D− 1 hits in that case, due
to spatial locality. In the rest of this discussion we ignore hits due to spatial locality since they are identical
for all examples and replacement policies.

LITES



01:6 Randomized Caches Can Be Pretty Useful to Hard Real-Time Systems

non-zero probability of hit in cache even if M > 0. Of course, as M increases the hit probability
decreases, but with a gentle slope and not abruptly, as shown in [18].

Random replacement can indeed incur pathological cases too. Yet, it would do so with a
ridiculously low probability and not systematically, which arguably is an even more important trait.
Consequently, random replacement leads to increases in execution time with (rapidly) decreasing
probabilities. The execution time distribution for high values thus is smooth and the slope of its
tail steep, such that lower probabilities of exceedance can be reached with small increases in the
WCET threshold.

For LRU instead, we have just seen that whether the scenario is pathological or not, depends
on correlation between the footprint of the program data and the cache size, in other words on
the application use of the cache space. Small changes in that correlation can indeed create abrupt
performance variations [18].

It can thus be contended that, regardless of the 1:100 ratio in the number of runs that LRU
may need in comparison with random replacement, the determination of the most convenient
replacement policy is so entirely application dependent that no valid general answer can be
preordained.

Furthermore, conclusion C2 rests on an assumption that needs careful consideration for a
complete view of the problem space to be had.

In point of fact, C2 may only hold – if at all – for fully-associative caches. The distinctive
feature of fully-associative caches is that they allow cache analysis to focus exclusively on the
replacement policy, disregarding the effects of placement. If set-associative or direct-mapped
caches were used instead in the very example considered in C2, a single measurement observation
could only provide a WCET bound solely valid for the specific memory layout the program had in
the observed run. A memory layout is specific in many respects as it affects execution timing not
only because of code placement, but also as an effect of data placement and alignment in memory
and on the stack (ignoring here the use of dynamic data allocation). Hence, when the layout
changes (even only for small displacements), arising in consequence of re-linking or incremental
software integration, the previously computed WCET becomes invalid.

MBPTA cures this problem by leveraging random placement, which allows the analysis to
abstract from consideration of all possible memory placements [12, 13].

A very distinctive trait of MBPTA, as opposed to to MBDTA, is its ability to take great
benefit from the combination of upper-bounding and randomization in the timing behavior of
processor resources, which allows it to implicitly capture a wider scope of execution conditions than
MBDTA [7]. With that base, MBPTA yields a WCET value associated with a given confidence,
quantified as the probability of exceedance. MBDTA, instead, is designed to only provide a
single answer to the timing analysis question, which may consequently be only either true or
false. Still, the way to arrive to it in practice is often more based on “engineering judgment”,
for coverage of unobserved execution conditions, than on scientific evidence of sort. Conversely,
by upper-bounding and randomizing the sources of execution time variation in the processor,
MBPTA replaces uncertainty by scientifically quantified probabilities.

Path coverage issues should also be considered here. While it is overly difficult with MBDTA
as yet to determine how sufficient path coverage can be obtained and how different path traversals
may affect cache behavior, MBPTA leverages the character of randomization, which attenuates
causal effects. This trait intrinsically leads to less abrupt performance variations [18, 16], which
eases the problem of identifying worst-case paths, thereby reducing the hardness of the path
coverage problem [14]. Arguably therefore, using random replacement can be deemed to increase
the benefits of randomization without increasing the number of runs needed for MBPTA.

In fact, randomization is a veritable enabler for MBPTA, which may equally well be applied to



E.Mezzetti, M. Ziccardi, T. Vardanega, J. Abella, E. Quiñones, and F. J. Cazorla 01:7

other processor resources than for replacement policies in caches. The application of randomization
to buses, for example, has been recently presented in [11].

Revisiting C3 (O3)

Conclusion O3 is correct for current SPTA approaches. The valid point in O3 is that, when
random placement is adopted, SPTA cannot assign hit probabilities greater than zero to individual
accesses, in the face of residual dependence between hit probabilities. It should be noted however
that existing SPTA techniques [4] have solved a similar problem for random replacement, where
independence across accesses is not guaranteed either. The cited work has proven that, in the case
of random replacement, dependencies can be studied locally – with low complexity – to obtain
tight lower bounds for hit probabilities. Similarly, given the example presented in [17], where the
sequence of 10 accesses {a, b, a, b, a, b, a, b, a, b} is considered, one should be able to determine that
the probability of having up to ten misses in that sequence – starting from an empty cache state –
is exactly 1

s , where s is the number of cache sets, and up to two misses otherwise.
It is therefore fair to say that there is nothing intrinsic that prevents a technique as young as

SPTA from being able to solve the problem addressed by observation O3.
For the sake of comparison, it is also interesting to notice that deterministic placement has

its share of weaknesses with respect to analysability. As we already noted in fact, the result of
SDTA strictly and solely applies to the memory layout considered in the analysis. Any change in
that, irrespective of how small, invalidates the result. Moreover, the particular memory location
of objects may make accesses a and b in the previous example map to the same cache set and
thus be always misses. Similarly, if the information provided to SDTA does not allow identifying
whether a and b do indeed map to the same cache set, SDTA must then conservatively assume
that they do, and consider all accesses as misses. It is therefore evident that SDTA may draw
conclusions that are as bad as those of state-of-the-art SPTA, because of either a bad memory
placement or lack of precise information.

Revisiting C4

Conclusion C4 builds on the observation that low-probability events may occur that lead to very
high execution times. A low-probability event (possibly occurring, say, once in 1, 000, 000 runs)
is very unlikely to be observed within the few hundreds of runs typically required by MBPTA.
Hence, the author of [17] maintains that MBPTA would be fooled by its very reliance on possibly
very low probability of occurrence, as caused by, for instance, random placement.

At the time of Reineke’s writing, conclusion C4 was a certainly valid claim. The Heart-of-Gold
(HoG) technique [2], which appeared slightly later, addresses the observations that gave rise to C4.
The HoG work specifically delves into the internal reasoning of MBPTA to identify why a C4-like
scenario can occur and what processor resources can lead to it. In particular, the HoG authors
show that the most challenging events are those whose probability of occurrence (Pextreme) is low
enough for the probability of not observing any of them (Pnot_seen) in the MBPTA runs, to be
above the exceedance probability threshold set by the relevant system requirements. In the HoG
work – and in much of the current PTA literature –, the assumption is made that such a threshold
is related to the acceptable failure rate as sanctioned by the applicable safety-related standards
for critical system components.

The work in [2] contains a detailed analysis of the processor resources that MBPTA wants
randomized. The HoG method allows determining Pextreme for the randomized resources of interest,
thus identifying risky scenarios. Random placement is shown to be liable to such risks. The HoG
solution to this problem is to either increase Pextreme or the number of runs until Pnot_seen drops

LITES



01:8 Randomized Caches Can Be Pretty Useful to Hard Real-Time Systems

below the limit threshold. In that manner, the risky events are captured by MBPTA and the
resulting WCET estimates can be regarded as trustworthy.

It can therefore be contended that conclusion C4 in [17] holds true solely for the original
MBPTA method [8], but not for any MBPTA method enriched with [2].

Interestingly, a similar argument to C4 can be used to unveil a nice property of MBPTA, also
highlighting a serious issue with deterministic placement policies and SDTA approaches. If an
extreme pattern of memory accesses may occur that causes the cache to exhibit a pathological
behavior leading to very high WCET, SDTA approaches cannot disregard that possibility, regardless
of how rare it can be. With MBPTA and random placement, instead, each pathological behavior
is considered only with respect to its probability of occurrence. In this light, in contrast with
C4, we can conclude that random placement can in fact mitigate – as opposed to exacerbate
– the effects of pathological worst-case behaviors. From an industrial perspective, the inherent
robustness of MBPTA and randomized caches to pathological behavior on specific memory access
patterns arguably is one of the strongest arguments in favour of probabilistic techniques.

4 Conclusions

We thoroughly enjoy the attention given to time-randomized architectures and probabilistic timing
analysis in the scientific community for the assessment of what consequences they may bring to
the timing analysis of hard real-time systems. We are equally interested in any critique that can
be moved to those techniques as part of that scrutiny.

The work presented in [17] raised numerous issues on the adoption of randomized caches and
PTA approaches. For the benefit of the interested community, this short paper places those
considerations into the bigger and more complete picture where they rightly belong. To that end,
we provide some additional observations and present recent research results, which collectively
allow us to make the following contentions:
1. In the situations where set-associative caches and measurement-based timing analysis can

be soundly used – whether by virtue of scientific authority or of social consensus among the
domain stakeholders –, randomized caches together with MBPTA increase the ability to obtain
trustworthy and tight WCET estimates while reducing the burden on the user.

2. In the other situations it is unclear whether deterministic analyses on top of conventional
caches or probabilistic analyses on top of randomized caches are the best choice, in that the
results obtained are highly dependent on the particular characteristics of the system of interest.

It can therefore be maintained that the advantages brought about by randomized caches as
discussed in this paper make them a serious candidate for use with hard real-time systems in
places where conventional caches exhibit limits that undermine their reputation.

Funding. This work has received funding from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under grant agreement 611085 (PROXIMA, http://www.proxima-
project.eu). This work has also been partially supported by the Spanish Ministry of Science and
Innovation under grant TIN2012-34557, the HiPEAC Network of Excellence and COST Action
IC1202: Timing Analysis On Code-Level (TACLe). Jaume Abella has been partially supported
by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship
number RYC-2013-14717.

Acknowledgements. The authors also wish to acknowledge Benoît Triquet and Franck Wartel
from Airbus France, for their useful comments on an earlier version of this paper.

http://www.proxima-project.eu
http://www.proxima-project.eu


E.Mezzetti, M. Ziccardi, T. Vardanega, J. Abella, E. Quiñones, and F. J. Cazorla 01:9

References
1 Jaume Abella, Damien Hardy, Isabelle Puaut,

Eduardo Quiñones, and Francisco J. Cazorla. On
the comparison of deterministic and probabilistic
WCET estimation techniques. In 26th Euromicro
Conference on Real-Time Systems (ECRTS’14),
Madrid, Spain, July 8–11, 2014, pages 266–275.
IEEE Computer Society, 2014. doi:10.1109/
ECRTS.2014.16.

2 Jaume Abella, Eduardo Quiñones, Franck Wartel,
Tullio Vardanega, and Francisco J. Cazorla. Heart
of gold: Making the improbable happen to increase
confidence in MBPTA. In 26th Euromicro Confer-
ence on Real-Time Systems (ECRTS’14), Madrid,
Spain, July 8–11, 2014, pages 255–265. IEEE Com-
puter Society, 2014. doi:10.1109/ECRTS.2014.33.

3 Sebastian Altmeyer, Liliana Cucu-Grosjean,
Robert I. Davis, and Benjamin Lesage. Progress
on static probabilistic timing analysis for systems
with random cache replacement policies. In 5th
Real-Time Scheduling Open Problems Seminar
(RTSOPS’14), 2014.

4 Sebastian Altmeyer and Robert I. Davis. On the
correctness, optimality and precision of static prob-
abilistic timing analysis. Technical report, Tech-
nical Report YCS-2013-487, University of York,
2014. URL: http://www.cs.york.ac.uk/ftpdir/
reports/2013/YCS/487/YCS-2013-487.pdf.

5 Guillem Bernat, Antoine Colin, and Stefan M.
Petters. WCET analysis of probabilistic hard
real-time system. In 23rd IEEE Real-Time Sys-
tems Symposium (RTSS’02), Austin, Texas, USA,
December 3–5, 2002, pages 279–288. IEEE Com-
puter Society, 2002. doi:10.1109/REAL.2002.
1181582.

6 Francisco J. Cazorla, Eduardo Quiñones, Tullio
Vardanega, Liliana Cucu, Benoit Triquet, Guillem
Bernat, Emery D. Berger, Jaume Abella, Franck
Wartel, Michael Houston, Luca Santinelli, Le-
onidas Kosmidis, Code Lo, and Dorin Maxim.
PROARTIS: probabilistically analyzable real-time
systems. ACM Trans. Embedded Comput. Syst.,
12(2s):94, 2013. doi:10.1145/2465787.2465796.

7 Francisco J. Cazorla, Tullio Vardanega, Eduardo
Quiñones, and Jaume Abella. Upper-bounding pro-
gram execution time with extreme value theory. In
13th International Workshop on Worst-Case Exe-
cution Time Analysis (WCET’13), July 9, 2013,
Paris, France, volume 30 of Open Access Series
in Informatics (OASICS), pages 64–76. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2013.
doi:10.4230/OASIcs.WCET.2013.64.

8 Liliana Cucu-Grosjean, Luca Santinelli, Michael
Houston, Code Lo, Tullio Vardanega, Leoni-
das Kosmidis, Jaume Abella, Enrico Mezzetti,
Eduardo Quiñones, and Francisco J. Cazorla.
Measurement-based probabilistic timing analysis
for multi-path programs. In 24th Euromicro Con-
ference on Real-Time Systems (ECRTS’12), Pisa,
Italy, July 11–13, 2012, pages 91–101. IEEE Com-
puter Society, 2012. doi:10.1109/ECRTS.2012.31.

9 Robert I. Davis, Luca Santinelli, Sebastian Alt-
meyer, Claire Maiza, and Liliana Cucu-Grosjean.
Analysis of probabilistic cache related pre-emption

delays. In 25th Euromicro Conference on Real-
Time Systems (ECRTS’13), Paris, France, July
9–12, 2013, pages 168–179. IEEE Computer Soci-
ety, 2013. doi:10.1109/ECRTS.2013.27.

10 William Feller. An Introduction to Probability The-
ory and Its Applications. John Willer and Sons,
1996.

11 Javier Jalle, Leonidas Kosmidis, Jaume Abella,
Eduardo Quiñones, and Francisco J. Cazorla. Bus
designs for time-probabilistic multicore processors.
In Design, Automation & Test in Europe 2014
(DATE’14), Dresden, Germany, March 24–28,
2014, pages 1–6. IEEE, 2014. doi:10.7873/DATE.
2014.063.

12 Leonidas Kosmidis, Jaume Abella, Eduardo
Quiñones, and Francisco J. Cazorla. A cache
design for probabilistically analysable real-time
systems. In Design, Automation & Test in Europe
2013 (DATE’13), Grenoble, France, March 18–
22, 2013, pages 513–518. EDA Consortium San
Jose, CA, USA / ACM DL, 2013. URL: http:
//dl.acm.org/citation.cfm?id=2485416.

13 Leonidas Kosmidis, Jaume Abella, Eduardo
Quiñones, and Francisco J. Cazorla. Multi-level
unified caches for probabilistically time analys-
able real-time systems. In 34th IEEE Real-
Time Systems Symposium (RTSS’13), Vancouver,
BC, Canada, December 3–6, 2013, pages 360–371.
IEEE Computer Society, 2013. doi:10.1109/RTSS.
2013.43.

14 Leonidas Kosmidis, Jaume Abella, Franck Wartel,
Eduardo Quiñones, Antoine Colin, and Fran-
cisco J. Cazorla. PUB: path upper-bounding
for measurement-based probabilistic timing ana-
lysis. In 26th Euromicro Conference on Real-
Time Systems (ECRTS’14), Madrid, Spain, July
8–11, 2014, pages 276–287. IEEE Computer Soci-
ety, 2014. doi:10.1109/ECRTS.2014.34.

15 Leonidas Kosmidis, Eduardo Quiñones, Jaume
Abella, Tullio Vardanega, Ian Broster, and Fran-
cisco J. Cazorla. Measurement-based probabilistic
timing analysis and its impact on processor archi-
tecture. In 17th Euromicro Conference on Digital
System Design (DSD’14), Verona, Italy, August
27–29, 2014, pages 401–410. IEEE Computer Soci-
ety, 2014. doi:10.1109/DSD.2014.50.

16 Eduardo Quiñones, Emery D. Berger, Guillem
Bernat, and Francisco J. Cazorla. Using random-
ized caches in probabilistic real-time systems. In
21st Euromicro Conference on Real-Time Systems
(ECRTS’09), Dublin, Ireland, July 1–3, 2009,
pages 129–138. IEEE Computer Society, 2009. doi:
10.1109/ECRTS.2009.30.

17 Jan Reineke. Randomized caches considered harm-
ful in hard real-time systems. Leibniz Transactions
on Embedded Systems (LITES), 1(1):03:1–03:13,
2014. doi:10.4230/LITES-v001-i001-a003.

18 Mladen Slijepcevic, Leonidas Kosmidis, Jaume
Abella, Eduardo Quiñones, and Francisco J.
Cazorla. DTM: degraded test mode for fault-aware
probabilistic timing analysis. In 25th Euromicro
Conference on Real-Time Systems (ECRTS’13),
Paris, France, July 9–12, 2013, pages 237–248.

LITES

http://dx.doi.org/10.1109/ECRTS.2014.16
http://dx.doi.org/10.1109/ECRTS.2014.16
http://dx.doi.org/10.1109/ECRTS.2014.33
http://www.cs.york.ac.uk/ftpdir/reports/2013/YCS/487/YCS-2013-487.pdf
http://www.cs.york.ac.uk/ftpdir/reports/2013/YCS/487/YCS-2013-487.pdf
http://dx.doi.org/10.1109/REAL.2002.1181582
http://dx.doi.org/10.1109/REAL.2002.1181582
http://dx.doi.org/10.1145/2465787.2465796
http://dx.doi.org/10.4230/OASIcs.WCET.2013.64
http://dx.doi.org/10.1109/ECRTS.2012.31
http://dx.doi.org/10.1109/ECRTS.2013.27
http://dx.doi.org/10.7873/DATE.2014.063
http://dx.doi.org/10.7873/DATE.2014.063
http://dl.acm.org/citation.cfm?id=2485416
http://dl.acm.org/citation.cfm?id=2485416
http://dx.doi.org/10.1109/RTSS.2013.43
http://dx.doi.org/10.1109/RTSS.2013.43
http://dx.doi.org/10.1109/ECRTS.2014.34
http://dx.doi.org/10.1109/DSD.2014.50
http://dx.doi.org/10.1109/ECRTS.2009.30
http://dx.doi.org/10.1109/ECRTS.2009.30
http://dx.doi.org/10.4230/LITES-v001-i001-a003


01:10 Randomized Caches Can Be Pretty Useful to Hard Real-Time Systems

IEEE Computer Society, 2013. doi:10.1109/
ECRTS.2013.33.

19 Reinhard Wilhelm, Jakob Engblom, Andreas Er-
medahl, Niklas Holsti, Stephan Thesing, David B.
Whalley, Guillem Bernat, Christian Ferdinand, Re-
inhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter P. Puschner, Jan Staschulat,
and Per Stenström. The worst-case execution-time
problem – overview of methods and survey of tools.

ACM Trans. Embedded Comput. Syst., 7(3), 2008.
doi:10.1145/1347375.1347389.

20 Shuchang Zhou. An efficient simulation algorithm
for cache of random replacement policy. In 7th
IFIP International Conference on Network and
Parallel Computing (NPC’10), Zhengzhou, China,
September 13–15, 2010, volume 6289 of Lec-
ture Notes in Computer Science, pages 144–154.
Springer, 2010. doi:10.1007/978-3-642-15672-
4_13.

http://dx.doi.org/10.1109/ECRTS.2013.33
http://dx.doi.org/10.1109/ECRTS.2013.33
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1007/978-3-642-15672-4_13
http://dx.doi.org/10.1007/978-3-642-15672-4_13

	Introduction
	Recap of Main Arguments Against the Adoption of Randomized Caches
	Random Replacement in Fully Associative Caches and SPTA
	Random Replacement in Fully Associative Caches and MBPTA
	Random Placement in Set-associative Caches and SPTA
	Random Placement in Set-associative Caches and MBPTA

	Arguments in Favor of Randomized Caches
	Conclusions

