
Volume 4 | Issue 1 | February 2017

Vol. 4, Issue 1 ISSN 2199-2002 http://www.dagstuhl.de/lites

http://www.dagstuhl.de/lites

ISSN 2199-2002

Published online and open access by
the European Design and Automation Association
(EDAA) / EMbedded Systems Special Interest Group
(EMSIG) and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik GmbH, Dagstuhl Publishing, Saar-
brücken/Wadern, Germany.
Online available at
http://www.dagstuhl.de/dagpub/2199-2002.

Publication date
February 2017

Bibliographic information published by the Deutsche
Nationalbibliothek
The Deutsche Nationalbibliothek lists this publica-
tion in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at
http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons At-
tribution 3.0 Germany license (CC BY 3.0 DE): http:
//creativecommons.org/licenses/by/
3.0/de/deed.en.

In brief, this license authorizes each
and everybody to share (to copy,

distribute and transmit) the work under the follow-
ing conditions, without impairing or restricting the
authors’ moral rights:

Attribution: The work must be attributed to its
authors.

The copyright is retained by the corresponding au-
thors.

Digital Object Identifier
10.4230/LITES-v004-i001

Aims and Scope
LITES aims at the publication of high-quality schol-
arly articles, ensuring efficient submission, reviewing,
and publishing procedures. All articles are published
open access, i.e., accessible online without any costs.
The rights are retained by the author(s).

LITES publishes original articles on all aspects of em-
bedded computer systems, in particular: the design,
the implementation, the verification, and the testing
of embedded hardware and software systems; the
theoretical foundations; single-core, multi-processor,
and networked architectures and their energy con-
sumption and predictability properties; reliability
and fault tolerance; security properties; and on
applications in the avionics, the automotive, the
telecommunication, the medical, and the production
domains.

Editorial Board
Alan Burns (Editor-in-Chief)
Bashir Al Hashimi
Karl-Erik Arzen
Neil Audsley
Sanjoy Baruah
Samarjit Chakraborty
Marco di Natale
Martin Fränzle
Steve Goddard
Gernot Heiser
Axel Jantsch
Florence Maraninchi
Sang Lyul Min
Lothar Thiele
Mateo Valero
Virginie Wiels

Editorial Office
Michael Wagner (Managing Editor)
Marc Herbstritt (Managing Editor)
Jutka Gasiorowski (Editorial Assistance)
Dagmar Glaser (Editorial Assistance)
Thomas Schillo (Technical Assistance)

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
LITES, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
lites@dagstuhl.de
http://www.dagstuhl.de/lites

http://www.dagstuhl.de/lites
http://www.dagstuhl.de/dagpub/2199-2002
http://dnb.d-nb.de
http://creativecommons.org/licenses/by/3.0/de/deed.en
http://creativecommons.org/licenses/by/3.0/de/deed.en
http://creativecommons.org/licenses/by/3.0/de/deed.en
http://dx.doi.org/10.4230/LITES-v004-i001
http://www.dagstuhl.de/lites

Contents

Regular Papers

A Note on the Period Enforcer Algorithm for Self-Suspending Tasks
Jian-Jia Chen and Björn B. Brandenburg . 1:1–1:22

Utility-Based Scheduling of (m, k)-firm Real-Time Tasks – New Empirical Results
Florian Kluge . 2:1–2:25

Special Issue on Quantitative Evaluation of Systems

Quantitative Analysis of Consistency in NoSQL Key-Value Stores
Si Liu, Jatin Ganhotra, Muntasir Raihan Rahman, Son Nguyen,
Indranil Gupta, and José Meseguer . 3:1–3:26

How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty
Holger Hermanns, Jan Krčál, and Gilles Nies . 4:1–4:28

Characterizing Data Dependence Constraints for Dynamic Reliability Using
n-Queens Attack Domains

Eric W. D. Rozier, Kristin Y. Rozier, and Ulya Bayram . 5:1–5:26

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lites
http://www.dagstuhl.de/en/about-dagstuhl/

A Note on the Period Enforcer Algorithm for
Self-Suspending Tasks∗

Jian-Jia Chen1 and Björn B. Brandenburg2

1 TU Dortmund University
Dortmund, Germany
jian-jia.chen@cs.uni-dortmund.de

2 Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern, Germany
http://orcid.org/0000-0001-8254-3815
bbb@mpi-sws.org

Abstract
The period enforcer algorithm for self-suspending
real-time tasks is a technique for suppressing the
“back-to-back” scheduling penalty associated with
deferred execution. Originally proposed in 1991,
the algorithm has attracted renewed interest in
recent years. This note revisits the algorithm in
the light of recent developments in the analysis of
self-suspending tasks, carefully re-examines and ex-
plains its underlying assumptions and limitations,
and points out three observations that have not
been made in the literature to date: (i) period
enforcement is not strictly superior (compared to
the base case without enforcement) as it can cause

deadline misses in self-suspending task sets that are
schedulable without enforcement; (ii) to match the
assumptions underlying the analysis of the period
enforcer, a schedulability analysis of self-suspending
tasks subject to period enforcement requires a task
set transformation for which no solution is known
in the general case, and which is subject to exponen-
tial time complexity (with current techniques) in
the limited case of a single self-suspending task; and
(iii) the period enforcer algorithm is incompatible
with all existing analyses of suspension-based lock-
ing protocols, and can in fact cause ever-increasing
suspension times until a deadline is missed.

2012 ACM Subject Classification Real-time systems, Real-time schedulability, Synchronization
Keywords and phrases period enforcer, deferred execution, self-suspension, blocking
Digital Object Identifier 10.4230/LITES-v004-i001-a001
Received 2015-12-15 Accepted 2016-08-18 Published 2016-12-21

1 Introduction

When real-time tasks suspend themselves (due to blocking I/O, lock contention, etc.), they defer a
part of their execution to be processed at a later time. A consequence of such deferred execution
is a potential interference penalty for lower-priority tasks [1, 12, 18, 17, 25, 26, 31]. This penalty,
which is maximized when a task defers the completion of one job just until the release of the next
job, can manifest as response-time increases and thus may lead to deadline misses.

To avoid such detrimental effects, Rajkumar [27] proposed the period enforcer algorithm, a
technique to control (or shape) the processor demand of self-suspending tasks on uniprocessors
and partitioned multiprocessors under preemptive fixed-priority scheduling. In a nutshell, the
period enforcer algorithm artificially increases the length of certain suspensions whenever a task’s
activation pattern carries the risk of inducing undue interference in lower-priority tasks.

∗ This work has been supported by DFG, as part of the Collaborative Research Center SFB 876 “Providing
Information by Resource-Constrained Data Analysis”.

© Jian-Jia Chen and Björn B. Brandenburg;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 4, Issue 1, Article No. 1, pp. 01:1–01:22
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jian-jia.chen@cs.uni-dortmund.de
http://orcid.org/0000-0001-8254-3815
mailto:bbb@mpi-sws.org
http://dx.doi.org/10.4230/LITES-v004-i001-a001
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

01:2 A Note on the Period Enforcer Algorithm for Self-Suspending Tasks

The period enforcer algorithm is worth a second look for a number of reasons. First, in
the words of Rajkumar, it “forces tasks to behave like ideal periodic tasks from the scheduling
point of view with no associated scheduling penalties” [27], which is obviously highly desirable
in many practical applications in which self-suspensions are inevitable (e.g., when offloading
computations to co-processors such as GPUs or DSPs). Second, the later-proposed, but more
widely-known release guard algorithm [32] uses a technique quite similar to period enforcement
to control scheduling penalties due to release jitter in distributed systems. The period enforcer
algorithm has also attracted renewed attention in recent years and has been discussed in several
current works (e.g., [9, 11, 13, 15, 16, 14, 20, 21, 22, 23]), at times controversially [5]. And last
but not least, the period enforcer algorithm plays a significant role in Rajkumar’s seminal book
on real-time synchronization [28].

In this note, we revisit the period enforcer [27] to carefully re-examine and explain its underlying
assumptions and limitations, and to point out potential misconceptions. The main contributions
are three observations that, to the best of our knowledge, have not been previously reported in
the literature on real-time systems:
1. period enforcement can be a cause of deadline misses in self-suspending task sets that are

otherwise schedulable (Section 3);
2. to match the assumptions underlying the analysis of the period enforcer, a schedulability

analysis of self-suspending tasks subject to period enforcement requires a task set transformation
for which no solution is known in the general case, and which is subject to exponential time
complexity (with current techniques) in the limited case of a single self-suspending task
(Section 4); and

3. the period enforcer algorithm is incompatible with all existing analyses of suspension-based
locking protocols, and can in fact cause ever-increasing suspension times until a deadline is
missed (Section 5).

We introduce the needed background in Section 2, restate our contributions more precisely
in Section 2.4, and then establish the three above observations in detail in Sections 3–5 before
concluding in Section 6.

2 Preliminaries

The period enforcer algorithm [27] applies to self-suspending tasks on uniprocessors under fixed-
priority scheduling, and hence by extension also to multiprocessors under partitioned fixed-priority
scheduling (where tasks are statically assigned to processors and each processor is scheduled as a
uniprocessor). In this section, we review the underlying task model (Section 2.1), introduce the
period enforcer algorithm (Section 2.2), summarize its analysis (Section 2.3), and finally restate
our observations in more precise terms (Section 2.4).

2.1 Task Models
Since the analysis of the period enforcer requires reasoning about different task models and their
relationships, we carefully introduce and precisely define the relevant models in this section.

2.1.1 Periodic Tasks
The most basic and best understood task model is the periodic task model due to Liu and
Layland [19]. In this model, each task τi is characterized as a tuple (Ci, Ti), where Ci denotes an
upper bound on the total execution time of any job of τi and Ti denotes the (exact) inter-arrival
time (or period) of τi. Each such periodic task τi releases a job at time 0, and periodically every Ti

J.-J. Chen and B. B. Brandenburg 01:3

units thereafter. Each job must finish by the time the next arrives. Importantly, Liu and Layland
assume both that the kth job of τi arrives exactly at time (k− 1)× Ti, and that an incomplete job
is always available for execution (i.e., jobs never block on I/O or locks).

A straightforward generalization of the periodic task model is to introduce an explicit relative
deadline parameter Di. In this case, each task is represented by a three-tuple (Ci, Ti, Di), with
the interpretation that every job of τi must finish within Di time units after its arrival. Task τi is
said to have an implicit deadline if Di = Ti, a constrained deadline if Di ≤ Ti, and an arbitrary
deadline otherwise. We primarily consider implicit deadlines in this note.

2.1.2 Sporadic Tasks

Mok [24] introduced the sporadic task model, a widely used generalization of the periodic task
model in which each task τi is still specified by a tuple (Ci, Ti, Di). However, the sporadic
task model relaxes the inter-arrival constraint Ti to specify a minimum (rather than an exact)
separation between jobs. In this interpretation, the first job does not necessarily arrive at time 0,
and the exact arrival times of future jobs cannot be predicted, which is an appropriate modeling
assumption for event-triggered tasks.

On uniprocessors, the relaxation from periodic to sporadic job arrivals does not introduce
additional pessimism:1 since any two jobs of a sporadic task τi are known to arrive at least Ti

time units apart, the sporadic task model [24] still allows for schedulability analysis that is as
accurate as Liu and Layland’s analysis of periodic tasks [19].

Mok retained the assumption that incomplete jobs are always ready for execution (i.e., no
suspensions), and that jobs are immediately available for execution after their arrival.

2.1.3 Release Jitter

The latter assumption – immediate availability for execution – is inappropriate in many practical
systems (especially in networked systems) if events (e.g., messages) that trigger job releases can
incur non-negligible delays (e.g., network congestion). Such delays in task activation can be
accounted for by introducing a notion of release jitter. To this end, each task is represented by
a four-tuple (Ci, Ji, Ti, Di), where the parameter Ji is a bound on the maximum time that a
job remains unavailable for execution after it should have started to run. Release jitter can be
incorporated in both the periodic and the sporadic task models.

In the presence of release jitter, the terms “job arrival” and “job release,” which are often
used interchangeably, take on distinct meanings: a job’s release time denotes the point in time
when it actually becomes available for execution, whereas a job’s arrival time is the instant that
is relevant for the (minimum) inter-arrival time constraint. Any job of task τi is released at most
Ji time units after it arrives.

Notably, non-zero release jitter does cause additional pessimism: in the worst case, two
consecutive jobs of a task τi can be separated by as little as Ti − Ji time units (if the earlier job
incurs maximum release jitter and the successor job incurs none). As a result, a task may “carry
in” some additional work into a given interval. Taking this effect into account, Audsley et al. [1]
developed a response-time analysis for sporadic and periodic constrained-deadline tasks subject to
release jitter under preemptive fixed-priority scheduling.

However, even in the presence of release jitter, a key assumption remains that jobs do not

1 Assuming that all periodic tasks synchronously release a job at time zero.

LITES

01:4 A Note on the Period Enforcer Algorithm for Self-Suspending Tasks

self-suspend (e.g., wait for I/O).2 That is, Audsley et al. [1] assume that, once a job is released, it
continuously remains available for dispatching until it completes. This restriction is removed next.

2.1.4 Self-Suspending Tasks
When a job self-suspends, it becomes unavailable for execution until some external event occurs
(e.g., a disk I/O operation completes, a network packet arrives, a co-processor signals completion,
etc.). This has the effect of deferring (a part of) the job’s processing requirement until the time
that it resumes from its suspension, which causes massive analytical difficulties [1, 10, 12, 18, 17,
25, 26, 27, 30, 31].

To date, the real-time literature on self-suspensions has focused on two task models: the
dynamic self-suspension model, which we discuss first, and the (multi-)segmented suspension
model, which we discuss next in Section 2.1.5. Self-suspensions can arise in both periodic and
sporadic tasks (i.e., both interpretations of the Ti parameter are possible). The observations that
we make in this note apply equally to both periodic and sporadic tasks; for convenience, we focus
primarily on periodic tasks.

The dynamic self-suspending task model characterizes each task τi as a four-tuple (Ci, Si, Ti, Di):
the parameters Ci, Ti, and Di have their usual meaning (i.e., as in the periodic and sporadic
task models), and Si denotes an upper bound on the total self-suspension time of any job of
τi. The dynamic self-suspension model does not impose a bound on the maximum number of
self-suspensions, nor does it make any assumptions as to where during a job’s execution self-
suspensions occur. That is, how often a job defers its execution, when it does so, and how much
of its execution it defers may vary unpredictably from job to job.

Allowing tasks to self-suspend can impose substantial scheduling penalties (an example is
provided shortly in Section 2.2) and greatly complicates schedulability analysis (e.g., see [25, 30, 10]).
In particular, release jitter and self-suspensions are not interchangeable concepts and it is not
safe [10, 25] to simply substitute Ji with Si in Audsley et al.’s analysis [1]. (Nonetheless, under
the dynamic suspension model, it is possible for jobs of self-suspending tasks to defer their entire
execution requirement, so self-suspension can be seen as a generalization of release jitter.)

The period enforcer algorithm aims to mitigate the negative effects of self-suspensions. However,
for reasons that will be explained in Section 2.2.4, the period enforcer algorithm cannot be
meaningfully combined with the dynamic suspension model. Instead, it requires the segmented
suspension model, which we discuss next.

2.1.5 Segmented Self-Suspending Tasks
The (multi-)segmented self-suspending sporadic task model extends the four-tuple (Ci, Si, Ti, Di)
by characterizing each self-suspending task as a fixed, finite linear sequence of computation and sus-
pension intervals. These intervals are represented as a tuple (S0

i , C
1
i , S

1
i , C

2
i , S

2
i , . . . , S

mi−1
i , Cmi

i),
which is composed of mi computation segments separated by mi suspension intervals.

The first self-suspension segment S0
i , prior to the first execution segment, is equivalent to

release jitter (i.e., the parameter Ji in Section 2.1.3). However, in much of the literature on the
segmented self-suspending task model, the segment S0

i is assumed to be absent (i.e., S0
i = 0),

such that there are only mi − 1 suspension intervals (and jobs arrive jitter-free). We adopt this
convention and assume S0

i = 0 unless noted otherwise.

2 Audsley et al. [1] do present a response-time analysis that takes into account a limited form of suspensions due
to semaphores (“blocking”). However, their analysis does not apply to general self-suspensions (i.e., the kind
of self-suspensions targeted by the period enforcer algorithm) and is not relevant in the context of this paper.

J.-J. Chen and B. B. Brandenburg 01:5

We say that a segment is released when it becomes available for execution. The first computation
segment is released immediately when the job arrives (unless S0

i 6= 0); the second computation
segment (if any) is released when the job resumes from its first self-suspension, etc.

The advantage of the dynamic model (Section 2.1.4) is that it is more flexible since it does not
impose any assumptions on a task’s control flow. The advantage of the segmented model is that
it allows for more accurate analysis. The period enforcer algorithm and its analysis [27] applies
(only) to the segmented model, as explained in Sections 2.2.4 and 2.3.

A note on terminology: for the sake of consistency with the recent literature on self-suspensions
in real-time systems, we favor the term “segmented self-suspending tasks” to refer to tasks under
the just-introduced model. However, Rajkumar’s original description of the period enforcer [27]
refers to such tasks as deferrable tasks, as it predates the widespread adoption of the former term.
We use both terms interchangeably in this paper.

2.1.6 Single-Segment Self-Suspending (aka Deferrable) Tasks
An important special case is segmented self-suspending tasks with exactly one self-suspension
interval followed by exactly one computation segment (mi = 1, S0

i 6= 0), which we refer to as
single-segment self-suspending tasks. This special case is central to Rajkumar’s original analysis of
the period enforcer [27], as we will explain in Section 2.3. Regarding terminology, Rajkumar [27]
does not use a special term for single-segment self-suspending tasks, simply referring to them as
deferrable tasks. To avoid ambiguity, we instead explicitly mention the “single-segment” qualifier.

Note also that single-segment self-suspending sporadic tasks, which are “suspended” only prior
to commencing execution, are analytically fully equivalent to sporadic tasks subject to release
jitter (i.e., the model described in Section 2.1.3). We nonetheless use the term “single-segment
self-suspending task,” or interchangeably “single-segment deferrable task,” to remain close to
Rajkumar’s original description [27], and to highlight the connection to the (multi-)segmented
self-suspending task model (Section 2.1.5).

This concludes our review of relevant task models. Before reviewing the period enforcer and
its original analysis, we briefly introduce some essential concepts.

2.1.7 Assumptions, Busy Intervals, and Task Set Transformations
We focus exclusively on preemptive fixed-priority scheduling in this note, as the period enforcer is
explicitly designed for this setting. For simplicity, we assume that tasks are indexed in order of
decreasing priority (i.e., τ1 is the highest-priority task).

A key concept in the period enforcer’s runtime rules (discussed next) is the notion of a level-i
busy interval, which is a maximal interval during which the processor executes only segments of
tasks with priority i or higher.

Finally, Rajkumar’s original analysis [27] of the period enforcer is rooted in the concept of a
task set transformation. In general, such a task set transformation is simply a function f that
maps a given task set T to a transformed task set T ′ = f(T) such that T ′ is schedulable only if
the original task set T is schedulable, too. The basic idea is that such a transformation allows
schedulability analysis by reduction: given a suitable transformation f , T can be indirectly shown
to be schedulable by computing T ′ = f(T) and establishing that T ′ is schedulable.

Importantly, the tasks in T and T ′ do not have to be of the same task model, nor does the
number of tasks have to remain the same (i.e., |T | 6= |T ′| is possible). Specifically, the task
set transformation underlying the analysis of the period enforcer maps each multi-segmented
self-suspending task τi ∈ T tomi single-segmented self-suspending tasks in T ′ (i.e., |T ′| =

∑
T mi).

With these definitions in place, we can now introduce the period enforcer.

LITES

01:6 A Note on the Period Enforcer Algorithm for Self-Suspending Tasks

151050 time20

⌧2

⌧1

⌧3

release

completion

deadline

scheduled

self-suspended

Figure 1 Example uniprocessor schedule (without period enforcement) of three tasks τ1, τ2, and τ3

with periods T1 = T2 = T3 = 10. Tasks τ1 and τ3 consist of a single computation segment (C1
1 = C1

3 = 3);
task τ2 consists of two computation and one suspension segment (C1

2 = 1, S1
2 = 4, C2

2 = 2). Jobs of tasks
τ1 and τ3 are released just as τ2 resumes from its self-suspension at time 5. Without period enforcement,
task τ3 misses a deadline at time 15 because the second job of task τ2 suspends only briefly (for one time
unit rather than four).

2.2 The Period Enforcer Algorithm
The period enforcer consists of two parts: a runtime rule that governs when each segment of a
self-suspending task may be scheduled, and an (offline) analysis that may be used to assess the
temporal correctness of a set of self-suspending tasks (Section 2.1.5) subject to period enforcement.
Initially, we focus on the runtime rule (i.e., the actual period enforcer algorithm) and then review
the corresponding original analysis thereafter in Section 2.3. We begin with a simple example
that highlights the effect that the period enforcer is designed to control.

2.2.1 The Problem: Back-to-Back Execution
The scheduling penalty associated with self-suspensions is maximized when a task defers the
completion of one job just until the release of the next job. This effect is illustrated in Figure 1,
which shows a case in which the self-suspension of the higher-priority task τ2 from time 1 until
time 5 results in a deadline miss of the lower-priority task τ3 at time 15.

The root cause is increased interference due to the “back-to-back” execution effect [1, 18, 17,
26, 31]. In the example shown in Figure 1, two jobs of τ2 execute in close succession (i.e., separated
by less than a period) because the second job, released at time 10, self-suspended for a (much)
shorter duration than the first job. Consequently, τ3 suffers from increased interference when τ2’s
second job resumes “too soon” at time 12 after having been suspended for only one time unit,
rather than four time units like the first job of τ2.

2.2.2 The Period Enforcement Rule
The key idea underlying the period enforcer algorithm is to artificially delay the execution of
computation segments if a job resumes “too soon.” To this end, the period enforcer determines for
each computation segment an eligibility time. If a segment resumes before its eligibility time, the
execution of the segment is delayed until the eligibility time is reached.

A segment’s eligibility time is determined according to the following rule. Let ET k
i,j denote the

eligibility time of the kth computation segment of the jth job of task τi. Further, let ak
i,j denote

the segment’s arrival time. Finally, let busy(τi, t
′) denote the last time that a level-i busy interval

begins on or prior to time t′ (i.e., the processor executes only τi or higher-priority tasks throughout

J.-J. Chen and B. B. Brandenburg 01:7

151050 time20

⌧2

⌧1

⌧3

release

completion

deadline

scheduled

self-suspended

ineligible
(period enforcement)

Figure 2 Example uniprocessor schedule with period enforcement assuming the same scenario as
depicted in Figure 1. With period enforcement, task τ3 does not miss a deadline because task τ2’s second
computation segment is delayed until time 15 when it no longer imposes undue interference (i.e., it is
prevented from resuming “too soon” at time 12).

the interval [busy(τi, t
′), t′]). The period enforcer algorithm defines the segment eligibility time of

the kth segment as

ET k
i,j = max

(
ET k

i,j−1 + Ti, busy(τi, a
k
i,j)
)
, (1)

where ET k
i,0 = −Ti [27, Section 3.1]. This simple and elegant rule has the desirable effect of

avoiding all back-to-back execution, which can be easily observed with an example.

2.2.3 Example: Avoiding Back-to-Back Execution
Figure 2 illustrates how the definition of eligibility time in Equation (1) restores the schedulability
of the task set depicted in Figure 1. Consider the eligibility times of the second segment of task τ2.

By definition, ET 2
2,0 = −T2 = −10. At time 5, when the second computation segment of the

first job resumes (a2
2,1 = 5), we thus have

ET 2
2,1 = max

(
−T2 + T2, busy(τ2, a

2
2,1
)
) = max(0, 5) = 5

since the release of τ2’s second segment (and the arrival of τ1) starts a new level-2 busy interval
at time a2

2,1 = 5. The second segment of τ2’s first job is hence immediately eligible to execute;
however, due to the presence of a pending higher-priority job, τ2 is not actually scheduled until
time 8 (just as without period enforcement as depicted in Figure 1).

The second segment of the second job of τ2 is released at time a2
2,2 = 12. In this case, the

segment is not immediately eligible to execute since

ET 2
2,2 = max

(
ET 2

2,1 + T2, busy(τ2, a
2
2,2
)
) = max(5 + 10, 12) = 15.

Hence, the execution of τ2’s second computation segment does not start until time ET 2
2,2 = 15,

which gives τ3 sufficient time to finish before its deadline at time 15.
The examples in Figures 1 and 2 suggest an intuition for the benefits provided by period

enforcement: computation segments of a self-suspending task τi are forced to execute at least
Ti time units apart (hence the name), which ensures that it causes no more interference than a
regular (non-self-suspending) sporadic task.

2.2.4 Incompatibility with the Dynamic Self-Suspension Model
Before reviewing the classic analysis based on this intuition, we briefly comment on the difficulty
of combining period enforcement with the dynamic self-suspension model (Section 2.1.4).

LITES

01:8 A Note on the Period Enforcer Algorithm for Self-Suspending Tasks

In short, to be effective, the period enforcer fundamentally requires the segmented self-
suspension model (Section 2.1.5) because it cannot cope with the unpredictable execution times
between (the unpredictably many) self-suspensions that jobs may exhibit under the dynamic
self-suspension model.

A simple example can explain why the period enforcer algorithm is not compatible with the
dynamic self-suspending task model. Consider a trivial system that has only one task with a total
execution time C1 = 1, a total self-suspension length S1 = 1, and a period and relative deadline of
D1 = T1 = 2. Suppose the first job of task τ1 arrives at time 0, suspends itself for one time unit,
and then executes for one time unit. Further suppose the second job of task τ1 arrives at time 2,
first executes for 0.5 time units, then suspends for 1 time unit, and finally executes for 0.5 time
units. With the period enforcer algorithm in place, the second job of task τ1 starts its execution
at time 3, at which point it will clearly miss its deadline at time 4.

In this example, the problem is that the eligibility time of the first computation “segment” of
the second job is determined by the self-suspension pattern of the first job, even though the first
job deferred all of its execution, whereas the second job deferred only a part of its execution. Under
the more restrictive segmented self-suspension model (Section 2.1.5), the pattern of self-suspension
and computation times is statically fixed; such a mismatch is hence not possible.

Next, we revisit the original analysis of the period enforcer algorithm.

2.3 Classic Analysis of the Period Enforcer Algorithm
The central notation in Rajkumar’s analysis [27] is a deferrable task, which matches our notion of
segmented tasks, as already discussed in Section 2.1.5. Specifically, Rajkumar states that:

“With deferred execution, a task τi can execute its Ci units of execution in discrete amounts
C1

i , C
2
i , . . . with suspension in between Cj

i and Cj+1
i .” [27, Section 3]3

Central to Rajkumar’s analysis [27] is a task set transformation (recall Section 2.1.7) that
splits each deferrable task with multiple segments (Section 2.1.5) into a corresponding number of
single-segment deferrable tasks (Section 2.1.6). In the words of Rajkumar [27, Section 3]:

“Without any loss of generality, we shall assume that a task τi can defer its entire execution
time but not parts of it. That is, a task τi executes for Ci units with no suspensions once it
begins execution. Any task that does suspend after it executes for a while can be considered
to be two or more tasks each with its own worst-case execution time. The only difference
is that if a task τi is split into two tasks τ ′i followed by τ ′′i , then τ ′′i has the same deadlines
as τi

′.”

In other words, the transformation can be understood as splitting each self-suspending task into a
matching number of single-segment deferrable tasks (Section 2.1.6), which are equivalent to non-
self-suspending sporadic tasks subject to release jitter (Section 2.1.3), which can be easily analyzed
with classic fixed-priority response-time analysis [1]. To constitute an effective schedulability
analysis, the transformation must ensure that, if the transformed set of single-segment deferrable
tasks can be shown to be schedulable (e.g., with response-time analysis [1]), then the original set
of multi-segment deferrable tasks is also schedulable under period enforcement.

To summarize, as illustrated in Figure 1, uncontrolled deferred execution can impose increased
interference on lower-priority tasks because of the potential for “back-to-back” execution [1, 18, 17,
26, 31]. The purpose of the period enforcer algorithm is to reduce such penalties for lower-priority

3 The notation has been altered here for the sake of consistency.

J.-J. Chen and B. B. Brandenburg 01:9

tasks without detrimentally affecting the schedulability of self-suspending, higher-priority tasks.
The latter aspect – no detrimental effects for self-suspending tasks – is captured concisely by
Theorem 5 in the original analysis of the period enforcer algorithm [27].

Theorem 5: A [single-segment] deferrable task that is schedulable under its worst-case
conditions is also schedulable under the period enforcer algorithm [27].

The “worst-case conditions” mentioned in the theorem simply correspond to the case when (i) a
job of a single-segment deferrable task defers its execution for the maximally allowed time S0

i (i.e.,
when it incurs maximal release jitter) and (ii) it incurs maximum higher-priority interference (i.e.,
when its start of execution coincides with a critical instant [19]).

2.4 Questions Answered in This Paper
Theorem 5 (in [27]) is a strong result: it implies that the period enforcer does not induce any
deadline misses. This seemingly enables a powerful analysis approach: if the corresponding
transformed set of single-segment deferrable tasks can be shown to be schedulable without period
enforcement under fixed-priority scheduling using any applicable analysis (e.g., [1]), then the
period enforcer algorithm also yields a correct schedule.

However, recall that, in the original analysis [27], deferrable tasks are assumed to defer their
execution either completely or not at all (but not parts of it). It is hence important to realize that
Theorem 5 in [27] applies only to the transformed set of single-segment deferrable tasks, and that
it does not apply to the original set of multi-segmented self-suspending tasks.

This leads to the first question: If the original set of segmented self-suspending tasks is
schedulable without period enforcement, is it then also schedulable under period enforcement? That
is, can Theorem 5 (in [27]) be generalized to multi-segmented self-suspending tasks? In Section 3,
we answer this question in the negative.

1. There exist sets of segmented self-suspending tasks that are schedulable under fixed-priority
scheduling without any enforcement, but that are infeasible under period enforcement. This
shows that Theorem 5 in [27] has to be used with care – it may be applied only in the context
of the transformed single-segment deferrable task set, but not in the context of the original
multi-segmented self-suspending task set.

Therefore, to apply Theorem 5 to conclude that a set of segmented self-suspending task sets
remains schedulable despite period enforcement, we first have to answer the task-set transformation
question: given a set of segmented self-suspending tasks T , how do we obtain a corresponding set
of single-segment deferrable tasks T ′ such that T ′ is schedulable (without period enforcement) only
if T is schedulable (with period enforcement)? That is, as discussed in Section 2.3, the classic
analysis of the period enforcer [27] presumes that it is possible to convert a set of multi-segmented
self-suspending tasks into a corresponding set of single-segment deferrable tasks, but it is left
undefined in [27] how this central step should be accomplished. In Section 4, we make a pertinent
observation.

2. How to derive a single-segment deferrable task set corresponding to a given set of multi-
segmented self-suspending tasks is an open problem. Recent findings by Nelissen et al. [25] can
be applied in a special case, but their method takes exponential time (even in the special case).

Finally, we consider the use of the period enforcer in conjunction with suspension-based
multiprocessor locking protocols for partitioned fixed-priority scheduling (such as the MPCP [15, 26]
or the FMLP [2, 6]). While it is certainly tempting to apply period enforcement with the intention

LITES

01:10 A Note on the Period Enforcer Algorithm for Self-Suspending Tasks

151050 time2520

⌧2

⌧1

release

completion

deadline

scheduled

self-suspended

Figure 3 An illustrative example of the original self-suspending task set (without period enforcement)
assuming periodic job arrivals on a uniprocessor. Task τ1 has higher priority than task τ2.

of avoiding the negative effects of deferred execution due to lock contention (as previously suggested
elsewhere [15, 14, 28]), we ask: does existing blocking analysis remain safe when combined with
the period enforcer algorithm? In Section 5, we show that this is not the case.

3. The period enforcer algorithm invalidates all existing blocking analyses for real-time semaphore
protocols as there exist non-trivial feedback cycles between the period enforcer rules and
blocking durations.

3 Period Enforcement Can Induce Deadline Misses

In this section, we demonstrate with an example that there exist sets of sporadic segmented
self-suspending tasks that both (i) are schedulable without period enforcement and (ii) are not
schedulable with period enforcement.

To this end, consider a task system consisting of 2 tasks. Let τ1 denote a sporadic task without
self-suspensions and parameters C1 = 2 and T1 = D1 = 10, and let τ2 denote a self-suspending
task consisting of two segments with parameters C1

2 = 1, S1
2 = 6, C2

2 = 1, and T2 = D2 = 11.
Suppose that we use the rate-monotonic priority assignment, i.e., τ1 has higher priority than τ2.
This task set is schedulable without any enforcement since at most one computation segment of a
job of τ2 can be delayed by τ1:

if the first segment of a job of τ2 is interfered with by τ1, then the second segment resumes
at most 9 time units after the arrival of the job and the response time of task τ2 is hence 10;
otherwise,
if the first segment of a job of τ2 is not interfered with by τ1, then the second segment resumes
at most 7 time units after the arrival of the job and hence the response time of task τ2 is at
most 10 even if the second segment is interfered with by τ1.

Figure 3 depicts an example schedule of the task set assuming periodic job arrivals.
Next, let us consider the same task set under control of the period enforcer algorithm, as

defined in Section 2.2. Figure 4 shows the resulting schedule for a periodic release pattern. The
first job of task τ2 (which arrives at time a1

2,1 = 0) is executed as if there is no period enforcement
since the definition ET 1

2,0 = ET 2
2,0 = −T2 ensures that both segments are immediately eligible.

Note that the first segment of τ2’s first job is delayed due to interference from τ1. As a result, the
second segment of τ2’s first job does not resume until time a2

2,1 = 9. Thus, we have

ET 1
2,1 = max (−T2 + T2, busy(τ2, 0)) = 0 and

ET 2
2,1 = max (−T2 + T2, busy(τ2, 9)) = 9.

In contrast to the first job, the second job of task τ2 (which arrives at time 11) is affected
by period enforcement. The first segment of the second job is released at time a1

2,2 = 11, incurs

J.-J. Chen and B. B. Brandenburg 01:11

151050 time2520

⌧2

⌧1

release

completion

deadline

scheduled

self-suspended

ineligible
(period enforcement)

Figure 4 An illustrative example demonstrating a deadline miss at time 22 under the period enforcer
algorithm. At time 19, τ2 resumes, but it remains ineligible to execute until time 20 when τ1 is released.

interference for one time unit during [11, 12), and suspends at time 13. The second segment of the
second job hence resumes only at time a2

2,2 = 19. Thus, we have

ET 1
2,2 = max (0 + 11, busy(τ2, 11)) = 11 and

ET 2
2,2 = max (9 + 11, busy(τ2, 19)) = 20.

According to the rules of the period enforcer algorithm, the processor therefore remains idle at
time 19 because the segment is not eligible to execute until time ET 2

2,2 = 20. However, at time 20,
the third job of τ1 is released. As a result, the second job of τ2 suffers from additional interference
and misses its deadline at time 22.

This example shows that there exist sporadic segmented self-suspending task sets that (i) are
schedulable under fixed-priority scheduling without any enforcement, but (ii) are not schedulable
under the period enforcer algorithm.

One may consider to enrich the period enforcer with the following scheduling rule: when the
processor becomes idle, a task immediately becomes eligible to execute regardless of its eligibility
time. However, even with this extension, the above example remains valid by introducing one
additional lower-priority task τ3 with execution time C3 = 13 (to be executed from time 3 to time
9 and time 13 to time 20) and T3 = D3 = 100. With task τ3, the processor is always busy from
time 0 to time 23 and consequently τ2 still misses its deadline at time 22.

Furthermore, the example also demonstrates that the conversion to single-segment deferrable
tasks does incur a loss of generality since it introduces pessimism. In the context of the above
example, if we convert the multi-segmented suspending task τ2 into two single-segment deferrable
tasks, called τ1

2 and τ2
2 , where task τ1

2 never defers its execution and task τ2
2 defers its execution

by at most 9 time units, the resulting single-segment deferrable task set {τ1, τ
1
2 , τ

2
2 } is in fact not

schedulable under the given priority assignment: if a job of τ1 coincides with the arrival of a job
of τ2

2 after it has maximally deferred its execution, the job of τ2
2 has a response time of 9 + 2 + 1

time units, which exceeds its relative deadline of 11 time units. This shows that any restriction to
single-segment deferrable tasks — that is, assuming that “[w]ithout any loss of generality [. . .] a
task τi can defer its entire execution time but not parts of it” [27] (recall Section 2.3) — does in
fact come with a loss of generality.

4 Deriving a Corresponding Deferrable Task Set

To apply an analysis of the period enforcer based on Theorem 5 in [27], we first need to convert
a given set of multi-segment self-suspending tasks into a corresponding set of single-segment
deferrable tasks. This raises the question: how can we efficiently derive the corresponding set of
single-segment deferrable tasks?

LITES

01:12 A Note on the Period Enforcer Algorithm for Self-Suspending Tasks

The original period enforcer proposal [27] is silent on this issue and does not spell out a
procedure for converting a multi-segmented self-suspending task to a corresponding set of single-
segment deferrable tasks. However, in our opinion, performing such a transformation without
introducing additional pessimism is not at all easy in the general case.

In the following, we illustrate the inherent difficulty of the problem by focusing on a special case
to which we can apply a recent result of Nelissen et al. [25], which allows analyzing the worst-case
response time of multi-segmented self-suspending sporadic tasks, albeit with exponential time
complexity. Specifically, Nelissen et al.’s worst-case response time analysis [25], which is based on
mixed-integer linear programming (MILP), can be applied under the following conditions:
1. the task set contains only one self-suspending task,
2. the self-suspending task is the lowest-priority task,
3. the scheduling policy is preemptive fixed-priority scheduling, and
4. all tasks have constrained deadlines (i.e., Di ≤ Ti for all τi).

As an aside, it is interesting to note that, even for the restrictive case above, Nelissen et al.’s
MILP-based analysis [25] provides only an upper bound on the worst-case response time, and not
necessarily the exact worst-case response time. However, at least conceptually, an exact answer
can be obtained based on their analysis by combining it with an exhaustive search. Specifically,
Lemma 2 of Nelissen et al. [25] provides a characterization of the worst-case release pattern
that yields a maximal response time. Thus, by exploring all release patterns that satisfy the
conditions stated in Lemma 2 of Nelissen et al. [25], an exact bound can be determined (at great
computational cost). A detailed discussion of this approach can be found in a recent report [8].

Let us now return to the discussion of the task-set transformation that is needed before
Theorem 5 in [27] can be applied. For an arbitrary number of tasks k ≥ 2, suppose that the
system has k − 1 regular sporadic tasks and only one segmented self-suspending task τk, and that
all tasks have implicit deadlines (i.e., Di = Ti for all τi). Further suppose that task τk has mk

segments with mk ≥ 3.
To convert a computation segment of τk into a single-segment deferrable task, we need to

derive the segment’s latest-possible release time, relative to the arrival of the corresponding job.
Formally, for the jth computation segment of task τk, we let ρj

k denote its latest-possible release
time, with the interpretation that, if a job of task τk arrives at time t, then it is guaranteed that
the jth computation segment of this job will be released at the latest at time t+ ρj

k.
How can we compute ρj

k? Suppose that the worst-case response time of the jth computation
segment of task τk is W j

k , and recall that Sj
k denotes the maximum self-suspension length before

the jth computation segment of τk. Then ρj
k can be expressed in terms of W j−1

k :

ρj
k = W j−1

k + Sj−1
k ,

where W 0
k = 0. Therefore, if we can derive the exact segment worst-case response time W j

k

for j = 1, 2, . . . ,mk − 1, we can easily compute ρj
k for j = 1, 2, . . . ,mk. And conversely, if we

can somehow obtain ρj
k for j = 2, . . . ,mk, we can trivially infer W j

k for j = 1, 2, . . . ,mk − 1.
Based on these considerations, it appears that the transformation problem is – at least in the
considered special case – equivalent to the worst-case response time analysis of a multi-segmented
self-suspending task.

However, deriving an exact bound W j
k for task τk and for j = 1, 2, . . . ,mk − 1 is not easy:

even for the above “simple” case, Nelissen et al.’s MILP solution [25] for calculating a safe upper
bound on the worst-case response time requires exponential time complexity if j ≥ 2. In fact,
it has recently been shown that the problem of verifying the schedulability of such a task set is
coNP-hard in the strong sense [7]. It follows analogously that analyzing the exact worst-case
response time of task τk is NP-hard in the strong sense [7].

J.-J. Chen and B. B. Brandenburg 01:13

Notably, Nelissen et al. [25] and Chen [7] do not consider the period enforcer; rather, their
results pertain to unrestricted self-suspensions. However, given that the period enforcer has no
effect on tasks that do not self-suspend [27], and given that in the considered special case only
the lowest-priority task self-suspends, we believe that their observations transfer to the period
enforcement case.

To summarize, to analyze the period enforcer based on Theorem 5 in [27], a procedure for
transforming multi-segmented self-suspending tasks into sets of single-segment deferrable tasks
is needed, but no such procedure is given in the original proposal [27]. Based on the presented
considerations, we conclude that filling in this missing step is non-trivial and observe that the
closest known solution by Nelissen et al. [25] requires exponential time even in the greatly simplified
special case of a single self-suspending task, and that the problem of verifying the schedulability of
such a task set is in fact coNP-hard in the strong sense [7]. It thus remains unclear how Theorem 5
in [27] can be used for schedulability analysis of sets of multi-segmented self-suspending tasks.
While we did search for alternative analysis approaches that do not rely on Theorem 5, we did not
find a simple or efficient schedulability test for the period enforcer without introducing substantial
additional pessimism. The problem remains open.

Next, we take a look at the period enforcer in the context of synchronization protocols.

5 Incompatibility with Suspension-Based Locking Protocols

Binary semaphores, i.e., suspension-based locks used to realize mutually exclusive access to shared
resources, are a common source of self-suspensions in multiprocessor real-time systems. When
a task tries to use a resource that has already been locked, it self-suspends until the resource
becomes available. Such self-suspensions due to lock contention, just like any other self-suspension,
result in deferred execution and thus can detrimentally affect a task’s interference on lower-priority
tasks. It may thus seem natural to apply the period enforcer to control the negative effects of
blocking-induced self-suspensions.4 However, as we demonstrate with two examples, it is actually
unsafe to apply period enforcement to lock-induced self-suspensions.

5.1 Combining Period Enforcement and Suspension-Based Locks
Whenever a task attempts to lock a shared resource, it may potentially block and self-suspend. In
the context of the multi-segmented self-suspending task model, each lock request hence marks the
beginning of a new segment.

The period enforcer algorithm may therefore be applied to determine the eligibility time of each
such segment (which, again, all start with a critical section). There is, however, one complication:
when does a task actually acquire a lock? That is, if a task’s execution is postponed due to the
period enforcement rules, at which point is the lock request processed, with the consequence that
the resource becomes unavailable to other tasks?

There are two possible interpretations of how period enforcement and locking rules may
interact. Under the first interpretation, when a task requires a shared resource, which implies
the beginning of a new segment, its lock request is processed only when its new segment is eligible
for execution, as determined by the period enforcer algorithm. Alternatively, under the second
interpretation, a task’s request is processed immediately when it requires a shared resource.

4 The use of period enforcement in combination with suspension-based locks has indeed been assumed in prior
work [28], stated as a motivation and possible use case in the original period enforcer proposal [27], and
suggested as a potential improvement elsewhere [15, 14].

LITES

01:14 A Note on the Period Enforcer Algorithm for Self-Suspending Tasks

release completion deadline lock attempt locked unlocked

scheduled (on processor 1)

scheduled (on processor 2) critical section (on processor 2)

critical section (on processor 1)

blocked (shared resource locked)

ineligible (period enforcement)

151050 time302520

⌧2

⌧1

Figure 5 Example schedule of two tasks τ1 and τ2 on two processors sharing one lock-protected resource.
The example assumes that lock requests take effect only when the critical section segment becomes eligible
to be scheduled according to the rules of the period enforcer algorithm. Under this interpretation, the
fourth job of task τ2 misses its deadline at time 28.

As a consequence of the first rule, a task may find a required shared resource unavailable when
its new segment becomes eligible for execution even though the resource was available when the
prior segment finished. As a consequence of the second rule, a shared resource may be locked by a
task that cannot currently use the resource because the task is still ineligible to execute.

We believe that the first interpretation is the more natural one, as it does not make much sense
to allocate resources to tasks that cannot yet use them. However, for the sake of completeness,
we show that either interpretation can lead to deadline misses even if the task set is trivially
schedulable without any enforcement.

5.2 Case 1: Locking Takes Effect at Earliest Segment Eligibility Time

In the following example, we assume the first interpretation, i.e., that the processing of lock
requests is delayed until the point when a resuming segment would no longer be subject to any
delay due to period enforcement. We show that this interpretation leads to a deadline miss in a
task set that would otherwise be trivially schedulable.

Consider the following simple task set consisting of two tasks on two processors that share
one resource. Task τ1, on processor 1, has a total execution cost of C1 = 4 and a period and
deadline of T1 = D1 = 8. After one time unit of execution, jobs of τ1 require the shared resource
for two time units. τ1 thus consists of two segments with costs C1

1 = 1 and C2
1 = 3. Task τ2,

on processor 2, has the same overall WCET (C2 = 4), a slightly shorter period (T2 = D2 = 7),
and requires the shared resource for one time unit after two time units of execution (C1

2 = 2 and
C2

2 = 2). Without period enforcement (and under any reasonable locking protocol), the task set
is trivially schedulable because, by construction, any job of τ1 incurs at most one time unit of
blocking, and any job of τ2 incurs at most two time units of blocking.

In contrast, with period enforcement, deadline misses are possible. Figure 5 depicts a schedule
of the two tasks assuming periodic job arrivals and use of the period enforcer algorithm. We focus
on the eligibility times ET 2

2,1, ET
2
2,2, ET

2
2,3, . . . of the second segment of τ2.

Since τ2’s first job requests the shared resource only after two time units of execution, it is
blocked by τ1’s critical section, which commenced at time 1. At time 3, τ1 releases the shared
resource and τ2 consequently resumes (i.e., a2

2,1 = 3). According to the period enforcer rules [27],

J.-J. Chen and B. B. Brandenburg 01:15

the second segment is immediately eligible because, according to Equation 1 (in Section 3),

ET 2
2,1 = max

(
ET 2

2,0 + T2, busy(τ2, a
2
2,1)
)

= max(−T2 + T2, 3) = 3.

(Recall that ET 2
2,0 = −T2, and interpret busy(τ2, a

2
2,1) with respect to τ2’s processor.)

At time 7, the second job of τ2 is released. Its first segment ends at time 9. However, its second
segment is not eligible to be scheduled before time 10 since ET 2

2,2 ≥ ET 2
2,1 + T2 = 3 + 7 = 10.

At time 9, the second job of τ1, released at time 8, can thus lock the shared resource without
contention. Consequently, when τ2’s request for the shared resource takes effect at time 10, the
resource is no longer available and τ2 must wait until time a2

2,2 = 11 before it can proceed to
execute. We thus have

ET 2
2,2 = max

(
ET 2

2,1 + T2, busy(τ2, a
2
2,2)
)

= max(10, 11) = 11.

The third job of τ2 is released at time 14. Its first segment ends at time 16, but since
ET 2

2,3 ≥ ET 2
2,2 +T2 = 11 + 7 = 18, the second segment may not commence execution until time 18

and the shared resource remains available to other tasks in the meantime. The third job of τ1 is
released at time 16 and acquires the uncontested shared resource at time 17. Thus, the segment
of τ2 cannot resume execution before time a2

2,3 = 19. Therefore

ET 2
2,3 = max

(
ET 2

2,2 + T2, busy(τ2, a
2
2,3)
)

= max(18, 19) = 19.

The same pattern repeats for the fourth job of τ2, released at time 21: when its first segment
ends at time 23, the second segment is not eligible to commence execution before time 26 since
ET 2

2,4 ≥ ET 2
2,3 + T2 = 19 + 7 = 26. By then, however, τ1 has already locked the shared semaphore

again, and the second segment of the fourth job of τ2 cannot resume before time a2
2,4 = 27, at

which point

ET 2
2,4 = max

(
ET 2

2,3 + T2, busy(τ2, a
2
2,4)
)

= max(26, 27) = 27.

However, this leaves insufficient time to meet the job’s deadline: as the second segment of τ2
requires C2

2 = 2 time units to complete, the job’s deadline at time 28 is missed.
By construction, this example does not depend on a specific locking protocol; for instance, the

effect occurs with both the MPCP [26] (based on priority queues) and the FMLP [2, 6] (based
on FIFO queues). The corresponding response-time analyses for both protocols [3, 15] predict
a worst-case response time of 6 for task τ2 (i.e., four time units of execution, and at most two
time units of blocking due to the critical section of τ1). This demonstrates that, under the first
interpretation, adding period enforcement to suspension-based locks invalidates existing blocking
analyses. Furthermore, it is clear that the devised repeating pattern can be used to construct
schedules in which the response time of τ2 grows beyond any given implicit or constrained deadline.

Next, we show that the second interpretation can also lead to deadline misses in otherwise
trivially schedulable task sets.

5.3 Case 2: Locking Takes Effect Immediately
From now on, we assume the second interpretation: all lock requests are processed immediately
when they are made, even if this causes the shared resource to be locked by a task that is not
yet eligible to execute according to the rules of the period enforcer algorithm. We construct an
example in which a task’s response time grows with each job until a deadline is missed.

To this end, consider two tasks with identical parameters hosted on two processors. Task τ1
is hosted on processor 1; task τ2 is hosted on processor 2. Both tasks have the same period and

LITES

01:16 A Note on the Period Enforcer Algorithm for Self-Suspending Tasks

release completion deadline lock attempt locked unlocked

scheduled (on processor 1)

scheduled (on processor 2) critical section (on processor 2)

critical section (on processor 1)

blocked (shared resource locked)

ineligible (period enforcement)

151050 time302520

⌧2

⌧1

Figure 6 Example schedule of two tasks τ1 and τ2 on two processors sharing one lock-protected resource.
The example assumes that lock requests take effect immediately, even if the critical section segment
is not yet eligible to be scheduled according to the rules of the period enforcer algorithm. Under this
interpretation, the third job of task τ1 misses its deadline at time 24.

relative deadline T1 = T2 = D1 = D2 = 8 and the same WCET of C1 = C2 = 4. They both
access a single shared resource for two time units each per job. Both tasks request the shared
resource after executing for at most one time unit. They both thus have two segments each with
parameters C1

1 = C1
2 = 1 and C2

1 = C2
2 = 3.

The example exploits that a job may require less service than its task’s specified WCET. To
ensure that the shared resource is acquired in a certain order, we assume the following deterministic
pattern of the actual execution times. Let ε be an arbitrarily small, positive real number with
ε < 1.

The first segment of even-numbered jobs of τ1 executes for only 1− ε time units.
The first segment of odd-numbered jobs of τ2 executes for only 1− ε time units.
All other segments execute for their specified worst-case costs.

Figure 6 shows an example schedule assuming periodic job arrivals.
At time 1 − ε, the first job of τ2 acquires the shared resource because τ1 does not issue its

request until time 1. Consequently, τ1 is blocked until time a2
1,1 = 3− ε, and we have

ET 2
1,1 = max

(
ET 2

1,0 + T1, busy(τ1, a
2
1,1)
)

= max(−T1 + T1, 3− ε) = 3− ε

and

ET 2
2,1 = max

(
ET 2

2,0 + T2, busy(τ2, a
2
2,1)
)

= max(−T2 + T2, 0) = 0.

The roles of the second jobs of both tasks are reversed: since the second job of τ1 locks the
shared resource already at time 9− ε, τ2 is blocked when it attempts to lock the resource at time 9.
However, according to the rules of the period enforcer algorithm, the second segment of the second
job of τ1 is not actually eligible to execute before time 11− ε since

ET 2
1,2 = max

(
ET 2

1,1 + T1, busy(τ1, a
2
1,2)
)

= max(3− ε+ 8, 8) = 11− ε.

Consequently, even though the lock is granted to τ1 already at time 9− ε, the critical section is
executed only starting at time 11− ε, and τ2 is thus delayed until time 13− ε. At time 13− ε, τ2
is immediately eligible to execute since

ET 2
2,2 = max

(
ET 2

2,1 + T2, busy(τ2, a
2
2,2)
)

= max(0 + 8, 13− ε) = 13− ε.

J.-J. Chen and B. B. Brandenburg 01:17

The third jobs of both tasks are released at time 16. The roles are swapped again: because τ2’s
first segment requires only 1− ε time units of service, it acquires the lock at time a2

2,3 = 17− ε,
before τ1 issues its request at time 17. However, according to the period enforcer algorithm’s
eligibility criterium, τ2 cannot actually continue its execution before time 21− ε since

ET 2
2,3 = max

(
ET 2

2,2 + T2, busy(τ2, a
2
2,3)
)

= max(13− ε+ 8, 16) = 21− ε.

This, however, means that τ1 cannot use the shared resource before time 23 − ε, which leaves
insufficient time to complete the second segment of τ1’s third job before its deadline at time 24.
Furthermore, if both tasks continue the illustrated execution pattern, the period enforcer continues
to increase their response times. As a result, the pattern may be repeated to construct schedules
in which any arbitrarily large implicit or constrained deadline is violated.

As in the previous example, the response-time analyses for both the MPCP [3, 15] and the
FMLP [3] predict a worst-case response time of 6 for both tasks (i.e., four time units of execution,
and at most two time units of blocking). The example thus demonstrates that, if lock requests
take effect immediately, then the period enforcer is incompatible with existing blocking analyses
because, under the second interpretation, it increases the effective lock-holding times.

5.4 Other Protocols and Interpretations
The examples in Sections 5.2 and 5.3 assume a shared-memory locking protocol: once a lock is
granted, tasks execute their own critical sections on their assigned processors. One may wonder
whether effects similar to those described in Sections 5.2 and 5.3 can also occur under distributed
real-time locking protocols such as the Distributed Priority Ceiling Protocol (DPCP) [28, 29] or
the Distributed FIFO Locking Protocol (DFLP) [3, 4], where critical sections may be executed
on dedicated synchronization processors. In this case, the self-suspension occurs on the task’s
application processor, which is different from the (remote) synchronization processor on which the
critical section is executed.

This separation allows employing period enforcement only on application processors (while
avoiding it on synchronization processors) without incurring the feedback cycle between blocking
times and self-suspension times highlighted in Sections 5.2 and 5.3.

However, period enforcement still invalidates all existing blocking analyses for distributed
real-time semaphore protocols [3, 28, 29] because it artificially increases blocking times if tasks
contain multiple accesses to shared resources. An example demonstrating this effect is shown in
Figure 7. Two segmented self-suspending tasks τ1 and τ2 share a resource using a distributed
real-time locking protocol. The choice of protocol is irrelevant; the example works with both the
DPCP and the DFLP. The tasks have parameters m1 = 2, C1

1 = C2
1 = 1, T1 = D1 = 25 and

m2 = 3, C1
2 = C3

2 = 1, C2
2 = 6, and T2 = D2 = 15. The computation segments are separated

by self-suspensions that arise while the tasks wait for the completion of critical sections that are
executed remotely on a dedicated synchronization processor Psync; the corresponding suspension
segment parameters S1

1 , S1
2 , and S2

2 will be defined shortly.
The first jobs of τ1 and τ2 are both released at time 0 and attempt to access the shared resource

at time 1. Task τ1’s request is serviced first; as a result τ2 resumes only at time a2
2,1 = ET 2

2,1 = 5
after having been suspended for four time units:

ET 2
2,1 = max

(
ET 2

2,0 + T2, busy(τ2, a
2
2,1)
)

= max(−T2 + T2, 5) = 5.

Task τ2 then executes its second computation segment for C2
2 = 6 time units until time 11, when

the job accesses the shared resource for a second time. Since there is no contention from τ1 at
this time, τ2 resumes after only two time units at time 13. This leaves the job sufficient time to
complete at time 14, one time unit before its deadline at time 15.

LITES

01:18 A Note on the Period Enforcer Algorithm for Self-Suspending Tasks

151050 time302520

⌧2

⌧1

release completion deadline

scheduled (on processor 1)

scheduled (on processor 2) blocked (waiting for RPC reply)

ineligible (period enforcement)RPC1

RPC2

remote procedure call of

remote procedure call of ⌧2

⌧1

Psync RPC1 RPC2 RPC2 RPC2 RPC1 RPC2

Figure 7 Example schedule of two tasks τ1 and τ2 on two processors sharing a remote resource
using a distributed semaphore protocol (e.g., the DPCP [28, 29] or the DFLP [3, 4]) together with the
period enforcer. Since critical sections are executed as remote procedure calls (RPCs) on a dedicated
synchronization processor Psync (not subject to period enforcement), their execution is not delayed
by period enforcement. However, period enforcement delays τ2 at time 18, which invalidates existing
analyses [3, 28, 29]: under both the DPCP and the DFLP, τ2 is predicted to have a maximum response
time of 14 [3], but with period enforcement, the second job of τ2 has in fact a response time of 16.

The second job of τ2 is released at time 15 and issues a request for the shared resource at
time 16. Since there is no contention from τ1 at the time, the second computation segment arrives
already at time a2

2,2 = 18, after having been self-suspended for only two time units. However,
since the second segment of the first job arrived at time a2

2,1 = 5, the second segment of the second
job is not eligible to start execution until time ET 2

2,2 = 20 since

ET 2
2,2 = max

(
ET 2

2,1 + T2, busy(τ2, a
2
2,2)
)

= max(5 + T2, 18) = 20.

As a result, τ2 faces contention from τ1 when it issues its second request for the shared resource at
time 26, which ultimately leads to a deadline miss at time 30.

In contrast, without period enforcement, τ2 does not miss its deadline at time 30 because,
across its two requests, a job of τ2 is delayed by at most one request of τ1, for a total self-suspension
time of at most two six time units. That is, even though the individual self-suspension segments
of the two tasks are each up to four time units long (i.e., S1

1 = S1
2 = S2

2 = 4), the fact that self-
suspensions arise due to the same cause (resource contention) means that the total self-suspension
time is actually less than the sum of the individual per-segment bounds.

Existing analyses for the DPCP [3, 28, 29] and the DFLP [3] exploit this knowledge and
therefore predict task τ2 to be schedulable with a worst-case response time of 14.5 The example
in Figure 7 thus demonstrates that the period enforcer invalidates existing blocking bounds
for distributed semaphore protocols. As an aside, the example in Figure 7 further highlights
limitations of the segmented self-suspension model in the context of synchronization protocols,
where the lengths of self-suspensions encountered at runtime are inherently not independent.

5 The analyses in [28, 29] do assume a segmented task model, but bound the total blocking across all segments.
The analysis in [3] also bounds the total blocking across all segments and can be applied to both the segmented
and the dynamic self-suspension model.

J.-J. Chen and B. B. Brandenburg 01:19

151050 time302520

⌧2

⌧1

release completion deadline lock attempt locked unlocked

scheduled (on processor 1)

scheduled (on processor 2) critical section (on processor 2)

critical section (on processor 1)

blocked (shared resource locked)

ineligible (period enforcement)

Figure 8 Example schedule of two tasks τ1 and τ2 on two processors sharing one lock-protected resource.
The example assumes that lock requests take effect immediately and that critical sections are exempt from
period enforcement (i.e., period enforcement is applied only to any computation after a critical section).
As in Figure 7, the second job of task τ2 misses its deadline at time 30.

Returning to the shared-memory case, as a third possible interpretation, one could also exclude
critical sections from period enforcement such that only the rest of the computation segment after
a critical section is subject to period enforcement (i.e., making critical sections immediately eligible
to execute).6 This can be understood as making each critical section an individual computation
segment (exempt from period enforcement) that is separated from the following computation by
a “virtual” self-suspension of maximum length zero. As in the case of distributed semaphore
protocols, this interpretation breaks the feedback cycle highlighted in Sections 5.2 and 5.3, but
still invalidates all existing blocking analyses as it artificially inflates the synchronization delay.

An example of this effect is shown in Figure 8, which depicts the same scenario as in Figure 7
under the assumption that a shared-memory semaphore protocol is used (i.e., critical sections are
executed locally by each job) and that critical sections are exempt from period enforcement. As
in the distributed case, period enforcement induces a deadline miss, whereas existing blocking
analyses [3, 15] exploit the fact that a remote critical section can block only once, thus arriving at
a worst-case response time bound of 14 for τ2.

To conclude, in both Figures 7 and 8, period enforcement has an effect as if a single remote
critical section can block a given job multiple times, which is fundamentally incompatible with
efficient blocking analysis [3].

5.5 Discussion
While it is intuitively appealing to combine period enforcement with suspension-based locking
protocols [15, 14, 28], we observe that this causes non-trivial difficulties. In particular, our
examples show that the addition of period enforcement invalidates all existing blocking analyses.

If critical sections are subject to period enforcement, our examples also suggest that devising
a correct blocking analysis would be a substantial challenge due to the demonstrated feedback
cycle between the period enforcer rules and blocking durations. Fundamentally, the design of the
period enforcer algorithm implicitly rests on the assumption that a segment can execute as soon
as it is eligible to do so. In the presence of locks, however, this assumption is invalidated. As
demonstrated, the result can be a successive growth of self-suspension times that proceeds until a

6 This interpretation does not fit the assumptions stated in [27, 28].

LITES

01:20 A Note on the Period Enforcer Algorithm for Self-Suspending Tasks

deadline is missed. The period enforcer algorithm, at least as defined and used in the literature to
date [27, 28], is therefore incompatible with the existing literature on suspension-based real-time
locking protocols (e.g., [2, 3, 15, 14, 28]).

Finally, it is worth noting that our examples can be trivially extended with lower-priority tasks
to ensure that no processor idles before the described deadline misses occur. It is also not difficult
to extend the examples in Figures 6 and 8 with a task on a third processor such that all critical
sections of τ1 and τ2 are separated from their predecessor segments by a non-zero self-suspension.

6 Concluding Remarks

We have revisited the underlying assumptions and limitations of the period enforcer algorithm,
which Rajkumar [27] introduced to handle segmented self-suspending real-time tasks.

One key assumption in the original proposal [27] is that a deferrable task τi can defer its
entire execution time but not parts of it. This creates some mismatches between the original
segmented self-suspending task set and the corresponding single-segment deferrable task set, which
we have demonstrated with an example that shows that Theorem 5 in [27] does not reflect the
schedulability of the original segmented self-suspending task system.

The original proposal [27] further left open the question of how to convert a segmented
self-suspending task set to a corresponding set of single-segment deferrable tasks. This problem
remains open. Taking into account recent developments [7, 8, 25], we have observed that such a
transformation is non-trivial in the general case.

Finally, we have demonstrated that substantial difficulties arise if one attempts to combine
suspension-based locks with period enforcement. These difficulties stem from the fact that period
enforcement can increase contention or lock-holding times, which increases the lengths of self-
suspension intervals, which then in turn feeds back into the period enforcer’s minimum suspension
lengths. As a consequence, period enforcement invalidates all existing blocking analyses.

Nevertheless, the period enforcer algorithm per se, and Theorem 5 in [27], could still prove to
be useful for handling self-suspending tasks (that do not use suspension-based locks) if efficient
schedulability tests or methods for constructing sets of single-segment deferrable tasks can be
found. However, such tests or transformations have not yet been obtained and the development of
a precise and efficient schedulability test for self-suspending tasks remains an open problem.

Acknowledgements. We thank James H. Anderson and Raj Rajkumar for their comments on
early drafts of this paper.

References
1 Neil Audsley, Alan Burns, Mike Richardson,

Ken Tindell, and Andy J. Wellings. Apply-
ing new scheduling theory to static priority pre-
emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993. doi:10.1049/sej.1993.0034.

2 Aaron Block, Hennadiy Leontyev, Björn B. Bran-
denburg, and James H. Anderson. A flexible
real-time locking protocol for multiprocessors. In
Proceedings of the 13th IEEE International Con-
ference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 47–
56. IEEE Computer Society, 2007. doi:10.1109/
RTCSA.2007.8.

3 Björn B. Brandenburg. Improved analysis and
evaluation of real-time semaphore protocols for P-
FP scheduling. In Proceedings of the 19th IEEE
Real-Time and Embedded Technology and Appli-

cations Symposium (RTAS), pages 141–152. IEEE
Computer Society, 2013. doi:10.1109/RTAS.2013.
6531087.

4 Björn B. Brandenburg. Blocking optimality in dis-
tributed real-time locking protocols. Leibniz Trans-
actions on Embedded Systems, 1(2):01:1–01:22,
2014. doi:10.4230/LITES-v001-i002-a001.

5 Björn B. Brandenburg and James H. Anderson. A
comparison of the M-PCP, D-PCP, and FMLP on
LITMUSRT. In Proceedings of the 12th Interna-
tional Conference on Principles of Distributed Sys-
tems (OPODIS), volume 5401 of Lecture Notes in
Computer Science, pages 105–124. Springer, 2008.
doi:10.1007/978-3-540-92221-6_9.

6 Björn B. Brandenburg and James H. Anderson.
An implementation of the PCP, SRP, D-PCP, M-
PCP, and FMLP real-time synchronization proto-

http://dx.doi.org/10.1049/sej.1993.0034
http://dx.doi.org/10.1109/RTCSA.2007.8
http://dx.doi.org/10.1109/RTCSA.2007.8
http://dx.doi.org/10.1109/RTAS.2013.6531087
http://dx.doi.org/10.1109/RTAS.2013.6531087
http://dx.doi.org/10.4230/LITES-v001-i002-a001
http://dx.doi.org/10.1007/978-3-540-92221-6_9

J.-J. Chen and B. B. Brandenburg 01:21

cols in LITMUSRT. In Proceedings of the 14th
IEEE Internationl Conference on Embedded and
Real-Time Computing Systems and Applications
(RTCSA), pages 185–194. IEEE Computer Society,
2008. doi:10.1109/RTCSA.2008.13.

7 Jian-Jia Chen. Computational complexity and
speedup factors analyses for self-suspending tasks.
In Proceedings of the 37th IEEE Real-Time Sys-
tems Symposium (RTSS), pages 327–338. IEEE
Computer Society, 2016.

8 Jian-Jia Chen. A note on the exact schedu-
lability analysis for segmented self-suspending
systems. The Computing Research Repository
(CoRR), abs/1605.00124, 2016. URL: http://
arxiv.org/abs/1605.00124.

9 Jian-Jia Chen and Cong Liu. Fixed-relative-
deadline scheduling of hard real-time tasks with
self-suspensions. In Proceedings of the 35th IEEE
Real-Time Systems Symposium (RTSS), pages
149–160. IEEE Computer Society, 2014. doi:10.
1109/RTSS.2014.31.

10 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung
Huang, Maolin Yang, Björn B. Branden-
burg, Konstantinos Bletsas, Cong Liu, Pascal
Richard, Frédéric Ridouard, Neil Audsley,
Ragunathan Rajkumar, and Dionisio de Niz.
Many suspensions, many problems: A review
of self-suspending tasks in real-time systems.
Technical Report 854, Department of Com-
puter Science, TU Dortmund, 2016. URL:
http://ls12-www.cs.tu-dortmund.de/daes/
media/documents/publications/downloads/2016-
chen-techreport-854.pdf.

11 Hiroyuki Chishiro and Nobuyuki Yamasaki. Global
semi-fixed-priority scheduling on multiprocessors.
In Proceedings of the 17th IEEE International
Conference on Embedded and Real-Time Comput-
ing Systems and Applications (RTCSA), pages
218–223. IEEE Computer Society, 2011. doi:10.
1109/RTCSA.2011.32.

12 Wen-Hung Huang and Jian-Jia Chen. Self-
suspension real-time tasks under fixed-relative-
deadline fixed-priority scheduling. In Proceedings
of the 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1078–
1083. IEEE, 2016. URL: http://ieeexplore.ieee.
org/xpl/freeabs_all.jsp?arnumber=7459469.

13 Junsung Kim, Björn Andersson, Dionisio de Niz,
and Ragunathan Rajkumar. Segment-fixed prior-
ity scheduling for self-suspending real-time tasks.
In Proceedings of the 34th IEEE Real-Time Sys-
tems Symposium (RTSS), pages 246–257. IEEE
Computer Society, 2013. doi:10.1109/RTSS.2013.
32.

14 Karthik Lakshmanan. Scheduling and Syn-
chronization for Multi-core Real-time Systems.
PhD thesis, Carnegie Mellon University, 2011.
URL: https://www.ece.cmu.edu/research/
publications/2011/CMU-ECE-2011-040.pdf.

15 Karthik Lakshmanan, Dionisio de Niz, and Ragu-
nathan Rajkumar. Coordinated task scheduling,
allocation and synchronization on multiprocessors.
In Proceedings of the 30th IEEE Real-Time Sys-
tems Symposium (RTSS), pages 469–478. IEEE
Computer Society, 2009. doi:10.1109/RTSS.2009.
51.

16 Karthik Lakshmanan and Ragunathan Rajkumar.
Scheduling self-suspending real-time tasks with
rate-monotonic priorities. In Proceedings of the
16th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 3–12.
IEEE Computer Society, 2010. doi:10.1109/RTAS.
2010.38.

17 John P. Lehoczky, Lui Sha, and Jay K. Stros-
nider. Enhanced aperiodic responsiveness in hard
real-time environments. In Proceedings of the
8th IEEE Real-Time Systems Symposium (RTSS),
pages 261–270. IEEE Computer Society, 1987.

18 John P. Lehoczky, Lui Sha, Jay K. Strosnider, and
Hideyuki Tokuda. Fixed priority scheduling the-
ory for hard real-time systems. In Andreé van
Tilborg and Gary Koob, editors, Fondations of
Real-Time Computing: Scheduling and Resource
Management, chapter 1, pages 1–30. Kluwer Aca-
demic Publishers, 1991.

19 C. L. Liu and James W. Layland. Scheduling algo-
rithms for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46–61,
1973. doi:10.1145/321738.321743.

20 Cong Liu and James H. Anderson. Task scheduling
with self-suspensions in soft real-time multiproces-
sor systems. In Proceedings of the 30th IEEE Real-
Time Systems Symposium (RTSS), pages 425–436.
IEEE Computer Society, 2009. doi:10.1109/RTSS.
2009.10.

21 Cong Liu and James H. Anderson. Improving the
schedulability of sporadic self-suspending soft real-
time multiprocessor task systems. In Proceedings
of the 16th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Ap-
plications (RTCSA), pages 13–22. IEEE Computer
Society, 2010. doi:10.1109/RTCSA.2010.14.

22 Cong Liu and James H. Anderson. Scheduling sus-
pendable, pipelined tasks with non-preemptive sec-
tions in soft real-time multiprocessor systems. In
Proceedings of the 16th IEEE Real-Time and Em-
bedded Technology and Applications Symposium
(RTAS), pages 23–32. IEEE Computer Society,
2010. doi:10.1109/RTAS.2010.12.

23 Cong Liu and Jian-Jia Chen. Bursty-interference
analysis techniques for analyzing complex real-
time task models. In Proceedings of the 35th IEEE
Real-Time Systems Symposium (RTSS), pages
173–183. IEEE Computer Society, 2014. doi:10.
1109/RTSS.2014.10.

24 Aloysius Mok. Fundamental Design Problems of
Distributed Systems for the Hard-Real-Time En-
vironment. PhD thesis, Massachusetts Institute of
Technology, 1983. URL: https://dspace.mit.edu/
handle/1721.1/15670.

25 Geoffrey Nelissen, José Fonseca, Gurulingesh Rar-
avi, and Vincent Nélis. Timing analysis of fixed pri-
ority self-suspending sporadic tasks. In Proceedings
of the 27th Euromicro Conference on Real-Time
Systems (ECRTS), pages 80–89. IEEE Computer
Society, 2015. doi:10.1109/ECRTS.2015.15.

26 Ragunathan Rajkumar. Real-time synchroniza-
tion protocols for shared memory multiprocessors.
In Proceedings of the 10th International Confer-
ence on Distributed Computing Systems (ICDCS),
pages 116–123. IEEE Computer Society, 1990. doi:
10.1109/ICDCS.1990.89257.

LITES

http://dx.doi.org/10.1109/RTCSA.2008.13
http://arxiv.org/abs/1605.00124
http://arxiv.org/abs/1605.00124
http://dx.doi.org/10.1109/RTSS.2014.31
http://dx.doi.org/10.1109/RTSS.2014.31
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-chen-techreport-854.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-chen-techreport-854.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-chen-techreport-854.pdf
http://dx.doi.org/10.1109/RTCSA.2011.32
http://dx.doi.org/10.1109/RTCSA.2011.32
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7459469
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7459469
http://dx.doi.org/10.1109/RTSS.2013.32
http://dx.doi.org/10.1109/RTSS.2013.32
https://www.ece.cmu.edu/research/publications/2011/CMU-ECE-2011-040.pdf
https://www.ece.cmu.edu/research/publications/2011/CMU-ECE-2011-040.pdf
http://dx.doi.org/10.1109/RTSS.2009.51
http://dx.doi.org/10.1109/RTSS.2009.51
http://dx.doi.org/10.1109/RTAS.2010.38
http://dx.doi.org/10.1109/RTAS.2010.38
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1109/RTSS.2009.10
http://dx.doi.org/10.1109/RTSS.2009.10
http://dx.doi.org/10.1109/RTCSA.2010.14
http://dx.doi.org/10.1109/RTAS.2010.12
http://dx.doi.org/10.1109/RTSS.2014.10
http://dx.doi.org/10.1109/RTSS.2014.10
https://dspace.mit.edu/handle/1721.1/15670
https://dspace.mit.edu/handle/1721.1/15670
http://dx.doi.org/10.1109/ECRTS.2015.15
http://dx.doi.org/10.1109/ICDCS.1990.89257
http://dx.doi.org/10.1109/ICDCS.1990.89257

01:22 A Note on the Period Enforcer Algorithm for Self-Suspending Tasks

27 Ragunathan Rajkumar. Dealing with suspending
periodic tasks. Technical report, IBM T. J. Watson
Research Center, 1991.

28 Ragunathan Rajkumar. Synchronization in Real-
Time Systems: A Priority Inheritance Approach.
Kluwer Academic Publishers, Norwell, MA, USA,
1991.

29 Ragunathan Rajkumar, Lui Sha, and John P.
Lehoczky. Real-time synchronization protocols for
multiprocessors. In Proceedings of the 9th IEEE
Real-Time Systems Symposium (RTSS), pages
259–269. IEEE Computer Society, 1988. doi:10.
1109/REAL.1988.51121.

30 Frédéric Ridouard, Pascal Richard, and Francis
Cottet. Negative results for scheduling indepen-

dent hard real-time tasks with self-suspensions. In
Proceedings of the 25th IEEE Real-Time Systems
Symposium (RTSS), pages 47–56. IEEE Computer
Society, 2004. doi:10.1109/REAL.2004.35.

31 Jay K. Strosnider, John P. Lehoczky, and Lui Sha.
The deferrable server algorithm for enhanced aperi-
odic responsiveness in hard real-time environments.
IEEE Transactions on Computers, 44(1):73–91,
1995. doi:10.1109/12.368008.

32 Jun Sun and Jane W.-S. Liu. Synchronization pro-
tocols in distributed real-time systems. In Proceed-
ings of the 16th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 38–
45. IEEE Computer Society, 1996. doi:10.1109/
ICDCS.1996.507899.

http://dx.doi.org/10.1109/REAL.1988.51121
http://dx.doi.org/10.1109/REAL.1988.51121
http://dx.doi.org/10.1109/REAL.2004.35
http://dx.doi.org/10.1109/12.368008
http://dx.doi.org/10.1109/ICDCS.1996.507899
http://dx.doi.org/10.1109/ICDCS.1996.507899

Utility-Based Scheduling of (m, k)-firm Real-Time
Tasks – New Empirical Results
Florian Kluge∗

Department of Computer Science, University of Augsburg, Germany
fkuau@gmx.net

Abstract
The concept of a firm real-time task includes the
notion of a firm deadline that should not be missed
by the jobs of this task. If a deadline miss occurs,
the concerned job yields no value to the system. For
some applications domains, this restrictive notion
can be relaxed. For example, robust control systems
can tolerate that single executions of a control loop
miss their deadlines, and still yield an acceptable
behaviour. Thus, systems can be designed under
more optimistic assumptions, e.g. by allowing over-
loads. However, care must be taken that deadline
misses do not accumulate. This restriction can
be expressed by the model of (m, k)-firm real-time

tasks that require that from any k consecutive jobs
at least m are executed successfully. In this article,
we extend our prior work on the MKU scheduling
heuristic. MKU is based on history-cognisant utility
functions as means for making decisions in overload
situations. We present new theoretical results on
MKU and other schedulers for (m, k)-firm real-time
tasks. Based on extensive simulations, we assess
the performance of these schedulers. The results
allow us to identify task set characteristics that can
be used as guidelines for choosing a scheduler for a
concrete use case.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms
Keywords and phrases Real-time Scheduling, (m, k)-Firm Real-Time Tasks
Digital Object Identifier 10.4230/LITES-v004-i001-a002
Received 2016-01-25 Accepted 2016-12-28 Published 2016-12-31

1 Introduction

Certain types of real-time systems can tolerate that some jobs miss their deadlines or are not
executed at all. This allows to dimension the system more optimistically. Sporadically arising
overload conditions are resolved either by deferring or cancelling some jobs. Consider, for example,
the decoding of a video stream. If single frames are displayed too late, the quality a viewer
experiences degrades, but he still can draw some benefit. Similarly, control systems can also
tolerate some job losses due to their robustness. To convey the notion of such systems with relaxed
real-time constraints into real-time scheduling, Jensen et al. [19] and Locke [33] replaced the binary
notion of deadlines with more expressive time-utility functions (TUFs) and proposed a scheduler
based on earliest deadline first (EDF) [32]. A TUF describes the value or utility a system can
draw from a job execution if it is finished by a certain time, thus increasing the flexibility of
real-time systems.

A problem in TUF-based real-time scheduling is that each job is viewed independently.
Therefore, no guarantees can be given about the distribution of deadline misses or job cancellations
(both termed losses in the following) for single tasks. It may even happen that jobs of a specific
task are never executed [24]. Considering the above examples, it is obviously necessary that losses
of jobs do not accumulate and thus a simple Quality-of-Service (QoS) metric is not sufficient
to describe the available tolerances. Special concepts have been developed in scheduling theory

∗ Florian Kluge is now with Elektronische Fahrwerkssysteme GmbH.

© Florian Kluge;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 4, Issue 1, Article No. 2, pp. 02:1–02:25
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v004-i001-a002
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

02:2 Utility-Based Scheduling of (m, k)-firm Real-Time Tasks – New Empirical Results

that allow to constrain the distribution of deadline misses, for example the skip-over model [27],
(m, k)-firm real-time tasks [18], the dynamic window-constrained scheduler [44], or weakly-hard
real-time tasks [4]. All these approaches consider not only single jobs, but also the execution
history of the related tasks.

Our aim is to exploit the flexibility of TUF-based real-time scheduling while concurrently
providing (m, k)-firm real-time guarantees. We use history-cognisant utility functions (HCUFs) [24]
derived from TUFs to convey a task’s state to a TUF-based real-time scheduler. A history-cognisant
utility function (HCUF) represents the utility a task has accumulated with respect to the execution
of past jobs. In our previous work [25] we have proposed a heuristic algorithm for utility-based
scheduling of (m, k)-firm real-time tasks (MKU). The MKU algorithm is an extension of Jensen et
al.’s [19, 33] EDF-based scheduler. Our results in [25] show the feasibility of MKU and that it can
achieve good results when compared to other schedulers for (m, k)-firm real-time tasks.

In this article, we make the following contributions: First, we report new theoretical properties
on preemptive scheduling of (m, k)-firm real-time tasks. A schedulability test for tasks using fixed
(m, k)-patterns is presented. Additionally, we examine the phenomenon of breakdown anomalies,
where increasing the utilisation of an infeasible task set can lead to feasibility. Also, new results on
the schedulability of MKU are reported. Second, we present new results of extensive simulations
that enable us to assess different schedulers for (m, k)-firm real-time tasks more clearly. We use
arbitrary task sets to examine the overall performance of different schedulers, the feasibility of
schedulability tests, and the initialisation of a task’s execution history. In further simulations, we
examine tasks sets where task periods and (m, k)-constraints are restricted to practically relevant
ranges.

The remainder of this article is structured as follows: In the following Section 2, we define the
basic concepts used throughout this paper. Related work on TUF-based scheduling and scheduling
of (m, k)-firm real-time tasks is presented in Section 3. In Section 4, we present new properties of
(m, k)-firm schedules which we use in our evaluations. In Section 5, we introduce our evaluation
methodology. Evaluation results are shown and discussed in Section 6. We conclude this article in
Section 7.

2 Fundamentals

2.1 Task Model
An (m, k)-firm real-time task is a tuple τi = (Ci, Ti,mi, ki) with worst-case execution time (WCET)
Ci, period Ti and (m, k)-constraint (mi, ki). All numbers are integers. For simulation, we assume
that a task’s execution time is constant. In reality, the actual execution time of a task may be
lower than its WCET. We account for this fact in our simulation through the use of abstract task
sets and the generation of concrete task sets for different utilisations (see Section 2.2). Tasks
are initially released at time t = 0, i.e. the task set is synchronous, and have implicit deadlines
Di = Ti. Thus, jobs τi,j are generated at times ri,j = jTi, j = 0, 1, . . . and must be finished until
di,j = (j + 1)Ti to avoid deadline misses. Each job is subject to a firm real-time requirement: If
the job is not finished by its deadline, its result is useless and the job is cancelled. In this work,
we consider the preemptive scheduling of jobs on a single processor. Thereby, we assume that jobs
can be scheduled independently and that no resource constraints exist. If more than one job is
eligible for dispatching at a certain time, e.g. due to identical priorities, then the scheduler chooses
the job with the earliest activation time. If there are still multiple eligible jobs, an arbitrary one
is chosen.

A task τi’s (m, k)-constraint is defined by (mi, ki), meaning that in any ki jobs released
consecutively at least mi must be finished before their deadline. An (m, k)-firm real-time task

F. Kluge 02:3

incurs a dynamic failure if less than m out of k consecutive jobs meet their deadline. More
formally, this can be expressed using the concept of a k-sequence of a task. Let σj

i ∈ {0, 1} denote
the status of the j-th job of τi with σj

i = 0 representing a deadline miss or job cancellation, and
σj

i = 1 standing for successful execution. Then, τi’s state or k-sequence after execution of the j-th
job is a string σi = (σj−k+1

i , . . . , σj−1
i , σj

i) with σl
i ∈ {0, 1}k. New job states σj

i are shifted into σi

from the right. The (m, k)-constraint requires that a task τi’s k-sequence always contains at least
mi 1s. A task’s distance from dynamic failure is the number of jobs that consecutively would have
to miss their deadlines such that the task’s (m, k)-constraint is no longer kept.

2.2 Abstract and Concrete Task Sets
Abstract task sets (ATSs) form the basis of the simulations presented in this article. An ATS
α = {α1, α2, . . . , αn} is a set of abstract tasks αi = (ei, Ti,mi, ki) with periods Ti, (m, k)-
constraints (mi, ki) and execution time weights ei. A concrete task set τ(α,UT) is derived from
an ATS α by calculating the tasks’ execution times Ci such that the CTS approximates a target
utilisation of UT. The execution time weight ei specifies, how much task τi contributes to the task
set utilisation:

ei∑n
j=1 ej

= Ui

UT
(1)

Thereby, Ui = Ci

Ti
is the utilisation of the task under consideration. Solving with eq. (1) for Ci

yields:

Ci = UT∑n
j=1 ej

Tiei (2)

We consider only integral execution times in our simulations. How we obtain these will be clarified
in Section 5.1.

3 Related Work

3.1 TUF-based Scheduling
The concept of time-utility functions was originally introduced by Jensen et al. [19] and Locke [33].
Instead of basing task scheduling solely on the binary notion of a deadline, the use of TUFs allows
for a greater flexibility. A TUF describes the utility a system gains when a job is finished until
a certain time. Some TUFs for well-known real-time constraints are shown in Figure 1. Hard
real-time jobs (Figure 1a) must be finished by their deadline. Exceeding hard deadlines can result
in catastrophic consequences which is expressed by the value −∞ after the deadline. In contrast,
firm real-time jobs (Figure 1b) do not yield any utility when exceeding their deadline. The entries
in the k-sequence of a (m, k)-firm real-time task can be seen as the results of a firm real-time
TUF. Soft real-time jobs may exceed their deadlines and still yield a decreasing utility to the
system, which is shown in Figure 1c. TUFs are not restricted to these shapes. Thus, TUFs define
a generic interface for the specification of task timing requirements. They allow to integrate tasks
with different timing requirements in a system using only a single scheduler.

Jensen et al. [19] demonstrate the benefit of TUFs by extending EDF scheduling for overloaded
task sets. If a high probability for a deadline miss is detected that would render the EDF schedule
infeasible, jobs that contribute only with a low value-density (ratio of utility/value to execution
time) to the system are selectively cancelled. Thus, schedulability of the system is ensured and

LITES

02:4 Utility-Based Scheduling of (m, k)-firm Real-Time Tasks – New Empirical Results

Utility

0

1

Time

Deadline

−∞
(a) Hard real-time TUF.

Utility

0

1

Time

Deadline

(b) Firm real-time TUF.

Utility

0

1

Time

Deadline

(c) Soft real-time TUF.

Figure 1 Exemplary TUFs.

accumulated utility is maximised. In literature, this approach is often referred to as Locke’s best-
effort scheduling algorithm (LBESA). Based on LBESA, Clark [11] has developed the dependent
activities scheduling algorithm (DASA) for tasks with dependencies. Davis et al. [12] proposed
an adaptive threshold policy for the admission of jobs, which has a lower overhead than LBESA.
The notion of dynamic value density [1] reduces cancellations of jobs that have already started
execution. Li and Ravindran [30] presented the MLBESA and MDASA algorithms that mimic
the behaviour of LBESA and DASA, but come with lower complexities. TUF-based approaches
have often been proposed to handle transient overloads in real-time systems [3, 26, 6, 35, 34, 13].

Many works on scheduling based on TUFs can also be found under the term utility accrual
scheduling. The aim in utility accrual scheduling is to maximise the utility that is accrued through
the execution of tasks. Insofar, the values and shapes of TUFs are a central criterion for scheduling.
Chen and Muhlethaler [7] have shown that the problem of maximising value through arrangement
of jobs/tasks is NP-hard. They also proposed an heuristic scheduling algorithm with a complexity
of O(n3). The utility accrual packet scheduling algorithm by Wang and Ravindran [43] for packet
scheduling in switched Ethernet comes with a lower complexity of O(n2), but is restricted to
unimodal non-increasing TUFs. In contrast, the resource-constrained utility accrual algorithm by
Wu et al. [45] can handle arbitrary TUFs and resource constraints at a complexity of O(n2 logn).
The generic utility scheduling algorithm by Li et al. [31] can also deal with mutual exclusion
constraints, although with higher complexities of O(n3) for dispatching and O(n4r) for scheduling.
Tidwell et al. [42] model the scheduling problem as a Markov decision process that is solved
offline and yields an optimal solution. The solution is used to generate a lookup table that is
evaluated by an online scheduler in linear complexity. Also, works exist that investigate the use
of TUF-based scheduling on multiprocessor systems [41, 10, 9, 39]. Here, especially the work of
Rhu et al. [39] on the global multiprocessor utility accrual scheduling algorithm for (m, k)-firm
deadline-constrained multimedia streams (gMUA-MK) algorithm is interesting, as they aim to
schedule tasks with (m, k)-firm deadlines and TUFs on multiprocessors.

3.2 (m, k)-firm Real-Time Tasks

The concept of real-time tasks with (m, k)-firm deadlines was originally proposed by Hamdaoui
and Ramanathan [18]. They present a scheme for distance-based priority (DBP) assignment of
newly generated jobs for fixed-priority scheduling. Using this scheme, the priority of a job is
set depending on the task’s distance from dynamic failure. Jobs that belong to a task with
a short distance are assigned higher priorities. The corresponding calculations are based on
the task’s k-sequence (see Section 2.1). Goossens [16] points out two properties of the DBP
approach and devises an exact schedulability test. The first property concerns the initialisation
of the k-sequences: Goossens shows that the string σi = 1k is not optimal under DBP and may
yield to an infeasible schedule. In contrast, using an error state to initialise σi can result in a
feasible schedule. The second property is the periodicity of feasible DBP schedules. Scheduling

F. Kluge 02:5

decisions under DBP only depend on the (m, k)-constraints and k-sequences σi of the tasks,
whose space is bounded. Let P = lcm{Ti | i = 1, . . . , n} be the hyperperiod of the task set
τ = {τi = (Ci, Ti,mi, ki) | i = 1, . . . , n}. As τ is a synchronous task set with implicit deadlines, at
times B = kP, k ∈ N all jobs that were activated before t are finished, and each task releases a
new job. Thus, the system is in the same state each B = kP , and only the k-sequences of the
tasks may differ. For any task τi,

∑ki

j=mi

(
ki

j

)
distinct k-sequences exist. The period of a feasible

DBP schedule is bounded by

F =
n∏

i=1

ki∑
j=mi

(
ki

j

)
× P (3)

as any combination of tasks and their k-sequences must be considered. Thus, if a task set τ
is feasible in the interval [0, F), i.e. no (m, k)-constraint is violated, then τ is always feasible.
The exact schedulability test for τ consist of executing or simulating τ for this time interval and
checking whether the (m, k)-constraints of all tasks are always kept. Once an (m, k)-constraint is
violated, the test stops and returns that τ is not feasible. The test can be sped up by evaluating
the system state σ = (σ1, . . . , σn) consisting of all tasks’ k-sequences at each hyperperiod boundary
B = kP, k ∈ N. If a certain system state σ recurs, simulation can immediately be stopped, as the
schedule will repeat itself and thus is feasible. We will term this optimised test in the following as
Goossens’ schedulability test (GST).

The seminal work of Hamdaoui and Ramanathan [18] has sparked a number of further works
on the scheduling of (m, k)-firm real-time tasks. Ramanathan uses the concept of (m, k)-firm
real-time tasks for the specific use case of control systems [38]. A deterministic classification
into mandatory and optional jobs is proposed based on static (m, k)-patterns. Mandatory jobs
are scheduled with their original, e.g. rate-monotonic [32] priority while optional jobs get the
lowest possible priority. In the following, we will refer to this approach as evenly distributed
(m, k)-patterns (MKP). A set of (m, k)-firm real-time tasks τ = {τ1, τ2, . . . , τn} is considered
feasible, if at least all mandatory jobs can be executed successfully. A schedulability test is
based on the fact that the first instance τi,0 of any task τi is always classified as mandatory.
Ramanathan [38] provides a sufficient schedulability condition. However, this condition contains
a timing non-deterministic term which makes it hard to evaluate [20]. Jia et al. [20] propose a
schedulability test, which basically implements the response time analysis [2] for the first job of
any task heeding the (m, k)-patterns. For task sets with harmonic periods, the test provides exact
results, for all other task sets it is only sufficient.

Quan an Hu [37] note that the classification according to [38] introduces a high pessimism into
the schedulability analysis, as at time t = 0 a mandatory job from any task in a task set gets
ready. They relieve this critical instant by introducing spin or rotation values si that rotate the
(m, k)-patterns of each task τi by si places. Quan and Hu propose a heuristic algorithm for finding
good spin parameters, and also examine the use of a genetic algorithm for the determination of
spin parameters. In this work, we will use the heuristic algorithm under the term evenly distributed
(m, k)-patterns with spin values (MKP-S). As the original presentation of the algorithm in [37] is
missing important information, we apply the corrections that we describe in [22]. Spin parameters
are also considered by Semprebom et al. [40] for global time slot allocation in wireless real-time
networks. Additionally, the authors propose an online schedulability/admission test.

Flavia et al. [14] extend the work of Ramanathan [38] on the use of (m, k)-firm real-time tasks
for control of plants. They present a method to determine offline an optimal ki parameter for
a given controller and calculate controller parameters for all mi ∈ [1 . . . ki]. Depending on the
actual plant state during runtime, optimal mi are chosen and the controller parameters are set
appropriately.

LITES

02:6 Utility-Based Scheduling of (m, k)-firm Real-Time Tasks – New Empirical Results

Cho et al. devise the guaranteed dynamic priority assignment (GDPA) scheme [8]. It is based
on EDF scheduling, but additionally takes the tasks’ distance from a failing state into account.
Its aim is (1) to provide a bounded probability of violations of the (m, k)-firm constraints, and (2)
to maximise the probability of kept deadlines. Under GDPA, ready jobs are not directly inserted
into the EDF schedule, instead they are kept in ready list. Any time the schedule needs to be
adjusted, each job’s distance from dynamic failure is calculated. The EDF schedule is created
by considering the jobs in increasing order of their distance from dynamic failure, i.e. critical
jobs are preferred, and inserting them into the EDF schedule. If an insertion makes the schedule
infeasible, the job is removed again from the schedule. Jobs in the ready list that are infeasible are
cancelled. In the same paper, the simplified guaranteed dynamic priority assignment (GDPA-S) is
proposed. It works similar to GDPA, but has a lower runtime complexity. GDPA-S keeps ready
jobs in two lists, one in EDF order and another ordered in increasing distance from dynamic
failure. Dispatching is performed either from the head of the EDF list, if the EDF schedule is
feasible. Else, the most critical job (at the head of the second list) is dispatched. Again, infeasible
jobs are cancelled immediately. Concerning non-preemptive scheduling of (m, k)-firm real-time
tasks, the work on Matrix-DBP [36] provides necessary schedulability conditions. One that can
also be applied to preemptive scheduling is based on the minimum load that is generated by a set
of (m, k)-firm real-time tasks τ = {τ1, . . . τn}:

Umk =
i=n∑
i=1

mi

ki

Ci

Ti
(4)

The calculation of Umk assumes that only mi out of ki jobs of any task τi are executed. If

Umk > 1 (5)

then τ is not feasible.
An approach similar to the concept of (m, k)-firm real-time tasks is proposed by Gettings et

al. [15] for mixed-criticality systems with weakly-hard constraints. Their adaptive mixed criticality
– weakly hard algorithm can skip up to s out of m consecutive jobs to reduce the load from
low-critical tasks in a high-criticality mode, while still ensuring a guaranteed QoS for low-criticality
tasks.

3.3 The MKU Algorithm
In a previous publication [25], we have presented the utility-based scheduling of (m, k)-firm real-
time tasks (MKU) algorithm that is based on HCUFs [24, 23]. In the following, we give a brief
outline of its functionality, please refer to [25] for more details. MKU is based on LBESA, the
main difference is the utility function that is used in the decisions about job cancellations. We
use a HCUF [24, 23], that maps the execution history of a task into a single scalar value and
additionally provides a prediction about the tasks future utility. A task τi’s current utility Hm
after the completion or cancellation of its j-th job is the arithmetic mean of its current k-sequence
(see Section 2.1). The value is additionally scaled by ki

mi
to enable an easy comparison between

tasks with different (m, k)-constraints:

Ĥm(τi, j) = ki

mi

1
ki

k+1∑
l=0

σj−l
i = 1

mi

ki−1∑
l=0

σj−l
i (6)

Through the scaling, any task τi has the requirement that Ĥm(τi, j) ≥ 1. For scheduling decisions,
we use a task τi’s potential utility ĤP under the assumption that the currently active job τi,j is

F. Kluge 02:7

cancelled and ignore the least recent job τi,j−ki+1:

Ĥp(τi, j) = 1
mi

ki−2∑
l=0

σj−l
i (7)

If an overload situation occurs, the scheduler cancels jobs that have maximum Ĥp values. To
ensure the adherence of (m, k)-constraints, only jobs with Ĥp > 1 can be cancelled. If no job for
cancellation can be found, the task set is infeasible.

As MKU is based on LBESA, it inherits the algorithm’s complexity of O(n2) in overload
situations. This is similar to the GDPA, GDPA-S and gMUA-MK approaches, but higher than for
DBP and the pattern-based MKP/MKP-S schemes. However, unlike these schemes, MKU and the
underlying LBESA are not restricted to (m, k)-firm real-time tasks. They allow the integration of
tasks with other requirements in the same system, as long as these requirements can be expressed
in terms of TUFs/HCUFs.

4 New Properties of (m, k)-firm Real-Time Tasks

In the following, we present some properties of (m, k)-firm real-time task sets that have not yet
been reported in literature. First, we present exact schedulability conditions for approaches based
on fixed (m, k)-patterns (Section 4.1) and for the MKU scheme (Section 4.2). Finally, we report
our observations on scheduling anomalies in Section 4.3.

4.1 Feasibility of Approaches Based on Fixed (m, k)-Patterns
For (m, k)-firm real-time task sets that use fixed (m, k)-patterns defined in [38] (MKP), Jia et
al. give a sufficient schedulability test [20]. As the test is only sufficient, it may reject some task
sets that are actually feasible. Also, it cannot be applied to the MKP-S [37] approach, as the
rotation of the patterns might move the critical instant of the task set. Nevertheless, an exact
schedulability test can be derived for task sets that used fixed (m, k)-patterns. The derivation of
this test is similar to the one for DBP scheduling [16] and uses the same preconditions: (1) The
scheduling algorithm must be deterministic, and (2) it must be memory-less. In the context of
fixed (m, k)-patterns, the second precondition means that the algorithm’s decisions at any time
depend only on static properties of the active tasks. In contrast to [16], the current k-sequence of
a task has no influence on the schedule.

The exact schedulability test follows from the periodicity of schedules when using fixed
(m, k)-patterns.

I Theorem 1. Let a set of synchronous (m, k)-firm real-time tasks be scheduled by a fixed-priority
scheduler. Priorities are derived from fixed (m, k)-patterns that classify jobs into mandatory and
optional. Then the schedule is periodic with period

P = lcm{kiTi | i = 1 . . . n}. (8)

Proof. The priorities of jobs of a single task τi are derived from a fixed (m, k)-pattern of length ki.
Thus, each ki jobs, i.e. after kiTi cycles, the priority pattern recurs. For any two tasks τi, τj , the
job and priority pattern generated by both recurs after lcm{kiTi, kjTj} cycles, as after this times
both tasks’ are in the same state as at the beginning (concerning their patterns). Via induction,
this argument can be extended to n tasks τ1, . . . , τn. J

For a task set where the sufficient test by Jia et al. [20] does not indicate feasibility or where
the test is not applicable (MKP-S), it suffices the simulate the schedule for at most P cycles
(eq. (8)).

LITES

02:8 Utility-Based Scheduling of (m, k)-firm Real-Time Tasks – New Empirical Results

4.2 Schedulability under MKU
The schedulability test devised by Goossens [16] for task sets under DBP scheduling also applies
to the MKU scheduler in terms of the upper bound for simulation. The test is solely based on the
tasks’ periods and (m, k)-constraints, and the fact that the DBP scheduler itself is memoryless.
The MKU scheduler itself does not possess an internal state. Like DBP, it acts solely on the states
of the tasks, namely their k-sequences to calculate a task’s HCUF.

When applying GST for MKU scheduling, a further slight optimisation is possible. GST
examines the system state σ = (σ1, . . . , σn) after each hyperperiod. A repetition of σ without any
task violating its (m, k)-constraint means that the schedule is cyclic and valid, as the schedule
itself solely depends on σ. In its calculation of the possible HCUF Ĥp (eq. (7)), the MKU scheduler
only regards the most recent ki − 1 entries of each σi. Insofar, it operates on a reduced system
state:

I Definition 2. Let σR = (σR
1 , . . . , σ

R
n) be the reduced system state of a set of (m, k)-firm real-time

tasks. σR
i is obtained from a system state σi = (σj−k+1

i , . . . , σj−1
i , σj

i) by ignoring the least recent
entry, i.e. σR

i = (σj−k+2
i , . . . , σj−1

i , σj
i).

The following theorem provides the basis for an optimisation of GST for the HCUF-based scheduler:

I Theorem 3. If during the execution of GST with MKU a reduced system state σR recurs at a
hyperperiod boundary, a cycle in the MKU schedule has been found.

Proof. Let σ1, σ2 be two system states incurred in this order during execution of GST with MKU,
such that for the derived system states σR,1 = σR,2 (in the following simply σR. Further, let
L(σ) = (σj−k+1

1 , σj−k+1
2 , . . . , σj−k+1

n) be the vector of a system state σ’s least recent entries that
are ignored by σR. We can distinguish two cases:
1. If L(σ1) = L(σ2), then also σ1 = σ2. The whole system state recurred, a cycle in the schedule

has been found.
2. If L(σ1) 6= L(σ2), then there exists at least one i such that σ1,j−ki+1

i 6= σ2,j−ki+1
i . However,

the schedule S1 produced by MKU between σ1 and σ2 solely depends on σR,1, as MKU regards
only the σR

i for its cancellation decisions. Thus, MKU will produce the same schedule S2 = S1
after σ2, as σR,1 = σR,2. J

In case 1, a real cycle has been found, as is also detected by GST. Case 2 needs some closer
inspection, as it can help to speed up the schedulability test:

I Corollary 4. Let σ1, σ2 be two system states with σR,1 = σR,2, L(σ1) 6= L(σ2) (case 2 in the
proof of Theorem 3), σR := σR,1(= σR,2), and σ2 occurs after σ1. Further, let σ3 be the next
system state with σR,3 = σR. Then, L(σ3) = L(σ2) and σ3 = σ2.

Proof. Recall that the schedule S1 produced by MKU after σ1 only depends on σR,1 = σR. Thus,
MKU will produce the same schedule S2 = S1 after σ2. As the decisions for S1 and the result σR,2

are solely based on σR,1, S2 (taking the same decisions) will produce the same result σ3 = σ2,
and thus L(σ3) = L(σ2). J

This means that the schedulability test for MKU may terminate at least one hyperperiod earlier
compared to GST, depending on the length of the cycle.

4.3 Breakdown Anomalies
Consider an ATS (see Section 2.2), from which multiple CTSs are derived with increasing utilisations
U . In hard real-time scheduling, it is possible to identify a breakdown utilisation [29] for an ATS,

F. Kluge 02:9

Table 1 This ATS exhibits a breakdown anomaly at the target utilisations UT = 1.45 and UT = 1.55
when scheduled with DBP.

Task Ti ei (m, k) C1.45
i C1.55

i

τ0 6 55 (4, 8) 3 3
τ1 21 95 (1, 2) 19 21

t
0 10 20 30 40 50

τ0

5 4 3 2 2 1 1 1

τ1

2 2 1

(a) UT = 1.45, Task 1 violates its (1,2)-constraint at time 45.

t
0 10 20 30 40 50

τ0

5 4 3 2 2 2 2 5

τ1

2 2 1

(b) UT = 1.55, task set is feasible.

Figure 2 Example schedules with breakdown anomaly; for task parameters refer to Table 1; circled
numbers (x) denote DBP of job; red arrows () indicate job cancellations.

beyond which the derived CTSs are no longer feasible. Unfortunately, this method does not yield
exact results for (m, k)-firm real-time tasks. Increasing the utilisation of a (m, k)-firm real-time
task set farther beyond the breakdown utilisation can actually lead to the task set being feasible
again. To make the point more clearly, consider an ATS α with a breakdown target utilisation
UB, and two constants sI > 0, sF > 0, sI < sF. This means that the derived CTS with target
utilisation UB is feasible, but the CTS with target utilisation UB + sI is not. However, it may
happen that the CTS with target utilisation UB + sF is feasible again.

An exemplary ATS α that exhibits such a behaviour is shown in Table 1. We assume that both
tasks’ k-sequences are initialised with 1ki . The anomaly arises for target utilisations UT = 1.45
and UT = 1.55 (actual execution times are rounded to integer values). Figure 2a shows the DBP
schedule for τ(α, 1.45). Numbers in circles indicate the distance-based priority of each released job.
Please refer to [38] for the calculations involved. Lower numbers indicate higher priorities. In time
step 45, τ1,2 is cancelled, thus violating τ1’s (1, 2)-constraint. Even if the scheduler cancelled the
current instance of τ0 instead, the schedule would still be infeasible, as then τ0’s (4, 8)-constraint
would be violated later. Increasing UT for α leads to a feasible DBP schedule, as is shown in
Figure 2b. In this case, the segment between t = 0 and t = 42 is repeated periodically.

The breakdown anomalies are the result of the special structure of the DBP scheme. Scheduling
decisions made at a certain time do not only depend on static properties of the tasks. Instead,
they are also influenced by the internal states of the tasks, which in turn depend on the past
scheduling decisions. Thus, they can also occur in the MKU, GDPA and GDPA-S algorithms. The
consequence of such a behaviour is that these schedulers are not sustainable [5] with regard to the

LITES

02:10 Utility-Based Scheduling of (m, k)-firm Real-Time Tasks – New Empirical Results

tasks’ execution times. If a schedulability test shows that a certain task set is feasible, we cannot
be sure that it stays feasible if execution constraints are relaxed by decreasing execution times.

Such anomalies cannot happen in task sets that are scheduled using fixed (m, k)-patterns,
which we express in the following theorem:

I Theorem 5. Let a set of (m, k)-firm real-time tasks τ1 be derived from an ATS α for a given
utilisation U1. Further, assume that τ1 is not feasible using fixed (m, k)-patterns. Then, any task
set τ2 derived from α for a utilisation U2 > U1 is also not feasible.

Proof. Fixed (m, k)-patterns classify jobs into mandatory and optional jobs. A schedule S is
considered feasible, if all mandatory jobs are executed successfully. Infeasibility of S means that at
least one mandatory job τi,j misses its deadline at time di,j . Assume that τi,j is released at time
ai,j . Then, only mandatory jobs with priority higher than or equal to τi,j ’s priority are executed
in the interval [ai,j , di,j]. Increasing the utilisation of the task set means that the tasks’ execution
times are increased, but periods and thus activation times and deadlines remain unchanged. Thus,
the processing time demanded by higher-priority jobs in [ai,j , di,j] can only further increase, and
thus the deadline miss would occur also in the new task set. J

From this theorem follows that scheduling of tasks using fixed (m, k)-patterns is sustainable with
regard to execution times.

5 Evaluation Methodology

We perform extensive simulations of randomly generated task sets to compare the scheduling
approaches. The simulations are conducted using the tms-sim framework developed in our
group [21], which is available as open source software. In this section, we present the methodology
we apply in our evaluations.

5.1 Task Parameters
The parameters of the ATSs are generated using the libc pseudo-random number generator
(rand_r()). For the task periods Ti, two approaches are implemented: During most simulations,
the periods are chosen randomly from a given interval {Tmin, . . . , Tmax}. Additionally, we have
also implemented the period generator from Goossens and Macq [17]. This generator yields task
periods that have many common divisors, and a limited hyperperiod compared to randomly chosen
periods. Period generation is based on a matrix of multipliers, where each row contains powers of
a prime number. Period generation randomly selects one entry from each row. The actual period
then is the product of the chosen entries. For our simulations, we add a restriction that periods
must be > 2 for any task.

Execution time weights are chosen from an interval [1, emax] where emax represents the granu-
larity of the weights. Execution times Ci are calculated according to eq. (2). As we only consider
integral execution times in this work, the actual execution time C ′i of a task τi is obtained from
Ci through rounding. Additionally, we demand that no task has zero execution time:

C ′i =
{

[Ci], if [Ci] > 0
1, else (9)

Thereby, the operation [x] stands for regular rounding, i.e. returns the integer value that is nearest
to x. Through the rounding, the task set’s actual utilisation U =

∑n
i=0

Ci

Ti
can deviate from the

target utilisation. Task set generation is configured such that generated ATSs that deviate more
than a constant dU from an initial target utilisation are automatically discarded.

F. Kluge 02:11

Table 2 Task models, schedulers, and schedulability tests used in the experimental evaluation.

Model Abbr. Reference Test

FPP Scheduler
Distance-based priority DBP [18] GST
Fixed (m, k)-patterns MKP [38] [20], Sect. 4.1
MKP with pattern rotation MKP-S [37] Sect. 4.1

EDF-based Schedulers
Guaranteed Dynamic Priority Assignment GDPA [8] GST
Simplified GDPA GDPA-S [8] GST
Global Multiprocessor Utility Accrual scheduling
for (m, k)-firm deadline-constraints

gMUA-MK [39] GST

Utility-based (m, k)-tasks MKU [25] GST

The ki parameters are chosen from an interval {kmin, . . . , kmax}. For the mi parameters, we
have again implemented two approaches: Either, they can be chosen from {1, . . . , ki}. This
approach can yield mi values (compared to ki) that can seem quite unrealistic. Therefore, we
allow to limit the mi to meaningful ranges. An additional parameter rm ∈ [0, 1] can be specified
to lower-bound mi. The actual mi parameter then is chosen from {[rmki], . . . , ki}.

To the best of our knowledge, there is not yet an efficient way to find good intialisations for
the k-sequences. Checking all possible initialisation values is not feasible, as 2

∑n

i=1
ki schedules

would have to be examined. Therefore, we use 1ki as initial k-sequence, which might be as good
or bad as any other (possibly random) choice.

5.2 Simulation

Simulations are performed using the exact schedulability tests. For MKP and MKP-S, we use the
methods described by Jia et al. [20] (sufficient condition) and the one introduced in Section 4.1. For
all other schedulers, GST [16] is applied. Simulation of a CTS is performed as deemed necessary
by the schedulability tests. In the simulations, we search for the breakdown utilisations [29] of
ATSs under different schedulers. This search works as follows: A single ATS is repeatedly used
to generate CTSs. The first ATS is generated using a target utilisation UT = UB. If the CTS is
found to be schedulable for a certain scheduler, UT is increased by a utilisation step sU. Using
this updated UT, a new CTS is derived from the ATS and another simulation is performed. This
process is repeated until the CTS is no longer schedulable. The last UT that yields a feasible CTS
is called the breakdown utilisation. To account for breakdown anomalies (see Section 4.3), UT is
increased further and the derived CTSs are simulated, too. This process stops when the derived
CTSs no longer fulfil the necessary schedulability condition Umk ≤ 1 (see eq. (5)).

An overview of the task models and schedulers used for evaluation can be found in Table 2.
For our simulations, we have adjusted the gMUA-MK approach to immediately cancel jobs that
are removed from a schedule due an overload. Due to the assumption of constant execution times,
they would be cancelled anyway. Like in the MKU approach, we use the TUF for firm real-time
tasks (see Figure 1b).

LITES

02:12 Utility-Based Scheduling of (m, k)-firm Real-Time Tasks – New Empirical Results

Table 3 Parameters for task set generation and simulation.

Symbol Description Value

{Tmin, . . . , Tmax} Range for task periods (ignored when Goossens’ and
Macq’s period generator [17] is used, sect. 6.2.2, 6.2.3)

{5, . . . , 60}

emax Granularity of execution time weights 100
{kmin, . . . , kmax} Range for the ki parameter {2, . . . , 10}
{mmin, . . . ,mmax} Range for mi paramters {2, . . . , ki}
rm If specified, restricts mi to {[rmki], . . . , ki}

(only sect. 6.2.1, 6.2.3)
{0.1, 0.2, . . . , 0.9}

UT = UB Target/base utilisation of generated task sets 1.05
dU Maximum allowed deviation from UT 0.05
sU Utilisation step for breakdown utilisation search 0.01 / 0.1

5.3 Parameters & Aims of the Evaluation

5.3.1 Parameters

An overview of the parameters used for task set generation and simulation can be found in Table 3.
They are passed to tms-sim via the command line or a parameter file. The period and k parameter
ranges are chosen such as to be comparable with other works, e.g. [37]. The dU parameter is
only used during generation of an ATS. If the CTS generated for the base utilisation UB = UT is
not inside the interval UT ± dU, the ATS is discarded. The rm parameters are only used when
mentioned explicitly. All other experiments are based on the predefined {mmin, . . . ,mmax} interval.
For a fine-grained analysis of the schedulers’ behaviour, we set sU = 0.01, as this enables a good
identification of breakdown anomalies. In a second round of simulations where we examine the mi

parameter and task periods in more detail, we use sU = 0.1.

5.3.2 Aims

In our experimental evaluations, we aim to answer the following questions:
1. Our prior results [25] (subject to consolidation) indicate remarkably performance differences

between the different schedulers, when using the ratio of task sets that are feasible as a
performance metric. How do the different schedulers compare against each other, when an
exact schedulability test is applied (Section 6.1.1)?

2. How pessimistic is Goossens’ feasibility interval (eq. (3), [16])? Even for small task periods, mi

and ki values, the interval can get quite large. How high are the savings in terms of simulated
time introduced through GST? Also, we examine the practical relevance of the optimised
schedulability test for MKU that can be derived from Theorem 3 and Corollary 4. The results
are presented in Section 6.1.2.

3. How relevant are breakdown anomalies (Section 6.1.3)?
4. As Goossens [16] shows, the initialisation of the k-sequences of tasks can impact the feasibility

of a task set. However, it is open how to find good initialisation values. We explore the
possibility of cross-initialisation of k-sequences between different schedulers: If a task set with
given initial k-sequence is feasible only under one of two schedulers, simulation of the successful
scheduler necessarily runs into a cycle of k-sequences when applying GST. Is it possible to
use one of the recurring k-sequences as initial value for execution with the hitherto failing
scheduler (Section 6.1.4)?

F. Kluge 02:13

5. Due to cancellations, processing time already spent by the cancelled jobs is lost. How much
performance is lost by the different schedulers (Section 6.1.5)?

6. In general, our evaluations are based on arbitrary task sets with random parameters which
may not always have practical counterparts. If we restrict task periods and/or m parameters
to realistic ranges/values, does this have any influence on the above questions? Both aspects
are examined in Section 6.2.

6 Results

In [25], we have presented initial results on the performance of the some of the schedulers listed
in Table 2. These results are based on the simulation of random task sets for a fixed number of
time steps. If during this simulation time no violation of an (m, k)-constraint is detected, the task
set is classified as feasible. This approach can yield false positive results, as an infeasibility may
also happen just after the given number of time steps. Nevertheless, these results gave a first
impression of the performance of the schedulers: Best results were achieved with the DBP and
MKU approaches, followed by MKP and MKP-S. Least performance was exhibited by GDPA.
Due to a bug in the implementation of the simulator, approaches based on FPP scheduling
(DBP, MKP, MKP-S) exhibited a lower performance in [25] than they actually have. Also, MKU
showed better performance than DBP for moderate overloads. We will consolidate these results in
the following by using the exact schedulability tests as appropriate for the different schedulers.
The results presented in this section are based on two groups of simulations. In the first group
(Section 6.1), arbitrary task sets are examined in order to answer the first five questions laid down
in Section 5.3.2. The second group (Section 6.2) deals with the use of realistic task parameters
(last question in Section 5.3.2). These are only examined from the performance point of view. A
discussion of all results follows in Section 6.3.

6.1 Arbitrary Task Sets and Exact Schedulability Test

As already stated above, the simulation of a task set for a fixed number of time steps can yield
false positive results. For a closer examination of the different approaches, we therefore apply
the exact schedulability tests (see Table 2). We combine this with a search for the breakdown
utilisation of an ATS (see Section 5.2). ATSs are executed beyond the breakdown point to account
for breakdown anomalies (Section 4.3). CTSs derived from these ATSs are simulated as deemed
necessary by the schedulability tests. The results presented in the following are base on the
simulation of 500 ATSs that are executed with all schedulers in Table 2. Beyond performance
ratings of the scheduling approaches, we also investigate the performance of GST, breakdown
anomalies, and cross-initialisation of k-sequences between schedulers.

6.1.1 Scheduler Performance

The overall performance of all schedulers is shown in Figure 3. Due to breakdown anomalies, it
may be possible that some ATSs are actually feasible again for higher utilisation, which is discussed
later in Section 6.1.3. If we compare these numbers with the results of the rough estimation
presented in [25], we note that the actual success ratio of all schedulers is lower, which is just to be
expected due to false positives in the original results. Nevertheless, the ratios between the different
schedulers remain nearly unchanged. The DBP and MKU approaches still exhibit outstanding
performance. So, the rough estimation at least allows for qualitative comparison of the schedulers.
Concerning the bug in the implementation of the FPP scheduler, the results now show that for

LITES

02:14 Utility-Based Scheduling of (m, k)-firm Real-Time Tasks – New Empirical Results

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
0

0.5

1

Target Utilisation

Su
cc
es
s
R
at
e

DBP MKU MKP MKP-S GDPA GDPA-S GMUA-MK

Figure 3 Ratio of ATSs that are schedulable up to a certain target utilisation UT.

0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

Target Utilisation

O
cc
ur
re
nc
e
R
at
e

DBP GDPA GDPA-S GMUA-MK MKP MKP-S MKU

Figure 4 Breakdown (m, k)-utilisations Umk (classified by rounding to nearest tenth).

most target utilisations DBP yields a better performance than MKU. Also, the MKP and MKP-S
approaches exhibit a higher performance than estimated in [25].

Beyond providing a necessary schedulability condition, the (m, k)-utilisation Umk does not
help further to estimate the feasibility of a task set. Figure 4 shows the occurrence rate of the
(m, k)-utilisations at the breakdown point of a task set, classified by rounding to the nearest tenth.
The class Umk = 0 stands for ATSs that are not feasible at all. Obviously, a high (m, k)-utilisation
does not per se prohibit feasibility, although this is achieved by only few ATSs. Most ATSs have a
breakdown (m, k)-utilisation in the interval [0.55, 0.85).

6.1.2 Performance of Schedulability Tests
The exact schedulability test for the approaches based on fixed (m, k)-patterns proposed in
Section 4.1 yields a large feasibility interval. However, simulations must only be performed if the
sufficient test [20] fails. In contrast, the feasibility interval for DBP [16] tends to exceed the MKP
feasibility interval by far. In the following, we concentrate on the gains that are obtained through
GST.

The DBP feasibility interval defines a very high bound for the number of hyperperiods that
must be simulated successfully until feasibility of a task set can safely be assumed. Our experiments
show that this bound is quite pessimistic and the optimisation incorporated in GST yields great
value for the schedulability test. In all schedulers using GST, infeasibility is detected for most task
sets (> 99 %) during the first hyperperiod, only few take longer. In the experiment at hand, the
longest simulation to detect infeasibility takes three hyperperiods; in other simulations we observed
durations of up to six hyperperiods. Feasibility is mostly found after the second hyperperiod,

F. Kluge 02:15

Table 4 Number of ATSs that exhibit at least one breakdown anomaly.

DBP GDPA GDPA-S gMUA-MK MKU

Absolute 20 11 9 11 40
Relative (%) 4.0 2.2 1.8 2.2 8.0

again with only few CTSs needing more time (up to 18 hyperperiods can be observed). For feasible
CTSs, the first hyperperiod can be seen as a warm-up phase: At the start, the k-sequences have
an arbitrary initialisation, in our case 1k. These k-sequences are very unlikely to recur, as at least
some jobs necessarily must be cancelled due to the overload. So, during the warm-up phase a
good initialisation for the k-sequences is found, which leads into a recurring system state.

The gain from the optimised schedulability test for MKU that follows from Theorem 3 and
Corollary 4 is only marginal. From 10270 CTSs in the experiment that are feasible under MKU,
only 25 (0.2%) would finish earlier.

6.1.3 Breakdown Anomalies
Extending the simulations described previously beyond the ATSs’ breakdown points yields the
following results. As already proven in Theorem 5, the schedulers based on fixed (m, k)-patterns
(MKP, MKP-S) do not exhibit any anomalies. For the other schedulers, Table 4 gives the numbers
of ATSs that exhibit at least one breakdown anomaly. With 8% of the ATSs, MKU exhibits the
largest number of anomalies. Thus, like all unsustainable algorithms, it should be treated with
care.

6.1.4 Cross-Initialisation of k-Sequences
As noted by Goossens [16], the choice of the initial k-sequence can have significant impact on the
feasibility of a task set. So far, no efficient algorithm is available that can derive a meaningful
initialisation. We note that disjoint sets of CTS exist in our simulation results that are feasible
only under one of any two approaches, but not under both. Feasibility in this case means that,
after an initial warm-up phase which started with each task’s k-sequence σi being initialised to
1ki , a system state σ = (σ1, σ2, . . . , σn) (see Section 3.2) periodically recurs. For a CTS that is
feasible under two scheduling approaches, the corresponding system states may be different.

Our idea is to use a periodically recurring system state of a CTS that is only feasible under
one of two schedulers for initialisation of the same CTS under the other scheduler. This approach
might especially be interesting to improve the performance of approaches like GDPA. More
formally, we assume a task set τ with σi = 1ki , i = 1, 2, . . . , n that is feasible under a scheduler
SCF ∈ Schedulers = {DBP,MKU,GDPA,GDPA-S, gMUA-MK}, but not under another scheduler
SC I ∈ Schedulers. Thus, the execution of τ using SCF finally runs into a cycle where a system
state σF with σFi 6= 1ki recurs periodically. This follows from the fact that the task set is overloaded
and thus some jobs must be cancelled. Now we derive a task set τ ′ from τ by initialising each
task τ ′i ’s k-sequence with the corresponding data from σF . τ ′ then is simulated under SC I using
GST to check whether the new initial k-sequence leads to a valid schedule. This approach is not
applicable to the MKP and MKP-S approaches, as these disregard tasks’ k-sequences.

In our simulations, we can identify significant numbers of candidate task sets only in the DBP
and MKU approaches. Concerning the transfer of their final system state σF to other schedulers,
only negligible successes can be achieved. For example, 263 distinct task sets are feasible in our
simulations under DBP, but not under GDPA. Using their final system state for execution under

LITES

02:16 Utility-Based Scheduling of (m, k)-firm Real-Time Tasks – New Empirical Results

1 1.1 1.2 1.3
0%

5%

10%

Target Utilisation UT

P
ro
ce
ss
in
g
T
im

e
R
at
io

DBP MKU GDPA GDPA-S GMUA-MK

Figure 5 Mean lost processing time through EC (only feasible task sets; scaled by number of hyper-
periods and hyperperiod length; only task sets where all schedulers successful).

GDPA leads to feasibility for only one task set. For a cross-initialisation from DBP to gMUA-MK,
only 2 out of 274 candidates gain feasibility. Other transfers yield similar results. Thus, the
cross-initialisation approach does not promise to lead to significant improvements concerning
feasibility.

6.1.5 Cancellation of Running Jobs
Cancelling a job that has already started execution leads to the already consumed processing
time being lost. Figure 5 shows the mean ratio of processing time that is lost due to cancellation
of executing jobs. The schedulers based on fixed (m, k)-patterns (MKP, MKP-S) are omitted
for two reasons: (1) If the sufficient schedulability test is successful, no simulation is performed,
so no numbers are available for some task sets. (2) Only optional jobs (having lowest possible
priority) are allowed to be cancelled; processing time that would be lost could be reclaimed by
(possibly non-real-time) tasks that are running above the lowest possible priority, but still below
the priorities of the (m, k)-firm real-time tasks.

Only CTSs that are feasible under all schedulers are included in the figures. The numbers are
calculated in the following manner: For each CTS, the number of lost time steps is scaled by the
task set’s hyperperiod and the number of hyperperiods it is executed. From these numbers, the
average is calculated for each target utilisation.

Figure 5 shows that approaches that have a rather low performance (in terms of their ability to
find feasible schedules), tend to loose only a minor portion of processing time due to cancellation
of already executing jobs. Most interestingly, in the GDPA no processing time is lost at all. This
can be explained through the special technique in which GDPA calculates its schedule: Jobs with
a high distance from dynamic failure are considered later for insertion into the EDF schedule than
those that are near to a dynamic failure. If the insertion makes the EDF schedule infeasible, the
job is removed again and deferred (but not yet cancelled!). Jobs with high distance to dynamic
failure tend to be considered rather late for the schedule, and thus have a higher probability to
lead to infeasibility, as the schedule might already be rather “full” through more critical jobs. Thus
they are deferred without being executed, until they are cancelled due to missing their deadline.

The losses in the gMUA-MK approach stays well below 3%. The costs incurred by GDPA-S
are similar to those of MKU. Compared to the other approaches, DBP loses the highest amount
of processing time.

The results allow us also to deduct that the higher flexibility of the DBP and MKU approaches
(in terms of finding feasible schedules) is bought at the cost of a higher amount of lost processing

F. Kluge 02:17

DBP MKU MKP MKP-S GDPA GDPA-S GMUA-MK

1.05 1.15

0%

10%

20%

Target Utilisation

Su
cc
es
s
R
at
e

Figure 6 Performance with restricted mi,
rm = 0.8.

1.05

0%
2%
4%
6%

Target Utilisation

Su
cc
es
s
R
at
e

Figure 7 Performance with restricted mi,
rm = 0.9.

time (here up to 13%). Thereby, lower costs are incurred by MKU. This is due to the fact that
MKU cancels jobs in a more anticipatory manner as soon as an overload pends somewhere in the
schedule. Jobs in DBP are only cancelled when they can no longer meet their deadline.

6.2 Realistic Periods and m Parameters
The results presented so far are based on task sets with quite arbitrary parameters, concerning
especially the task periods and m parameters. In reality, one would not find such a great variability:
In real applications, task periods within a task set can be tuned to be harmonic or at least have
many common divisors, and they span several orders of magnitude (see e.g. [28]). Also, it seems
unrealistic to have tasks with a low ratio m

k which would mean that most jobs could be skipped.
In the following, we examine the behaviour of DBP and MKU under more realistic conditions
by restricting m parameters, task periods, and both. For all results, the utilisation step is set to
sU = 0.1. Breakdown anomalies are ignored, i.e. an ATS is simulated only until the first infeasible
CTS (these may differ for different schedulers!).

6.2.1 Restricted m Parameters
If generation of the m parameter of a task is restricted to an interval [rmki, ki], we get some
interesting results. In the following evaluations, we examine values rm ∈ {0.1, 0.2, . . . , 0.9}.
Although, in our view, reasonable rm values would rather be in the upper part of this set, we also
need to look at low values, as we will see soon.

For each value of rm, 500 ATSs are generated and simulated again with all schedulers. Like
before, we use the breakdown utilisation of the ATSs and the number of feasible CTSs for each
target utilisation to assess the performance of the schedulers. Breakdown anomalies occur in these
simulations only rarely (≤ 2 % of the ATSs per rm value), and are therefore ignored.

We show the success rates of the schedulers for rm = 0.8 and rm = 0.9 in Figures 6 and 7.
Further diagrams for the other rm values can be found in appendix B. For most schedulers, the
performance ratio between any two stays similar to that found in the above simulations. As
expected, the overall performance decreases with increasing rm. This can most clearly be observed
by a decrease of the maximum target utilisation for which feasible CTSs exist. Also, the number
of feasible CTSs at UT = 1.05 decreases rapidly with increasing rm.

However, the DBP and MKU schedulers exhibit a more interesting behaviour, when examined
in this detail compared to the simulations in 6.1. For very moderate overloads (UT = 1.05),
MKU achieves in most simulations, where rm ≥ 0.3, a better average performance than DBP. It
seems that in these situations the advantages of EDF, which MKU is based on, over fixed-priority

LITES

02:18 Utility-Based Scheduling of (m, k)-firm Real-Time Tasks – New Empirical Results


1 1 2 2 4 4 8 8 16 32
1 1 3 3 3 3 9 9 9 9
1 1 1 5 5 5 5 5 25 25
7 7 7 7 7 7 7 7 7 49
1 1 1 1 1 1 1 11 11 11


Figure 8 Matrix used for generation of realistic task periods.

1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05
0%

50%

100%

Target Utilisation

Su
cc
es
s
R
at
e

DBP MKU MKP MKP-S GDPA GDPA-S GMUA-MK

Figure 9 Ratio of task sets with realistic periods that are feasible up to a certain target utilisation UT.

scheduling can still surface despite the overload. Applying the cross-initialisation technique (see
Section 6.1.4) to transfer successful k-sequences from MKU to the more runtime-efficient DBP
does not yield any successes for rm ≥ 0.6, which in our view defines the most relevant range of m
parameters.

6.2.2 Realistic Periods
In real applications, periods are often harmonic or have at least many common divisors. Also,
they usually span several orders of magnitude. To imitate such circumstances, we use the period
generator proposed by Goossens and Macq [17], which is aimed to generate task sets with limited
hyperperiods (see Section 5.1). For our experiments, we use the matrix shown in Figure 8. With
this matrix, we get periods in a range from 3 to 3,880,800. The maximum hyperperiod is also
3,880,800. All other task parameters are chosen as shown in Table 3.

Simulations are again performed for 500 ATSs. Figure 9 shows the ratio of ATSs that are
feasible for a given target utilisation under the DBP and MKU approaches. Values for UT > 2.05
are omitted, as they are very small.

The larger range of periods seem to have a rather detrimental effect on most schedulers.
Compared to the periods used in Section 6.1, their performance is more than halved. However,
some exceptions exist: For a moderate overload at UT = 1.05, gMUA-MK actually improves, but
deteriorates fast for larger UT. The MKP and MKP-S schedulers actually achieve much better
results. These can be attributed to the larger range of periods in the single task sets. As both
approaches also use rate monotonic (RM) priorities [32] for their mandatory jobs, the critical
instance at time t = 0 is greatly relieved: In the previous evaluations (Section 6.1), all jobs
released at this time have similar deadlines and thus compete for processing time in the same
interval. In contrast, with the extended period ranges, low-priority tasks (having long deadlines)
can profit from multiple activations of tasks with shorter period within their period, as they can
easily supersede the optional instances of the short-period tasks. Parts of the improvement may
also stem from the fact that some task sets in this simulation have harmonic periods. For such

F. Kluge 02:19

DBP MKU MKP MKP-S GDPA GDPA-S GMUA-MK

1.05 1.15 1.25

0%

20%

40%

Target Utilisation

Su
cc
es
s
R
at
e

Figure 10 Performance with restricted mi (rm =
0.8) and realistic periods.

1.05
0%

10%

20%

Target Utilisation

Su
cc
es
s
R
at
e

Figure 11 Performance with restricted mi (rm =
0.9.) and realistic periods

task sets, it is known that the utilisation bound for schedulability under fixed priorities increases
to U ≤ 1.0, compared to the Liu/Layland bound of U ≈ 0.69. Concerning the deterioration of
DBP, we note that DBP in many cases makes decisions that are sub-optimal for such task sets.
Depending on (m, k)-constraints, it happens that DBP prefers a task with higher period over one
with lower period due to the priority assignment being solely based on distance from dynamic
failure. In such task sets, this often leads to multiple consecutive low-period jobs (with actually
high RM priority) being not executed at all and thus a violation of (m, k)-constraints.

6.2.3 Combination
Finally, we examine the combination of restricting tasks’ m parameters and periods. Task
parameters are generated as in Section 6.2.1 except for the periods, for which we employ Goossens’
and Macq’s approach [17] already used in Section 6.2.2. Again, 500 ATSs are generated and
simulated. Performance numbers are again based on the breakdown utilisations, ignoring the
rarely occurring breakdown anomalies.

Exemplarily, we show the success rates of the schedulers for rm = 0.8 and rm = 0.9 in Figures 10
and 11. Further diagrams for the other rm values can be found in appendix B. They can be
interpreted as a combination of the results of the previous two experiments. The performance of all
approaches is clearly dominated by the larger variance of periods. The MKP/MKP-S approaches
still achieve outstanding performance due to the higher variation of task periods within the task
sets. The other approaches suffer from both the regular periods and the high rm parameter.

6.3 Discussion
Our results make several points in regard to which scheduler should be used for which kind of
set of (m, k)-firm real-time tasks. First, if task periods span several orders of magnitude, as
is often the case for industrial applications, the schedulers based on fixed (m, k)-patterns can
achieve better performance (see Section 6.2.2). They have the additional advantage that a simple
schedulability test [20] is available. If task periods can be tuned to be harmonic, the test yields
exact results. Second, for task periods that are in the same order of magnitude, better results are
achieved using one of the DBP or MKU schedulers (see Section 6.1). Depending on how strongly
the task set is constrained by (m, k)-parameters, either one of the two tends to yield better results.
If constraints are very harsh, i.e. if the mi are very near to the ki, then the performance tends to
be higher under MKU, and vice versa for DBP. However, it may still happen that, e.g. a strongly
constrained task set is feasible under DBP, but not under MKU. So the final choice of a scheduler
must be based on a accurate examination of the task set considering all schedulers available.

LITES

02:20 Utility-Based Scheduling of (m, k)-firm Real-Time Tasks – New Empirical Results

7 Conclusions

In this article, we have extended our prior work on HCUF-based scheduling of (m, k)-firm real-time
tasks and examined several schedulers for (m, k)-firm real-time tasks. For existing schedulers for
(m, k)-firm real-time tasks, we pointed out some new properties, namely an exact schedulability
test for scheduling based on fixed (m, k)-patterns and the existence of breakdown anomalies in
approaches like DBP. Concerning our HCUF-based heuristic MKU, we presented new formal
results on the schedulability.

In an experimental evaluation, we examined the schedulers under several points of view.
Therefore, extensive simulations of randomly generated task sets were performed using the
different schedulers and different generation approaches. The simulations are based on the search
for breakdown utilisation [29] of abstract task sets. Our results show that the HCUF-based
heuristic MKU can achieve a similar performance as DBP [18], which has the best performance
among all schedulers regarded if task periods within a task set are roughly in the same order
of magnitude and (m, k)-constraints are very heterogeneous. Both approaches were able to find
feasible schedules for up to 80% of the generated task sets. They also show the advantage of the
optimisation that GST [16] introduces for testing the exact schedulability condition for (m, k)-firm
real-time task sets under DBP, as GST can reduce the simulation time significantly. The results
show further that no clear relation exists between a task sets’ (m, k)-utilisation and its feasibility.
The occurrence of breakdown anomalies in our results indicate that care must be taken when
using one of the DBP, MKU, GDPA, GDPA-S or gMUA-MK schedulers for an actual system: if
the actual execution time of tasks is smaller than assumed during schedulability analysis, the task
set may become infeasible under these schedulers. Depending on the used scheduler, about 2-8%
of the task sets were affected by this problem in our simulations. We also tackled the problem of
finding good initialisations of tasks’ k-sequences, as these can impact feasibility [16]. Using results
produced by a feasible schedule as initialisation for a task set under another scheduler, where it is
infeasible so far, could yield only minor improvements. The examination of processing time lost
due to job cancellations gives some surprising results: Under this metric, the GDPA/GDPA-S [8]
and gMUA-MK [39] schedulers achieved best performance (less than 2% loss), while DBP lost up
to 13% of the processing time. The MKU approach lies somewhere between these numbers.

In further simulations, we restricted task set generation to realistic parameters. A lower bound
for the m parameter prohibited the generation of tasks whose jobs are scarcely executed. As
could be expected, having the mi parameters of tasks near their ki parameters resulted in a
decrease of all schedulers’ performances. However, we also observed that in such a scenario with
very strong (m, k)-constraints, MKU can actually achieve better results than DBP. By using
the period generator proposed by Goossens and Macq [17], periods spanning multiple orders of
magnitude inside a task set were generated. In such task sets, the performance of MKU and DBP
degraded significantly due to sub-optimal decisions. Concurrently, the schedulers based on fixed
(m, k)-patterns (MKP [38] and MKP-S [37]) could achieve much higher performance (feasibility
for up to ≈ 93 % of the generated CTSs).

We draw the following conclusions from our results: When the periods in a task set span
several orders of magnitude, as is e.g. the case for automotive systems [28], then an approach
using fixed (m, k)-patterns should be preferred. When task periods are roughly the same order
of magnitude, then DBP or MKU can yield a better performance, but care must be taken for
schedulability anomalies, as both algorithms are not sustainable.

In this article, we restrict ourselves to mapping (m, k)-firm constraints with HCUF, but the
scheduling approach is not limited to these (m, k)-HCUFs. We expect that also other HCUFs can
be used in the future, e.g. to communicate applications’ current state and requirements such that
the scheduler can adjust its decisions.

F. Kluge 02:21

References
1 Saud Ahmed Aldarmi and Alan Burns. Dynamic

value-density for scheduling real-time systems. In
11th Euromicro Conference on Real-Time Systems
(ECRTS 1999), 9-11 June 1999, York, England,
UK, Proceedings, pages 270–277. IEEE Computer
Society, 1999. doi:10.1109/EMRTS.1999.777474.

2 Neil C. Audsley, Alan Burns, Mike M. Richard-
son, Ken Tindell, and Andy J. Wellings. Apply-
ing new scheduling theory to static priority pre-
emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993. doi:10.1049/sej.1993.0034.

3 Sanjoy K. Baruah, Gilad Koren, Bhubaneswar
Mishra, Arvind Raghunathan, Louis E. Rosier, and
Dennis E. Shasha. On-line scheduling in the pres-
ence of overload. In 32nd Annual Symposium on
Foundations of Computer Science, San Juan, Pu-
erto Rico, 1-4 October 1991, pages 100–110. IEEE
Computer Society, 1991. doi:10.1109/SFCS.1991.
185354.

4 Guillem Bernat, Alan Burns, and Albert Llam-
osí. Weakly hard real-time systems. IEEE Trans.
Computers, 50(4):308–321, 2001. doi:10.1109/12.
919277.

5 Alan Burns and Sanjoy K. Baruah. Sus-
tainability in real-time scheduling. JCSE,
2(1):74–97, 2008. URL: http://jcse.kiise.org/
PublishedPaper/year_abstract.asp?idx=15.

6 Giorgio C. Buttazzo, Marco Spuri, and Fabrizio
Sensini. Value vs. deadline scheduling in over-
load conditions. In 16th IEEE Real-Time Sys-
tems Symposium, Palazzo dei Congressi, Via Mat-
teotti, 1, Pisa, Italy, December 4-7, 1995, Proceed-
ings, pages 90–99. IEEE Computer Society, 1995.
doi:10.1109/REAL.1995.495199.

7 Ken Chen and Paul Mühlethaler. A scheduling
algorithm for tasks described by time value func-
tion. Real-Time Systems, 10(3):293–312, 1996.
doi:10.1007/BF00383389.

8 Hyeonjoong Cho, Yongwha Chung, and Daihee
Park. Guaranteed dynamic priority assignment
scheme for streams with (m, k)-firm deadlines.
ETRI Journal, 32(3):500–502, June 2010. doi:
10.4218/etrij.10.0109.0544.

9 Hyeonjoong Cho, Binoy Ravindran, and
E. Douglas Jensen. Utility accrual real-time
scheduling for multiprocessor embedded systems.
J. Parallel Distrib. Comput., 70(2):101–110, 2010.
doi:10.1016/j.jpdc.2009.10.003.

10 Hyeonjoong Cho, Haisang Wu, Binoy Ravindran,
and E. Douglas Jensen. On multiprocessor util-
ity accrual real-time scheduling with statistical
timing assurances. In Edwin Hsing-Mean Sha,
Sung-Kook Han, Cheng-Zhong Xu, Moon-hae Kim,
Laurence Tianruo Yang, and Bin Xiao, editors,
Embedded and Ubiquitous Computing, Interna-
tional Conference, EUC 2006, Seoul, Korea, Au-
gust 1-4, 2006, Proceedings, volume 4096 of Lec-
ture Notes in Computer Science, pages 274–286.
Springer, 2006. doi:10.1007/11802167_29.

11 Raymond Keith Clark. Scheduling Dependent
Real-Time Activities. PhD thesis, Carnegie Mel-
lon University, August 1990.

12 Robert I. Davis, Sasikumar Punnekkat, Neil C.
Audsley, and Alan Burns. Flexible scheduling for

adaptable real-time systems. In 1st IEEE Real-
Time Technology and Applications Symposium,
Chicago, Illinois, USA, May 15-17, 1995, pages
230–239. IEEE Computer Society, 1995. doi:10.
1109/RTTAS.1995.516220.

13 Wanfu Ding and Ruifeng Guo. Design and evalu-
ation of sectional real-time scheduling algorithms
based on system load. In Proceedings of the
9th International Conference for Young Computer
Scientists, ICYCS 2008, Zhang Jia Jie, Hunan,
China, November 18-21, 2008, pages 14–18. IEEE
Computer Society, 2008. doi:10.1109/ICYCS.2008.
208.

14 Felicioni Flavia, Jia Ning, Françoise Simonot-Lion,
and Yeqiong Song. Optimal on-line (m, k)-firm
constraint assignment for real-time control tasks
based on plant state information. In Proceedings
of 13th IEEE International Conference on Emer-
ging Technologies and Factory Automation, ETFA
2008, September 15-18, 2008, Hamburg, Germany,
pages 908–915. IEEE, 2008. doi:10.1109/ETFA.
2008.4638504.

15 Oliver Gettings, Sophie Quinton, and Robert I.
Davis. Mixed criticality systems with weakly-hard
constraints. In Julien Forget, editor, Proceedings
of the 23rd International Conference on Real Time
Networks and Systems, RTNS 2015, Lille, France,
November 4-6, 2015, pages 237–246. ACM, 2015.
doi:10.1145/2834848.2834850.

16 Joël Goossens. (m, k)-firm constraints and DBP
scheduling: Impact of the initial k-sequence and
exact feasibility test. In 16th International
Conference on Real-Time and Network Systems
(RTNS’08), pages 61–66, October 2008.

17 Joël Goossens and Christophe Macq. Limita-
tion of the hyper-period in real-time periodic
task set generation. In Proceedings of the 9th
International Conference on Real-Time Systems
(RTS’01), pages 133–148, March 2001.

18 Moncef Hamdaoui and Parameswaran
Ramanathan. A dynamic priority assignement
technique for streams with (m, k)-firm deadlines.
IEEE Trans. Computers, 44(12):1443–1451, 1995.
doi:10.1109/12.477249.

19 E. Douglas Jensen, C. Douglas Locke, and Hidey-
uki Tokuda. A time-driven scheduling model for
real-time operating systems. In 6th Real-Time
Systems Symposium (RTSS ’85), December 3-6,
1985, San Diego, California, USA, pages 112–122,
December 1985.

20 Ning Jia, Ye-Qiong Song, and Françoise Simonot-
Lion. Task Handler Based on (m,k)-firm Con-
straint Model for Managing a Set of Real-Time
Controllers. In Nicolas Navet, Françoise Simonot-
Lion, and Isabelle Puaut, editors, 15th Inter-
national Conference on Real-Time and Network
Systems - RTNS 2007, pages 183–194, Nancy,
France, 2007. URL: http://hal.inria.fr/inria-
00189899.

21 Florian Kluge. tms-sim – timing models scheduling
simulation framework – release 2014-12. Technical
Report 2014-07, University of Augsburg, December
2014. doi:10.13140/2.1.1251.2321.

LITES

http://dx.doi.org/10.1109/EMRTS.1999.777474
http://dx.doi.org/10.1049/sej.1993.0034
http://dx.doi.org/10.1109/SFCS.1991.185354
http://dx.doi.org/10.1109/SFCS.1991.185354
http://dx.doi.org/10.1109/12.919277
http://dx.doi.org/10.1109/12.919277
http://jcse.kiise.org/PublishedPaper/year_abstract.asp?idx=15
http://jcse.kiise.org/PublishedPaper/year_abstract.asp?idx=15
http://dx.doi.org/10.1109/REAL.1995.495199
http://dx.doi.org/10.1007/BF00383389
http://dx.doi.org/10.4218/etrij.10.0109.0544
http://dx.doi.org/10.4218/etrij.10.0109.0544
http://dx.doi.org/10.1016/j.jpdc.2009.10.003
http://dx.doi.org/10.1007/11802167_29
http://dx.doi.org/10.1109/RTTAS.1995.516220
http://dx.doi.org/10.1109/RTTAS.1995.516220
http://dx.doi.org/10.1109/ICYCS.2008.208
http://dx.doi.org/10.1109/ICYCS.2008.208
http://dx.doi.org/10.1109/ETFA.2008.4638504
http://dx.doi.org/10.1109/ETFA.2008.4638504
http://dx.doi.org/10.1145/2834848.2834850
http://dx.doi.org/10.1109/12.477249
http://hal.inria.fr/inria-00189899
http://hal.inria.fr/inria-00189899
http://dx.doi.org/10.13140/2.1.1251.2321

02:22 Utility-Based Scheduling of (m, k)-firm Real-Time Tasks – New Empirical Results

22 Florian Kluge. Notes on the generation of spin-
values for fixed (m, k)-patterns. Technical Report
2016-01, University of Augsburg, January 2016.

23 Florian Kluge, Mike Gerdes, Florian Haas, and
Theo Ungerer. A generic timing model for cyber-
physical systems. In Workshop Reconciling Per-
formance and Predictability (RePP’14), Grenoble,
France, April 2014. doi:10.13140/2.1.1820.4165.

24 Florian Kluge, Florian Haas, Mike Gerdes, and
Theo Ungerer. History-cognisant time-utility-
functions for scheduling overloaded real-time con-
trol systems. In Proceedings of 7th Junior Re-
searcher Workshop on Real-Time Computing (JR-
WRTC 2013), Sophia Antipolis, France, October
2013.

25 Florian Kluge, Markus Neuerburg, and Theo
Ungerer. Utility-based scheduling of (m, k) -
firm real-time task sets. In Luís Miguel Pinho,
Wolfgang Karl, Albert Cohen, and Uwe Brink-
schulte, editors, Architecture of Computing Sys-
tems - ARCS 2015 - 28th International Confer-
ence, Porto, Portugal, March 24-27, 2015, Pro-
ceedings, volume 9017 of Lecture Notes in Com-
puter Science, pages 201–211. Springer, 2015. doi:
10.1007/978-3-319-16086-3_16.

26 Gilad Koren and Dennis E. Shasha. Dover; an op-
timal on-line scheduling algorithm for overloaded
real-time systems. In Proceedings of the Real-
Time Systems Symposium - 1992, Phoenix, Ari-
zona, USA, December 1992, pages 290–299. IEEE
Computer Society, 1992. doi:10.1109/REAL.1992.
242650.

27 Gilad Koren and Dennis E. Shasha. An ap-
proach to handling overloaded systems that al-
low skips. In 16th IEEE Real-Time Systems
Symposium, Palazzo dei Congressi, Via Matteotti,
1, Pisa, Italy, December 4-7, 1995, Proceedings,
pages 110–119. IEEE Computer Society, 1995. doi:
10.1109/REAL.1995.495201.

28 Simon Kramer, Dirk Ziegenbein, and Arne Ham-
ann. Real world automotive benchmark for free.
In 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time
Systems (WATERS 2015), July 7, 2015, Lund,
Sweden, July 2015.

29 John P. Lehoczky, Lui Sha, and Y. Ding. The
rate monotonic scheduling algorithm: Exact char-
acterization and average case behavior. In Pro-
ceedings of the Real-Time Systems Symposium -
1989, Santa Monica, California, USA, Decem-
ber 1989, pages 166–171. IEEE Computer Society,
1989. doi:10.1109/REAL.1989.63567.

30 Peng Li and Binoy Ravindran. Fast, best-effort
real-time scheduling algorithms. IEEE Trans.
Computers, 53(9):1159–1175, 2004. doi:10.1109/
TC.2004.61.

31 Peng Li, Haisang Wu, Binoy Ravindran, and
E. Douglas Jensen. A utility accrual scheduling al-
gorithm for real-time activities with mutual exclu-
sion resource constraints. IEEE Trans. Computers,
55(4):454–469, 2006. doi:10.1109/TC.2006.47.

32 C. L. Liu and James W. Layland. Scheduling
algorithms for multiprogramming in a hard-real-
time environment. J. ACM, 20(1):46–61, 1973.
doi:10.1145/321738.321743.

33 Carey Douglass Locke. Best-effort decision-
making for real-time scheduling. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA,
1986. URL: http://douglocke.com/Downloads/BE.
pdf.

34 Pedro Mejía-Alvarez, Rami G. Melhem, and Daniel
Mossé. An incremental approach to scheduling dur-
ing overloads in real-time systems. In Proceedings
of the 21st IEEE Real-Time Systems Symposium
(RTSS 2000), Orlando, Florida, USA, 27-30
November 2000, pages 283–294. IEEE Computer
Society, 2000. doi:10.1109/REAL.2000.896017.

35 Daniel Mossé, Martha E. Pollack, and Yagíl Ronén.
Value-density algorithms to handle transient over-
loads in scheduling. In 11th Euromicro Confer-
ence on Real-Time Systems (ECRTS 1999), 9-
11 June 1999, York, England, UK, Proceedings,
pages 278–286. IEEE Computer Society, 1999. doi:
10.1109/EMRTS.1999.777475.

36 Enrico Poggi, Yeqiong Song, Anis Koubaa, and
Zhi Wang. Matrix-dbp for (m, k)-firm real-time
guarantee. In Real-Time Systems Conference
RTS’2003, Paris (France), pages 457–482, 2003.

37 Gang Quan and Xiaobo Sharon Hu. Enhanced
fixed-priority scheduling with (m, k)-firm guaran-
tee. In Proceedings of the 21st IEEE Real-Time
Systems Symposium (RTSS 2000), Orlando, Flor-
ida, USA, 27-30 November 2000, pages 79–88.
IEEE Computer Society, 2000. doi:10.1109/REAL.
2000.895998.

38 Parameswaran Ramanathan. Overload manage-
ment in real-time control applications using (m,
k)-firm guarantee. IEEE Trans. Parallel Dis-
trib. Syst., 10(6):549–559, 1999. doi:10.1109/71.
774906.

39 J.-H. Rhu, J.-H. Sun, K. Kim, H. Cho, and J.K.
Park. Utility accrual real-time scheduling for (m,
k)-firm deadline-constrained streams on multipro-
cessors. Electronics Letters, 47(5):316–317, 2011.
doi:10.1049/el.2010.7980.

40 Tiago Semprebom, Carlos Montez, and Francisco
Vasques. (m, k)-firm pattern spinning to improve
the GTS allocation of periodic messages in IEEE
802.15.4 networks. EURASIP J. Wireless Comm.
and Networking, 2013:222, 2013. doi:10.1186/
1687-1499-2013-222.

41 Sivakumar Swaminathan and Govindarasu Mani-
maran. A Reliability-Aware Value-Based Sched-
uler for Dynamic Multiprocessor Real-Time Sys-
tems. In Proceedings of the 16th International Par-
allel and Distributed Processing Symposium, IP-
DPS ’02, pages 39–, Washington, DC, USA, 2002.
IEEE Computer Society. URL: http://dl.acm.
org/citation.cfm?id=645610.661233.

42 Terry Tidwell, Robert Glaubius, Christopher D.
Gill, and William D. Smart. Optimizing expec-
ted time utility in cyber-physical systems sched-
ulers. In Proceedings of the 31st IEEE Real-Time
Systems Symposium, RTSS 2010, San Diego, Cali-
fornia, USA, November 30 - December 3, 2010,
pages 193–201. IEEE Computer Society, 2010. doi:
10.1109/RTSS.2010.28.

43 Jinggang Wang and Binoy Ravindran. Time-
utility function-driven switched ethernet: Packet
scheduling algorithm, implementation, and feas-
ibility analysis. IEEE Trans. Parallel Distrib.

http://dx.doi.org/10.13140/2.1.1820.4165
http://dx.doi.org/10.1007/978-3-319-16086-3_16
http://dx.doi.org/10.1007/978-3-319-16086-3_16
http://dx.doi.org/10.1109/REAL.1992.242650
http://dx.doi.org/10.1109/REAL.1992.242650
http://dx.doi.org/10.1109/REAL.1995.495201
http://dx.doi.org/10.1109/REAL.1995.495201
http://dx.doi.org/10.1109/REAL.1989.63567
http://dx.doi.org/10.1109/TC.2004.61
http://dx.doi.org/10.1109/TC.2004.61
http://dx.doi.org/10.1109/TC.2006.47
http://dx.doi.org/10.1145/321738.321743
http://douglocke.com/Downloads/BE.pdf
http://douglocke.com/Downloads/BE.pdf
http://dx.doi.org/10.1109/REAL.2000.896017
http://dx.doi.org/10.1109/EMRTS.1999.777475
http://dx.doi.org/10.1109/EMRTS.1999.777475
http://dx.doi.org/10.1109/REAL.2000.895998
http://dx.doi.org/10.1109/REAL.2000.895998
http://dx.doi.org/10.1109/71.774906
http://dx.doi.org/10.1109/71.774906
http://dx.doi.org/10.1049/el.2010.7980
http://dx.doi.org/10.1186/1687-1499-2013-222
http://dx.doi.org/10.1186/1687-1499-2013-222
http://dl.acm.org/citation.cfm?id=645610.661233
http://dl.acm.org/citation.cfm?id=645610.661233
http://dx.doi.org/10.1109/RTSS.2010.28
http://dx.doi.org/10.1109/RTSS.2010.28

F. Kluge 02:23

Syst., 15(2):119–133, 2004. doi:10.1109/TPDS.
2004.1264796.

44 Richard West and Karsten Schwan. Dynamic
window-constrained scheduling for multimedia ap-
plications. In IEEE International Conference
on Multimedia Computing and Systems, ICMCS
1999, Florence, Italy, June 7-11, 1999. Volume

II, pages 87–91. IEEE Computer Society, 1999.
doi:10.1109/MMCS.1999.778145.

45 Haisang Wu, Binoy Ravindran, E. Douglas Jensen,
and Umut Balli. Utility accrual scheduling under
arbitrary time/utility functions and multiunit re-
source constraints. In in IEEE Real-Time and
Embedded Computing Systems and Applications,
pages 80–98, 2004.

A Acronyms

ATS abstract task set
CTS concrete task set
DASA dependent activities scheduling algorithm
DBP distance-based priority
EDF earliest deadline first
GDPA guaranteed dynamic priority assignment
GDPA-S simplified guaranteed dynamic priority assignment
gMUA-MK global multiprocessor utility accrual scheduling algorithm for (m, k)-firm deadline-

constrained multimedia streams
GST Goossens’ schedulability test
HCUF history-cognisant utility function
LBESA Locke’s best-effort scheduling algorithm
MKP evenly distributed (m, k)-patterns
MKP-S evenly distributed (m, k)-patterns with spin values
MKU utility-based scheduling of (m, k)-firm real-time tasks
QoS Quality-of-Service
RM rate monotonic
TUF time-utility function
WCET worst-case execution time

B Additional Results

This appendix contains all performance results that are found during the simulation of task sets
with restricted m parameter (see Section 6.2.1), and restricted m parameter and realistic periods
(see Section 6.2.3).

B.1 Restricted m Parameter
The diagrams for rm = 0.8 and rm = 0.9 are omitted, as they are already shown in Figures 6
and 7. All other results from Section 6.2.1 are displayed in Figures 12 to 18.

B.2 Restricted m Parameter and Realistic Periods
Figures 19 to 21 show the results from the evaluations discussed in Section 6.2.3.

LITES

http://dx.doi.org/10.1109/TPDS.2004.1264796
http://dx.doi.org/10.1109/TPDS.2004.1264796
http://dx.doi.org/10.1109/MMCS.1999.778145

02:24 Utility-Based Scheduling of (m, k)-firm Real-Time Tasks – New Empirical Results

1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05 2.15 2.35 2.45
0%

20%

40%

60%

80%

Target Utilisation

Su
cc
es
s
R
at
e

DBP MKU MKP MKP-S GDPA GDPA-S GMUA-MK

Figure 12 Performance with restricted mi, rm = 0.1.

1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.15 2.45
0%

20%

40%

60%

80%

Target Utilisation

Su
cc
es
s
R
at
e

DBP MKU MKP MKP-S GDPA GDPA-S GMUA-MK

Figure 13 Performance with restricted mi, rm = 0.2.

1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.85 1.95
0%

20%

40%

60%

80%

Target Utilisation

Su
cc
es
s
R
at
e

DBP MKU MKP MKP-S GDPA GDPA-S GMUA-MK

Figure 14 Performance with restricted mi, rm = 0.3.

1.05 1.15 1.25 1.35 1.45 1.55 1.65
0%

20%

40%

60%

Target Utilisation

Su
cc
es
s
R
at
e

DBP MKU MKP MKP-S GDPA GDPA-S GMUA-MK

Figure 15 Performance with restricted mi, rm = 0.4.

F. Kluge 02:25

1.05 1.15 1.25 1.35 1.45 1.55
0%

20%

40%

60%

Target Utilisation

Su
cc
es
s
R
at
e

DBP MKU MKP MKP-S GDPA GDPA-S GMUA-MK

Figure 16 Success rates for rm = 0.5.

DBP MKU MKP MKP-S GDPA GDPA-S GMUA-MK

1.05 1.15 1.25 1.35 1.45
0%

20%

40%

Target Utilisation

Su
cc
es
s
R
at
e

Figure 17 Performance with restricted mi,
rm = 0.6.

1.05 1.15 1.25

0%

20%

Target Utilisation

Su
cc
es
s
R
at
e

Figure 18 Performance with restricted mi,
rm = 0.7.

1.05 1.15 1.25 1.35 1.45 1.55
0%

20%

40%

60%

80%

Target Utilisation

Su
cc
es
s
R
at
e

DBP MKU MKP MKP-S GDPA GDPA-S GMUA-MK

Figure 19 Performance with restricted mi (rm = 0.5.) and realistic periods.

DBP MKU MKP MKP-S GDPA GDPA-S GMUA-MK

1.05 1.15 1.25 1.35 1.45
0%

20%
40%
60%
80%

Target Utilisation

Su
cc
es
s
R
at
e

Figure 20 Performance with restricted mi (rm =
0.6) and realistic periods.

1.05 1.15 1.25 1.35
0%

20%
40%
60%

Target Utilisation

Su
cc
es
s
R
at
e

Figure 21 Performance with restricted mi (rm =
0.7.) and realistic periods.

LITES

Quantitative Analysis of Consistency in NoSQL
Key-Value Stores∗

Si Liu1, Jatin Ganhotra2, Muntasir Raihan Rahman3, Son Nguyen4,
Indranil Gupta5, and José Meseguer6

1 Department of Computer Science, University of Illinois at Urbana-Champaign, IL,
USA
siliu3@illinois.edu

2 Department of Computer Science, University of Illinois at Urbana-Champaign, IL,
USA
jatin.ganhotra@gmail.com

3 Microsoft, Redmond, WA, USA
murahman@microsoft.com

4 Addepar Inc., Sunnyvale, CA, USA
son.nguyen@addepar.com

5 Department of Computer Science, University of Illinois at Urbana-Champaign, IL,
USA
indy@illinois.edu

6 Department of Computer Science, University of Illinois at Urbana-Champaign, IL,
USA
meseguer@illinois.edu

Abstract
The promise of high scalability and availability has
prompted many companies to replace traditional
relational database management systems (RDBMS)
with NoSQL key-value stores. This comes at the
cost of relaxed consistency guarantees: key-value
stores only guarantee eventual consistency in prin-
ciple. In practice, however, many key-value stores
seem to offer stronger consistency. Quantifying how
well consistency properties are met is a non-trivial
problem. We address this problem by formally mod-
eling key-value stores as probabilistic systems and
quantitatively analyzing their consistency proper-

ties by both statistical model checking and imple-
mentation evaluation. We present for the first time
a formal probabilistic model of Apache Cassandra,
a popular NoSQL key-value store, and quantify how
much Cassandra achieves various consistency guar-
antees under various conditions. To validate our
model, we evaluate multiple consistency properties
using two methods and compare them against each
other. The two methods are: (1) an implementation-
based evaluation of the source code; and (2) a stat-
istical model checking analysis of our probabilistic
model.

2012 ACM Subject Classification Cloud computing, Key-value stores, Model Checking, Rewrite systems
Keywords and Phrases NoSQL Key-value Store, Consistency, Statistical Model Checking, Rewriting
Logic, Maude
Digital Object Identifier 10.4230/LITES-v004-i001-a003
Received 2015-12-25 Accepted 2016-12-04 Published 2016-12-23

Special Issue Editors Javier Campos, Martin Fränzle, and Boudewijn Haverkort
Special Issue Quantitative Evaluation of Systems

∗ This work was partially supported by NSF CNS 1319527, NSF 1409416, NSF CCF 0964471, and AFOSR/AFRL
FA8750-11-2-0084.

© Si Liu, Jatin Ganhotra, Muntasir Raihan Rahman, Son Nguyen, Indranil Gupta, and José Meseguer;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 4, Issue 1, Article No. 3, pp. 03:1–03:26
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:siliu3@illinois.edu
mailto:jatin.ganhotra@gmail.com
mailto:murahman@microsoft.com
mailto:son.nguyen@addepar.com
mailto:indy@illinois.edu
mailto:meseguer@illinois.edu
http://dx.doi.org/10.4230/LITES-v004-i001-a003
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

03:2 Quantitative Analysis of Consistency in NoSQL Key-Value Stores

1 Introduction

The promise of high scalability and availability has prompted many companies and organizations
to replace traditional relational database management systems (RDBMS) with NoSQL key-value
stores in order to store large data sets and support an increasing number of users. According to
DB-Engines Ranking [16] by September 2016, three NoSQL datastores, namely MongoDB [30],
Cassandra [12] and Redis [33], have advanced into the top 10 most popular database engines
among 315 systems, highlighting the increasing popularity of NoSQL key-value stores. For example,
Cassandra is currently being used at Facebook, Netflix, eBay, GitHub, Instagram, Comcast, and
over 1500 more companies.

NoSQL key-value stores invariably replicate application data on multiple servers for greater
availability in the presence of failures. Brewer’s CAP theorem [11] implies that, under network
partitions, a key-value store must choose between consistency (keeping all replicas in sync) and
availability (latency). Many key-value stores prefer availability, and thus they provide a relaxed
form of consistency guarantees (e.g., eventual consistency [39]). This means key-value store
applications can be exposed to stale values. This can negatively impact key-value store user
experience. Not surprisingly, in practice many key-value stores seem to offer stronger consistency
than they promise. Therefore there is considerable interest in accurately predicting and quantifying
what consistency properties a key-value store actually delivers, and in comparing in an objective,
and quantifiable way how well properties of interest are met by different designs.

However, the task of accurately predicting such consistency properties is non-trivial. To
begin with, building a large scale distributed key-value store is a challenging task. A key-value
store usually embodies a large number of components (e.g., membership management, consistent
hashing, and so on), and each component can be thought of as source code which embodies
many complex design decisions. Today, if a developer wishes to improve the performance of a
system (e.g., to improve consistency guarantees, or reduce operation latency) by implementing an
alternative design choice for a component, then the only option currently available is to make
changes to huge source code bases (e.g., Apache Cassandra [12] has about 345,000 lines of code).
Not only does this require many man months, it also comes with a high risk of introducing new
bugs, needs understanding in a huge code base before making changes, and is unfortunately not
repeatable. Developers can only afford to explore very few design alternatives, which may in the
end fail to lead to a better design.

In this paper we address these challenges by proposing a formally model-based methodology
for designing and quantitatively analyzing key-value stores. We formally model key-value stores
as probabilistic systems specified by probabilistic rewrite rules [1], and quantitatively analyze
their properties by statistical model checking [34, 43]. We demonstrate the practical usefulness
of our methodology by developing, to the best of our knowledge for the first time, a formal
probabilistic model of Cassandra, as well as of an alternative Cassandra-like design, in Maude
[13]. Our formal probabilistic model extends and improves a nondeterministic one we used in
[26] to answer qualitative binary consistency queries1 about Cassandra. It models the main
components of Cassandra and its environment such as strategies for ordering multiple versions of
data and message delay. We have also specified five consistency guarantees that are largely used in
industry, strong consistency (the strongest consistency guarantee), causal consistency (the strongest
consistency guarantee that is available in the presence of partitions), read your writes, monotonic
reads and consistency prefix (popular intermediate consistency guarantees) [37, 38, 28, 4], in the

1 A binary consistency query may ask, for example, whether a key-value store read operation is strongly (resp.
weakly) consistent or not and other such Boolean-valued questions.

S. Liu, J. Ganhotra, M. R. Rahman, S. Nguyen, I. Gupta, and J. Meseguer 03:3

QuaTEx probabilistic temporal logic [1]. Using the PVeStA [3] statistical model checking tool,
we have then quantified the satisfaction of such consistency properties in Cassandra under various
conditions such as consistency level combination and operation issuing time latency. To illustrate
the versatility and ease with which different design alternatives can be modeled and analyzed in
our methodology, we have also modeled and analyzed the exact same properties for an alternative
Cassandra-like design.

An important question is how much trust can be placed on such models and analysis. That
is, how reliable is the predictive power of our proposed methodology? We have been able to
answer this question for our case study as follows: (i) we have experimentally evaluated the same
consistency properties for both Cassandra and the alternative Cassandra-like design2; and (ii) we
have compared the results obtained from the formal probabilistic models and the statistical model
checking with the experimentally-obtained results. Our analysis indicates that the model-based
consistency predictions conform well to consistency evaluations derived experimentally from the
real Cassandra deployment, with both showing that Cassandra in fact achieves much higher
consistency (sometimes up to strong consistency) than the promised eventual consistency. They
also show that the alternative design in most cases is not competitive in terms of the consistency
guarantees considered. The purpose of the alternative design was two-fold. First, we wanted to
see if the alternative approach would give better accuracy or not. Second, we also wanted to show
that it was easier to try the alternative design with our formal model. This is one of the key
benefits of building formal models, so that we can quickly try alternative approaches and check
their accuracy and performance. Our entire Maude specification, including the alternative design,
has less than 1000 lines of code, which further underlines the versatility and ease of use of our
methodology at the software engineering level.

Our main contributions include:
We present a formal methodology for the quantitative analysis of key-value store designs and
develop, to the best of our knowledge for the first time, a formal executable probabilistic model
for the Cassandra key-value store and for an alternative Cassandra-like design.
We present, to the best of our knowledge for the first time, a statistical model checking analysis
for quantifying five consistency guarantees in Cassandra and the alternative design.
We demonstrate the good predictive power of our methodology by comparing the model-based
consistency predictions with experimental evaluations from a real Cassandra deployment on a
real cluster. Our results indicate similar consistency trends for the model and the deployment.

This paper extends the results presented in [24, 26] on two substantial ways. First, we explain
various consistency models in greater detail including their formal definitions (Section 3) and
specifications (Section 5.1). Second, we provide quantitative analysis of consistency using both
statistical model checking and implementation-based estimation for three new consistency models
(Section 5.2): monotonic reads, consistent pefix and causal consistency [37, 38, 28, 4].

The paper is organized as follows: Section 2 gives a brief overview of Cassandra, Maude,
and statistical model checking. Section 3 explains replicated data consistency guarantess in
NoSQL datastores. Section 4 presents our probabilistic model of Cassandra and an alternative
Cassandra-like design. Section 5 shows the quantitative analysis of consistency by statistical model
checking and the implementation-based estimation. Finally, Sections 6 and 7 discuss related work
and concluding remarks, respectively.

2 We implemented the alternative Cassandra-like design by modifying the source code of Apache Cassandra
version 1.2.10.

LITES

03:4 Quantitative Analysis of Consistency in NoSQL Key-Value Stores

Figure 1 Cassandra deployed in a single cluster of 8 servers with replication factor 3.

2 Preliminaries

2.1 Cassandra Overview
Apache Cassandra [12] is a distributed, scalable, and highly available NoSQL database design. It
is distributed over collaborative servers that appear as a single instance to the end client. Data
items are dynamically assigned to several servers in the cluster (called the ring), and each server
(called a replica) is responsible for different ranges of the data stored as key-value pairs. Each
key-value pair is stored at multiple replicas for fault-tolerance. To place those replicas different
strategies can be employed, e.g., the Simple Strategy places replicas clockwise in a single data
center. For a private cloud Cassandra is typically deployed in a single data center with a single
ring structure shared by all its servers.

In Cassandra a client can perform read or write operations to query or update data. When
a client requests a read/write operation to a cluster, the server it is connected to will act as a
coordinator to forward the request to all replicas that hold copies of the requested key-value pair.
According to the specified consistency level in the operation, the coordinator will reply to the
client with a value/ack after collecting sufficient responses from replicas. Cassandra supports
tunable consistency levels, with ONE, QUORUM and ALL being the three major ones, meaning that
the coordinator will respectively reply with the most recent value (namely, the value with the
highest timestamp) to the client after hearing from one replica, a majority of replicas, or all
replicas. Thus we call the above strategy of processing reads Timestamp-based Strategy (TB).
Note that replicas may return different timestamped values to the coordinator. To ensure that
all replicas agree on the most recent value, Cassandra uses in the background the read repair
mechanism to update those replicas holding outdated values.

Figure 1 shows an example Cassandra system deployed in a single data center cluster of eight
servers with three replicas and consistency level QUORUM. The read/write from client 1 is forwarded
to all three replicas 1, 3 and 5. The coordinator 7 then replies to client 1 after receiving the first
two responses, e.g., from 1 and 3, to fulfill the request without waiting for the reply from 5. For a
read, upon retrieving all three possibly different versions of values, the coordinator 7 then issues a
read repair write with the highest timestamped value to the outdated replica, 1, in this example.
Note that various clients may connect to various coordinators in the cluster, but requests from
any client on the same key will be forwarded to the same replicas by those coordinators.

S. Liu, J. Ganhotra, M. R. Rahman, S. Nguyen, I. Gupta, and J. Meseguer 03:5

2.2 Rewriting Logic and Maude
Maude [13] is an expressive rewriting-logic-based formal specification language and high-per-
formance simulation and model checking tool for concurrent, object-oriented systems. Maude
specifications are executable, and the tool provides a variety of formal analysis methods, including
simulation, reachability analysis, and linear temporal logic (LTL) model checking.

A Maude module specifies a rewrite theory (Σ, E ∪A,R), where:
Σ is an algebraic signature; that is, a set of sorts, subsorts, and function symbols.
(Σ, E ∪A) is a membership equational logic theory [13], with E a set of possibly conditional
equations and membership axioms, and A a set of equational axioms such as associativity,
commutativity, and identity, so that equational deduction is performed modulo the axioms A.
The theory (Σ, E ∪A) specifies the system’s states as members of an algebraic data type.
R is a collection of labeled conditional rewrite rules [l] : t −→ t′ if cond, specifying the system’s
local transitions.

We briefly summarize the syntax of Maude and refer to [13] for more details. Operators are
introduced with the op keyword: op f : s1 . . . sn -> s. They can have user-definable syntax, with
underbars ‘_’ marking the argument positions. Equations and rewrite rules are introduced with,
respectively, keywords eq, or ceq for conditional equations, and rl and crl. The mathematical
variables in such statements are declared with the keywords var and vars, or can be introduced
on the fly, in which case they have the form var:sort. An equation f(t1, . . . , tn) = t with the
owise (“otherwise”) attribute can be applied to a subterm f(. . .) only if no other equation with
left-hand side f(u1, . . . , un) can be applied.

A class declaration class C | att1 : s1, ..., attn : sn declares a class C of objects
with attributes att1 to attn of sorts s1 to sn. An object instance of class C is represented as a
term < O : C | att1 : val1, ..., attn : valn >, where O, of sort Oid, is the object’s identifier, and
where val1 to valn are the current values of the attributes att1 to attn. A message is a term of
sort Msg. A system state is modeled as a term of the sort Configuration, and has the structure
of a multiset made up of objects and messages. The dynamic behavior of a system is axiomatized
by specifying each of its transition patterns by a rewrite rule. For example, the rule (with label l)

rl [l] : m(O,w)
< O : C | a1 : x, a2 : O’, a3 : z >

=>
< O : C | a1 : x + w, a2 : O’, a3 : z >
m’(O’,x) .

defines a family of transitions in which a message m, with parameters O and w, is read and consumed
by an object O of class C, the attribute a1 of the object O is changed to x + w, and a new message
m’(O’,x) is generated. Attributes whose values do not change and do not affect the next state,
such as a3 and a2, need not be mentioned in a rule. Note that in the above rule O, declared as
either constant or variable of sort Oid, is the object’s identifier that can also be a parameter of
some function (e.g., the message function m).

2.3 Statistical Model Checking and PVeStA
Distributed systems are probabilistic in nature, e.g., network latency such as message delay may
follow a certain probability distribution, plus some algorithms may be probabilistic. Systems of
this kind can be modeled by probabilistic rewrite theories [1] with rules of the form:

[l] : t(−→x)→ t′(−→x ,−→y) if cond(−→x) with probability −→y := π(−→x)

LITES

03:6 Quantitative Analysis of Consistency in NoSQL Key-Value Stores

where the term t′ has additional new variables −→y disjoint from the variables −→x in the term t.
Since for a given matching instance of the variables −→x there can be many (often infinite) ways to
instantiate the extra variables −→y , such a rule is non-deterministic. The probabilistic nature of the
rule stems from the probability distribution π(−→x), which depends on the matching instance of
−→x , and governs the probabilistic choice of the instance of −→y in the result t′(−→x ,−→y) according to
π(−→x). In this paper we use the above PMaude [1] notation for probabilistic rewrite rules.

Statistical model checking [34, 43] is an attractive formal approach to analyzing probabilistic
systems against temporal logic properties. Instead of offering a binary yes/no answer, it provides a
quantitative real-valued answer and can verify a property up to a user-specified level of confidence
by running Monte-Carlo simulations of the system model. For example, if we consider strong
consistency in Cassandra, a statistical model-checking result may be “The Cassandra model
satisfies strong consistency 86.87% of the times with 99% confidence”. The quantitative answer,
however, need not be a percentage or a probability: it may instead be a latency estimation, or a
quantitative estimation of some other QoS property. Existing statistical verification techniques
assume that the system model is purely probabilistic. Using the methodology in [1, 19] we can
eliminate non-determinism in the choice of firing rules. We then use PVeStA [3], an extension and
parallelization of the tool VeStA [35], to statistically model check purely probabilistic systems
against properties expressed by QuaTEx probabilistic temporal logic [1]. The expected value of
a QuaTEx expression is iteratively evaluated w.r.t. two parameters α and δ provided as input by
sampling until the size of (1-α)100% confidence interval is bounded by δ. In this paper we will
compute the expected probability of satisfying a property based on definitions of the form p()
= BExp ; eval E[# p()] ;, where #, called “next”, is a primitive temporal operator, BExp is a
consistency-specific predicate (e.g., the predicate sc? in Section 5.1.1), and p() is a state predicate
returning the probabilistic number between 1.0 and 0.0. Informally, the QuaTEx expression
consists in a list of definitions of recursive temporal operators such as p(), followed by a query of
the expected value of a path expression such as eval E[# p()] obtained combining the temporal
operators.

3 Replicated Data Consistency

Distributed key-value stores usually sacrifice consistency for availability (Brewer’s CAP theorem
[11]), advocating the notion of weak consistency (e.g., Cassandra promises eventual consistency
[12]). However, studies on benchmarking eventually consistent systems have shown that those
platforms seem in practice to offer more consistency than they promise [40, 10]. Thus a natural
question derived from those observations is “what consistency does your key-value store provide
in practice?”. We summarize below the prevailing consistency guarantees that have received
considerable attention in recent research on distributed data stores [37, 38, 28, 4]. We will focus
on five of them (strong consistency, read your writes, monotonic reads, consistent prefix and causal
consistency) in the rest of this paper.

Strong Consistency (SC) ensures that each read returns the value of the last write that occurred
before that read.
Read Your Writes (RYW) guarantees that the effects of all writes performed by a client are
visible to her subsequent reads.
Monotonic Reads (MR) ensures a client to observe a key-value store increasingly up to date
over time.
Consistent Prefix (CP) guarantees a client to observe an ordered sequence of writes starting
with the first write to the system.

S. Liu, J. Ganhotra, M. R. Rahman, S. Nguyen, I. Gupta, and J. Meseguer 03:7

(Time-) Bounded Staleness (BS) restricts the staleness of values returned by reads within a
time period.
Causal Consistency (CC) guarantees that the effects are observed only after their causes: reads
will not see a write unless its dependencies are also seen.
Eventual Consistency (EC) claims that if no new updates are made, eventually all reads will
return the last updated value.

Note that SC and EC lie at the two ends of the consistency spectrum, while the other intermediate
guarantees are not comparable in general [37].

In [26, 27] we investigated SC, RYW and EC from a qualitative perspective using standard
model checking, where they were specified using linear temporal logic (LTL). The questions we
asked and answered there were simply yes/no questions such as “Does Cassandra satisfy strong
consistency?” and “In what scenarios does Cassandra violate read your writes?”. We indeed
showed by counterexamples that Cassandra violates SC and RYW under certain circumstances,
e.g., successive write and read with the combinations of lower consistency levels. Regarding
EC, the model checking results of our experiments with bounded number of clients, servers and
messages conforms to the promise. We refer the reader to [26, 27] for details.

In this paper we look into the consistency issue for Cassandra in terms of SC, RYW, MR, CP
and CC from a quantitative, statistical model checking perspective. To aid the specification of the
five properties (Section 5.1), we now restate them more formally. As all operations from different
clients can be totally ordered by their issuing times, we can first view, from a client’s perspective,
the behavior of a key-value store S as a history H = o1, o2, . . . , on of n read/write operations,
where any operation oi can be expressed as oi = (ki, vi, ci, ti), where ti denotes the global time
when oi was issued by client ci, and vi is the value read from or written to on key ki and where
the sequence is time-increasing, i.e., ti ≤ tj if i < j. We can then define the consistency properties
based on H:

We say S satisfies SC if for any read oi = (k, vi, ci, ti), provided there exists a write oj =
(k, vj , cj , tj) with tj < ti, and without any other write oh = (k, vh, ch, th) such that tj < th < ti,
we have vi = vj . Note that ch, ci and cj are not necessarily different;
We say S satisfies RYW if either (1) S satisfies SC, or (2) for any read oi = (k, vi, ci, ti),
provided there exists a write oj = (k, vj , cj , tj) with ci = cj and tj < ti, and with any other
write oh = (k, vh, ch, th) such that ci 6= ch and tj < th < ti, we have vi = vj ;
We say S satisfies MR if for any two reads ori = (kri, vri, cri, tri) and orj = (krj , vrj , crj , trj) in
the sequence of reads or1, or2, . . . , orn, provided there exists a sequence of writes ow1, ow2, . . . , owm,
if vri = vwg and vrj = vwh, we have twg ≤ twh, provided kri = kwg and krj = kwh. Note that
cri, crj , cwg and cwh are not necessarily different;
We say S satisfies CP if for a sequence of reads or1, or2, . . . , orm, provided there exists a sequence
of writes ow1, ow2, . . . , own, we have, if n > m, vr1 = vw1, vr2 = vw2, . . . , vrm = vwm, provided
that kr1 = kw1, kr2 = kw2, . . . , krm = kwm; otherwise, vr1 = vw1, vr2 = vw2, . . . , vrn =
vwn, vrn+1 = vwn, . . . , vrm = vwn, provided kr1 = kw1, kr2 = kw2, . . . , krn = kwn, krn+1 =
kwn, . . . , krm = kwn. Note that cri and cwj are not necessarily different, and the key pairs
(e.g., kri and krj) are not necessarily the same;
We introduce two notions, causality order and serialization [2, 38], before defining S satisfying
CC. We say oi = (ki, vi, ci, ti) is causally ordered before oj = (kj , vj , cj , tj) if one of the
following three cases holds: (i) ci = cj and ti < tj ; (ii) vj = vi, provided oi is a write while
oj a read; (iii) there exists some other ok such that oi is causally ordered before ok that is
causally ordered before oj (i.e., transitivity). We say L is a serialization of a history H if L is
a linear sequence containing exactly the operations of H such that L satisfies SC. We say a
serialization L respects a causality order if, for any two operations oi and oj in L, oi is causally

LITES

03:8 Quantitative Analysis of Consistency in NoSQL Key-Value Stores

Figure 2 Visualization of rewrite rules for forwarding requests from a coordinator to the replicas.

ordered before oj implies oi precedes oj in L. We then say S satisfies CC if H has a causality
order such that for each client ci there is a serialization of all operations from ci and all writes
(probably from different clients) in H that respects that causality order.

4 Probabilistic Modeling of Cassandra Designs

This section describes a formal probabilistic model of Cassandra as well as an alternative Cassandra-
like design. Section 4.1 shows the underlying communication model of Cassandra components, and
how the associated non-deterministic rewrite rules are transformed into purely probabilistic ones
in Maude. Section 4.2 presents an alternative Cassandra-like design in terms of read processing
strategy. The entire executable Maude specifications are available at https://sites.google.
com/site/siliunobi/lites-cassandra.

4.1 Formalizing Probabilistic Communication in Cassandra
In [26] we built a formal executable model of Cassandra summarized in Section 2.1. Specifically, we
modeled the ring structure, clients and servers, messages, and Cassandra’s dynamics. Moreover, we
also introduced a scheduler object to schedule messages by maintaining a global clock GlobalTime3

and a queue of inactive/scheduled messages MsgQueue. By activating those messages, it provides
a deterministic total ordering of messages4 and allows synchronization of all clients and servers,
aiding formal analysis of consistency properties (Section 5.1).

To illustrate the underlying communication model, Figure 2 visualizes a segment of the system
transitions showing how messages flow between a coordinator and the replicas through the scheduler
in terms of rewrite rules. The delayed messages (of the form [...]) [D1, repl1 <- Msg1] and
[D2, repl2 <- Msg2], targeting replicas repl1 and repl2, are produced by the coordinator at
global time T with the respective message delays D1 and D2. The scheduler then enqueues both
messages for scheduling. As the global time advances, messages eventually become active (of the

3 Although in reality synchronization can never be exactly reached due to clock skew [23], cloud system providers
use NTP or even expensive GPS devices to keep all clocks synchronized (e.g., Google Spanner [15]). Thus our
abstraction of a global clock is reasonable.

4 It is possible to have two active messages with the same delivery time. In that case messages will be ordered
alphabetically.

https://sites.google.com/site/siliunobi/lites-cassandra
https://sites.google.com/site/siliunobi/lites-cassandra

S. Liu, J. Ganhotra, M. R. Rahman, S. Nguyen, I. Gupta, and J. Meseguer 03:9

form {...}), and are appropriately delivered to the replicas. For example, the scheduler first
dequeues Msg1 and then Msg2 at global time T + D1 and T + D2 respectively, assuming D1 < D2.
Note that messages can be consumed by the targets only when they are active.

As mentioned in Section 2.3, we need to eliminate nondeterminism in our previous Cassandra
model prior to statistical model checking. This can be done by transforming nondeterministic
rewrite rules to purely probabilistic ones. Below we show an example transformation, where both
rules illustrate how the coordinator reacts upon receiving a read reply ReadReplySS from a replica,
with KV the returned key-value pair of the form (key,value,timestamp), ID and A the read and
client’s identifiers, and CL the read’s consistency level, respectively. The coordinator S adds KV to
its local buffer, and returns to A the highest timestamped value determined by tb via the message
ReadReplyCS, provided it has collected the consistency-level number of responses determined by
cl?.

In the nondeterministic version [...-nondet], the outgoing message is equipped with a delay
D nondeterministically selected from the delay set delays where DS defines the rest delays of the
set. We keep the set unchanged so that standard model checking will explore all possible choices
of delays each time the rule is fired. For example, if delays are : (2.0,4.0), two read replies
will be generated nondeterministically with the delays 2.0 and 4.0 time units respectively, each
of which will lead to an execution path during the state space exploration. Note that AS refers to
the rest of the attributes of server S.

crl [on-rec-rrep-coord-nondet] :
{T, S <- ReadReplySS(ID,KV,CL,A)}
< S : Server | buffer: BF, delays: (D,DS), AS >

=>
< S : Server | buffer: BF’, delays: (D,DS), AS >
(if cl?(CL,BF’) then
[D, A <- ReadReplyCS(ID,tb(BF’))]
else none fi)

if BF’ := add(ID,KV,BF) .

We transform the above rule to the probabilistic version [...-prob], where the delay D is
distributed according to the parameterized probability distribution function distr(...). Once
the rule fires, only one read reply will be generated with a probabilistic real-valued message delay.

crl [on-rec-rrep-coord-prob] :
{T, S <- ReadReplySS(ID,KV,CL,A)}
< S : Server | buffer: BF, AS >

=>
< S : Server | buffer: BF’, AS >
(if cl?(CL,BF’) then
[D, A <- ReadReplyCS(ID,tb(BF’))]
else none fi)

if BF’ := add(ID,KV,BF) with probability D := distr(...) .

Likewise, all nondeterministic rules in our previous model can be transformed to purely probabilistic
rewrite rules. Furthermore, as explained in [1, 19], the use of continuous time and the actor-like
nature of the specification ensure that at most one probabilistic rule will be enabled at each time
instant, thus eliminating any remaining nondeterminism from the firing of rules.

LITES

03:10 Quantitative Analysis of Consistency in NoSQL Key-Value Stores

4.2 Alternative Strategy Design

Two major advantages of our model-based approach are: (1) the ease of exploring different design
alternatives (e.g., designing an alternative strategy to TB described in Section 2.1) in early design
stages, and (2) the ability to predict their effects before implementation. Here we illustrates the
first part by presenting as an alternative design the Timestamp-agnostic Strategy (TA). The key
idea is that, instead of using timestamps to decide which value will be returned to the client as
TB does (Section 2.1), TA uses the values themselves to decide which replica has the latest value.
For example, if the replication factor is 3, then for a QUORUM read, the coordinator checks whether
the values returned by the first two replicas are identical: if they are, the coordinator returns that
value; otherwise it waits for the third replica to return a value. If the third value matches one of
the first two values, the coordinator returns the third value. So for a QUORUM read TA guarantees
that the coordinator will reply with the value that has been stored at a majority of replicas. For
an ALL read, the coordinator compares all three values; if they are all the same, it returns that
value. Notice that TA and TB agree on processing ONE reads.

To formalize TA (or other alternative strategies) we only need to specify the corresponding
functions of the returned values from the replicas buffered at the coordinator, as we defined
tb for TB, and for deciding if enough responses have been fetched by the coordinator, as we
defined cl? for TB, without redefining the underlying model. Note that our component-based
model also makes it possible to dynamically choose the optimal strategy in favor of consistency
guarantees. More precisely, once the system has been specified endowed with a family of strategies
having respective strengths in consistency guarantees (which can be measured by statistical model
checking), the coordinator can invoke the corresponding strategy-specific function based on the
client’s specified preference. For example, given strategies S1/S2 offering consistency properties
C1/C2, if a client issues two consecutive reads with desired consistency C1, C2, respectively, the
coordinator will generate, e.g., the C1-consistent value for the preceding read, by calling the
strategy function for S1.

On the other hand, the key change for implementing TA is to implement our own Resolve()
function for class RowDataResolver. We rewrote Cassandra’s resolveSupersetNew() function
for the TA approach. This took some code modification, and it required a complete understanding
of the Cassandra internal code details. In terms of Cassandra code changes, 150 lines of code were
added and 50 were removed. We observe that formalizing TA in Maude was much easier and
faster than implementing it in Cassandra.

5 Quantitative Analysis of Consistency in Cassandra

How well do our Cassandra model and its TA alternative design satisfy different consistency
guarantees? Does TA provide better consistency than TB based on our model? Are those results
in agreement with actual implementations? We propose to investigate these questions by statistical
model checking and by implementation-based evaluation of those consistency properties in terms
of the two strategies.

5.1 Formalization of Consistency Properties

5.1.1 Strong Consistency

Scenario. SC ensures that each read returns the value of the last write that occurred before that
read. Thus we design a scenario with one read and two writes to see if the read will return the

S. Liu, J. Ganhotra, M. R. Rahman, S. Nguyen, I. Gupta, and J. Meseguer 03:11

Figure 3 Experimental Scenario of Statistical Model Checking of SC.

last write5. Figure 3 shows the experimental scenario for SC, with each parallel line denoting one
session of one client. The scenario consists of three consecutive operations, W1, W2 and R3, issued
by three different clients, respectively, where L1 and L2 are the issuing latencies between them.
We choose to experiment with consistency level ONE for both W1 and W2 to evaluate different
consistency levels for R3. Thus we name each subscenario (TB/TA-O/Q/A) depending on the
target strategy and R3’s consistency level, e.g., (TB-Q) refers to the case checking SC for TB
with R3 of QUORUM.

Formal Specification of SC. Based on the consistency definition (Section 3) and the above
scenario, SC is satisfied if R3 reads the value of W2. Thus we define a parameterized predicate
sc?(A,A’,C) that holds if we can match the value returned by the subsequent read O (R3 in this
case) from client A with that in the preceding write O’ (W2 in this case) from client A’. Note that
the attribute store lists the associated information of each operation issued by the client, e.g.,
operation O was issued at global time T on key K with returned/written value V for a read/write.
Note that in the rest of this paper REST refers to the rest objects of the entire configuration
(Section 2.2).

op sc? : Address Address Config -> Bool .

eq sc?(A,A’,< A : Client | store : ((O, K,V,T), ...), ... >
< A’ : Client | store : ((O’,K,V,T’), ...), ... > REST) = true .

eq sc?(A,A’,C) = false [owise] .

5.1.2 Read Your Writes
Scenario. RYW guarantees that the effects of all writes performed by a client are visible to
her subsequent reads. Thus we design a scenario with two writes and one read from the same
client to see if the read will return the last write; we also add another write from a different client
since returning the latest write from a different client will also satisfy RYW. Figure 4 shows the
experimental scenario for RYW. The scenario consists of four operations, where W1, W2 and R3
are issued by one client and strictly ordered (a subsequent operation will be blocked until the
preceding one finishes) while W4 is from the other client6. The issuing latency L is tunable, which

5 Note that we need to minimize all the experimental scenarios for the statistical model checking in this paper
for two reasons: (1) statistical model checking can only support a limited number of operations to avoid state
space explosion; and (2) we observed that in our experiments adding a few more operations would not affect
the results much but would aggravate the statistical model checking.

6 Section 3 describes two disjoint cases for RYW, which we mimic with tuneable L: if t4 < t2, only W2 is
RYW-consistent; otherwise both W2 and W4 are RYW-consistent.

LITES

03:12 Quantitative Analysis of Consistency in NoSQL Key-Value Stores

Figure 4 Experimental Scenario of Statistical Model Checking of RYW.

can vary the issuing time of W4. Thus we can derive the corresponding cases in RYW’s definition
(Section 3), and specify and analyze the property accordingly. We choose to experiment with
consistency level ONE for both W1 and W4 to evaluate different combinations of consistency levels
for W2 and R3. The only possible cases violating RYW are, if we forget W4 for the moment,
(R3,W2) = (O,O)/(O,Q)/(Q,O) due to the fact that a read is guaranteed to see its preceding write
from the same client, if R + W > RF with R and W the respective consistency levels and RF the
replication factor. For example, if the replication factor RF is 3 (thus ONE/QUORUM/ALL is 1/2/3),
a ONE read R and a QUORUM write W cannot ensure RYW.

Formal Specification of RYW. We define a parameterized predicate ryw?(A,A’,C) that holds
if the subsequent read O2 (R3 in this case) returns the appropriate value required for RYW to
hold. This can happen in two different ways: (1) O2 returns the value V by the preceding write O1
(W2 in this case), or (2) O2 returns the value V’ by a more recent write O3 (W4 in this case if
issued after W2, which is determined by T3 >= T1).

op ryw? : Address Address Config -> Bool .

eq ryw?(A,A’,< A : Client | store : (..., (O1,K,V,T1), (O2,K,V,T2), ...),
... > REST) = true . --- case (1)

ceq ryw?(A,A’,< A : Client | store : (..., (O1,K,V,T1), (O2,K,V’,T2), ...), ... >
< A’ : Client | store : ((O3,K,V’,T3), ...), ... > REST) = true

if T3 >= T1 . --- case (2)

eq ryw?(A,A’,C) = false [owise] .

5.1.3 Monotonic Reads
Scenario. MR ensures that a client will observe a key-value store increasingly up to date over
time. Thus we design a scenario with two writes followed by two consecutive reads to see if the
two reads will return the two writes in order. Figure 5 shows the experimental scenario for MR.
We consider a scenario with four operations, where two writes, W1 and W2, are issued by two
different clients, and a third client issues two strictly ordered reads, R3 and R4. L1 and L2 are the
issuing latencies between W1 and W2, and W2 and R3, respectively. We choose to experiment
with the same consistency level for R3 and R4, and with consistency level ONE for W1 to evaluate
different combinations of consistency levels for W2 and R3/R4.

Formal Specification of MR. We define a parameterized predicate mr?(A1,A2,A3,C) that holds
if the subsequent read O4 (R4 in this case) from client A3 returns the appropriate value required
for MR to hold. This can happen in three different ways: (1) if the preceding read O3 (R3 in this
case) gets the default value dft, any value returned by O4 is MR-consistent; (2) if O3 reads the

S. Liu, J. Ganhotra, M. R. Rahman, S. Nguyen, I. Gupta, and J. Meseguer 03:13

Figure 5 Experimental Scenario of Statistical Model Checking of MR.

value V1 from client A1’s write O1 (W1 in this case), O4 has to return the value V1 or V2 (from
client A2’s write O2) to satisfy MR; and (3) if O3 returns V2, O4 needs to match it to guarantee
MR.

op mr? : Address Address Address Config -> Bool .

eq mr?(A1,A2,A3,< A3 : Client | store: ((O3,K,dft ,T3), (O4,K,V4,T4), ...),
... > REST) = true . --- case (1)

eq mr?(A1,A2,A3,< A1 : Client | store: ((O1,K,V1,T1), ...), ... >
< A3 : Client | store: ((O3,K,V1,T3), (O4,K,V1,T4), ...),

... > REST) = true .
eq mr?(A1,A2,A3,< A1 : Client | store: ((O1,K,V1,T1), ...), ... >

< A2 : Client | store: ((O2,K,V2,T2), ...), ... >
< A3 : Client | store: ((O3,K,V1,T3), (O4,K,V2,T4), ...),

... > REST) = true . --- case (2)

eq mr?(A1,A2,A3,< A2 : Client | store: ((O2,K,V2,T2), ...), ... >
< A3 : Client | store: ((O3,K,V2,T3), (O4,K,V2,T4), ...),

... > REST) = true . --- case (3)

eq mr?(A1,A2,A3,C) = false [owise] .

5.1.4 Consistent Prefix
Scenario. CP guarantees that a client will observe an ordered sequence of writes starting with
the first write to the system. Thus we design a scenario with six operations on two different keys7,
where four strictly ordered writes, W1, W2, W3 and W4, are interleaved on two keys, K1 and K2,
and issued by a single client, and two strictly ordered reads, R1 (on K1) and R2 (on K2), by the
other client. Figure 6 shows the experimental scenario for CP. The issuing latency L between W1
and R1 is tunable, which can vary the issuing time of R1. We choose to experiment with the same
consistency level for the writes/reads to evaluate different combinations of consistency levels.

Formal Specification of CP. We define a parameterized predicate cp?(A1,A2,C) that holds if
the successive reads O5 (R5 in this case) and O6 (R6 in this case) from client A2 return an ordered
sequence of writes. This can happen in three different ways: (1) if O5 gets the default value dft1
for K1, O6 can only read the default value dft2 for K2 to satisfy CP; (2) if O5 returns the value
V1 from client A1’s write O1 (W1 in this case), O6 has to return the value V2 or dft2 (either case

7 For reads on a single key in a system like Cassandra where writes completely overwrite previous values of a
key, eventual consistency reads can guarantee consistent prefix. So we consider reads on multiple keys [37].

LITES

03:14 Quantitative Analysis of Consistency in NoSQL Key-Value Stores

Figure 6 Experimental Scenario of Statistical Model Checking of CP.

guarantees an ordered sequence of writes); and (3) if O5 reads the value V3 from the write O3 (W3
in this case), both V2 and V4 are CP-consistent.

op cp? : Address Address Config -> Bool .

eq cp?(A1,A2,< A2 : Client | store: ((O5,K1,dft1,T5),
(O6,K2,dft2,T6), ...), ... > REST) = true . --- case (1)

eq cp?(A1,A2,< A1 : Client | store: ((O1,K1,V1,T1), ...), ... >
< A2 : Client | store: ((O5,K1,V1,T5), (O6,K2,dft2,T6),

...), ... > REST) = true .
eq cp?(A1,A2,< A1 : Client | store: ((O1,K1,V1,T1), (O2,K2,V2,T2), ...), ... >

< A2 : Client | store: ((O5,K1,V1,T5), (O6,K2,V2,T6),
...), ... > REST) = true . --- case (2)

eq cp?(A1,A2,< A1 : Client | store: (..., (O2,K2,V2,T2), (O3,K1,V3,T3), ...), ... >
< A2 : Client | store: ((O5,K1,V3,T5), (O6,K2,V2,T6),

...), ... > REST) = true .
eq cp?(A1,A2,< A1 : Client | store: (..., (O3,K1,V3,T3), (O4,K2,V4,T4), ...), ... >

< A2 : Client | store: ((O5,K1,V3,T5), (O6,K2,V4,T6),
...), ... > REST) = true . --- case (3)

eq cp?(A1,A2,C) = false [owise] .

5.1.5 Causal Consistency

Scenario. CC guarantees that the effects are observed only after their causes: reads will not see
a write unless its dependencies are also seen. Thus we design a scenario with a write and a read
from two different clients to bridge them by causality. Figure 7 shows the experimental scenario
for CC. We consider a scenario with five operations on two different keys, where client C1 issues
two strictly ordered writes, W1 and W2, on the keys, K1 and K2, respectively, and the other
client C2 first issues a read on K2, and then issues two consecutive operations W4 and R5 on K1.
Note that, although operations from the same session of a client are causally ordered (e.g., W1
and W2), we check in this scenario causality that arises when the first read R3 returns the value
of W2, establishing the causality between W2 and R3, and thus W1 and W4 (i.e., corresponding
to the definition of CC (Section 3), we check from client C2’s perspective if there is a serialization
of all five operations that respects the causality order). The issuing latency L between W1 and
R3 is tunable, which can vary the issuing time of R3. We choose to experiment with the same
consistency level ONE for W1, W2 and R3 to evaluate different combinations of consistency levels
for W4 and R5.

S. Liu, J. Ganhotra, M. R. Rahman, S. Nguyen, I. Gupta, and J. Meseguer 03:15

Figure 7 Experimental Scenario of Statistical Model Checking of CC.

Formal Specification of CC. We define for CC a parameterized predicate cc?(A1,A2,C) that
holds if O5 (R5 in this case) returns the value V4 from client A2’s write O4 (W4 in this case),
provided O3 (R3 in this case) reads the value V2 from client A1’s write O2 (W2 in this case);
otherwise, any value returned by O5 is CC-consistent, since no causality arises.

op cc? : Address Address Config -> Bool .

eq cc?(A1,A2,< A1 : Client | store: ((O1,K1,V1,T1), (O2,K2,V2,T2), ...), ... >
< A2 : Client | store: ((O3,K2,V2,T3), (O4,K1,V4,T4), (O5,K1,V4,T5),

...), ... > REST) = true . --- causality arises

eq cc?(A1,A2,< A1 : Client | store: ((O1,K1,V1,T1), (O2,K2,V2,T2), ...), ... >
< A2 : Client | store: ((O3,K2,dft2,T3), (O4,K1,V4,T4), (O5,K1,V5,T5),

...), ... > REST) = true . --- no causality

eq cc?(A1,A2,C) = false [owise] .

5.2 Analysis Results for Consistency Guarantees
We are now ready to present the analysis results for all those consistency models on both statistical
model checking and implementation-based evaluation. We compare the two strategies, TA and
TB, from two aspects: (1) if both show the similar trends as the latency increases; and (2) if one
provides better consistency than the other.

First, we define the following setting for our experimental scenarios of statistical model checking:
We consider a single cluster of 4 servers, and the replication factor of 3.
All replicas are initialized with default key-value pairs.
Each read/write can have consistency level ONE, QUORUM or ALL.
We consider the lognormal distribution for message delay with the mean µ = 0.0 and standard
deviation σ = 1.0 [9].
All consistency probabilities are computed with a 99% confidence level of size at most 0.01
(Section 2.3).

Note that for the rest of this paper we name each subscenario (TB/TA-OO/OQ/QO/. . .)
depending on the target strategy and the combination of consistency levels for the experimental
scenarios regarding the consistency models excluding SC. For simplicity, we let an operation occur
immediately upon its preceding operation from the same session (or client) finishes.

Regarding the experimental setup on the other hand, we deploy Cassandra on a single cluster
of 4 Emulab [41] servers within the same rack.8 The servers used were Dell r710 2U servers with

8 For a private cloud, Cassandra is typically deployed in a single data center with a single ring structure shared
by all its servers. The network latency effects will not impact our experiment results as all servers are in

LITES

03:16 Quantitative Analysis of Consistency in NoSQL Key-Value Stores

Figure 8 Probabilities of Satisfying SC by Statistical Model Checking (Left) and by Real Deployment
Run (Right).

the following configuration: one 2.4 GHz 64-bit Quad Core Xeon E5530 Nehalem processor, 5.86
GT/s bus speed, 8 MB L3 cache, VT (VT-x, EPT and VT-d) support and 12 GB 1066 MHz
DDR2 RAM; the OS used was 64-bit Ubuntu 14.04 LTS, 3.13.0 kernel and Cassandra version was
1.2.10. We use YCSB [14] to inject read/write workloads. For RYW, MR, CP and CC tests, we
use two separate YCSB clients.9 Our test workloads are read-heavy (which are representative of
many real-world workloads such as Facebook’s photo storage [8]) with 90% reads, and we vary
consistency levels between ONE, QUORUM, and ALL. We run Cassandra and YCSB clients for fixed
time intervals (each client performs 20,000 operations) and log the results. Based on the logs
generated, we calculate the percentage of reads that satisfy various consistency models considered
in this paper. We perform binning on all the results to generate the issuing latency intervals.
The reason is that in our statistical model checking experiments we can specify the exact latency
interval between operations, but the same is impossible for a real deployment. From our real
deployment experiments, we get the probabilities for a continuous range of latency values, instead
of a discrete set as in the statistical model checking experiments. Thus we divide all the results
and perform binning to generate the issuing latency intervals. Note that other experimental
configurations such as the replication factor, consistency levels and message delay distribution
follow our setup for statistical model checking.

5.2.1 Analysis Results for SC
The left plot in Figure 8 shows the resulting probability of satisfying SC by statistical model
checking, where the probability (of R3 reading the value of W2) is plotted against the issuing
latency (L2) between them. Regarding TB, from the results (and intuitively), given the same
issuing latency, increasing the consistency level provides higher consistency; given the same
consistency level, higher issuing latency results in higher consistency (as the replicas converge,
a sufficiently later read (R3) will return the consistent value up to 100%). Surprisingly, QUORUM
and ALL reads start to achieve SC within a very short latency around 0.5 and 1.5 time units
respectively (with 5 time units for even ONE reads).

On the other hand, all observations for TB apply to TA in general. In fact, for QUORUM and ALL
reads, the two strategies perform almost the same, except that: (1) for ALL reads, TB provides

the same rack and the time difference between each pair of requests would be in the same range. While
showing scalability is not the goal of this paper, we wish to do larger scale experiments in the future. There
are resource challenges related to scaling the model-checking to larger scales (e.g., parallelizing it the right
way), and we hope to solve this in our future work.

9 Even if the tests allow a large number of YCSB clients, we set it to 2 to match our statistical model checking
experimental setting.

S. Liu, J. Ganhotra, M. R. Rahman, S. Nguyen, I. Gupta, and J. Meseguer 03:17

Figure 9 Probabilities of Satisfying RYW by Statistical Model Checking (Left) and by Real Deployment
Run (Right).

noticeably more consistency than TA within an extremely short latency of 0.5 time units; and (2)
for QUORUM reads, TB offers slightly more consistency than TA within 2.5 time units.

Based on these results it seems fair to say that both TB and TA provide high SC, especially
with QUORUM and ALL reads. The consistency difference between the two strategies results from
the overlap of R3 and W2. More precisely, since the subsequent read has higher chance to read
multiple versions of the key-value pair with lower issuing latency, TA, only relying on the version
itself, will return the matched value that is probably stale.

Regarding the implementation-based evaluation (the right plot in Figure 8), we show the
resulting, experimentally computed probability of strongly consistent reads against L2 (Figure 3)
for deployment runs regarding the two strategies (only for QUORUM and ALL reads). Overall, the
results indicate similar trends for the model predictions and real deployment runs (both plots
in Figure 8): for example, for both model predictions and deployment runs, the probability is
higher for ALL reads than for QUORUM reads regarding both strategies, especially when L2 is low;
consistency does not vary much with different strategies. Note that we observe the dips that break
the monotonic behavior of TB-ALL and TB-QUORUM at a lower value of L because it is possible
that the updated value from W2 has not reached all the replicas. With a higher value of L, we do
not observe any break from the monotonic behavior.

5.2.2 Analysis Results for RYW
Figure 9(a) shows the resulting probability of satisfying RYW, where the probability (of R3
reading the value of W2 or a more recent value) is plotted against the issuing latency (L) between
W1 and W4. From these results it is straightforward to see that scenarios (TB-OA/QQ/AO/AA)
guarantee RYW due to the fact “R3 + W2 > RF”. Since we have already seen that the Cassandra
model satisfied SC quite well, it is also reasonable that all combinations of consistency levels

LITES

03:18 Quantitative Analysis of Consistency in NoSQL Key-Value Stores

provide high RYW consistency, even with the lowest combination (O,O) that already achieves a
probability around 90%. Surprisingly, it appears that a QUORUM read offers RYW consistency nearly
100%, even after a preceding write with its consistency level down to ONE (scenario (TB-OQ)).
Another observation is that, in spite of the concurrent write from the other client, the probability
of satisfying RYW stays fairly stable.

Figure 9(c) shows the comparison of TA and TB regarding RYW, where for simplicity we
only list three combinations of consistency levels from R3’s perspective with W2’s consistency
level fixed to ONE (in fact, with W2’s consistency level increases, the corresponding scenarios
will provide even higher consistency). In general, all observations for TB apply to TA, and it
seems fair to say that both TA and TB offer high RYW consistency. The two strategies agree
on the combination (O,O). However, TA cannot offer higher consistency than TB in any other
scenario, with TA providing slightly lower consistency for some points, even though TA’s overall
performance is close to TB’s over issuing latency. One reason is that TA does not respect the
fact “R + W > RF” in general (e.g., two strictly ordered Quorum write and read cannot guarantee
RYW).

Regarding the implementation-based evaluation (Figure 9(b) and (d)), we show the resulting
probability of RYW-consistent reads against L (Figure 4) for deployment runs regarding two
strategies. Both the model predictions and deployment runs show very high probability of satisfying
RYW. This is expected since for each client the operations are mostly ordered, and for any read
operation from a client, we expect any previous write from the same client to be committed to
all replicas. For the deployment runs, we observe that we get 100% RYW consistency, except
for scenario (TB-OO), which matches expectations, since ONE is the lowest consistency level and
does not guarantee anything more than EC. This also matches our model predictions in Figure 9,
where we see that the probability of satisfying RYW for scenario (TB-OO) is lower compared
to other cases. In general the results indicate similar trends for the model predictions and real
deployment runs, however, we observe some dips for TA/TB-OO as ONE is the lowest consistency
level and does not provide a strict guarantee. Even though there are dips for certain values of L,
the dips still have at least the high probability value of 90%.

5.2.3 Analysis Results for MR
Figure 10(a) shows the resulting probability of satisfying MR, where the probability is plotted
against the issuing latency (L2) between W2 and R3. Again, it seems reasonable that all
combinations of consistency levels offer high MR consistency, even with the lowest combination
(O,O) that almost achieves a probability of 100%, and QUORUM reads gain more MR consistency
than ONE reads. Surprisingly, it appears that the probability only relies on the consistency level of
the reads, regardless of that of the concurrent write (W2): (O,O)/(O,Q) and (Q,O)/(Q,Q) with
ONE/QUORUM reads have nearly the same probability trend. Note that we do not plot ALL reads
because QUORUM reads already provide fairly stable probability of 100%.

Figure 10(c) shows the comparison of TB and TA regarding MR, where for simplicity we only
list three lower combinations of consistency levels (with W2’s consistency level increases, scenarios
(TB/TA-QQ) will actually offer even higher consistency). Generally, all observations for TB apply
to TA, and it seems fair to say that both strategies provide high MR consistency. TA’s overall
performance resembles TB’s over issuing latency, but TA provides slightly higher consistency for
some points.

Regarding the implementation-based evaluation (Figure 10(b) and (d)), we show the resulting
probability of MR-consistent reads against L2 (Figure 5) for deployment runs regarding two
strategies. Both the model predictions and deployment runs show high probability of satisfying
MR. For the deployment runs, we observe that we get 100% MR consistency as the issuing latency

S. Liu, J. Ganhotra, M. R. Rahman, S. Nguyen, I. Gupta, and J. Meseguer 03:19

Figure 10 Probabilities of Satisfying MR by Statistical Model Checking (Left) and by Real Deployment
Run (Right).

increases. For TA, the MR consistency fluctuates between 86% and 100%, but converges to 100%
as the issuing latency increases. Note that the scenarios where the MR consistency is less than
100% are (OO) and (QO) for both strategies, and their MR consistency percentages are less
compared to scenarios (QQ) and (OQ), which is expected.

5.2.4 Analysis Results for CP
Figure 11(a),(c),(e) show the resulting probability of satisfying CP by statistical model checking,
where the probability (of R5 and R6 observing an ordered sequence of writes) is plotted against
the issuing latency (L) between W1 and R5. By fixing the consistency level of writes, we can
see how the consistency level of reads affect CP consistency over issuing latency: surprisingly, it
appears that lower reads can achieve higher CP consistency. Specifically, ONE reads curve above
QUORUM reads that curve above ALL reads in terms of each strategy. The reason is that reads with
lower consistency level have lower latency (the interval between issuing time and finishing time for
a read request), giving rise to higher chance to observe consecutive writes. Instead, higher latency
reads allows more writes to reach the replicas during that interval, resulting in an inconsecutive
observation (e.g., one anomaly occurs when R5 returns the value of W1 while R6 reads the value
of W4).

We can compare the behaviors of TA and TB w.r.t. the choice of the three consistency levels:
compared to TA, TB (1) conforms for ONE reads, (2) provides strictly higher CP consistency for
QUORUM reads before some issuing latency, and, surprisingly, (3) gains more CP consistency only
before some issuing latency for ALL reads. The reason is that CP aims at guaranteeing an ordered
view of writes to the system instead of data freshness (e.g., R5 and R6 fetching W1 and W4
would be a CP-anomaly, though W4 is more recent than W2). Thus, after more and more writes
have taken effect at the replicas (as L increases), TA with ALL reads is more likely to return the
convergent value that respects the order.

LITES

03:20 Quantitative Analysis of Consistency in NoSQL Key-Value Stores

Figure 11 Probabilities of Satisfying CP by Statistical Model Checking (Left) and by Real Deployment
Run (Right).

Note that all scenarios start with lower probability of satisfying CP (e.g., with ONE writes TB
can only provide a probability down to 60%) because, when reads and writes are highly concurrent,
reads would probably return the values of unordered writes.

Regarding the implementation-based evaluation (Figure 11(b),(d),(f)), we show the resulting
probability of CP-consistent reads against L (Figure 6) for deployment runs regarding two strategies.
The results indicate similar trends for the model predictions and real deployment runs. Both
the model predictions and deployment runs show high probability of satisfying CP as the issuing
latency L increases. For lower values of L, we observe CP consistency values between 60% and 80%,
and, as L increases, the CP consistency value also increases to 70%–90%, gradually converging to
100%.

S. Liu, J. Ganhotra, M. R. Rahman, S. Nguyen, I. Gupta, and J. Meseguer 03:21

Figure 12 Probabilities of Satisfying CC by Statistical Model Checking (Left) and by Real Deployment
Run (Right).

5.2.5 Analysis Results for CC

Figure 12(a) shows the resulting probability of satisfying CC, where the probability (of R5
returning the value of W4 provided R3 reads the value of W2) is plotted against the issuing latency
(L) between W1 and R3. It is reasonable that all combinations of consistency levels achieve high
CC consistency, even with the lowest combination (O,O) that provides a probability around 90%,
and reads with higher consistency level gain more CC consistency (e.g., scenario (TB-OA) curves
above scenario (TB-OQ) that curves above scenario (TB-QO/OO)). It is also straightforward to
see that, with the consistency level of the preceding write (W4) from the same client increases,
more consistency will be achieved (e.g., scenario (TB-QO) curves above scenario (TB-OO)). Note
that all scenarios except (TB-OA) start with a probability of 100%, and gradually drop down and
stabilize at a lower probability. The reason is that with a lower issuing latency there are fewer
chances for R3 to read the value of W2 (if R3 does not return the value of W2, no causality will
arise between these two operations) and therefore any value returned by R5 is considered to be
CC-consistent; with an increasing issuing latency, R3 will be more likely to fetch the value of W2,
which leaves the combination of consistency levels of W4 and R5 to be the only factor to affect
the consistency (that also explains why the probability of satisfying CC stays fairly stable after
some point).

Figure 12(c) shows the comparison of TB and TA in terms of CC, where for simplicity we only
list three lower combinations of consistency levels due to the fact “R5 + W4 > RF". Both strategies
achieve high CC consistency, and overlap for the combinations (O,O) and (O,Q). Regarding (O,Q),
TA’s performance resembles TB’s over issuing latency, and both surpass each other slightly for
some points.

Regarding the implementation-based evaluation (Figure 12(b) and (d)), we show the resulting
probability of CC-consistent reads against L (Figure 7) for deployment runs regarding two strategies.

LITES

03:22 Quantitative Analysis of Consistency in NoSQL Key-Value Stores

Both the model predictions and deployment runs show high probability of satisfying CC. For the
model predictions, we observe that (TA-OO) and (TB-OO) have the lowest CC-consistency values
around 90%, which is expected and also matches with our observations from the real deployment
runs. In general, we observe that we get 90% - 100% CC-consistent reads, independent of the
issuing latency.

5.2.6 Summary and Comparison
Our Cassandra model actually achieves much higher consistency (up to SC) than the promised EC,
with QUORUM reads sufficient to provide up to 100% consistency in almost all scenarios. Comparing
TA and TB, it seems fair to say that TA is not a competitive design alternative to TB in terms of
the consistency models considered in this paper except CP, even though TA behaves close to TB
in most cases; regarding CP, TA surpasses TB with ALL reads during a certain interval of issuing
latency.

Our model, including the alternative design, is less than 1000 lines of code and the time to
compute the probabilities for the consistency guarantees is 15 minutes (worst-case) on a 2.9 GHz
Intel 4-Core i7-3520M CPU with 3.7 GB memory. The upper bound for model runtime depends on
the confidence level of our statistical model checker (99% confidence level for all our experiments).

Both the model predictions and implementation-based evaluations reach the same conclusion:
Cassandra provides much higher consistency than the promised EC, and TA does not improve
consistency compared to TB in terms of the consistency models considered in this paper except
for CP where TA provides higher consistency than TB with ALL reads during a certain interval
of issuing latency. Note that the actual probability values from both sides might differ due to
factors like hard-to-match experimental configurations, the inherent difference between statistical
model checking and implementation-based evaluation10, and processing delay at client/server side
that our model does not include. However, the important observation is that the resulting trends
from both sides are similar, leading to the same conclusions w.r.t. consistency measurements and
strategy comparison.

Note that our experiments did not focus on the performance aspects of the TA and TB
approaches in Cassandra. Our goal in this paper is to show that results derived from model-
checking (using our model) agree reasonably well with experimental reality, e.g., see the comparisons
and matches between our implementation results and the model results. The paper shows that
this agreement holds true as far as various consistency models are concerned, and even if one
changes how timestamps are used in responding to queries (comparing TA and TB).

6 Related Work

6.1 Model-based Performance Analysis of NoSQL stores
The work in [31] presents a queueing Petri net model of Cassandra parameterized by benchmarking
only one server. The model is scaled to represent the characteristics of read workloads for
different replication strategies and cluster sizes. Regarding performance, only response times
and throughput are considered. The work in [20] benchmarks three NoSQL databases, namely
Cassandra, MongoDB and HBase, by throughput and operation latency. Two simple high-level

10 In general, implementation-based evaluation is based on a single trace of tens of thousands of operations (e.g.,
each YCSB client in our experiments performs 20,000 operations), while statistical model checking is based
on sampling tens of thousands of Monte-Carlo simulations of several operations (that can be considered as a
segment of the trace) up to a certain statistical confidence (e.g., our statistical model checking runs 40,000
Monte-Carlo simulations for the experimental scenario of CP which has only six operations).

S. Liu, J. Ganhotra, M. R. Rahman, S. Nguyen, I. Gupta, and J. Meseguer 03:23

queuing network models are presented that are able to capture those performance characteristics.
Compared to both, our probabilistic model embodies the major components and features of
Cassandra, and serves as the basis of statistical analysis of consistency with multiple clients and
servers. Our model is also shown to be able to measure and predict new strategy designs by both
statistical model checking and by checking the conformance of the model checking results with
the code-based evaluation. Other recent work on model-based performance analysis includes [7],
which applies multi-formalism modeling approach to the Apache Hive query language for NoSQL
databases.

6.2 Experimental Consistency Benchmarking in NoSQL stores
The work in [32, 40, 10] proposes active and passive consistency benchmarking approaches
for distributed NoSQL key-value stores, where operation logs are analyzed to find consistency
violations. While these papers focus on consistency benchmarking using synthetic traces (e.g.,
generated using YCSB), the authors in [29] perform the first consistency benchmarking study of
a large-scale production system (Facebook TAO system). YCSB+T [17] benchmarks isolation
guarantees for NoSQL transactional databases, while the authors in [6] developed a benchmarking
suite for interactive social networking applications running on top of NoSQL databases. The
work in [5] proposes probabilistic notions of consistency to predict the data staleness, and uses
Monte-Carlo simulations to explore the trade-off between latency and consistency in Dynamo-style
partial quorum systems. Their focus is more on developing the theory of consistency models.
However, we focus on building a probabilistic model for a key-value store like Cassandra itself, and
our objective is to compare the consistency benchmarking results with the model-based predictions
from our statistical model checking.

6.3 Rewriting Logic-based Analysis of Cloud Computing Systems
The work in [26] presents a formal model of the popular distributed key-value store Cassandra,
and formally analyzes different consistency properties using Maude from a qualitative perspective.
The work in [24] looks into the consistency issue for Cassandra only in terms of SC and RYW from
a quantitative, statistical model checking perspective. This paper extends the previous results
by providing quantitative analysis of three new consistency models: monotonic reads, consistent
prefix and causal consistency. There is other recent work on rewriting logic-based analysis of
cloud computing systems, including, e.g., [25], which formalizes RAMP transactions and their
extensions and optimizations in rewriting logic and performs model checking verification of key
properties using the Maude tool; [21, 22], which uses Maude and Real-Time Maude to define a
formal model of Google’s widely-replicated data store Megastore (a hybrid between a NoSQL
store and a relational database) and to develop an extension of Megastore. These models were
simulated for QoS estimation and model checked for functional correctness; [36], which formally
models and analyzes availability properties of a ZooKeeper-based group key management service;
[18], which proposes and analyzes DoS resilience mechanisms for cloud-based systems; [42], which
gives formal semantics to the KLAIM language and uses it to specify and analyze cloud-based
architectures;

7 Conclusion

Our main focus in this paper has been twofold: (i) to predict what consistency properties Cassandra
can provide in actual practice by using statistical model checking; and (ii) to demonstrate the
predictive power of our model-based approach in key-value store design by comparing statistical

LITES

03:24 Quantitative Analysis of Consistency in NoSQL Key-Value Stores

model checking predictions with implementation-based evaluations. Our analysis is based on a
formal probabilistic model of Cassandra. To the best of our knowledge, we are the first to develop
such a formal model. The purpose of the alternative design was two-fold. First, we wanted to see if
the alternative approach i.e., the Timestamp Agnostic (TA) approach would give better accuracy
or not. Second, we also wanted to show that it was easier to try the alternative design with our
formal model. This is one of the key benefits of building formal models so that we can quickly try
alternative approaches and check their accuracy/performance. Our goal is not to do a systematic
performance analysis of TA and TB approaches in Cassandra that would require larger setups
not currently feasible for the statistical model checking analysis. Our goal instead is to show that
results derived from model-checking (using our model) agree reasonably well with experimental
reality, e.g., see the comparisons and matches between our implementation results and the model
results. The paper shows that this agreement holds true as far as various consistency models are
concerned, and even if one changes how timestamps are used in responding to queries (comparing
TA and TB).

In this paper we have only investigated consistency guarantees in a quantitative manner. A
natural next step would be to specify and quantify other performance metrics. Depending on
the perspective (key-value store providers, users, or application developers), different metrics
(e.g., throughput and operation latency) can be used to measure key-value store performance.
We also plan to refine our model in order to quantify those metrics. While showing scalability
is not the goal of this paper, we wish to do larger scale experiments in the future. There are
various resource challenges related to scaling the model checking to larger system sizes (e.g.,
parallelizing it in the proper way) that we plan to address and solve this in our future work. More
broadly, our long-term goal is to develop a library of formally specified executable components
embodying the key functionalities of NoSQL key-value stores (not just Cassandra), as well as of
distributed transaction systems [25]. We plan to use such components and the formal analysis of
their performance to facilitate efficient exploration of the design space for such systems and their
compositions with modest levels of effort and increased flexibility.

References
1 Gul A. Agha, José Meseguer, and Koushik Sen.

Pmaude: Rewrite-based specification language for
probabilistic object systems. Electr. Notes Theor.
Comput. Sci., 153(2):213–239, 2006. doi:10.1016/
j.entcs.2005.10.040.

2 Mustaque Ahamad, Gil Neiger, James E. Burns,
Prince Kohli, and Phillip W. Hutto. Causal
memory: Definitions, implementation, and pro-
gramming. Distributed Computing, 9(1):37–49,
1995. doi:10.1007/BF01784241.

3 Musab AlTurki and José Meseguer. Pvesta: A
parallel statistical model checking and quantitat-
ive analysis tool. In Andrea Corradini, Bartek Klin,
and Corina Cîrstea, editors, Algebra and Coalgebra
in Computer Science – 4th International Confer-
ence, CALCO 2011, Winchester, UK, August 30
– September 2, 2011. Proceedings, volume 6859 of
Lecture Notes in Computer Science, pages 386–392.
Springer, 2011. doi:10.1007/978-3-642-22944-
2_28.

4 Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M.
Hellerstein, and Ion Stoica. The potential dangers
of causal consistency and an explicit solution. In
Michael J. Carey and Steven Hand, editors, ACM
Symposium on Cloud Computing, SOCC’12, San
Jose, CA, USA, October 14-17, 2012, page 22.
ACM, 2012. doi:10.1145/2391229.2391251.

5 Peter Bailis, Shivaram Venkataraman, Michael J.
Franklin, Joseph M. Hellerstein, and Ion Stoica.
Probabilistically bounded staleness for prac-
tical partial quorums. PVLDB, 5(8):776–787,
2012. URL: http://vldb.org/pvldb/vol5/p776_
peterbailis_vldb2012.pdf.

6 Sumita Barahmand and Shahram Ghandehariz-
adeh. BG: A benchmark to evaluate interact-
ive social networking actions. In CIDR 2013,
Sixth Biennial Conference on Innovative Data Sys-
tems Research, Asilomar, CA, USA, January 6-9,
2013, Online Proceedings. www.cidrdb.org, 2013.
URL: http://www.cidrdb.org/cidr2013/Papers/
CIDR13_Paper93.pdf.

7 Enrico Barbierato, Marco Gribaudo, and Mauro
Iacono. Performance evaluation of nosql big-data
applications using multi-formalism models. Fu-
ture Generation Comp. Syst., 37:345–353, 2014.
doi:10.1016/j.future.2013.12.036.

8 Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason
Sobel, and Peter Vajgel. Finding a needle in
haystack: Facebook’s photo storage. In Re-
mzi H. Arpaci-Dusseau and Brad Chen, edit-
ors, 9th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2010,
October 4-6, 2010, Vancouver, BC, Canada,
Proceedings, pages 47–60. USENIX Association,

http://dx.doi.org/10.1016/j.entcs.2005.10.040
http://dx.doi.org/10.1016/j.entcs.2005.10.040
http://dx.doi.org/10.1007/BF01784241
http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1145/2391229.2391251
http://vldb.org/pvldb/vol5/p776_peterbailis_vldb2012.pdf
http://vldb.org/pvldb/vol5/p776_peterbailis_vldb2012.pdf
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper93.pdf
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper93.pdf
http://dx.doi.org/10.1016/j.future.2013.12.036

S. Liu, J. Ganhotra, M. R. Rahman, S. Nguyen, I. Gupta, and J. Meseguer 03:25

2010. URL: http://www.usenix.org/events/
osdi10/tech/full_papers/Beaver.pdf.

9 Theophilus Benson, Aditya Akella, and David A.
Maltz. Network traffic characteristics of data cen-
ters in the wild. In IMC, pages 267–280, 2010.

10 David Bermbach and Stefan Tai. Eventual con-
sistency: How soon is eventual? an evalu-
ation of amazon s3’s consistency behavior. In
Karl M. Göschka, Schahram Dustdar, and Vladi-
mir Tosic, editors, Proceedings of the 6th Work-
shop on Middleware for Service Oriented Comput-
ing, MW4SOC 2011, Lisbon, Portugal, December
12-16, 2011, page 1. ACM, 2011. doi:10.1145/
2093185.2093186.

11 Eric A. Brewer. Towards robust distributed sys-
tems (abstract). In Gil Neiger, editor, Proceed-
ings of the Nineteenth Annual ACM Symposium
on Principles of Distributed Computing, July 16-
19, 2000, Portland, Oregon, USA., page 7. ACM,
2000. doi:10.1145/343477.343502.

12 Cassandra, 2016. http://cassandra.apache.org.
13 Manuel Clavel, Francisco Durán, Steven Eker,

Patrick Lincoln, Narciso Martí-Oliet, José Meseg-
uer, and Carolyn L. Talcott, editors. All About
Maude – A High-Performance Logical Framework,
How to Specify, Program and Verify Systems in
Rewriting Logic, volume 4350 of Lecture Notes in
Computer Science. Springer, 2007.

14 Brian F. Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. Bench-
marking cloud serving systems with YCSB. In
Joseph M. Hellerstein, Surajit Chaudhuri, and
Mendel Rosenblum, editors, Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC
2010, Indianapolis, Indiana, USA, June 10-11,
2010, pages 143–154. ACM, 2010. doi:10.1145/
1807128.1807152.

15 James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, J. J. Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, Wilson C. Hsieh, Se-
bastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay
Rolig, Yasushi Saito, Michal Szymaniak, Chris-
topher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally-distributed database.
In Chandu Thekkath and Amin Vahdat, editors,
10th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2012, Hol-
lywood, CA, USA, October 8-10, 2012, pages
261–264. USENIX Association, 2012. URL:
https://www.usenix.org/conference/osdi12/
technical-sessions/presentation/corbett.

16 DB-Engines, 2016. http://db-engines.com/en/
ranking.

17 Akon Dey, Alan Fekete, Raghunath Nambiar, and
Uwe Röhm. YCSB+T: benchmarking web-scale
transactional databases. In Workshops Proceed-
ings of the 30th International Conference on Data
Engineering Workshops, ICDE 2014, Chicago, IL,
USA, March 31 – April 4, 2014, pages 223–230.
IEEE Computer Society, 2014. doi:10.1109/
ICDEW.2014.6818330.

18 Jonas Eckhardt, Tobias Mühlbauer, Musab Al-
Turki, José Meseguer, and Martin Wirsing. Stable

availability under denial of service attacks through
formal patterns. In Juan de Lara and Andrea
Zisman, editors, Fundamental Approaches to Soft-
ware Engineering – 15th International Conference,
FASE 2012, Held as Part of the European Joint
Conferences on Theory and Practice of Software,
ETAPS 2012, Tallinn, Estonia, March 24 – April
1, 2012. Proceedings, volume 7212 of Lecture Notes
in Computer Science, pages 78–93. Springer, 2012.
doi:10.1007/978-3-642-28872-2_6.

19 Jonas Eckhardt, Tobias Mühlbauer, José Meseg-
uer, and Martin Wirsing. Statistical model check-
ing for composite actor systems. In Narciso Martí-
Oliet and Miguel Palomino, editors, Recent Trends
in Algebraic Development Techniques, 21st In-
ternational Workshop, WADT 2012, Salamanca,
Spain, June 7-10, 2012, Revised Selected Papers,
volume 7841 of Lecture Notes in Computer Science,
pages 143–160. Springer, 2012. doi:10.1007/978-
3-642-37635-1_9.

20 Andrea Gandini, Marco Gribaudo, William J.
Knottenbelt, Rasha Osman, and Pietro Piazzolla.
Performance evaluation of nosql databases. In An-
drás Horváth and Katinka Wolter, editors, Com-
puter Performance Engineering – 11th European
Workshop, EPEW 2014, Florence, Italy, Septem-
ber 11-12, 2014. Proceedings, volume 8721 of Lec-
ture Notes in Computer Science, pages 16–29.
Springer, 2014. doi:10.1007/978-3-319-10885-
8_2.

21 Jon Grov and Peter Csaba Ölveczky. Formal mod-
eling and analysis of google’s megastore in real-
time maude. In Shusaku Iida, José Meseguer,
and Kazuhiro Ogata, editors, Specification, Al-
gebra, and Software – Essays Dedicated to Koki-
chi Futatsugi, volume 8373 of Lecture Notes in
Computer Science, pages 494–519. Springer, 2014.
doi:10.1007/978-3-642-54624-2_25.

22 Jon Grov and Peter Csaba Ölveczky. Increasing
consistency in multi-site data stores: Megastore-
cgc and its formal analysis. In Dimitra Gian-
nakopoulou and Gwen Salaün, editors, Software
Engineering and Formal Methods – 12th Interna-
tional Conference, SEFM 2014, Grenoble, France,
September 1-5, 2014. Proceedings, volume 8702 of
Lecture Notes in Computer Science, pages 159–174.
Springer, 2014. doi:10.1007/978-3-319-10431-
7_12.

23 Leslie Lamport. Time, clocks, and the ordering
of events in a distributed system. Commun. ACM,
21(7):558–565, 1978. doi:10.1145/359545.359563.

24 Si Liu, Son Nguyen, Jatin Ganhotra, Mun-
tasir Raihan Rahman, Indranil Gupta, and José
Meseguer. Quantitative analysis of consistency
in nosql key-value stores. In Javier Campos
and Boudewijn R. Haverkort, editors, Quantitative
Evaluation of Systems, 12th International Confer-
ence, QEST 2015, Madrid, Spain, September 1-3,
2015, Proceedings, volume 9259 of Lecture Notes in
Computer Science, pages 228–243. Springer, 2015.
doi:10.1007/978-3-319-22264-6_15.

25 Si Liu, Peter Csaba Ölveczky, Muntasir Raihan
Rahman, Jatin Ganhotra, Indranil Gupta, and
José Meseguer. Formal modeling and analysis of
RAMP transaction systems. In Sascha Ossowski,

LITES

http://www.usenix.org/events/osdi10/tech/full_papers/Beaver.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Beaver.pdf
http://dx.doi.org/10.1145/2093185.2093186
http://dx.doi.org/10.1145/2093185.2093186
http://dx.doi.org/10.1145/343477.343502
http://cassandra.apache.org
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1807128.1807152
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
http://dx.doi.org/10.1109/ICDEW.2014.6818330
http://dx.doi.org/10.1109/ICDEW.2014.6818330
http://dx.doi.org/10.1007/978-3-642-28872-2_6
http://dx.doi.org/10.1007/978-3-642-37635-1_9
http://dx.doi.org/10.1007/978-3-642-37635-1_9
http://dx.doi.org/10.1007/978-3-319-10885-8_2
http://dx.doi.org/10.1007/978-3-319-10885-8_2
http://dx.doi.org/10.1007/978-3-642-54624-2_25
http://dx.doi.org/10.1007/978-3-319-10431-7_12
http://dx.doi.org/10.1007/978-3-319-10431-7_12
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1007/978-3-319-22264-6_15

03:26 Quantitative Analysis of Consistency in NoSQL Key-Value Stores

editor, Proceedings of the 31st Annual ACM Sym-
posium on Applied Computing, Pisa, Italy, April
4-8, 2016, pages 1700–1707. ACM, 2016. doi:
10.1145/2851613.2851838.

26 Si Liu, Muntasir Raihan Rahman, Stephen Skeirik,
Indranil Gupta, and José Meseguer. Formal model-
ing and analysis of cassandra in maude. In Stephan
Merz and Jun Pang, editors, Formal Methods and
Software Engineering – 16th International Con-
ference on Formal Engineering Methods, ICFEM
2014, Luxembourg, Luxembourg, November 3-5,
2014. Proceedings, volume 8829 of Lecture Notes in
Computer Science, pages 332–347. Springer, 2014.
doi:10.1007/978-3-319-11737-9_22.

27 Si Liu, Muntasir Raihan Rahman, Stephen Skeirik,
Indranil Gupta, and José Meseguer. Formal model-
ing and analysis of Cassandra in Maude. Technical
Report. Manuscript, 2014. URL: https://sites.
google.com/site/siliunobi/icfem-cassandra.

28 Wyatt Lloyd, Michael J. Freedman, Michael Kam-
insky, and David G. Andersen. Don’t settle for
eventual: scalable causal consistency for wide-area
storage with COPS. In Ted Wobber and Peter
Druschel, editors, Proceedings of the 23rd ACM
Symposium on Operating Systems Principles 2011,
SOSP 2011, Cascais, Portugal, October 23-26,
2011, pages 401–416. ACM, 2011. doi:10.1145/
2043556.2043593.

29 Haonan Lu, Kaushik Veeraraghavan, Philippe
Ajoux, Jim Hunt, Yee Jiun Song, Wendy Tobagus,
Sanjeev Kumar, and Wyatt Lloyd. Existential
consistency: measuring and understanding con-
sistency at facebook. In Ethan L. Miller and
Steven Hand, editors, Proceedings of the 25th Sym-
posium on Operating Systems Principles, SOSP
2015, Monterey, CA, USA, October 4-7, 2015,
pages 295–310. ACM, 2015. doi:10.1145/2815400.
2815426.

30 MongoDB, 2016. http://www.mongodb.org.
31 Rasha Osman and Pietro Piazzolla. Modelling rep-

lication in nosql datastores. In Gethin Norman and
William H. Sanders, editors, Quantitative Eval-
uation of Systems – 11th International Confer-
ence, QEST 2014, Florence, Italy, September 8-10,
2014. Proceedings, volume 8657 of Lecture Notes in
Computer Science, pages 194–209. Springer, 2014.
doi:10.1007/978-3-319-10696-0_16.

32 Muntasir Raihan Rahman, Wojciech M. Golab,
Alvin AuYoung, Kimberly Keeton, and Jay J.
Wylie. Toward a principled framework for bench-
marking consistency. In Michael J. Freedman and
Neeraj Suri, editors, Proceedings of the Eighth
Workshop on Hot Topics in System Dependability,
HotDep 2012, Hollywood, CA, USA, October
7, 2012. USENIX Association, 2012. URL:
https://www.usenix.org/conference/hotdep12/
workshop-program/presentation/rahman.

33 Redis, 2016. http://redis.io.
34 Koushik Sen, Mahesh Viswanathan, and Gul Agha.

On statistical model checking of stochastic systems.
In Kousha Etessami and Sriram K. Rajamani, ed-
itors, Computer Aided Verification, 17th Interna-
tional Conference, CAV 2005, Edinburgh, Scot-
land, UK, July 6-10, 2005, Proceedings, volume
3576 of Lecture Notes in Computer Science, pages
266–280. Springer, 2005. doi:10.1007/11513988_
26.

35 Koushik Sen, Mahesh Viswanathan, and Gul A.
Agha. VESTA: A statistical model-checker and
analyzer for probabilistic systems. In Second In-
ternational Conference on the Quantitative Eval-
uaiton of Systems (QEST 2005), 19-22 September
2005, Torino, Italy, pages 251–252. IEEE Com-
puter Society, 2005. doi:10.1109/QEST.2005.42.

36 Stephen Skeirik, Rakesh B. Bobba, and José Me-
seguer. Formal analysis of fault-tolerant group key
management using zookeeper. In 13th IEEE/ACM
International Symposium on Cluster, Cloud, and
Grid Computing, CCGrid 2013, Delft, Nether-
lands, May 13-16, 2013, pages 636–641. IEEE
Computer Society, 2013. doi:10.1109/CCGrid.
2013.98.

37 Doug Terry. Replicated data consistency explained
through baseball. Commun. ACM, 56(12):82–89,
2013. doi:10.1145/2500500.

38 Douglas B. Terry, Vijayan Prabhakaran, Ra-
makrishna Kotla, Mahesh Balakrishnan, Marcos K.
Aguilera, and Hussam Abu-Libdeh. Consistency-
based service level agreements for cloud storage.
In Michael Kaminsky and Mike Dahlin, editors,
ACM SIGOPS 24th Symposium on Operating Sys-
tems Principles, SOSP’13, Farmington, PA, USA,
November 3-6, 2013, pages 309–324. ACM, 2013.
doi:10.1145/2517349.2522731.

39 Werner Vogels. Eventually consistent. Commun.
ACM, 52(1):40–44, 2009. doi:10.1145/1435417.
1435432.

40 Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee,
and Anna Liu. Data consistency properties and
the trade-offs in commercial cloud storage: the con-
sumers’ perspective. In CIDR 2011, Fifth Biennial
Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings, pages 134–143. www.cidrdb.org, 2011.
URL: http://www.cidrdb.org/cidr2011/Papers/
CIDR11_Paper15.pdf.

41 Brian White, Jay Lepreau, Leigh Stoller, Robert
Ricci, Shashi Guruprasad, Mac Newbold, Mike
Hibler, Chad Barb, and Abhijeet Joglekar. An
integrated experimental environment for distrib-
uted systems and networks. In David E.
Culler and Peter Druschel, editors, 5th Sym-
posium on Operating System Design and Im-
plementation (OSDI 2002), Boston, Massachu-
setts, USA, December 9-11, 2002. USENIX As-
sociation, 2002. URL: http://www.usenix.org/
events/osdi02/tech/white.html.

42 Martin Wirsing, Jonas Eckhardt, Tobias Mühl-
bauer, and José Meseguer. Design and analysis of
cloud-based architectures with KLAIM and maude.
In Francisco Durán, editor, Rewriting Logic and
Its Applications – 9th International Workshop,
WRLA 2012, Held as a Satellite Event of ETAPS,
Tallinn, Estonia, March 24-25, 2012, Revised Se-
lected Papers, volume 7571 of Lecture Notes in
Computer Science, pages 54–82. Springer, 2012.
doi:10.1007/978-3-642-34005-5_4.

43 Håkan L. S. Younes and Reid G. Simmons. Stat-
istical probabilistic model checking with a fo-
cus on time-bounded properties. Inf. Comput.,
204(9):1368–1409, 2006. doi:10.1016/j.ic.2006.
05.002.

http://dx.doi.org/10.1145/2851613.2851838
http://dx.doi.org/10.1145/2851613.2851838
http://dx.doi.org/10.1007/978-3-319-11737-9_22
https://sites.google.com/site/siliunobi/icfem-cassandra
https://sites.google.com/site/siliunobi/icfem-cassandra
http://dx.doi.org/10.1145/2043556.2043593
http://dx.doi.org/10.1145/2043556.2043593
http://dx.doi.org/10.1145/2815400.2815426
http://dx.doi.org/10.1145/2815400.2815426
http://www.mongodb.org
http://dx.doi.org/10.1007/978-3-319-10696-0_16
https://www.usenix.org/conference/hotdep12/workshop-program/presentation/rahman
https://www.usenix.org/conference/hotdep12/workshop-program/presentation/rahman
http://redis.io
http://dx.doi.org/10.1007/11513988_26
http://dx.doi.org/10.1007/11513988_26
http://dx.doi.org/10.1109/QEST.2005.42
http://dx.doi.org/10.1109/CCGrid.2013.98
http://dx.doi.org/10.1109/CCGrid.2013.98
http://dx.doi.org/10.1145/2500500
http://dx.doi.org/10.1145/2517349.2522731
http://dx.doi.org/10.1145/1435417.1435432
http://dx.doi.org/10.1145/1435417.1435432
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper15.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper15.pdf
http://www.usenix.org/events/osdi02/tech/white.html
http://www.usenix.org/events/osdi02/tech/white.html
http://dx.doi.org/10.1007/978-3-642-34005-5_4
http://dx.doi.org/10.1016/j.ic.2006.05.002
http://dx.doi.org/10.1016/j.ic.2006.05.002

How Is Your Satellite Doing?
Battery Kinetics with Recharging and Uncertainty∗

Holger Hermanns1, Jan Krčál2, and Gilles Nies3

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
http://orcid.org/0000-0002-2766-9615
hermanns@cs.uni-saarland.de

2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
http://orcid.org/0000-0002-3799-039X
krcal@cs.uni-saarland.de

3 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
http://orcid.org/0000-0002-2535-1590
nies@cs.uni-saarland.de

Abstract
The kinetic battery model is a popular model of
the dynamic behaviour of a conventional battery,
useful to predict or optimize the time until battery
depletion. The model however lacks certain obvi-
ous aspects of batteries in-the-wild, especially with
respect to the effects of random influences and the
behaviour when charging up to capacity limits.

This paper considers the kinetic battery model
with limited capacity in the context of piecewise

constant yet random charging and discharging. We
provide exact representations of the battery beha-
viour wherever possible, and otherwise develop safe
approximations that bound the probability distri-
bution of the battery state from above and below.
The resulting model enables the time-dependent
evaluation of the risk of battery depletion. This is
demonstrated in an extensive dependability study
of a nano satellite currently orbiting the earth.

2012 ACM Subject Classification Batteries, Stochastic processes, Reliability
Keywords and Phrases battery power, depletion risk, bounded charging and discharging, stochastic
load, distribution bounds
Digital Object Identifier 10.4230/LITES-v004-i001-a004
Received 2016-01-09 Accepted 2016-12-05 Published 2016-12-23

Special Issue Editors Javier Campos, Martin Fränzle, and Boudewijn Haverkort
Special Issue Quantitative Evaluation of Systems

1 Introduction

A rechargeable battery is a physical object storing energy. Charging and discharging induces
or is the result of chemical reactions inside the battery. Lithium chemistry is the technology of
choice and has made rechargeable batteries become the backbone of our modern digital life. Yet,
batteries are safety-critical. Wrong usage may imply injuries due to overheating, gas formation or
spontaneous combustion. In addition, batteries are an obvious bottleneck for device operation,
restricting performance and longevity of wireless operations, as well as journeys of electric vehicles.
To understand and manage battery-run operations requires an adequate model of battery state

∗ This work is supported by the Transregional Collaborative Research Centre SFB/TR 14 AVACS, the 7th
EU Framework Program under grant agreements 295261 (MEALS) and 318490 (SENSATION), by the
Czech Science Foundation, grant no. P202/12/G061 and by the ERC Advanced Investigators Grant 695614
(POWVER).

© Holger Hermanns, Jan Krčál, and Gilles Nies;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 4, Issue 1, Article No. 4, pp. 04:1–04:28
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://orcid.org/0000-0002-2766-9615
mailto:hermanns@cs.uni-saarland.de
http://orcid.org/0000-0002-3799-039X
mailto:krcal@cs.uni-saarland.de
http://orcid.org/0000-0002-2535-1590
mailto:nies@cs.uni-saarland.de
http://dx.doi.org/10.4230/LITES-v004-i001-a004
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

04:2 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

reality
electro-chemical model (>50 parameters) [13]

diffusion model (3 parameters) [31]
kinetic model (3 parameters) [28, 33]
Peukert model (3 parameters) [30]
linear model (1 parameter)
observables (voltage, temperature)

p

b(t)
1−c a(t)

c

I

1 − c c

b(t) a(t)

Figure 1 Battery model overview (left) and visualisation of the kinetic battery model (right).

and battery behaviour. Different modelling approaches for predicting battery performance have
been proposed [32, 6] based on a model landscape summarised on the left of Figure 1, where each
model is known to be an abstraction of its upper neighbour [25, 23].

Detailed explanations of the various models will be given in Section 2. Intuitively, the linear
model corresponds to a simple well holding liquid, the charge. This is is the view typically
displayed to smart phones users, in the form of a percentage value. The diffusion model treats the
distribution of electrical charge between cathode and anode as a continuum, while its first-order
approximation, the kinetic battery model, KiBaM, separates the charge in two parts, available
charge and bound charge. The latter can be visualised as two wells interconnected by a pipe, as
depicted on the right of Figure 1, where only the available charge may be consumed instantaneously,
while bound charge is converted into available charge as time passes. Given a constant load, the
KiBaM represents the battery state-of-charge (SoC) by two coupled differential equations, one for
each well. Unlike the linear model (and the Peukert model), the KiBaM can capture two important
real phenomena; the rate capacity effect and the recovery effect. The former effect describes the
fact that if continuously discharged, a high discharge rate will cause the battery to provide less
energy before depletion than a lower discharge rate. Thus a battery’s effective capacity depends on
the rate at which it is discharged. The latter effect stands for the battery recovers to some extent
during periods of no or little discharge. Both effects are decisive operational phenomena known
across electro-chemical batteries, rooted in their physical layout where the chemical reactions
related to charging and discharging span between cathode and anode, and are dis-equilibrating
the chemical substrate balance. Indeed, empirical evaluations show that this model provides a
good approximation of the battery SoC across various battery types [25, 23].

Our contribution. The original KiBaM does not take capacity limits into consideration, it can
thus be interpreted as assuming infinite capacity. Reality is unfortunately different. When studying
the KiBaM operating with capacity limits, it becomes apparent that charging and discharging are
not dual to each other, simply because a full battery keeps operating, in contrast to an empty one.
However, opposite to the discharging process, the charging process near capacity limits has not
received dedicated attention in the literature. That problem is attacked in the present paper.

Although directly expressible as a function of time, the behaviour at capacity limits cannot be
computed exactly. For this scenario we therefore resort to under- and over-approximating state of
charge (SoC) evolutions, that serve as upper and lower bounds of the exact SoC evolution.

Furthermore, statistical results obtained by experimenting with real of-the-shelf batteries
suggest considerable variances in actual performance [7], likely rooted in manufacturing and wear
differences. This observation asks for a stochastic re-interpretation of the classical KiBaM to take
the statistically observed SoC spread into account on the model level, and this is what the present
paper develops – in a setting with capacity limits, charging and discharging. It views the KiBaM
as a transformer of the continuous probability distribution describing the SoC at any real time

H. Hermanns, J. Krčál, and G. Nies 04:3

point, thereby also supporting uncertainty and noise in the load process.
The stochastic re-interpretation and the extension by capacity limits in combination, allow us

to derive SoC distributions that bound the actual distribution of the SoC from above and below
in a safe way. These bounding distributions can be used to determine an interval enclosing the
cumulative risk of battery depletion for any given time point.

We apply this approach to an in-depth case study of the Danish nano satellite GomX–1
currently orbiting the earth in low orbit [20]. From the satellite’s hardware specification and
extensive in-flight telemetry logs provided by its manufacturer GomSpace, a probabilistic workload
model is derived and superposed with a periodic deterministic charging load, representing the infeed
from on-board solar panels. Our technique then enables us to perform an effective quantitative
analysis of the satellite’s power budget, with a particular focus on the battery depletion risk
over large mission times. The interplay of the resulting battery model and the imposed load can
be viewed as a particular stochastic hybrid system [1, 3, 4, 8, 12, 37], developed here without
discretising time. We have found that general purpose tools for this problem domain [36, 17, 43]
are at present not capable to provide such answers, as we will explain.

The genuine contributions of the paper are:
(i) The interpretation of the KiBaM as a transformer of SoC distributions,
(ii) developed without discretising time,
(iii) considering both charging and discharging in the context of capacity limits,
(iv) using under- and over-approximations where needed to get correctness guarantees,
(v) applied in the power budget analysis of a low-earth orbiting nano satellite.

Related work. Haverkort and Jongerden [23] review broad research on various battery models of
different natures, ranging from electro-chemical models, electrical circuit models, stochastic models
to analytical models. The conclusion is very plain: The most accurate models are the electro-
chemical ones, although their usage requires expert knowledge about batteries. For integration
with a workload model to carry out performance analysis, analytical models are best suited as they
allow for analytical expressions of the battery lifetimes under a load process, while still capturing
the most important non-linear effects of real batteries.

They particularly discuss stochastic battery models [33, 10] which view the KiBaM for a given
load as a stochastic process, unlike our (more accurate) view as a deterministic transformer of the
randomized initial conditions of the battery. Furthermore, in this survey, the problem of charging
up to capacity limits does not get dedicated attention.

Battery capacity has been addressed only by Boker et al. [5]. They considered a discretized,
unbounded KiBaM together with a possibly non-deterministic and cyclic load process, synthesizing
initial capacity requirements to power the process safely. Hence, capacity is here understood as an
over-dimensioned initial condition and not as a truly limiting charging bound.

Random loads on a battery, generated by a continuous-time Markov chain, have been previously
studied by Cloth et al. [10]. Their setting cannot be easily extended by charging since they view the
available and bound charge levels as two types of accumulated reward in a reward-inhomogeneous
continuous time Markov chain.

An extension of the KiBaM to scheduling has been considered by Jongerden et al. [24]. They
compute optimal schedules for multiple batteries in a discretized setting with only discharging.
This has been taken up and improved using techniques from the planning domain [14].

Organisation of the paper. Section 2 introduces the original (deterministic, unlimited) kinetic
battery model. In Section 3 we view this unlimited KiBaM as a transformer of probability density
functions, resulting in a stochastic, unlimited model. Section 4 considers lower and upper capacity

LITES

04:4 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

limits for the deterministic model. This development is lifted to the stochastic interpretation
in Section 5, arriving at a stochastic and limited model. Section 6 introduces a probabilistic
workload model together with algorithms to compute the SoC of a stochastic limited KiBaM
under such a workload. In Section 7 we present a discretisation algorithm that allows for efficient
and tight approximations of a SoC distribution after being subject to a workload for a certain
amount of time. Finally, in Section 8, we demonstrate the efficiency and relevance of our findings
by analysing the power budget of a Danish nano satellite currently orbiting the planet.

This paper is a substantially enhanced and extended version of paper [22]. Apart from a
more extensive exposition, the enhancements comprise all developments and results concerning
over-approximations, a connection to synchronous data flow models, as well as a thorough and
detailed description of the nano satellite case.

2 The Kinetic Battery Model

As discussed in Section 1, batteries in-the-wild exhibit two non-linear effects widely considered to
be the most important ones to capture: the rate capacity effect and the recovery effect. In the
sequel we introduce the kinetic battery model KiBaM as the simplest model capturing these effects,
and place it in the context of other candidates to model a battery, summarized in Figure 1.

The linear model. Also called the ideal battery, this model views a battery as one well of capacity
cap that is decreased proportionally to a load I that is imposed on the battery. Thus, the
lifetime of a full battery under load I can naturally be expressed by cap/I. While easy to
handle, the linear battery model neither captures the recovery of batteries nor the rate capacity
effect.

Peukert model. An extension of the ideal battery is provided by Peukert’s law. In this, parameters
a and b characterise the lifetime of a full battery under load I as a/Ib. For a = cap and b = 1,
this corresponds to an ideal battery, although parameters fitted through experiments generally
result in a being a bit smaller than cap and b being slightly larger than 1. Peukert’s law
captures the rate capacity effect, but neglects the recovery effect.

The electrochemical-model. Together with its accompanying simulation tool Dualfoil [29], the
highly parametrisable electro-chemical battery model is, in its own right, widely considered as
the reference “reality” to check the faithfulness and accuracy of other models.

The diffusion model. The diffusion model of Rakhmatov and Vrudhula [25] describes the ion
concentration along the width of a battery as a continuous quantity. A full battery exhibits
equal concentration along the battery, while a discharge causes a decrease of the concentration
near the discharging electrode. This, in turn, causes a gradient that makes the ions diffuse
towards the electrode. Thus during periods of rest the ion concentration tends to equalise over
the width of a battery, inducing a recovery. During periods of high discharge, the diffusion
cannot keep up causing premature depletion; the rate capacity effect. The model allows
for analytical expressions for the battery lifetime as well and exhibits a very high degree of
precision against the electro-chemical model.

The kinetic battery model. The kinetic battery model (KiBaM) can be viewed as a discretised
diffusion model by dividing the stored charge into two parts, the available charge and the
bound charge and can actually be proven to be a first-order approximation of the diffusion
model. When the battery is strained only the available charge is consumed instantly, while
the bound charge is slowly converted to available charge by diffusion. This diffusion between
available and bound charge can take place in either direction depending on the amount of both
types of energy stored in the battery. Both non-linear effects are captured for the exact same
reason as for the diffusion model: the relatively slow conversion of bound charge into available

H. Hermanns, J. Krčál, and G. Nies 04:5

charge or vice versa. Due to its simplicity and accuracy relative to the more complex diffusion
model [23] and therefore also relative to the Dualfoil electro-chemical model simulator, we
focus on the kinetic battery model in this paper.

I Example 1. We illustrate the evolution of the state of charge of the KiBaM as time passes
under the assumption of symmetry of charging and discharging below.

10 40 551500

5000

9000

a(t)
b(t)
I

−600

0
400

The initially available charge decreases heavily due to the load 400 but the restricted diffusion
makes the bound charge decrease only slowly up to time 10; after that the battery undergoes a
mild recharge, and so on. At all times the bound charge approaches the available charge by a
speed proportional to the difference of the two values.

Coupled differential equations. The KiBaM can be visualized as two wells holding liquid,
interconnected by a pipe that represents the diffusion of the two types of charge, as depicted on
the right of Figure 1. The available charge well is exposed directly to the load I and connected to
the bound charge well by a pipe of width p. Formally, the KiBaM is characterized by two coupled
differential equations

ȧ(t) = −I + p

(
b(t)

1− c −
a(t)
c

)
, ḃ(t) = p

(
a(t)
c
− b(t)

1− c

)
. (1)

Here, the functions a(t) and b(t) describe the available and bound charge at time t respectively,
ȧ(t) and ḃ(t) their time derivatives, I is a load on the battery. We refer to the parameter p as
the diffusion rate between both wells, while parameter c ∈ [0, 1] corresponds to the width of the
available charge well, and 1 − c is the width of the bound charge well. Intuitively, a(t)/c and
b(t)/(1− c) are the level of the fluid stored in the available charge well and the bound charge well,
respectively. In the following, we take a closer look at the properties of this concrete form of a
dynamical system. In the end, this allows us to obtain tailor-made efficient analysis algorithms.

It is possible to derive a solution of the ODEs at time t when applying load I, for instance by
using Laplace transforms. We can express it as a vector valued linear mapping Kt,I taking the
initial available and bound charge a0 and b0 as argument:

Kt,I
[
a0
b0

]
=
[
qa ra sa
qb rb sb

]
·

a0
b0
I

 where
qa = (1− c)e−kt + c,

ra = − c e−kt + c,

sa = (1− c)(e−kt − 1)
k

− t · c
and qb = 1− qa, rb = 1− ra, sb = −t− sa and finally k = p/c(1− c). The coefficients sa and sb of
I do not sum to 1, because the non-zero load I makes the total power in the battery change. The
above definition of Kt,I is a vector valued reformulation of equations found in [28].

As all vectors appearing in this paper are column vectors, we also denote them by semicolon
notation [a; b]. Furthermore, whenever we compare two vectors, e.g., [a; b] ≤ [a′; b′], we interpret

LITES

04:6 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

the order component-wise. When [a0; b0] and I are clear from context, we denote the SoC
Kt,I [a0; b0] at time t also simply by [at; bt].

I Example 2. We can use the function K to obtain the final SoC for our example (for k = 1/100,
c = 1/2, and ◦ denoting function composition) by

K45,−35 ◦K15,−600 ◦K30,−100 ◦K10,400[5000; 5000] ≈ K45,−35[10732; 7268],

and with the last step in more details (denoting e− 44
100 by E),

=
[

1
2E + 1

2 − 1
2E + 1

2 50E − 50− 44
2

− 1
2E + 1

2
1
2E + 1

2 50− 50E − 44
2

]
·

10732
7268
−35

 =
[−18E + 6480

18E + 8020

]
≈
[
9881
9659

]
.

The first summands on the last line (with E) stand for the spread of the values before the recovery
effect converges (as E → 0 for t→∞). The second summands are different due to non-zero load
I causing bt − at to converge to I/k (for c = 1/2).

Powering a task. A standard problem in battery modelling and evaluation is to find out whether
a task can be performed with a given positive state of charge without depleting the battery, where
positive is to be understood componentwise. A task is a pair (T, I) with T being the task execution
time, and I representing the load, imposed for duration T .

I Definition 3 (K-powering a task). For an execution time T and a load I, we say that a battery
with a positive SoC [a0; b0] K-powers a task (T, I) iff ∀ 0 < t ≤ T : at > 0.

Let us stress that the SoC of the battery evolves in negative numbers in the same way as in
positive numbers because the differential equations do not have any explicit bounds. Furthermore,
it is not monotonic with respect to time in the conventional sense.

I Example 4. In our example, the bound charge is not monotonic on the interval [10, 40], the
available charge is not monotonic on [55, 100]. However, for instance, on [40, 55], available charge
is the first to get above the value 9000 (and never crosses the boundary back down again).

We observe that the KiBaM is monotonic with respect to crossing a boundary κ when both wells
start beyond this boundary.

I Lemma 5. For any I ∈ R, κ ∈ R, B ∈ {<,>}, [a0; b0] B [cκ; (1− c)κ] and for t ∈ R>0 such
that at = cκ we have

bt B (1− c)κ (available charge is always the first to cross a boundary);
aT 7 cκ for all T > t (available charge never crosses back for a given load).

Intuitively speaking, the first property states that the available charge is always the first to
cross a boundary, the second property states that when the available charge crosses a boundary it
never returns back (for a given load).

As a direct consequence of Lemma 5, we can easily find out whether the battery K-powers a
task (T, I) by just observing the SoC at time point T .

I Lemma 6. A battery with a positive SoC [a0; b0] K-powers a task (T, I) iff [aT ; bT] > [0; 0].

H. Hermanns, J. Krčál, and G. Nies 04:7

3 Random KiBaM

In order to consider the KiBaM as a stochastic object, it appears natural to consider the vector
[a0; b0; I] as being random. This reflects the perturbations of the load and of the initial SoC of
the batteries. The latter is a real phenomenon, rooted in wear and manufacturing variances [9].
We thus assume the initial SoC to be random variables A0, B0 jointly distributed according to a
density function f0, while the load on the battery is a random variable I independent of the SoC,
endowed with a probability density function g.

I Example 7. Instead of a single (Dirac) SoC, we now consider that the joint density f0 of the
charge is, say, uniform over the area [4, 6.5]× [4, 6.5] as depicted below.

0 4 6.5 10
bound

0

4
6.5

10

av
ai

la
ble

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

de
ns

ity
Here the values of the two-dimensional density are expressed using colours. Using similar plots,
we shall illustrate how the SoC distribution evolves as the time passes on this particular example.

Evolution over time. We are interested in the random vector expressing the SoC after some
time T for a constant (but random) load I. This is given by

[AT ;BT] := KT,I [A0;B0]. (2)

The core tool for studying the joint density of [AT ;BT] is the transformation law for random
variables, which enables the construction of unknown density functions from known ones if given
the relation between the corresponding random variables. Formally, for every d-dimensional
random vector X and every injective and continuously differentiable function g : Rd → Rd, we can
express the density function of Y := g(X) at value y in the range of g as

fY(y) = fX
(
g−1(y)

)
·
∣∣det

(
Jg−1(y)

)∣∣ (3)

where Jg−1(y) denotes the Jacobian of g−1 evaluated at y. However, the mapping (2) is not
invertible, thus we cannot directly apply the transformation law. Instead, we express the joint
density conditioned by the random load I attaining some arbitrary but fixed value i. For this
fixed i, we can exploit the specific structure of the KiBaM to express the transformation using an
invertible linear mapping

KT,i
[
A0
B0

]
=
[
qa ra
qb rb

]
·
[
A0
B0

]
+
[
sa
sb

]
· i.

A straightforward inversion of the mapping results in

K−1
T,i

[
a

b

]
= ekT

[
rb −ra rasb − rbsa
−qb qa qbsa − qasb

]
·

ab
i

 .

LITES

04:8 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

Applying (3) we arrive at the joint density of [AT ;BT] conditioned by I = i

fT (a, b | i) = f0

(
K−1
T,i[a; b]

)
·
∣∣ekT ∣∣

where ekT is the determinant of the Jacobian of K−1
T,i. Interestingly, it is constant in a, b and

i, it only depends on T . It is also non-negative for T ≥ 0 as k > 0. Finally we get rid of the
conditional I = i by marginalizing the variable [AT ;BT]. Intuitively, this averages the conditional
densities over the distribution g of I, obtaining thus the following.

I Lemma 8. Let T be execution time and g be load density. For an initial SoC f0 over [A0;B0]
and task (T, g), the joint distribution of [AT ;BT] is absolutely continuous with density fT given by

fT (a, b) = ekT
∫
R

f0

(
K−1
T,i[a; b]

)
· g(i) di.

I Example 9. We return to our example assuming the density g of the load being uniform between
[−0.1, 0.1]. We can compute the SoC of the battery after task (20, g), displayed on the left, and
(60, g), displayed on the right. Here, we arbitrarily chose the parameters c = 0.5 and p = 0.002.

0 4 6.5 10

0

4
6.5

10

0 4 6.5 10

0

4
6.5

10

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

Probability of powering a task. We are now in the position to transfer the problem of powering
a task to the stochastic setting. We say that a density f0 is positive if it supports only positive
SoCs, i.e. for any a, b such that either a ≤ 0 or b ≤ 0 we have f0(a, b) = 0.

I Definition 10 (Probability of K-powering a task). For an execution time T > 0 and a load density
g, we say that the battery (with positive initial SoC f0) K-powers a task (T, g) with probability
(at least) p > 0 if

Pr[∀ 0 ≤ t ≤ T : At > 0] ≥ p.

Due to the monotonicity of KiBaM in the sense of Lemma 5, this is equivalent to observing
the probability of depletion only at time T . From Lemma 8 we obtain the following.

I Lemma 11. A battery with SoC f0 K-powers with probability p > 0 a task (T, g) if and only if∫∫
R2

>0

fT (a, b) da db ≥ p.

I Example 12. Thanks to the lemma, it suffices to perform the integration on the densities
displayed in the previous plots in this running example. The probability to power the tasks (20, g)
is 1, for the task (60, g) it is just ≈ 0.968.

H. Hermanns, J. Krčál, and G. Nies 04:9

4 Deterministic Limited KiBaM With Recharging

Both charging and discharging are well supported by the theory developed so far, as charging
has occurred in our examples in the form of negative loads. What is not treated in the theory
yet is a capacity limit. This however is an obvious real constraint in applications employing
rechargeable batteries. To the best of our knowledge, charging in KiBaM while respecting its
capacity restrictions has not been addressed even in the deterministic case. Thus, we dedicate
this section to developing the deterministic setting first. In the next section, we extend the theory
to the randomized setting.

We assume that the battery has capacity cap divided into capacity amax = c · cap of the
available charge well and capacity bmax = (1− c) · cap of the bound charge well. Charging and
discharging are not fully symmetric: A battery with empty available charge can no longer power
its task, contrary to a battery with full available charge that continues to operate. We thus need
to consider its further charging behaviour.

When the available charge is at its capacity amax = c · cap and is still further charged by a
sufficiently high charging current, its value stays constant and only the bound charge increases
due to diffusion. Hence, for any t ≥ 0 we have a(t) = c · cap and thus ȧ(t) = 0. The equation for
the bound charge from (1) is modified to an ODE

ḃ(t) = p

(
cap− b(t)

1− c

)
. (1̄)

Staying at the upper limit. The differential equation above describes the behaviour of the
battery at time t only if the incoming current to available charge well is sufficient to compensate
the diffusion, i.e. −I ≥ ḃ(t). Since I is constant and the diffusion is decreasing over time, the
charging current is sufficient at all times if and only if it is sufficient at time 0, i.e. −I ≥ ḃ(0).

For an initial bound charge b0 we define the condition whether the charging current is sufficient
by

I ≤ Ī(b0) := p

(
b0

1− c − cap
)

(4)

which requires the initial bound charge to be close enough to its capacity so that the charging
current overcomes the diffusion.

By solving the ODE (1̄) and using Inequation (4), we obtain the following result.

I Lemma 13. Let T > 0 and b0 such that I ≤ Ī(b0). A battery with a SoC [amax; b0] reaches after
the task (T, I) the state of charge

[
amax; b̄T (b0)

]
where

b̄T (b0) = e−ckT b0 +
(
1− e−ckT

)
· bmax (5)

and k again stands for p/ (c · (1− c)).

We notice that the resulting bound charge evolution b̄T (b0) does not further depend on I,
i.e. one cannot make the battery charge faster by increasing the charging current. Furthermore,
for a fixed b0, the curve of t 7→ b̄t(b0) is a negative exponential starting from the point b0 with
the full capacity bmax of the bound charge being its limit. Thus, Lemma 13 also reveals that
the bound charge in finite time never reaches its capacity and there is no need to describe
this situation separately. Finally, we denote analogously by K̄T [a0; b0] =

[
a0; b̄T (b0)

]
the linear

mapping describing the behaviour at the upper limit.

LITES

04:10 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

Hitting the upper limit. When charging with a given constant load I, we have two modes of
behaviour of the battery:
(i) before the available charge hits amax and
(ii) after it hits (and stays at) amax.
The remaining question is when it hits that capacity limit. For a given initial state [a0; b0] <
[amax; bmax] and a load I, this amounts to finding t̄ ∈ R>0 such that at̄ = amax. This induces that
the following equation can be derived from Kt̄,I [a0; b0],

u · e−kt̄ + v · t̄+ w = amax

where u = a0 (1− c)− b0c+ (c+ 1) · I/k, v = −Ic, and w = amax − a0c− b0c− (1− c) · I/k. In
this equation, t̄ appears in an exponential as well as in a linear term. This is characteristic for a
non-elementary function W called product logarithm which can express the solution as

t̄ = −W
(u
v
· e−w

v

)
− w

v
. (6)

The product log function can approximated by numerical methods [11].

Integrating the two modes of behaviour. All the previous building blocks allow us to express
easily the SoC of a deterministic KiBaM after powering a given task (T, I) when considering
capacity limits. We define it as

K�T,I [a0; b0] :=


KT,I [a0; b0] if a0 > 0 ∧ 0 < aT ≤ amax,
K̄t ◦Kt̄,I [a0; b0] if a0 > 0 ∧ aT > amax,
[0; 0] if a0 = 0 ∨ 0 ≥ aT

where t̄ is the largest solution of (6) and t = T − t̄.
The first two cases in K�T,I match the behaviour explained earlier thanks to Lemma 5. Whenever

the upper limit is hit, it will never be crossed back with the given I and thus also I is sufficient
according to (4).

I Example 14. If we put a limit of 9000 to the previous scenario, the battery ends up with a
slightly smaller charge at time 100. The computation of the final SoC changes only in the interval
[40, 55]. Here, instead of K15,−600, we apply Kt̄,−600 for the first t̄ ≈ 7.8 time units, followed by
K̄15−t̄.

10 40 551500

5000

9000

a(t)
b(t)
I

−600

0
400

Similarly to Section 2, we establish the notion of K�-powering a task.

I Definition 15 (K�-Powering a task). A battery with a positive SoC [a0; b0] K�-powers a task
(T, I) if ∀ 0 < t ≤ T : at > 0 where each [at; bt] denotes K�t,I [a0; b0].

I Lemma 16. A battery with a positive SoC [a0; b0] K�-powers a task (T, I) if and only if
K�T,I [a0; b0] > [0; 0].

H. Hermanns, J. Krčál, and G. Nies 04:11

Computing K� efficiently. The problematic part in computing K� is the case at > amax when
the upper limit is reached at time t̄ < t; we cannot express such time t̄ exactly. This case also
disallows exact closed-form expressions in the next section where we address the limited KiBaM
with randomness. For these reasons we introduce under- and over-approximations of the SoC
using simple closed-form expressions. These approximations are employed in Sections 5 to 7 to
obtain elegant expressions and also efficient algorithms.

Over-approximation: We circumvent the computation of the time point t̄ by moving it to time 0,
i.e. to the beginning of the time interval. We assume that the available charge attains amax
during the whole time interval and the bound charge evolves all the time as captured by K̄t.

Under-approximation: Dually, we move the time point t̄ to time T , i.e. to the end of the time
interval. We assume that the charging current has such value I� (which is a weaker charging
current than I) that causes the available charge to reach amax exactly at the end of the interval.
The battery thus evolves all the time as captured by Kt,I� . Expressing I� is discussed below.

I Example 17. Let us illustrate both approximations on the same situation as in Example 14.
For the under-approximation (on the left), in the interval [40, 55], we apply I� ≈ −432.5 instead
of I = −600 so that the available charge reaches 9000 exactly at t = 55. From here on, the SoC is
in both components lower than the SoC from the previous figure.

10 40 551500

5000

9000

a(t)
b(t)
I

−432.5
0.0

400.0
10 40 551500

5000

9000

a(t)
b(t)
I

−432.5
0.0

400.0

For the over-approximation (on the right), in the interval [40, 55], we intuitively apply a load
I → −∞ so that the available charge reaches 9000 exactly at t = 40. Since the diffusion is finite,
the available charge stays at its limit until t = 55 while the bound charge evolves according to K̄.
From this point on, the SoC is in both components higher than the SoC from the previous figure.

Finally, we need a closed-form solution to the following problem: From an initial SoC [a; b], we
want to reach using K a certain target level of available charge ā exactly at time T ; which current
I achieves this? (For the under-approximation above, we instantiate the problem with ā = amax.)

Formally, we need to find I such that the first component of KT,I [a; b] equals ā. The resulting
current will be denoted by I�

ā [a; b]. Later, we also need the solution of the same problem for K’s
inverse operator K−1. In this case the question is: From an initial available charge level ā, which
current I is necessary to exactly reach a SoC [a; b] at time T ? More precisely, find I such that the
first component of K−1

T,I [a; b] equals ā. We denote the current that solves this problem by I�
ā [a; b].

From the above equalities we can derive that these currents are indeed unique, and given by

I�
ā [a; b] =− qa

sa
· a− ra

sa
· b+ ā

sa
,

I�
ā [a; b] =−rb · a+ ra · b+ (qarb − raqb) · ā

rasb − sarb
.

The bound charge attained under KT,I�
ā
and K−1

T,I�
ā
is denoted by B�

ā [a; b] and B�
ā [a; b], respectively.

In the operators I�
ā , I�

ā , B�
ā , B�

ā , we omit the initial SoC [a; b], if clear from context.

LITES

04:12 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

It is now straight-forward to provide operators K�t,i and K�t,i that formally characterize the
under- and over-approximations from above.

K�t,i[a0; b0] :=


Kt,i[a0; b0] if a0, at > 0 ∧ at ≤ amax,
Kt,I�

amax
[a0; b0] if a0, at > 0 ∧ at > amax,

[0; 0] if a0 ≤ 0 ∨ at ≤ 0.

K�t,i[a0; b0] :=


Kt,i[a0; b0] if a0, at > 0 ∧ at ≤ amax,
K̄t[amax; b0] if a0, at > 0 ∧ at > amax,
[0; 0] if a0 ≤ 0 ∨ at ≤ 0.

K�t,i and K�t,i are indeed under- and over-approximation of the exact SoC evolution K� in the
following sense.

I Lemma 18. For any SoCs [a; b] and T > 0 and I > 0, we have

K�T,I [a; b] ≤ K�T,I [a; b] ≤ K�T,I [a; b].

5 Random Limited KiBaM With Recharging

We now return our attention to the challenge of random KiBaM, enriched by capacity limits. We
thus assume that the random variables At and Bt evolve according to K�t,I developed in Section 4.
By overloading notation we change (2) to

[At;Bt] := K�t,I [A0;B0]. (7)

We first observe that the joint distribution of [AT ;BT] may not be absolutely continuous, because
positive probability may accumulate in the point [0; 0] where the battery is empty and on the line
{[amax; b] | 0 < b < bmax} where the available charge is full. We need a more complex representation
of the distribution.

I Definition 19. A SoC distribution is a triple
〈
f, f̄, z

〉
where

f is a joint density over]0, amax[×]0, bmax[, (the distribution in the “inner” area)
f̄ is a density over {amax} ×]0, bmax[, (bound charge distribution along the capacity limit)
z ∈ [0, 1]. (the cumulative probability of depletion)

We say that a SoC distribution
〈
ft, f̄t, zt

〉
represents random variables [At;Bt] if for any

measurable X ⊆ R× R we have

Pr
[
[At;Bt] ∈ X

]
=
∫∫

[a;b]∈X

ft(a, b) da db +
∫

[amax;b]∈X

f̄t(b) db + zt 1[0;0]∈X

where 1ϕ denotes the indicator function of a condition ϕ.
Similarly to Section 3, we assume random load I described by a probability density function g.

For random initial SoC [A0;B0] represented by a SoC distribution
〈
f0, f̄0, z0

〉
and a given task

(T, g) we aim at expressing the resulting SoC [AT ;BT] using a SoC distribution
〈
fT , f̄T , zT

〉
.

To be able to express the distribution as integrals over simple closed-form expressions, we resort
to under- and over-approximations of the SoC. We will work with bdc and dde as notations for
upper, respectively lower bounding SoC distributions, where d abbreviates the three components
of the triple

〈
fT , f̄T , zT

〉
(i.e.

⌊
fT , f̄T , zT

⌋
and

⌈
fT , f̄T , zT

⌉
). To arrive there, we define

[AT ;BT] := K�T,I [A0;B0] and
[
AT ;BT

]
:= K�T,I [A0;B0]

respectively, that under-approximate and over-approximate [AT ;BT] in the following sense.

H. Hermanns, J. Krčál, and G. Nies 04:13

I Definition 20. We say that [AT ;BT] under-approximates [AT ;BT] at the upper limit if

Pr
[
[AT ;BT] ≥ [a; b]

]
= Pr

[
[AT ;BT] ≥ [a; b]

]
for any [a; b] < [amax; bmax],

Pr
[
[AT ;BT] ≥ [amax; b]

]
≥ Pr

[
[AT ;BT] ≥ [amax; b]

]
for any 0 ≤ b ≤ bmax.

Analogously,
[
AT ;BT

]
over-approximates [AT ;BT] at the upper limit if

Pr
[
[AT ;BT] ≥ [a; b]

]
= Pr

[[
AT ;BT

]
≥ [a; b]

]
for any [a; b] < [amax; bmax],

Pr
[
[AT ;BT] ≥ [amax; b]

]
≤ Pr

[[
AT ;BT

]
≥ [amax; b]

]
for any 0 ≤ b ≤ bmax.

This approach, detailed in the rest of this section, provides upper and lower bounds on the
risk of battery depletion due to the monotonicity established in Lemma 28.

Behaviour below the upper limit (defining fT and zT). We first define a joint density f
T
over

]−∞, amax[×]−∞, bmax[that exactly describes the behaviour below the upper limit while ignoring
the lower limit. This allows us to define

fT (a, b) := f
T

(a, b), and zT :=
∫∫
R2
60

f
T

(a, b) dadb. (8)

Note that for this case both, under- and over-approximation, behave equally, as indicated in
Definition 20.

The intricate part in expressing f
T
is to describe how the SoC evolves away from the upper

limit to the area below the upper limit when the level of available charge is decreasing. For each
SoC [a′; b′] below the upper limit we need to find out what SoC of the form [amax; b] under what
load i (such that i > Ī(b)) would evolve in time T exactly into [a′; b′], i.e K−1

T,i[a′; b′] = [amax; b].
By definition, this is the case when using load I�

amax
[a′; b′] which results in a bound charge

b = B�
amax

[a′; b′]. The Jacobian determinant of the map [a; b] 7→
[
B�
amax

; I�
amax

]
is easily derived to

be 1/(rasb − sarb) and is constant in the SoC and the load.
Finally, we can express the joint density f

T
for any a < amax and b < bmax as

f
T

(a, b) = f̄0
(
B�
amax

)
· 1
|rasb − sarb|

· g
(
I�
amax

)
+ ekT

I�
amax∫
−∞

f0

(
K−1
T,i[a; b]

)
· g(i) di. (9)

The second summand in (9) comes from the density f0 of the inner area by the standard
unlimited KiBaM. Ranging over all loads i, it integrates the density f0 of such points [ai; bi] that
satisfy KT,i[ai; bi] = [a; b], i.e. [ai; bi] = K−1

T,i[a; b]. Lemma 5 again guarantees that no limits are
crossed in the meantime. The first summand comes from f̄0, due to discharging the battery down
from the capacity limit as discussed above.

Behaviour on the upper limit (defining f̄T). As indicated in Definition 20, we resort for the
upper limit to approximations of the charge.

Under-approximation: We define the under-approximation of the density for 0 ≤ b ≤ bmax by

f̄T (b) = f̄0
(
b̄−1) ·G(Ī(b̄−1)) · eckT (10)

+ f̄0
(
B�
amax

)
·
[
G
(
I�
amax

)
−G

(
Ī
(
B�
amax

))]
·
∣∣∣∣ −sa
rasb − sarb

∣∣∣∣ (11)

+
∞∫
−∞

f0(a,B�
a) ·G(I�

a) da ·
∣∣∣∣ −sa
rasb − sarb

∣∣∣∣ (12)

LITES

04:14 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

Let us go through this expression line by line.

In the first summand (10), b̄−1 is such that K̄T
[
amax; b̄−1] = [amax; b]. Thus b̄−1 := b̄−1

T (b) =
eckT · b− (eckT + 1) · bmax where the function b̄T is defined in Definition 5. This summand is
taken into account only for charging currents that cover the diffusion (i.e. i ≤ Ī

(
b̄−1)) so that

the battery evolves along the capacity limit as expressed by Lemma 13. The integration over
this range of loads can be directly expressed using the cumulative density function (cdf) G of
the load. Technically, we again apply the transformation law for random variables.
By the second summand (11), we address the case where the diffusion in the state [amax; b] is
stronger than the charging current. The available charge thus leaves its limit in the beginning.
Let us assume that before time T it again hits the upper capacity in some state [amax; b′]. We
are not able to express b using a closed-form expression over b′ as discussed in Section 4. As
a result, we cannot “move” the density from b to b′. We thus under-approximate the bound
charge by assuming that the available charge hits its upper limit again exactly at time T by
charging the battery with I�

amax
instead, just as shown in Example 17. Let us shortly outline

the derivation. The mapping for the transformation law is b 7→ B�
amax

[amax; b]. Its inverse is
simply b 7→ B�

amax
[amax; b] with Jacobian determinant −sa/(rasb − sarb). The transformation

law yields a density at time T of

f̄0
(
B�
amax

[amax; b]
)
· |−sa/(rasb − sarb)|.

Then we integrate over all charging currents i that are powerful enough to reach the limit
(i ≤ I�

amax
[amax; b]) yet not too powerful to leave the upper limit in the meantime, i.e. i >

Ī
(
B�
amax

[amax; b]
)
. The integral over the resulting range equals G

(
I�
amax

)
−G

(
Ī
(
B�
amax

))
.

The third summand (12) comes from the density f0 of the inner area and under-approximates
the bound charge similarly to the second summand. If the available charge of the battery
reaches its capacity limit before time T , we assume that it reaches it exactly at time T by
underestimating the charging current with I�

amax
. For the derivation, we define a map KT :

[a; b; i] 7→
[
a;B�

amax
[a; b]; i

]
(it is an identity in the first and the third component to be injective)

and apply the transformation law of random variables. The inverse K−1
T and its Jacobian

determinant is

K−1
T : [a; b; i] 7→ [a;B�

a [amax; b]; i] and detJK−1
T

= −sa/(rasb − sarb).

The density hT over the co-domain of KT is obtained by the transformation law as

hT [a; b; i] = h0
(
K−1
T [a; b; i]

)
·
∣∣∣∣ −sa
rasb − sarb

∣∣∣∣ = f0(a,B�
a [amax; b]) · g(i) ·

∣∣∣∣ −sa
rasb − sarb

∣∣∣∣
where the density h0 equals a product of the densities f0 and g because of independence of
SoC [a; b] and load i. Marginalizing away a and i (using G(I�

a) to integrate over all currents
necessary to reach the upper limit) gives us the subdensity from the third summand.

Over-approximation: The over-approximation bases on similar building blocks and equals:

f̄T (b) = f̄0
(
b̄−1) ·G(I�

amax

)
· eckT +

∞∫
−∞

f0
(
a, b̄−1) ·G(I�

amax

)
da · eckT (13)

The first summand in (13) treats the contribution of the density f̄0 from the point b̄−1 as
defined above. We assume the density evolves as indicated by K̄ whenever K would result in
aT ≥ amax (i.e. if the current is stronger than I�

amax

[
amax; b̄−1]). This is an over-approximation

for the charging currents such that Ī
(
b̄−1) < i < I�

amax

[
amax; b̄−1], i.e. for charging currents

that are not strong enough to stay at amax for the whole time but that are stronger than what
is needed for K to return to amax at time T .

H. Hermanns, J. Krčál, and G. Nies 04:15

The second summand in (13) comes from the density f0 of the inner area. Again, whenever K
would result in aT > amax (i.e. when the charging current is stronger than I�

amax

[
a; b̄−1]), we

assume that the upper limit is reached immediately and further evolves by K̄, thus justifying
the argument I�

amax
to appear in the integral. This results in an over-approximation for any

such SoC.
The derivation of both summands in principle uses the mapping [a; b; i] 7→

[
a; b̄T (b); i

]
(for the

first summand, think of a being the constant amax). The transformation law and marginalizing
away a (for the second summand) and i (integration over the corresponding range is again
expressed using the cdf G) as in the derivations for the under-approximation provide the result.

We finally obtain the following result.

I Lemma 21. Let (T, g) be a task,
〈
f0, f̄0, z0

〉
represent [A0;B0] and the induced SoC distri-

butions
⌊
fT , f̄T , zT

⌋
and

⌈
fT , f̄T , zT

⌉
represent [AT ;BT] and

[
AT ;BT

]
. Then [AT ;BT] under-

approximates [AT ;BT] and
[
AT ;BT

]
over-approximates [AT ;BT] at the upper limit.

I Example 22. Based on Lemma 21, we can under-approximate the SoC of the random battery
from our second running example for battery limits [0, 10]. We consider the same tasks, (20, g) on
the left and (60, g) on the right.

0.0622

0.0308
0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

The bounded area of the joint density fT is depicted by the largest box. In the small box above
we display the density f̄T at the capacity limit amax. The numbers above and below are the
probabilities of available charge being full and empty, respectively (the color below corresponds to
the probability).

I Lemma 23 (Probability of K�-powering a task). A battery with SoC distribution
〈
f0, f̄0, z0

〉
K�-powers with probability p > 0 a task (T, g) if and only if zT < p.

6 Markov Task Process

So far, we have only discussed execution of one task with fixed duration and random load. In
this section, we give a discrete-time Markov model that randomly generates tasks that we call a
Markov task process (MTP). The formalism is closely inspired by stochastic task graph models [34]
or data-flow formalisms such as SDF [26] or SADF [38]. In SDF, task durations are deterministic,
and thus directly supported in our framework. In SADF, durations are in general governed by
discrete probability distributions, which can be translated into our framework at the price of a
larger state space. We will briefly explain informally how to translate timed versions of SDF as
well as SADF to MTPs, after formally introducing the latter.

I Definition 24. A Markov task process (MTP) is a tupleM = (S, P, π,∆,g) where S is a finite
set of tasks, P : S × S → [0, 1] is a transition probability matrix, π is an initial probability
distribution over S, ∆ : S → Nr {0} assigns to each task an positive integer time duration, and g
assigns to each task a probability density function of the load.

LITES

04:16 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

s
20

p
80

q

40

r
50

3
4

1
4

1
2

1
1
2 s,0

p,20

q,20

r,60
q,60

q,100 r,100

3
4

1
4

1
2

1
2

1
2

1
2 1

1

Figure 2 An MTP model on the left (with ∆ depicted next to states) and its induced graph for T = 100
on the right.

An example of an MTP is depicted in Figure 2. Intuitively, a Markov task processM together
with an initial distribution of the SoC given by

〈
f0, f̄0, z0

〉
behaves as follows. First, an initial SoC

[a0; b0] of the battery and an initial task s0 ∈ S are chosen independently at random according
to
〈
f0, f̄0, z0

〉
, and π, respectively. Then, the load i0 in task s0 is picked randomly according to

g(s0). After the battery is strained by the load i0 for ∆(s0) time units, the process moves into a
random successor task s1 (where any s1 is chosen with probability P (s0, s1)). Here, the load i1 is
randomly chosen and so on.

Formally, M and
〈
f0, f̄0, z0

〉
induce a probability measure Pr over samples of the form

ω =
[
[a0; b0]; (sk, ik)∞k=0

]
where the first component is the initial SoC of the battery and the

second component describes an infinite execution of M. Here, each sj is the j-th task and ij
is the load that is put on the battery for ∆(sj) time units while performing sj . For a given
T ∈ R>0, the SoC of the battery at time T is expressed by random variables AT , BT that are for
any ω =

[
[a0; b0]; (sk, ik)∞k=0

]
defined as[

AT (ω)
BT (ω)

]
:= K�∆′,in ◦K�∆n−1,in−1

◦ · · · ◦K�∆0,i0

[
a0
b0

]
where each ∆j stands for ∆(sj), and n is the minimal number such that the n-th task is not
finished before T , i.e. ∆n > ∆′ where ∆′ := T −∑n−1

j=0 ∆j .

I Definition 25. We say that a battery with a SoC
〈
f0, f̄0, z0

〉
powers with probability p > 0 a

systemM for time T if

Pr[AT > 0] ≥ p.

In order to under-approximate the probability thatM is powered for a given time, we need to
symbolically express the distribution of[

AT (ω)
BT (ω)

]
:= K�∆′,in ◦K�∆n−1,in−1

◦ · · · ◦K�∆0,i0

[
A0
B0

]
where we just replace K� with K�. Analogously, for an over-approximation we use K� instead.[

AT (ω)
BT (ω)

]
:= K�∆′,in ◦K�∆n−1,in−1

· · · ◦K�∆0,i0

[
A0
B0

]
.

We present an algorithm that builds upon the previous results.

H. Hermanns, J. Krčál, and G. Nies 04:17

Expressing the distribution of [AT ; BT] and
[
AT ; BT

]
. Let us fix an input MTP M =

(S, P, π,∆,g), SoC distribution
〈
f0, f̄0, z0

〉
that represents [A0;B0], and time T > 0. We consider

the joint distribution of under- / over-approximation of the SoC and the MTP. Intuitively, we
split the SoC distribution into under- and over-approximating subdistributions and move them
along the paths ofM according to the probabilistic branching of the MTP. We notice that we
do not need to explore all exponentially many paths; when two paths visit the same state at the
same moment, we can again merge the two subdistributions. This process is formalized by the
following graph and a procedure how to propagate the distribution through the graph.

For a given MTPM we define a directed acyclic graph (V,E) over V = S × {0, 1, . . . , bT c, T}
such that there is an edge from a vertex (s, t) to a vertex (s′, t′) if P (s, s′) > 0, t < t′, and
t′ = min{t+ ∆(s), T}. Further, let (V ′, E′) be the graph obtained from (V,E) by removing
vertices that are not reachable from any (s, 0) with π(s) > 0 (see Figure 2).
1. We label each vertex of the form (s, 0) where π(s) > 0 by the pair of equal initial subdistributions⌊

f, f̄, z
⌋

:=
〈
f0, f̄0, z0

〉
· π(s) and

⌈
f, f̄, z

⌉
:=
〈
f0, f̄0, z0

〉
· π(s)

where the multiplication is to be understood componentwise.
2. We repeat the following steps as long as possible.

a. For each vertex (s, t) labeled by
⌊
f, f̄, z

⌋
and

⌈
f, f̄, z

⌉
, we obtain

⌊
f∆, f̄∆, z∆

⌋
and

⌈
f∆, f̄∆, z∆

⌉
by Lemma 21 for a task (∆,g(s)) where ∆ := min{∆(s), T − t}. Then we label i-th outgoing
edge of (s, t) leading to some (s′, t′) by⌊

f i, f̄ i, zi
⌋

:=
⌊
f∆, f̄∆, z∆

⌋
·P (s, s′) and

⌈
f i, f̄ i, zi

⌉
:=
⌈
f∆, f̄∆, z∆

⌉
·P (s, s′).

b. For each vertex (s, t) such that its k ingoing edges are labelled by
⌊
f i, f̄ i, zi

⌋
and

⌈
f i, f̄ i, zi

⌉
for i = 1, . . . , k, we label (s, t) by

⌊
f, f̄, z

⌋
:=

k∑
i=1

⌊
f i, f̄ i, zi

⌋
and

⌈
f, f̄, z

⌉
:=

k∑
i=1

⌈
f i, f̄ i, zi

⌉
where the summation is again to be interpreted componentwise.

Finally, let i-th of all n vertices of the form (s, T) ∈ V ′ be labelled by
⌊
f, f̄, z

⌋
i
and

⌈
f, f̄, z

⌉
i
. The

output distributions that represent [AT ;BT] and
[
AT ;BT

]
respectively are

⌊
fT , f̄T , zT

⌋
:=

n∑
i=1

⌊
f, f̄, z

⌋
i

and
⌈
fT , f̄T , zT

⌉
:=

n∑
i=1

⌈
f, f̄, z

⌉
i
.

We naturally arrive at the following theorem.

I Theorem 26. A battery with SoC distribution
〈
f0, f̄0, z0

〉
K�-powers a systemM for time T

with probability at least 1− zT and at most 1− zT , where zT and zT are the depletion probabilities
of the densities representing [AT ;BT] and

[
AT ;BT

]
, respectively.

This theorem relies on the simple observation that an underapproximation of the SoC is an
overapproximation of the depletion probability.
I Remark (on complexity). As indicated in the beginning of this section, we do not need to track
all exponentially many paths through the MTP up to time T . In fact, in the algorithm above, once
we have computed the subdistributions on the left hand side, we can discard the subdistribution
on the right hand side of the assignments. Since the task durations ∆ are natural numbers, the
amount of subdistributions we need to track simultaneously is bounded by |S| ·D where D is the
smallest common multiple of all the task durations. D always exists since all task durations are
strictly positive.

LITES

04:18 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

Translating timed SDF graphs to equivalent MTPs. As mentioned above, some well known
formalisms can be translated to MTPs, among them the timed version of Synchronuous Data
Flow (SDF) [26] and some Scenario-Aware Data Flow (SADF) [38] flavors. We will demonstrate
informally how to translate a timed SDF graph (SDFG) to an equivalent MTP.

SDF is a widely used formalism for modelling and analysing networks of deterministic sequential
processes along with their resource budget. Processes, called actors communicate via consuming
and producing tokens (data elements) from their incoming and to their outgoing unbounded
channels. Whenever an actor is activated it spawns a new active instance. The number of tokens
an instance consumes and eventually produces is fixed a priori. The timed version additionally
annotates each actor a with a constant execution time e(a) ∈ Nr{0} , representing how much time
passes between consumption and production of tokens. We furthermore associate a distribution
L(a) over loads with each actor a to reason about energy consumption.

The semantics of an SDFG execution is a finite Labelled Transition System (LTS) over its
configurations, which can be extended to an MTP on the same state space of configurations with
Dirac transitions and additional annotations concerning load and sojourn times.

An SDF configuration records
(i) a vector v representing the number of tokens in each channel,
(ii) a set A collecting active actor instances ai of any actor a and
(iii) the residual execution time of each running instance as a map r.
Transitions between states are of three natures:
start a: A new instance ai of actor a with r(ai) = e(a) is added to A, provided the input channels

contain enough tokens, which are thereby consumed;
end a: An actor instance ai is removed from A when its residual execution time r(ai) is 0. Thereby

output tokens are produced according to a’s output channels;
time t: Under the precondition that no start or end transitions are possible, an amount of time t

passes corresponding to the minimum of the residual times, thereby decreasing the residual
execution times of every active actor instance accordingly.

The precondition of time-type transitions implies that the LTS is free of nondeterminism
between time and start/end transitions. The nondeterminism among start/end transitions is
irrelevant thanks to the diamond property. This means that for each state s there is a unique final
state s′ such that each maximal sequence of start/end transitions from s ends up in s′. On each
such diamond (set of states reachable from s) no time passes, thus it has no effect on the battery.
As the first step in defining the MTP, we transform the LTS by collapsing each diamond into its
final state. As a result, the LTS becomes deterministic with only time transitions remaining. If
the starting state was part of a diamond collapsed to a state s′, this state becomes the initial state
of the transformed LTS.
The reachable part of the LTS induces an MTPM = (S, P, π,∆,g) as follows:

The state space S is defined as the reachable states of the LTS,
The initial probability distribution π is Dirac in the initial state of the SDFG,
∆(s) for s ∈ S is the residual time according to the transition of type time leaving s.
g(s) for s = (v,A, r) ∈ S is the convolution of the L(a) for each ai ∈ A.
P (s, s′) is 1 if there is a time transition from s to s′, and 0, otherwise.

SADF extends SDF to discrete execution time distributions and scenarios (with subscenarios
probabilistically chosen through discrete-time Markov Chains). An extension of the above is
relatively intuitive, but technically involved. However, since the semantics of such SADF graphs
under self-timed executions are Timed Probabilistic Systems (TPS) with the diamond property for
actions [39], an analogous approach to the above can be formulated.

H. Hermanns, J. Krčál, and G. Nies 04:19

7 Approximating Random Limited KiBaM With Recharging

After approaching the problems from the theoretical side, we take the practical view in this section.
We want to be able to compute the probability to power a systemM for a given time T in practice.
As this is only possible approximatively, we want to obtain provably correct lower and upper
bounds on this probability.

The crucial step in the symbolic algorithm from Section 6 is the following: for a fixed initial
SoC distribution

〈
f0, f̄0, z0

〉
, compute the SoC distribution

〈
fT , f̄T , zT

〉
after powering a task

(T, g). First, we implemented the symbolic continuous solution developed in Sections 3 and 5 in a
high-level computational language Octave. This way, we performed numerical integration only
over the resulting complete expression describing the SoC distribution at time T . This showed up
to be practical only up to sequences of a handful of tasks. Thus, we targeted discretisation of the
SoC space and of the load distributions. In contrast to general approaches [35], we are able to
give much tighter (a posteriori) error bounds.

The discretisation algorithm. We need to assume that each load distribution g is supported
only on a bounded interval. This is no real restriction due to the obvious physical limits of battery
load.

The idea is simple. We approximate each SoC distribution over [0, amax]× [0, bmax] by a discrete
distribution µ over a regular grid [0, δ, 2δ, . . . , amax]× [0, δ, 2δ, . . . , bmax], for any fixed δ > 0 that
divides the maximum capacities amax and bmax into K := amax/δ and L := bmax/δ steps.1

For a fixed initial SoC distribution µ and task (T, g), we define an under-approximated target
distribution µ and an over-approximated target distribution µ for each point [kδ; lδ] as follows.
We first over-approximate and under-approximate the density g by discrete distributions g and g
supported on multiples of δg > 0.2 Then we set

µ[kδ; lδ] :=
∑
i

g(iδg) ·
∑{

µ[k′δ; l′δ]
∣∣∣K�t,i[k′δ; l′δ] ∈ [kδ, (k + 1)δ[× [lδ, (l + 1)δ[

}
,

µ[kδ; lδ] :=
∑
i

g(iδg) ·
∑{

µ[k′δ; l′δ]
∣∣∣K�t,i[k′δ; l′δ] ∈](k − 1)δ, kδ]×](l − 1)δ, lδ]

}
.

Intuitively, in the definition above we apply the deterministic KiBaM operator K� to each
possible load and round the result to the closest multiples of δ. The results are weighted by
the approximation of the load distribution. The direction of the approximation determines the
direction of the approximation of g, the direction of approximation of the function K�t,i, and the
direction of rounding the result.

Correctness of the approximations. When plugging the under- and over-approximation of each
step for given δ to the algorithm in Section 6, we obtain the overall algorithm to compute under-
and over-approximations µ

T
and µT of the SoC distribution after powering a given systemM

for a given time horizon T > 0. Let
[
AδT ;BδT

]
and

[
AδT ;BδT

]
denote random variables distributed

according to µ
T
and µT .

1 Here we assume that c is rational thus allowing to find arbitrarily small such δ > 0. This is assumed purely
for presentation purposes, as for the under-approximation the capacity limits can be arbitrarily decreased; for
the over-approximation analogously increased.

2 The over-approximation of the load assigns the integral of g over [k · δg, (k + 1) · δg] to the point k, the
under-approximation to the point k + 1.

LITES

04:20 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

I Theorem 27. Let [A0;B0] be the initial SoC, represented by
〈
f0, f̄0, z0

〉
, δ > 0,M be an MTP

and T > 0 be a time horizon. For any SoC [a; b] on the grid (i.e. equal to some [kδ; `δ]) we have

Pr
[[
AδT ;BδT

]
≥ [a; b]

]
≤ Pr

[
[AT ;BT] ≥ [a; b]

]
≤ Pr

[[
AδT ;BδT

]
≥ [a; b]

]
.

The theorem relies on Lemma 18 and one additional observation. The KiBaM evolution has
one fundamental property: for any fixed time and load, it is monotonic with respect to starting
SoC.

I Lemma 28. For any two SoCs [a; b], [a′; b′] as well as T > 0 and I > 0, we have

[a; b] ≤ [a′; b′] =⇒ K�T,I [a; b] ≤ K�T,I [a′; b′].

This property is crucial for correctness and not found in general systems studied in [35]. It
implies that a sequence of under-approximations is still an under-approximation, and dually for
over-approximations.

8 The Random KiBaM In Practice

In this section, we apply the results established in the previous sections in a concrete scenario.
The problem is inspired by experiments currently being carried out with an earth orbiting nano
satellite, the GomX–1 [20].

Satellite. GomX–1 [20] is a Danish two-unit CubeSat mission launched in November 2013 to
perform research and experimentation in space related to Software Defined Radio (SDR) with
emphasis on receiving ADS-B signals from commercial aircraft over oceanic areas. As a secondary
payload the satellite flies a NanoCam C1U color camera for earth observation experimentation.
Five sides are covered with NanoPower P110 solar panels, and the power system NanoPower P31u
holds a 7.4V Li-Ion battery of capacity 5000 mAh. GomX–1 uses a radio amateur frequency
for transmitting telemetry data, making it possible to receive the satellite data with low-cost
infrastructure anywhere on earth. The mission is developed in collaboration between GomSpace
ApS, DSE Airport Solutions and Aalborg University, financially supported by the Danish National
Advanced Technology Foundation. The empirical studies carried out with GomX–1 serve as a
source for parameter values and motivate the scenario described in the remainder of the paper.
We use the following data collected from extensive in-flight telemetry logs.

One orbit takes 99 minutes and is nearly polar;
The battery capacity is cap = 5000 mAh;
During 4 to 7 out of on average 15 orbits per day, communication with the base station
takes place. The load induced by communication is roughly 400 mA. The length of the
communication depends on the distance of the pass of the satellite to the base station and
varies between 5 and 15 minutes;
In each communication, the satellite can receive instructions on what activities to perform next.
This influences the subsequent background load. Three levels of background load dominate the
logs, with average loads at 250 mA, 190 mA, and 90 mA. These background loads subsume the
power needed for operating the respective activities, together with basic tasks such as sending
beacons every 10 seconds;
Charging happens periodically, and spans around 2/3rd of the orbiting time. Average charge
power is 400 mA.

The above empirical observations determine the base line of our modelling efforts, which interprets
the statistical data as being of stochastic nature. We make the following assumptions:

H. Hermanns, J. Krčál, and G. Nies 04:21

Middle
190 mA90 min

Lowstart
90 mA

90 min

Transfer
400 mA5 min

High
250 mA

90 min
3
5

1
8

2
5

3
5

2
5

1
4

3
5

1
8

2
5

1
2

Figure 3 Markov task process of the load on the satellite. All load distributions are normal with mean
depicted next to the states and with standard deviation 5. This load is superposed with a strictly periodic
load modelling charge by solar power infeed.

We assume constant battery temperature. The factual temperature of the orbiting battery
oscillates between −8 and 25 degree Celsius on its outside. There is the (currently unused)
on-board option to heat the battery to nearly constant temperature. Using an on-off controller,
this would lead to another likely nearly periodic load on the battery, well in the scope of what
our model supports.
A constant charge from the solar panels is assumed when exposed to the sun. The factual
observed charge slowly decays. This is likely caused by the fact that solar panels operate better
at lower temperature (opposite to batteries), but heat up quickly when coming out of eclipse.
We assume a strictly periodic charging behavior. The factual charging follows a more com-
plicated pattern determined by the relative position of sun, earth and satellite. There is no
fundamental obstacle to calculate and incorporate that pattern.
We assume a uniform initial charge between 70% and 90% of full capacity with identical bound
and available charge. Since the satellite needs to be switched off for transportation into space,
assuming an equilibrated battery is valid. Being a single experiment, the GomX–1 had a
particular initial charge (though unknown). The charge of the orbiting battery can only be
observed indirectly, by the voltage sustained.
We assume that the relative distance to a base station is a random quantity, and thus
interpret several of the above statistics probabilistically. In reality, the position of the base
station for GomX–1 is at a particular fixed location (Aalborg, Denmark). Our approach can
either be viewed as a kind of probabilistic abstraction of the relative satellite position and
uncertainty of signal transmission, or it can be seen as reflecting that base stations are scattered
around the planet. This especially would be a realistic in scenarios where satellite-to-satellite
communication is used.
We assume that the satellite has no protection against battery depletion. In reality, the
satellite has 2 levels of software protection, activated at voltage levels 7.2 and 6.5, respectively,
backed up by a hardware protection activated at 6 V. In these protection modes, various
non-mission-critical functionality is switched-off. Despite omitting such power-saving modes,
we still obtain conservative guarantees on the probability that the battery powers the satellite.

Satellite model. According to the above discussion, the load on the satellite is the superposition
of two piecewise constant loads.

A probabilistic load reflecting the different operation modes, modeled by a Markov task process
M as depicted in Figure 3.
A strictly periodic charge load alternating between 66 minutes at −400 mA, and the remaining
33 minutes at 0 mA.

LITES

04:22 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

One can easily express the charging load as another independent Markov task process (where
all probabilities are 1) and consider the sum load generated by these two processes in parallel
(methods in Section 6 adapt straightforwardly to this setting).

The KiBaM in our model has following parameters:
The ratio of the available charge c = 1/2 (artificially chosen value as parameters fitted by
experiments on similar batteries strongly vary [42, 25]);
The diffusion rate p = 0.0006 per minute (we decreased the value reported by experiments [25]
by a factor of 4 because of the low average temperature in orbit, 3.5◦C, and the influence of
the Arrhenius equation [27]).

Implementation aspects. Our implementation is done in C++. We used K = 1200, 600, 300
and 150 for the experiments with the batteries of capacity 5000 mAh, 2500 mAh, 1250 mAh
and 625 mAh, respectively to guarantee equal relative precision. All the experiments have been
performed on a machine equipped with an Intel Core i5-2520M CPU @ 2.50GHz and 4GB RAM.
All values occuring are represented and calculated with standard IEEE 754 double-precision
binary floating-point format except for the values related to the battery being depleted where
we use arbitrary precision arithmetic (as this number keeps accumulating grid values that are
of much lower order of magnitude). The number of subdistributions that must be kept track of
simultaneously, turned out to be no larger than 54.

Model evaluation. We performed various experiments with this model, to explore the random
KiBaM technology. We here report on five distinct evaluations, demonstrating that valuable
insight into the model can be obtained.

1. The 5000 mAh battery in the real satellite is known to be over-dimensioned. Our aim was to
find out how much. Hence, we performed a sequence of experiments, decreasing the size of
the battery exponentially. The results (of the safe under-approximation) are displayed and
explained in Figure 4. We found out that 1/4 of the capacity still provides sufficient guarantees
(since the depletion risk calculated is in the order of 10−10) to power the satellite for 1 year
while 1/8 of the capacity, 625 mAh, does not. The following table compares the under- and
over-approximations.

capacity (mAh) 5000 2500 1250 625

under-approximation of Pr[depletion] 9.61 · 10−96 4.69 · 10−43 1.01 · 10−15 0.00122
over-approximation of Pr[depletion] 1.66 · 10−63 6.58 · 10−31 1.73 · 10−10 0.03653

The approximations thus compute the real probability of depletion up to very small absolute
errors ranging from 10−63 for the 5000 mAh battery to 0.03531 for the 625 mAh battery.

2. We compared our results with a simple linear battery model of the same capacity.3 This linear
model is not uncommon in the satellite domain, it has for instance been used in the Envisat
and CryoSat missions [18]. We obtain the following probabilities for battery depletion:

linear battery model KiBaM
capacity (mAh) 5000 625 5000 625

under-approximation of Pr[depletion] 1.76 · 10−144 8.53 · 10−16 9.61 · 10−96 0.00122
over-approximation of Pr[depletion] 1.86 · 10−84 2.94 · 10−8 1.7 · 10−63 0.03653

3 The linear model can be emulated using a KiBaM with diffusion rate p→∞. This has the effect that available
and bound charge wells behave equally and thus deplete at the same time. To compute the numbers we used
the same algorithm and discretisation constants δ, δg as for the corresponding KiBaM of the same size.

H. Hermanns, J. Krčál, and G. Nies 04:23

1.7 · 10−63

−320

−280

−240

−200

−160

−120

−80

−40

6.6 · 10−31

−180

−160

−140

−120

−100

−80

−60

−40

−20

1.7 · 10−10

−135

−120

−105

−90

−75

−60

−45

−30

−15

0.03653

−100

−90

−80

−70

−60

−50

−40

−30

−20

Figure 4 SoC under-approximation for different sizes of the satellite’s battery after 1 yeara. The
leftmost SoC is with the original battery capacity, 5000 mAh. In each further plot, the battery capacity
is halved, i.e. 2500 mAh, 1250 mAh, and 625 mAh. Note that all the densities are depicted on the
logarithmic scale (ticks in the colorbar stand for the order of magnitude). We observe that only the
smallest battery does not give sufficient guarantees. Its probability of depletion after 1 year is 0.0365;
the probability decreases to 1.7 · 10−10 already for the 1250 mAh battery. The smaller the battery, the
more crucial is the distinction of available and bound charge as a larger area of the plots is filled with
non-trivial density.
a Actually it is after 364 days, as this is in the middle of the charging phase. After 365 days the satellite is in

eclipse and no density is exhibited along the upper limit.

1.7 · 10−10 2.2 · 10−10

−135

−120

−105

−90

−75

−60

−45

−30

−15

Figure 5 Load noise. SoC under-approximation of the 1 year run using the 1250 mAh battery with
Dirac loads (left) and with noisy loads (right). We used Gaussian noise with standard deviation 5.

9.6 · 10−96

1.7 · 10−63

−540

−480

−420

−360

−300

−240

−180

−120

−60

9.6 · 10−17

1.2 · 10−10

−320

−280

−240

−200

−160

−120

−80

−40

0.95683710

0.99999985

−240

−210

−180

−150

−120

−90

−60

−30

0.99999999998

0.99999999999

−450

−425

−400

−375

−350

−325

−300

−275

−250

Figure 6 Number of solar panels. Top: The over-approximation of the full 5000 mAh battery with
9,8,7 and 6 solar panels. Bottom: The respective under-approximations on the same colorscale. Again,
the ticks of the colorscale represent the order of magnitude of the densities.

LITES

04:24 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

The linear model turns out to be surprisingly (and likely unjustifiably) optimistic, especially
for the 625 mAh battery.

3. We (computationally) simplified the two experiments above by assuming Dirac loads. To
analyze the effect of the white noise, we compared the Dirac loads with the noisy loads,
explained earlier, on the 625 mAh battery. As expected, the noise (a) smoothes out the
distribution a little and (b) pushes a bit more of the distribution to full and empty states, see
Figure 5.

4. Our reference satellite is a two-unit satellite, i.e. is built from two cubes, each 10 cm per side.
In the current design, 9 of the 10 external sides are covered by solar panels, the remaining one
is used for both radio antenna and camera. We thus conducted a robustness analysis with
respect to solar infeed, by assuming that 1,2 and 3 solar panels break down. Figure 6 displays
that the satellite can easily deal with 1 defective solar panel. If additional panels fail, the
system runs out of energy rapidly with high probability.

5. The random KiBaM does not incorporate battery aging. In general, the degradation of a
battery over time depends on many factors, most prominently how the battery was stored,
which loads it was subjected to, how deeply it was discharged and at which temperatures it
was used. We are not aware of a consensus method of how to model degradation of a Li-ion
battery which is influenced by all of these factors. A measurable quantity related to battery
age for our case study is the voltage drop when in eclipse. In-orbit measurements show that
this voltage drop has worsened by 3% after one year of operation. For comparison purposes,
we thus pessimistically assumed a battery with a capacity of only 4850 mAh (97% of 5000
mAh) from the beginning. Compared to the 5000 mAh battery the depletion probabilities are
only slightly higher:

capacity (mAh) 5000 4850

under-approximation of Pr[depletion] 9.61 · 10−96 1.73 · 10−92

over-approximation of Pr[depletion] 1.66 · 10−63 5.58 · 10−61

9 Alternative Approaches

The results reported above are obtained from a discretized abstraction of the stochastic process
induced by the MTP and the battery, solved numerically and with high-precision arithmetic where
needed.

One could instead consider estimating the probability zt of the battery depletion using ordinary
simulation techniques [19]. Considering a battery of capacity 5000 mAh, this would mean that
about 1063 simulations traces are needed on average to observe the rare event of a depleted battery
at least once. This seems prohibitive, also if resorting to massively parallel simulation, which may
reduce the exponent by a small constant at most. A possible way out of this might lie in the use
of rare event simulation techniques to speed up simulation [40].

The behaviour of KiBaM with capacity limits can be expressed as a relatively simple hybrid
automaton model [21]. Similarly, the random KiBaM with capacity limits can be regarded as an
instance of a stochastic hybrid system (SHS) [1, 3, 4, 8, 12, 37]. This observation opens some
further evaluation avenues, since there are multiple tools available publicly for checking reachability
properties of SHS. In particular, Faust2 [36], SiSat [17] and ProHVer [43, 16] appear adequate
at first sight. However the random KiBaM system cannot be evaluated with Faust2, basically due
to a model mismatch: The tool thus far assumes stochasticity in all dimensions, because it operates
on stochastic kernels, while our model is non-stochastic in the bound charge dimension. The
existing general theory about computing reach-avoid probabilities of so called partially degenerate
stochastic processes [35] is not yet built into Faust2. The guarantees provided using these methods

H. Hermanns, J. Krčál, and G. Nies 04:25

are computed a priori on the basis of Lipschitz constants and do not scale well to the small absolute
errors and large time horizons that are required for the satellite model. In our approach they are
computed a posteriori (as the difference between under- and over-approximation). SiSat provides
principal support for encoding all model aspects needed, yet the time horizon and precision needed
seem unsurmountable [15]. Our ProHVer experiments failed for a similar reason, namely the
sheer size of the problem. An extension of the stochastic network calculus to deal with energy [41]
can in principle be employed to calculate depletion risks, by modelling the cumulative energy
supply and energy demand as the arrival and service process of a queue, so as to capture the
Fraction of Time Energy Not-Served (FTNS). Different from ours, that work assumes a linear
battery behaviour and discretised time. Using a linear battery model causes underestimation of
the depletion risk, as discussed in Section 8. All the above tools have not been optimized for
dealing with very low probabilities as they appear in high dependability scenarios like the satellite
case. The orders of magnitude difference between the smallest time step (5 minutes) and the time
horizon (1 year) appear as another serious obstacle, but not for our approach.

10 Conclusion

Inspired by the needs of an earth-orbiting satellite mission, we extended in this paper the theory
of kinetic battery models in two independent dimensions. First, we addressed battery charging
up to full capacity. Second, we extended the theory of the KiBaM differential equations to a
stochastic setting. We provided a symbolic solution for random initial SoC and a sequence of
piecewise-constant random loads.

These sequences can be generated by a stochastic process representing an abstract and averaged
behavioural model of a nano satellite operating in earth orbit, superposed with a deterministic
representation of the solar infeed in orbit. We illustrated the approach by several experiments
performed on the model, especially varying the size of the battery, but also the number of solar
panels.

ESA is running a large educational program [2] for launching missions akin to GomX–1. The
satellites are designed by student teams, have the form of standardized 1 unit cube with maximum
mass of 1 kg, and target mission times of up to four years. The random KiBaM presented here is
of obvious high relevance for any participating team. It can help quantify the risk of premature
depletion for the various battery dimensions at hand, and thereby enable an optimal use of the
available weight and space budget. Our experiments show that using the simpler linear battery
model instead is far too optimistic in this respect.

For a fixed setup, one can also use the technology offered by us for optimal task scheduling:
In the same way as we can follow a single SoC distribution, we can also branch into several
distributions and determine which of them is best according to some metric. Taking inspiration
from [42], this can be combined with statistical model checking so as to find the optimal task
schedule of a given set of tasks.

Several extensions can and should be integrated in the model. Among them, temperature
dependencies are of particular interest. A temperature change has namely opposing physical effects
in solar panels and in the battery, having intriguing consequences such as piecewise exponential
decay in the charging process. An extension that is particularly important for long lasting missions,
is incorporating a model of battery wearout. So far we assume the battery capacity to be constant
along the mission time. Notably, our contribution is the first to consider capacity limits in
operation at all, as far as we are aware. As of now, our battery model is itself considered lossless,
while in reality one never gets out as much energy as one has put in before. We are so far putting
this phenomenon as a burden on the modeller side, namely to scale down the real charging current

LITES

04:26 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

to an effective charging current, that factors in the loss only while charging the battery. We are
looking into ways to instead make these losses a genuine part of the KiBaM model.

Acknowledgements. The authors are grateful for inspiring discussions with Peter Bak, Morten
Bisgaard, David Gerhardt and Jesper A. Larsen (GomSpace ApS), Erik R. Wognsen (Aalborg
University), and other members of the SENSATION consortium, as well as with Pascal Gilles (ESA
Centre for Earth Observation), Xavier Bossoreille (Deutsches Zentrum für Luft- und Raumfahrt)
and Marc Bouissou (Électricité de France S.A., École Centrale Paris – LGI).

References
1 Alessandro Abate, Maria Prandini, John Lygeros,

and Shankar Sastry. Probabilistic reachability and
safety for controlled discrete time stochastic hy-
brid systems. Automatica, 44(11):2724–2734, 2008.
doi:10.1016/j.automatica.2008.03.027.

2 European Space Agency. ESA Cubesat pro-
gram, October 2014. URL: http://www.esa.int/
Education/CubeSats.

3 Eitan Altman and Vladimir Gaitsgory. Asymptotic
optimization of a nonlinear hybrid system governed
by a markov decision process. SIAM Journal on
Control and Optimization, 35(6):2070–2085, 1997.
doi:10.1137/S0363012995279985.

4 Henk A.P. Blom and John Lygeros, editors.
Stochastic Hybrid systems: Ttheory and Safety
Critical Applications, volume 337 of Lecture Notes
in Control and Information Science. Springer
Heidelberg, 2006. doi:10.1007/11587392.

5 Udi Boker, Thomas A. Henzinger, and Arjun
Radhakrishna. Battery transition systems. In
Suresh Jagannathan and Peter Sewell, editors,
The 41st Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
POPL’14, San Diego, CA, USA, January 20-21,
2014, pages 595–606. ACM, 2014. doi:10.1145/
2535838.2535875.

6 M. Brandl, H. Gall, M. Wenger, V. Lorentz,
M. Giegerich, Federico Baronti, Gabriele Fante-
chi, Luca Fanucci, Roberto Roncella, Roberto
Saletti, Sergio Saponara, Alexander Thaler, Mar-
tin Cifrain, and W. Prochazka. Batteries and
battery management systems for electric vehicles.
In Wolfgang Rosenstiel and Lothar Thiele, ed-
itors, 2012 Design, Automation & Test
in Europe Conference & Exhibition, DATE
2012, Dresden, Germany, March 12-16, 2012,
pages 971–976. IEEE, 2012. doi:10.1109/DATE.
2012.6176637.

7 Isidor Buchmann. Batteries in a portable world.
Cadex Electronics Richmond, 2001.

8 Manuela L. Bujorianu, John Lygeros, and
Marius C. Bujorianu. Bisimulation for general
stochastic hybrid systems. In Manfred Morari and
Lothar Thiele, editors, Hybrid Systems: Compu-
tation and Control, 8th International Workshop,
HSCC 2005, Zurich, Switzerland, March 9-11,
2005, Proceedings, volume 3414 of Lecture Notes in
Computer Science, pages 198–214. Springer, 2005.
doi:10.1007/978-3-540-31954-2_13.

9 J. Cao, N. Schofield, and A. Emadi. Battery
balancing methods: A comprehensive review. In

Vehicle Power and Propulsion Conference, 2008.
VPPC’08. IEEE, pages 1–6, Sept 2008. doi:10.
1109/VPPC.2008.4677669.

10 Lucia Cloth, Marijn R. Jongerden, and
Boudewijn R. Haverkort. Computing battery
lifetime distributions. In The 37th Annual
IEEE/IFIP International Conference on De-
pendable Systems and Networks, DSN 2007,
25-28 June 2007, Edinburgh, UK, Proceedings,
pages 780–789. IEEE Computer Society, 2007.
doi:10.1109/DSN.2007.26.

11 Robert M. Corless, Gaston H. Gonnet, D. E.G.
Hare, David J. Jeffrey, and Donald E. Knuth. On
the LambertW function. Adv. Comput. Math.,
5(1):329–359, 1996. doi:10.1007/BF02124750.

12 Mark H.A. Davis. Piecewise-deterministic markov
processes: A general class of non-diffusion
stochastic models. Journal of the Royal Statist-
ical Society. Series B (Methodological), pages 353–
388, 1984. URL: http://www.jstor.org/stable/
2345677.

13 Marc Doyle, Thomas F. Fuller, and John Newman.
Modeling of galvanostatic charge and discharge of
the lithium/polymer/insertion cell. Journal of The
Electrochemical Society, 140(6):1526–1533, 1993.
doi:10.1149/1.2221597.

14 Maria Fox, Derek Long, and Daniele Magazzeni.
Automatic construction of efficient multiple bat-
tery usage policies. In Toby Walsh, editor, IJ-
CAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Bar-
celona, Catalonia, Spain, July 16-22, 2011, pages
2620–2625. IJCAI/AAAI, 2011. doi:10.5591/978-
1-57735-516-8/IJCAI11-436.

15 Martin Fränzle. Personal communication. 2015.
16 Martin Fränzle, Ernst Moritz Hahn, Holger Her-

manns, Nicolás Wolovick, and Lijun Zhang. Meas-
urability and safety verification for stochastic hy-
brid systems. In Marco Caccamo, Emilio Frazzoli,
and Radu Grosu, editors, Proceedings of the 14th
ACM International Conference on Hybrid Sys-
tems: Computation and Control, HSCC 2011,
Chicago, IL, USA, April 12-14, 2011, pages 43–52.
ACM, 2011. doi:10.1145/1967701.1967710.

17 Martin Fränzle, Holger Hermanns, and Tino Teige.
Stochastic satisfiability modulo theory: A novel
technique for the analysis of probabilistic hybrid
systems. In Magnus Egerstedt and Bud Mishra,
editors, Hybrid Systems: Computation and Con-
trol, 11th International Workshop, HSCC 2008, St.
Louis, MO, USA, April 22-24, 2008. Proceedings,

http://dx.doi.org/10.1016/j.automatica.2008.03.027
http://www.esa.int/Education/CubeSats
http://www.esa.int/Education/CubeSats
http://dx.doi.org/10.1137/S0363012995279985
http://dx.doi.org/10.1007/11587392
http://dx.doi.org/10.1145/2535838.2535875
http://dx.doi.org/10.1145/2535838.2535875
http://dx.doi.org/10.1109/DATE.2012.6176637
http://dx.doi.org/10.1109/DATE.2012.6176637
http://dx.doi.org/10.1007/978-3-540-31954-2_13
http://dx.doi.org/10.1109/VPPC.2008.4677669
http://dx.doi.org/10.1109/VPPC.2008.4677669
http://dx.doi.org/10.1109/DSN.2007.26
http://dx.doi.org/10.1007/BF02124750
http://www.jstor.org/stable/2345677
http://www.jstor.org/stable/2345677
http://dx.doi.org/10.1149/1.2221597
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-436
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-436
http://dx.doi.org/10.1145/1967701.1967710

H. Hermanns, J. Krčál, and G. Nies 04:27

volume 4981 of Lecture Notes in Computer Science,
pages 172–186. Springer, 2008. doi:10.1007/978-
3-540-78929-1_13.

18 Pascal Gilles. Private communication. 2014.
19 Daniel T. Gillespie. A general method for numer-

ically simulating the stochastic time evolution of
coupled chemical reactions. Journal of Computa-
tional Physics, 22(4):403–434, 1976. doi:10.1016/
0021-9991(76)90041-3.

20 GomSpace. Gomspace gomx-1, October 2014.
URL: http://gomspace.com/?p=gomx1.

21 Thomas A. Henzinger. Verification of Digital and
Hybrid Systems, chapter The Theory of Hybrid
Automata, pages 265–292. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2000. doi:10.1007/978-
3-642-59615-5_13.

22 Holger Hermanns, Jan Krcál, and Gilles Nies.
Recharging probably keeps batteries alive. In
Christian Berger and Mohammad Reza Mousavi,
editors, Cyber Physical Systems. Design, Model-
ing, and Evaluation – 5th International Workshop,
CyPhy 2015, Amsterdam, The Netherlands, Octo-
ber 8, 2015, Proceedings, volume 9361 of Lecture
Notes in Computer Science, pages 83–98. Springer,
2015. doi:10.1007/978-3-319-25141-7_7.

23 Marijn R. Jongerden and Boudewijn R. Haverkort.
Which battery model to use? IET Software,
3(6):445–457, 2009. doi:10.1049/iet-sen.2009.
0001.

24 Marijn R. Jongerden, Boudewijn R. Haverkort,
Henrik C. Bohnenkamp, and Joost-Pieter Katoen.
Maximizing system lifetime by battery scheduling.
In Proceedings of the 2009 IEEE/IFIP Interna-
tional Conference on Dependable Systems and Net-
works, DSN 2009, Estoril, Lisbon, Portugal, June
29 – July 2, 2009, pages 63–72. IEEE Computer
Society, 2009. doi:10.1109/DSN.2009.5270351.

25 Marijn Remco Jongerden. Model-based energy ana-
lysis of battery powered systems. PhD thesis, Uni-
versity of Twente, Enschede, December 2010. URL:
http://doc.utwente.nl/75079/.

26 Edward A. Lee and David G. Messerschmitt. Syn-
chronous data flow. Proceedings of the IEEE,
75(9):1235–1245, 1987. doi:10.1109/PROC.1987.
13876.

27 Bor Yann Liaw, E. Peter Roth, Rudolph G. Jungst,
Ganesan Nagasubramanian, Herbert L. Case, and
Daniel H. Doughty. Correlation of arrhenius beha-
viors in power and capacity fades with cell imped-
ance and heat generation in cylindrical lithium-ion
cells. Journal of power sources, 119:874–886, 2003.
doi:10.1016/S0378-7753(03)00196-4.

28 James F. Manwell and Jon G. McGowan. Lead
acid battery storage model for hybrid energy sys-
tems. Solar Energy, 50(5):399–405, 1993. doi:
10.1016/0038-092X(93)90060-2.

29 John Newman. Fortran programs for the simula-
tion of electrochemical systems. URL: http://www.
cchem.berkeley.edu/jsngrp/fortran.html.

30 Wilhelm Peukert. Über die Abhängigkeit
der Kapazität von der Entladestromstärke bei
Bleiakkumulatoren. Elektrotechnische Zeitschrift,
20:20–21, 1897.

31 Daler N. Rakhmatov and Sarma B.K. Vrudhula.
An analytical high-level battery model for use

in energy management of portable electronic sys-
tems. In Rolf Ernst, editor, Proceedings of
the 2001 IEEE/ACM International Conference
on Computer-Aided Design, ICCAD 2001, San
Jose, CA, USA, November 4-8, 2001, pages 488–
493. IEEE Computer Society, 2001. doi:10.1109/
ICCAD.2001.968687.

32 Venkatasailanathan Ramadesigan, Paul W.C.
Northrop, Sumitava De, Shriram Santhanagopa-
lan, Richard D. Braatz, and Venkat R. Sub-
ramanian. Modeling and simulation of lithium-
ion batteries from a systems engineering per-
spective. Journal of The Electrochemical Society,
159(3):R31–R45, 2012. doi:10.1149/2.018203jes.

33 Venkat Rao, Gaurav Singhal, Anshul Kumar, and
Nicolas Navet. Battery model for embedded sys-
tems. In 18th International Conference on VLSI
Design (VLSI Design 2005), with the 4th Interna-
tional Conference on Embedded Systems Design,
3-7 January 2005, Kolkata, India, pages 105–110.
IEEE Computer Society, 2005. doi:10.1109/ICVD.
2005.61.

34 Robin A. Sahner and Kishor S. Trivedi. Perform-
ance and reliability analysis using directed acyclic
graphs. IEEE Trans. Software Eng., 13(10):1105–
1114, 1987. doi:10.1109/TSE.1987.232852.

35 Sadegh Esmaeil Zadeh Soudjani and Alessandro
Abate. Probabilistic reach-avoid computation for
partially degenerate stochastic processes. IEEE
Trans. Automat. Contr., 59(2):528–534, 2014. doi:
10.1109/TAC.2013.2273300.

36 Sadegh Esmaeil Zadeh Soudjani, Caspar Gevaerts,
and Alessandro Abate. Faust2: Formal abstrac-
tions of uncountable-state stochastic processes.
CoRR, abs/1403.3286, 2014. URL: http://arxiv.
org/abs/1403.3286.

37 Jeremy Sproston. Decidable model checking of
probabilistic hybrid automata. In Mathai Joseph,
editor, Formal Techniques in Real-Time and Fault-
Tolerant Systems, 6th International Symposium,
FTRTFT 2000, Pune, India, September 20-22,
2000, Proceedings, volume 1926 of Lecture Notes
in Computer Science, pages 31–45. Springer, 2000.
doi:10.1007/3-540-45352-0_5.

38 Bart D. Theelen, Marc Geilen, Twan Basten,
Jeroen Voeten, Stefan Valentin Gheorghita, and
Sander Stuijk. A scenario-aware data flow model
for combined long-run average and worst-case per-
formance analysis. In 4th ACM & IEEE In-
ternational Conference on Formal Methods and
Models for Co-Design (MEMOCODE 2006), 27-
29 July 2006, Embassy Suites, Napa, Califor-
nia, USA, pages 185–194. IEEE Computer Society,
2006. doi:10.1109/MEMCOD.2006.1695924.

39 Bart D. Theelen, Marc C.W. Geilen, Sander Stu-
ijk, Stefan V. Gheorghita, Twan Basten, Jeroen
P.M. Voeten, and Amir H. Ghamarian. Scenario-
aware dataflow. Technical report, Eindhoven Uni-
versity of Technology, 2008. Technical Report ESR-
2008-08. URL: http://www.es.ele.tue.nl/sadf/
publications/TGSGBVG08.pdf.

40 Manuel Villén-Altamirano and José Villén-
Altamirano. Restart: a straightforward method
for fast simulation of rare events. In Deborah A.
Sadowski, Andrew F. Seila, Mani S. Manivannan,
and Jeffrey D. Tew, editors, Proceedings of the

LITES

http://dx.doi.org/10.1007/978-3-540-78929-1_13
http://dx.doi.org/10.1007/978-3-540-78929-1_13
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://gomspace.com/?p=gomx1
http://dx.doi.org/10.1007/978-3-642-59615-5_13
http://dx.doi.org/10.1007/978-3-642-59615-5_13
http://dx.doi.org/10.1007/978-3-319-25141-7_7
http://dx.doi.org/10.1049/iet-sen.2009.0001
http://dx.doi.org/10.1049/iet-sen.2009.0001
http://dx.doi.org/10.1109/DSN.2009.5270351
http://doc.utwente.nl/75079/
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1016/S0378-7753(03)00196-4
http://dx.doi.org/10.1016/0038-092X(93)90060-2
http://dx.doi.org/10.1016/0038-092X(93)90060-2
http://www.cchem.berkeley.edu/jsngrp/fortran.html
http://www.cchem.berkeley.edu/jsngrp/fortran.html
http://dx.doi.org/10.1109/ICCAD.2001.968687
http://dx.doi.org/10.1109/ICCAD.2001.968687
http://dx.doi.org/10.1149/2.018203jes
http://dx.doi.org/10.1109/ICVD.2005.61
http://dx.doi.org/10.1109/ICVD.2005.61
http://dx.doi.org/10.1109/TSE.1987.232852
http://dx.doi.org/10.1109/TAC.2013.2273300
http://dx.doi.org/10.1109/TAC.2013.2273300
http://arxiv.org/abs/1403.3286
http://arxiv.org/abs/1403.3286
http://dx.doi.org/10.1007/3-540-45352-0_5
http://dx.doi.org/10.1109/MEMCOD.2006.1695924
http://www.es.ele.tue.nl/sadf/publications/TGSGBVG08.pdf
http://www.es.ele.tue.nl/sadf/publications/TGSGBVG08.pdf

04:28 How Is Your Satellite Doing? Battery Kinetics with Recharging and Uncertainty

26th conference on Winter simulation, WSC
1994, Lake Buena Vista, FL, USA, Decem-
ber 11-14, 1994, pages 282–289. ACM, 1994.
doi:10.1109/WSC.1994.717150.

41 Kai Wang, Florin Ciucu, Chuang Lin, and
Steven H. Low. A stochastic power network cal-
culus for integrating renewable energy sources into
the power grid. IEEE Journal on Selected Areas
in Communications, 30(6):1037–1048, 2012. doi:
10.1109/JSAC.2012.120703.

42 Erik Ramsgaard Wognsen, René Rydhof Hansen,
and Kim Guldstrand Larsen. Battery-aware
scheduling of mixed criticality systems. In Tiz-
iana Margaria and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Veri-
fication and Validation. Specialized Techniques

and Applications – 6th International Symposium,
ISoLA 2014, Imperial, Corfu, Greece, October 8-
11, 2014, Proceedings, Part II, volume 8803 of Lec-
ture Notes in Computer Science, pages 208–222.
Springer, 2014. doi:10.1007/978-3-662-45231-
8_15.

43 Lijun Zhang, Zhikun She, Stefan Ratschan, Hol-
ger Hermanns, and Ernst Moritz Hahn. Safety
verification for probabilistic hybrid systems. In
Tayssir Touili, Byron Cook, and Paul B. Jackson,
editors, Computer Aided Verification, 22nd Inter-
national Conference, CAV 2010, Edinburgh, UK,
July 15-19, 2010. Proceedings, volume 6174 of Lec-
ture Notes in Computer Science, pages 196–211.
Springer, 2010. doi:10.1007/978-3-642-14295-
6_21.

http://dx.doi.org/10.1109/WSC.1994.717150
http://dx.doi.org/10.1109/JSAC.2012.120703
http://dx.doi.org/10.1109/JSAC.2012.120703
http://dx.doi.org/10.1007/978-3-662-45231-8_15
http://dx.doi.org/10.1007/978-3-662-45231-8_15
http://dx.doi.org/10.1007/978-3-642-14295-6_21
http://dx.doi.org/10.1007/978-3-642-14295-6_21

Characterizing Data Dependence Constraints for
Dynamic Reliability Using n-Queens Attack
Domains∗

Eric W. D. Rozier1, Kristin Y. Rozier2, and Ulya Bayram3

1 Department of Computer Science, Iowa State University, Ames, IA, USA
erozier@iastate.edu

2 Department of Aerospace Engineering, Iowa State University, Ames, IA, USA
kyrozier@iastate.edu

3 Department of Electrical Engineering and Computing Systems, University of
Cincinnati, Cincinnati, OH, USA
http://orcid.org/0000-0002-8150-4053
bayramua@mail.uc.edu

Abstract
As data centers attempt to cope with the expo-
nential growth of data, new techniques for intel-
ligent, software-defined data centers (SDDC) are
being developed to confront the scale and pace
of changing resources and requirements. For cost-
constrained environments, like those increasingly
present in scientific research labs, SDDCs also may
provide better reliability and performability with
no additional hardware through the use of dynamic
syndrome allocation. To do so, the middleware
layers of SDDCs must be able to calculate and
account for complex dependence relationships to
determine an optimal data layout. This challenge

is exacerbated by the growth of constraints on the
dependence problem when available resources are
both large (due to a higher number of syndromes
that can be stored) and small (due to the lack
of available space for syndrome allocation). We
present a quantitative method for characterizing
these challenges using an analysis of attack domains
for high-dimension variants of the n-queens prob-
lem that enables performable solutions via the SMT
solver Z3. We demonstrate correctness of our tech-
nique, and provide experimental evidence of its
efficacy; our implementation is publicly available.

2012 ACM Subject Classification Embedded and cyber-physical systems, Data centers, Theorem proving
and SAT solving
Keywords and Phrases SMT, data dependence, n-queens
Digital Object Identifier 10.4230/LITES-v004-i001-a005
Received 2016-01-11 Accepted 2016-12-09 Published 2017-02-28

Special Issue Editors Javier Campos, Martin Fränzle, and Boudewijn Haverkort
Special Issue Quantitative Evaluation of Systems

1 Notation

R number of ranks (rows) of a Latin squares n-queens board; number of RAID
groups in storage system under test

F number of files (columns) of a Latin squares n-queens board; number of storage
disks per RAID group

∗ An earlier version of this paper appeared in QEST’15 [4]. Some of the additional work consolidated here
appeared in CFV’15 [27] and ISAIM’16 [28].

© Eric W.D. Rozier, Kristin Y. Rozier, and Ulya Bayram;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 4, Issue 1, Article No. 5, pp. 05:1–05:26
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:erozier@iastate.edu
mailto:kyrozier@iastate.edu
http://orcid.org/0000-0002-8150-4053
mailto:bayramua@mail.uc.edu
http://dx.doi.org/10.4230/LITES-v004-i001-a005
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

05:2 Characterizing Data Dependence Constraints for Dynamic Reliability

L number of levels (height) of a Latin squares n-queens board; L = R · F with
level li representing the problem associated with disk r ·R+ f , or (r, f)

xl,r,f ∈ X index of a variable at level l, rank r, and file f of a Latin squares n-queens
board X

X a board; a set of L · R · F variables each representing a the state of a single
square, each with a single variable label

XC ⊂ X a set of variables labeling column C where r = a, and f = b, for some a ∈ R
and some b ∈ F

Q = {∆,Λ,Γ} a finite set of symbols representing queens of three types
∆ degenerate queens
Λ linear queens
Γ indirect queens
N number of indirect queens on a board
A a finite set of symbols representing squares under attack by each type of queen
ε designator for an empty square

V = Q ∪A ∪ ε set of variables that label squares
Sl,r,f attack set (set of squares a queen attacks) such that ∀si ∈ Sl,r,f , si = λ iff

xl,r,f = Λ, and si = γ iff xl,r,f = Γ
Dl,r,f = Sl,r,f ∪ xl,r,f attack domain of a queen; set of squares a queen attacks or occupies

rsi rank of square si
fsi file of square si
φ a disk file

Bφ = {bφ0 , bφ1 , . . .} set of (typically fixed-size) blocks of file φ
R binary dependence relationship

R(φ) dependence relation between blocks that are part of the same file such that for
some bi, bj , biR(φ)bj if there exists some φ composed of Bφ where bi ∈ Bφ and
bj ∈ Bφ

σ a reliability syndrome
R(σ) reliability syndrome dependence; there exists some σ such that σ = bi⊕ bj ⊕ . . .

then biR(σ)bj
P set of R · F constants in the population constraint board designating available

free-space per physical disk such that ∀pr,f ∈ P, pr,f ∈ N
pr,f ∈ N the population limit of column with rank r and file f

W (constant) protection requirement for each level

2 Introduction

One of the largest challenges facing the storage industry is the continued exponential growth
of Big Data. The growth of data in the modern world is exceeding the ability of designers and
researchers to build appropriate platforms [33, 12] but presents a special challenge to scientific
labs and non-profit organizations whose budgets have not grown (and often have been cut) as
their data needs steeply rise. The NASA Center for Climate Simulation revealed that while their
computing needs had increased 300 fold in the last ten years, storage needs had increased 2,000
fold, and called storage infrastructure one of the largest challenges facing climate scientists [10].
This trend has been driving reliance on commercial off the shelf (COTS) solutions to drive down
the cost of data ownership. Despite its importance, the goal of affordable data curation comes at
a cost in terms of reliability, creating a difficult-to-solve system-design-constraints problem.

To cope with the increase in cost, deduplication techniques are commonly used in many storage
systems. Deduplication is a storage efficiency improvement technique that removes the duplicate
substrings in a storage system and replaces them with references to the single location storing the

E.W.D. Rozier, K. Y. Rozier, and U. Bayram 05:3

duplicate data. While this achieves a higher storage efficiency in terms of reducing the cost of
ownership of a system, it can negatively impact the reliability of the underlying storage system
since loss of a block with a high number of references means a critical number of files being lost
unrecoverably [30].

Data reliability was previously improved using enterprise-class storage devices that typically
suffer faults as much as two orders of magnitude less often than COTS storage devices. In the
face of the exponential growth of the digital universe [36] the cost of this solution has become
prohibitively expensive, inspiring a switch to near-line components, thus lessening storage reliability
guarantees. While reliability could be improved through the addition of new hardware, today the
scale of growth of inexpensive storage is being exceeded by the growth of Big Data.

In most storage systems reliability improvements are achieved through the allocation of
additional disks in Redundant Arrays of Independent Disks (RAID) [25]. RAID arrays achieve
reliability through the allocation of coding syndromes [26] that create dependence relationships in
the storage system to allow recovery of files after failures. While RAID systems are incredibly
effective at the task of improving reliability, they add to the cost of the storage systems in which
they are deployed.

Methods used to increase reliability also increase the cost of maintaining the storage system,
and the same is true for the methods that reduce the cost; they also reduce reliability. In order to
meet these cost and reliability constraints, and find a way to break the proportional relationship
in between, previously we conducted a study where we have documented that systems are often
over-provisioned, and this over-provisioning level is highly predictable using intelligent systems
algorithms [31]. Using these models, we proposed that dynamically allocated reliability syndromes
could be created and stored in this excess capacity to improve reliability without the addition of
new hardware [3]. Based on this result, it is now possible to modify traditional RAID schemes to
dynamically allocate new syndromes for reliability in over-provisioned space through the risk-averse
prediction of available storage over the next epoch of operation of a storage system. Furthermore
this can be done while maintaining quality of service (QoS) and availability of the storage system,
while simultaneously providing maximum additional reliability. The only assumption is that the
additional syndromes can be placed in a way that respects data dependence constraints. The
ability to predict the expected level of over-provisioning allows us to create software-defined data
centers that can allocate virtual disks made up of free space compiled from across the data center
to hold additional reliability syndromes. An unsolved challenge that stands in the way of this
technique, however, is the development of algorithms that account for complex data dependencies
such as existing reliability syndromes and deduplication, providing a strategy for syndrome storage
and new RAID relationships in a performable way that maximizes the additional number of
reliability syndromes that can be allocated without violating the dependence constraints on those
syndromes.

2.1 n-Queens
In order to solve these dependence constraints, we cast our problem into a unique variant of
the n-queens problem. We chose n-queens for several reasons. First and foremost, when fully
constructed, our board resembles the classic 3-dimensional Latin board configuration [21, 16],
and we recognized that the independence requirements for new reliability syndromes could be
represented as a metaphor of the squares in this Latin board that represent legal captures. To
place another syndrome into such a square would violate independence, and as n-queens concerns
itself with a placement of new queens (syndromes) on a board (disk array) such that none attack
each other (independence is preserved) the formulation seemed a natural choice. We map a RAID
array into a mathematical representation of a chess board with a set number of ranks (defining the

LITES

05:4 Characterizing Data Dependence Constraints for Dynamic Reliability

y-axis) and files (defining the x-axis). We propose a quantitative solution for virtual disk allocation
in software-defined data centers, respecting all dependence constraints within the data center, or,
when no such configuration exists, identifying the unsatisfiability of the problem. This method
allows us to take advantage of the over-provisioned space without constraining our problem to
traditional RAID geometries. We propose solving this problem quantitatively by mapping it to
an innovative variation of the n-queens problem that utilizes a 3D Latin board configuration
[21, 16], nontraditional queen types and attack domains, and population limits on the number
of indirect queens placed within certain bounds. While this formulation differs from traditional
n-queens in several ways, we make the argument that it is a difference in degree, and not in kind.
Utilizing n-queens lets us not only utilize common and well-explored metaphors, but it also allows
us to leverage generalized solvers and packages built for n-queens, and allows others to modify
our solution to fit their needs should other attack patterns be required to represent dependence
relations we do not concern ourselves with, such as meta-data relationships. By formulating our
problem as a variant of n-queens our solver can be used in other domains, or by other variants of
the disk layout problem we are solving simply by modification of the attack domains exhibited by
the queens in our problem.

The challenge of defining dynamic syndromes is inherently characterized by a well-defined set of
constraints: total number of disks, current disk utilization, distribution of unutilized space, existing
dependence relationships due to RAID reliability syndromes, and deduplication relationships. By
creating a mapping to n-queens under these constraints, we can intuitively represent the problem
in a way that facilitates validation and harness the power of the Satisfiability Modulo Theories
(SMT) solver Z3 to return a constraint-satisfying solution, or determine that a solution cannot
exist. Z3 [8] is a very efficient and freely-available solver for SMT, which is a decision problem
for logical first-order formulas with respect to combinations of background theories including
the uninterpreted functions integral to our solution. The n-queens problem is a classic way to
represent such a constraint satisfaction problem [22, 32] and a common benchmark for such a
solver [17]. Classification as a constraint satisfaction problem that can be solved by Z3 has proven
to be successful in other design domains, such as automating design of encryption and signature
schemes [1].

2.2 Previous Work

In our previous work [4] we formulated a variant of the n-queens problem using a basic set of
constraints, and showed informally and empirically that our method could sometimes generate
satisfying solutions. We empirically characterized the difficulty of finding a solution in terms of the
number of queens, and the population coverage ratio. We also demonstrated that deduplication
has the general effect of making the problem less likely to be satisfiable. We extended this work
in [28] by formally casting our constraints into subsets requiring global and local scoping with
respect to changing level protection requirements. This, in essence, gave us the ability to utilize
partial solutions to the global constraints problem to reduce the total time necessary to evaluate
cascading solutions to progressively harder variants of a given problem. Since finding a satisfying
disk layout for some level of protection W may not be possible, but one for W − i for some i may
exist, this allowed us to adopt a solution method of solving easier variants, and using them to
speed up the solution of progressively better-protected systems within a finite time bound. We
additionally showed, empirically, that when we examine large samples of random disk layouts, that
satisfiability of the problem is probabilistic, and has a regular structure examined as a function of
available disk space, and the entropy of that space.

E.W.D. Rozier, K. Y. Rozier, and U. Bayram 05:5

2.3 Application to Embedded Systems
A particular challenge for the realm of embedded systems is the performance requirement induced
by the fact that embedded systems are often subject to both real-time constraints, and additionally
that they lack considerable processing power. One of the primary targets of our technologies are
for systems for which extremely high reliability, beyond that demanded by consumer systems, is
required. These systems are often difficult, if not impossible, to repair and include embedded
storage systems for satellites, remote probes and rovers used by NASA, and planned spacecraft
(both manned and unmanned) for long mission profiles like the Autonomy Architecture Habitat.
In addition, it would be advantageous for our technology to run on small embedded systems,
even when part of a larger more capable storage system, so that it can be implemented as a
plug-and-play technology that sits between user- and system-level requests, and the storage
architecture translating file requests, when needed to account for additional reads and/or writes
to enable the higher level of reliability transparently.

Given these goals, one of the primary focuses of this paper is the derivation of a system that is
not only correct, but that can be employed with acceptable overhead, and cascading solutions
allowing for real-time constraints to be accounted for. The ideal system would be one in which
successively harder problems are solved one after another (or in parallel if possible) until the
deadline is reached. At that point the best solution computed to date is used for system layout.
We present such a system here.

2.4 Novel Contributions
Our contributions in this paper include a new quantitative solution for the problem of dynamic
allocation of new reliability syndromes while respecting dependence constraints to improve the
reliability of software-defined data centers without the addition of new hardware. We extend
our previous work by giving a formal definition of our problem with accompanying proofs of
correctness for a mapping of this problem to a variation of the classic n-queens problem, thus
enabling efficient analysis via powerful SMT solvers like Z3. We provide an implementation in Z3
for python and include a case study demonstrating the effectiveness of our technique. This new
solution will serve as the core for a dynamic allocation system to be used in software-defined data
centers that will be deployed at the laboratories of partner organizations.

This paper is organized as follows: Section 3 provides background on dependence relationships
in storage systems, and related work in novel RAID geometries. Section 4 introduces an encoding
for this problem in a variant of n-queens, mapping the problem of data layout strategies that
respect all data dependence constraints while maximizing additional syndrome coverage for any
given dataset, to the problem of placing novel queen types on a Latin chess board. We formalize
these definitions and the resulting constraints in Section 5, and give formal mappings to Z3 for
implementation in Section 6. We provide experimental results demonstrating the efficacy and
efficiency of our approach in Section 7. Finally, Section 8 concludes and points to future work.

3 Characterizing File System Dependence

As we have shown in our previous work [31, 3], it is possible to predict the future storage resource
needs of the users in a system. In recent work [3], we have modeled user behaviors using the
training data we obtained from a real system to create and train Markov models, and predicted
the future disk usage needs of the users in an on-line fashion, and compared the results with
the test data we also obtained from the same system to measure the prediction performance.
We have observed that with a good clustering method and fine parameter tuning, it is possible

LITES

05:6 Characterizing Data Dependence Constraints for Dynamic Reliability

{
(a) Example of a virtual disk being constructed out
of overprovisioned space.

(b) Example of independent syndrome calculation
as the XOR parity of diagonals.

Figure 1 Example allocations of virtual disks from over-provisioned space.

Table 2 Annual rates of block loss (ABL) per system type with varying numbers of additional syndromes
(nsynd) allocated.

RAID5 configuration ABL (no syndromes) ABL (nsynd = 2) ABL (nsynd = 3)
5+1 1.79x105 1.31x10−7 1.92x10−15

8+1 4.60x105 1.02x10−6 5.06x10−14

10+1 8.06x105 2.76x10−6 1.79x10−13

to predict user behaviors and resource requirements. We have used this method for predicting
over-provisioning, and allowing for dynamic improvement of reliability through the allocation of
additional syndromes by creating new virtual disks using any over-provisioned storage that are
found to be independent of the current RAID grouping as shown in Figure 1a. Our experiments on
real storage system data have shown that even when being incredibly risk adverse, we can allocate
between three and four additional syndromes more than 50% of the time, and on average allocate
two additional syndromes for all of the data, and three additional syndromes for more than 90% of
the data, dramatically improving the reliability of the system [3]. We analyzed these improvements
on systems with one petabyte of primary storage with initial RAID5 configurations of 5+1, 8+1,
and 10+1 over which we introduce two and three additional syndromes after predictions. Changes
in reliability are measured using the rate of annual block loss (ABL), when taking into account
whole disk failures and latent sector errors. Table 2 illustrates the calculated ABLs for three
RAID5-configured primary storage systems, each provisioned for a maximum capacity of one
petabyte. The steep increase in the reliability represented by decreases in ABL rates as the number
of allocated syndromes increases shows the promise of such predictive analysis and dynamic
allocation.

3.1 Reliability Syndromes
The typical way of addressing reliability concerns in large-scale storage systems has been through
the generation of syndromes that can be used to detect faults, prevent those faults from manifesting

E.W.D. Rozier, K. Y. Rozier, and U. Bayram 05:7

as failures, and repair those failures when new resources are available. The most basic type of
syndrome that can be allocated is that of XOR parity [6]. Consider a set of disks that contain
an array of blocks, the atomic unit of reading and writing in a file system. We can treat each of
these blocks as a vector of bytes and generate a syndrome by performing some calculation on each
byte in the vector. In order to tolerate the loss of a single disk in some set of n disks we need
to compute a syndrome P , which allows for the recovery of any lost block. One of the simplest
methods for doing so is XOR parity:

P = D0 ⊕D1 ⊕D2 ⊕ . . .⊕Dn−1 .

We can then write P to a new disk, independent from those containing blocks used in its
computation, creating an array of n + 1 disks. The loss of any one disk, including the one
containing P , will not result in the loss of data. If some disk Dj fails and cannot be read or
written normally, we can perform equivalent operations on the remaining disks to account for this
degraded state. A read to Dj can be performed by reading the working n− 1 disks and the disk
containing P and generating Dj from the result as

Dj = D0 ⊕D1 ⊕D2 ⊕ . . .⊕Dj−1 ⊕Dj+1 ⊕ . . .⊕Dn−1 ⊕ P

(where 2 < j < n− 1 for this example, but without loss of generality for other cases). When new
hardware is acquired (or allocated from hot spares available in the storage system), the entire
disk containing all blocks associated with the failed disk that contained Dj can be recovered in a
similar manner.

In order to tolerate the loss of any two disks two independent syndromes must be calculated,
here referred to as P and Q. Without providing additional disks, in order to construct a new
independent syndrome we utilize the algebra of a Galois field GF(28) [2]. The representation of
this algebra is cyclic utilizing group or ring theory. We utilize elements g called generators of
the Galois field such that gn doesn’t repeat until it has exhausted all elements of the field except
{00}, where any numeral in {} is a hexadecimally-represented Galois field element. We defer a full
discussion of Galois field algebra to the literature [14]. For n disks where n ≤ 255 we compute:

P = D0 ⊕D1 ⊕D2 ⊕ . . .⊕Dn−1 , (1)
Q = g0 ·D0 ⊕ g1 ·D1 ⊕ g2 ·D2 ⊕ . . .⊕ gn−1 ·Dn−1 . (2)

The loss of a single data drive can be recovered using the normal XOR parity method described
previously. The loss of P or Q can be recovered simply by recomputing using the above formulas.
The loss of any single data drive, and the loss of Q can be recovered by first recovering the data
drive using XOR parity, and then recomputing Q. Recovering P , or the loss of two data drives is
somewhat more involved, and the discussion of the method is left to the literature [2].

3.2 Allocation of New Syndromes
Allocation of new syndromes in order to increase the reliability through the deployment of RAID5
XOR parity syndromes [25] or RAID6 Galois-field based syndromes [2, 7] becomes somewhat
trickier due to the requirement of independence. Additional syndromes can, in theory, be allocated
using techniques such as erasure coding, which would generate still new independent syndromes.
These methods, however, generally have a severe impact on performance, and as a result, lower
the QoS of the system [20]. As such, we focus on alternative RAID geometries to make use of
additional XOR parity and Galois-field based syndromes. To do so we must overcome the problem
of our requirement of independence.

LITES

05:8 Characterizing Data Dependence Constraints for Dynamic Reliability

In this paper, we propose an efficient method for allocation of additional syndromes. Additional
coverage can be provided using non-traditional RAID geometries as shown in Figure 1b. While
the idea of using non-traditional RAID geometries itself is not new, and has been explored in
previous studies [34, 24, 23], prior work in this field has always maintained the assumption that the
layout of the RAID arrays is pre-defined. Instead, we propose the creation of dynamic per-stripe
geometries using over-provisioned space in an existing data center.

When creating non-traditional RAID geometries, care must be taken to respect data dependence
relationships [29] to ensure that the new RAID strategy improves reliability. We consider two
types of data dependence relationships, one resulting from pre-existing RAID groups, and the
other from data deduplication [30].

A typical method for reliability syndrome generation is XOR parity. In a situation such as
that shown in Fig. 1a, data may be made more reliable by creating a new dependence between
currently independent data. So given blocks a, b, c, and d stored on separate physical hardware, a
new block z = a⊕ b⊕ c⊕ d can ensure that if any block is lost, for example c, it can be easily
recreated as c = a⊕ b⊕d⊕z, adding to the reliability of the underlying file system [25]. Reliability
can be further extended through the use of Galois fields [6], and in theory with erasure codes [9],
however codes patent encumbrance has effectively removed performable erasure code algorithms
from use [13]. In practice this means for any set of initially dependent data, reliability can be
increased (given sufficient space) via creation of two independent syndromes.

Additional reliability syndromes can be allocated using additional blocks not already linked
through a syndrome-related dependence, such as a, f, k, and p in Fig. 1. The difficulty inherent in
allocating these new syndromes is ensuring independent sets of blocks can be identified, along
with independent free space in the storage system. As the storage system becomes fuller over time,
the difficulty of this problem increases exponentially, necessitating efficient solution techniques.

We consider three types of data dependence relationships in our analysis. The first are file
dependence relationships. We consider data in our file systems to be divided into blocks (typically
of fixed size) with each file φ being composed of a set of blocks Bφ = {bφ0 , bφ1 , . . .}. Blocks that
are part of the same file have a file dependence relation represented by R(φ) such that for some
bi, bj , biR(φ)bj if there exists some φ composed of Bφ where bi ∈ Bφ and bj ∈ Bφ. Secondly, we
consider reliability dependence. Such a dependence, represented by R(s), exists between blocks
bi, bj if both bi and bj participate in reliability syndrome s. Thus if there exists some s such that
s = bi ⊕ bj ⊕ . . . then biR(s)bj . Lastly, we consider deduplication dependence relationships. These
relationships are much like those found in file dependence relationships, and can be defined in
the same way, differing only in that for a deduplicated block bi, it can participate with multiple
files in dependence relationships, so bi ∈ Bk does not preclude that some Bl also exists such
that bi ∈ Bl, l 6= k. For convenience, we will also use the notation R without a subscript to
indicate the presence of any dependence relationship, regardless of the type. These relationships
become important when defining a new syndrome s′ to protect some block bp. When defining
s′ as a set of blocks S′ = {bp, b0, b1, . . .} such that s′ = bp ⊕ b0 ⊕ b1 ⊕ . . . it is important to pick
blocks such that for bi ∈ S′ \ bp, biRbp is false; otherwise the new syndrome will not provide the
expected improvements to reliability as independence is a fundamental assumption for syndrome
construction.

4 n-Queens with Dynamic Domains of Attack

In order to solve our problem and find a data layout that allows us to build virtual disks that are
independent of the data they are protecting, we provide a mapping of our problem into a variant
on the classical n-queens [35] constraint satisfaction problem with few alterations.

E.W.D. Rozier, K. Y. Rozier, and U. Bayram 05:9

File

Rank

Level

Column

Figure 2 Example Space with dimensions 3x8x8.

First, we adopt a Latin board, allowing us to examine our problem in a three-dimensional
space [21, 16]. We define this space according to three axes, the level, rank, and file, as shown in
Figure 2. We further define a column on this Latin board as the set of squares defined by a fixed
rank and file across all levels of the board. Each column in our Latin board corresponds to a disk
within our data center, with each rank consisting of a traditional RAID group. Levels represent
independent sub-problems solving for data independence for each disk in turn. Thus, in practice,
given a problem with R ranks and F files, we construct our board with L = R · F levels.

We represent the state of dependence relationships in a file system by placing queens on our
boards, using their attack domains to represent file dependence relationships. For any level l on
our board, this level is used to solve a sub-problem for the lth disk in our data center (numbered in
rank-major order, such that if the disk is in rank r and file f , the level that solves its independence
constraints is l = r ∗ F + f). The full attack domain of all queens on level l represents those disks
on which the lth disk depends. We call this lth disk for level l the principle disk for that level. To
represent these dependence relationships, however, we specify the attack domain definitions for
each queen to match the dependence relationships we must represent. We introduce three new
queen types each with a unique attack domain.

Degenerate Queens – a degenerate queen is so-named because it attacks only a single square,
that which it is occupying. Degenerate queens are used to represent the disk being protected,
and disks containing deduplicated blocks upon which files on that disk depend. Degenerate
queens are used to exclude a square on a level from the solution space of new dynamic RAID
groupings. The attack domain of a degenerate queen is illustrated in Figure 3.
Linear Queens – a linear queen’s attack domain is defined to include both its own square and
F − 2 squares on the board extending in a line from the queen, potentially wrapping around
the board as if it were a toroidal-board as discussed originally in the class of modular n-queens
problems [11]. Linear queens can be used to represent existing RAID groups, or new dynamic
RAID groups with more traditional geometries. Two example attack domains for linear queens
are illustrated in Figure 4.1

1 While we allow linear queens to attack in any direction as a matter of completeness of our variant n-queens
definition, we note that our method only makes use of linear queens that attack along ranks towards squares
in higher-numbered files, wrapping toroidally.

LITES

05:10 Characterizing Data Dependence Constraints for Dynamic Reliability

Figure 3 Example attack domain of a single degenerate queen.

Figure 4 Example attack domains of two linear queens.

E.W.D. Rozier, K. Y. Rozier, and U. Bayram 05:11

Figure 5 Example attack domain of a single indirect queen.

Indirect Queens – the final type of queen we introduce is an indirect queen, whose attack
domain consists of its own square, and F − 2 other squares on the board, each within a rank
unique to the queen’s attack domain. The attack domain of an indirect queen is illustrated
in Figure 5. An indirect queen can attack with almost any imaginable pattern, so long as it
attacks F − 2 squares and those squares are on unique ranks. This allows for the formulation
of arbitrary RAID geometries that still respect dependence relationships arising from standard
RAID protections. The indirect queen itself is used by our problem to represent the disk on
which a new syndrome will be stored, and the F − 2 squares in its attack domain represents
those other disks participating in the syndrome calculation.

In order to solve the problem of independent syndrome placement, and the creation of new dynamic
RAID groupings, we begin with a pre-defined board, based on the state of the data center, that
contains a number of degenerate and linear queens representing this system state, such as the
example shown in Figure 6a. We then proceed to place new indirect queens on the board with
each indirect queen representing the storage location of a new pair of XOR and Galois field parity
syndromes, and the attack domain of that queen representing the independent disks to use to
form a new dynamic RAID group associated with those syndromes.

5 Formal Problem Representation

In this section we provide a formal representation of our problem accompanied by some helpful
proofs, define our representation, and provide constraints for use in SMT solving that allow the
production of strategies for reliability improvement, if any such strategy exists. Our solution
is intuitive and easy to validate as the n-queens problem is a classic way to represent such a
constraint satisfaction problem [22, 32]; n-queens variations are common benchmarks for SMT
solvers [17], so it is easy to choose a good solver. We represent our problem in the domain of a Latin-

LITES

05:12 Characterizing Data Dependence Constraints for Dynamic Reliability

Block to be protected

RAID Group {
Deduplicated Blocks

(a) Example of initial constraints when protecting
a block on disk 0 of RAID group 2 that has ref-
erences to deduplicated blocks on six other disks.
Degenerate queens are used to include the disks
containing the initial and deduplicated blocks in
the attack domain, and a linear queen is used to
include the RAID group in the attack domain

(b) An example solution with two additional syn-
dromes. Indirect queens occupy the spaces corres-
ponding to the disks where the new syndromes will
be stored; their attack domains include all disks
protected by the new syndrome.

Figure 6 Representation of a single level of an 8x8x64 board.

squares [21, 16] variant of the n-queens problem, using multiple levels of the Latin-squaresboard
to represent separate, yet dependent, subproblems, using novel variant queen types with unique
attack domains, and population constraints. In our representation, the board represents the
physical disk media with each column in the Latin-squares board representing a separate physical
disk.

I Definition 1 (Square). A square represents a discrete part of the n-queens problem that has a
state that can either represent its occupancy by a queen (including the type of the queen), that it
is part of the attack domain of a queen (i.e., some queen could capture a piece were it on that
square), or that it is empty. This state is encoded for any given square as a variable drawn from a
finite set V = Q ∪A ∪ {ε} where Q is a finite set of symbols representing queens of three types, A
is a finite set of symbols representing squares under attack by each type of queen, and ε is an
empty square.

We allow each square to contain only one queen, or be part of an attack domain as part of the
implicit requirement of n-queens where a valid placement results in no queen attacking another.

I Definition 2 (Board). For ease of representation, we utilize a three-dimensional matrix: a
Latin-squares variant of n-queens with the dimensions L levels, R ranks, and F files, as shown in
Fig. 2. A board is a set of L · R · F variables indexed xl,r,f ∈ X. Each variable represents the
state of a square and has an assignment from a finite set V = Q∪A∪{ε} that represents its state,
where Q is a finite set of symbols representing queens of three types, A is a finite set of symbols
representing squares under attack by each type of queen, and ε is an empty square.

E.W.D. Rozier, K. Y. Rozier, and U. Bayram 05:13

We use the term column to indicate a set of variables XC ⊂ X where r = a, and f = b, for
some a ∈ R and some b ∈ F .

Given an array of R · F disks arranged into traditional RAID groupings of F disks per group,
each level of the board represents a separate constraint satisfaction problem for a separate set of
data associated with a given physical disk. Specifically, L = R · F with level li representing the
problem associated with disk r · R + f , or (r, f). For each set of data on a given physical disk
we construct the initial data dependencies by assigning queens and their attack domains to the
variables representing a given level.

Queens, and the squares they attack, are used to represent dependence relationships between
data on the physical disks represented by the board. We characterize the squares that a queen is
said to attack as the attack domain of the queen, and the combination of squares that a queen
occupies and attacks as the attack set.

I Definition 3 (Queen). A queen is a symbol from the set Q = {∆,Λ,Γ}, that can be assigned to
any free variable. The three queen symbols differ in their allowed attack domains and are called
degenerate queens (∆), linear queens (Λ), and indirect queens (Γ).

Initial conditions for our data dependence constraints are constructed using two special types
of queens, degenerate queens and linear queens that differ from the standard queens of the classical
problem in terms of their attack domains.

I Definition 4 (Attack Domain). The attack domain of a queen at position xl,r,f is defined by its
position, and a set of additional squares called it’s attack set given by the set Sl,r,f . This attack
domain, Dl,r,f = Sl,r,f ∪ {xl,r,f}, represents every square a queen attacks or occupies.

I Definition 5 (Attack Set). An attack set is a set of variables Sl,r,f assigned labels from the
set {λ, γ} to designate they are attacked by a queen such that ∀si ∈ Sl,r,f , si = λ iff xl,r,f = Λ,
and si = γ iff xl,r,f = Γ. Note that there is no attack set associated with a degenerate queen
(xl,r,f = ∆) because the attack domain of a degenerate queen contains only the square containing
the degenerate queen itself.

I Definition 6 (Degenerate Queen). A degenerate queen is represented by ∆ and has no corres-
ponding attack symbol in A. This is because the attack domain of a degenerate queen contains
only the square containing the degenerate queen itself, i.e. Dl,r,f = ∅ ∪ {xl,r,f}.

I Definition 7 (Linear Queen). A linear queen is represented by Λ and has the corresponding
attack symbol λ. The size2 of a linear queen’s attack set is always equal to N − 2 and must satisfy
Constraint 1.

I Constraint 1 (Linear Queen Attack Set). The attack set of a linear queen assigned to variable
xl,r,f must be such that the size3 of a linear queen’s attack set is always equal to F − 2 and either
Constraint 1.1, 1.2, or 1.3 is satisfied. All elements of a linear queen’s attack set must reside on
the same level.

I Constraint 1.1 (Constant File). The attack set S of a linear queen at xl,r,f satisfies the Constant
File constraint iff ∀si ∈ S the file of si is equal to f .

2 We assume that any additional protection provided uses precisely the same RAID configuration as disks in
default RAID groupings. This is assumed both for simplicity and performance reasons, but can be relaxed
without loss of generality.

3 Both for simplicity and performance reasons, we assume that any additional protection provided uses the
same RAID configuration as the default RAID groupings. This assumption can be relaxed without loss of
generality.

LITES

05:14 Characterizing Data Dependence Constraints for Dynamic Reliability

I Constraint 1.2 (Constant Rank). The attack set S of a linear queen at xl,r,f satisfies the
Constant Rank constraint iff ∀si ∈ S the rank of si is equal to r.

I Constraint 1.3 (Unique Rank and File). The attack set S of a linear queen at xl,r,f satisfies
the Unique Rank and File constraint iff ∀si, sj ∈ S the file of si(fsi

) and sj(fsj
) are such that

fsi
6= f, fsj

6= f, and fsi
6= fsj

, and the rank of si(rsi
) and sj(rsj

) are such that rsi
6= r, rsj

6= r,

rsi
6= rsj

, and si 6= sj .

I Definition 8 (Initial Board). An initial board is a set of initial conditions for a file system coded
as a set of fixed values for a subset of X. These values represent the initial system and consist of
a placement of degenerate queens from Definition 6 and linear queens from Definition 7.

We then try and find a solution that satisfies all of our constraints, and that allows us to place
W or more indirect queens on our board, where each indirect queen represents a new syndrome to
be allocated for reliability, and its attack domain represents the new data dependencies associated
with that syndrome.

I Definition 9 (Indirect Queen). An indirect queen is represented by Γ and has the corresponding
attack symbol γ. The size4 of an indirect queen’s attack set is always equal to F − 2 and must
satisfy Constraint 2.

I Constraint 2 (Indirect Queen Attack Set). The attack set S of an indirect queen assigned to
variable xl,r,f must be such that ∀si, sj ∈ S the rank of si(rsi

) and sj(rsj
) are such that rsi

6= r,
rsj 6= r, rsi 6= rsj , and si 6= sj . All elements of an indirect queen’s attack set must reside on the
same level.

Each indirect queen is able to provide both XOR parity, and Galois field parity for its attack
domain, provided the disk has available space. This space constraint holds for an entire column
as well, as each column represents a single physical disk. This necessitates the representation of
column-wise population constraints in the form of a population constraint board.

I Definition 10 (Population Constraint Board). In addition to the defined set of L ·R ·F variables
that make up the board, we add a set P of R · F such that ∀pr,f ∈ P, pr,f ∈ N. We call this set of
constants the population constraint board.

The population constraint board tracks the available free-space per physical device, and
constrains the total placement of indirect queens within a column.

I Constraint 3 (Column Indirect Queen Population Limit). Each column may be assigned a
population limit pr,f ∈ N. The total number of all indirect queens within that column must not
exceed this limit. We generate R · F new constraints for each combination of unique r and f such
that r ∈ [0, R− 1] and f ∈ [0, F − 1] ∑

l∈[0,(R·F)−1]

(xl,r,f = Γ)

 ≤ pr,f .
We further constrain our problem from the traditional variants of n-queens by requiring not

only that no queen placed on the board attack another queen, but also by requiring that no two

4 Both for simplicity and performance reasons, we assume that any additional protection provided uses the
same RAID configuration as the default RAID groupings. This assumption can be relaxed without loss of
generality.

E.W.D. Rozier, K. Y. Rozier, and U. Bayram 05:15

queens attack the same square. This requirement that attack domains not intersect is necessary to
ensure the independence of calculated syndromes. Recall that each level of our board represents
the protection problem for a given block. Informally, if two queens were both to attack the same
square, it would mean the syndromes they represent are both calculated from a block on the
same disk. Those two syndromes would then no longer be independent, as if the disk failed from
that they were both calculated, they would suffer a correlated failure. We represent this with
Constraint 4.

I Constraint 4 (Non-intersection of Attack Domains). In addition to the constraint that no queen
falls within the attack domain of another queen, we further constrain the problem by specifying
that no attack domain may intersect the attack domain of another queen.

We add a level protection requirement as a constraint to specify that all disks are protected by
at least P additional syndromes per block on the disk that contains data.

I Constraint 5 (Level Protection Requirement). For a given level l, the sum of the number of all
indirect queens on that level must be greater than or equal to the protection requirement W . We
generate L new constraints for each l ∈ [0, (F ∗R)− 1] of the form∑

r∈[0,R−1],f∈[0,F−1]

(xl,r,f = Γ) ≥W .

This protection requirement W is level-independent and applies to all levels of a board, i.e. all
blocks are required to have the same number of additional syndromes allocated.5

I Definition 11 (Satisfying Assignment of Variables in X). We define a satisfying assignment to
be an assignment of each variable in X to exactly one value from V = Q ∪A ∪ ε such that this
assignment satisfies Constraints 1, 2, 3, 4, and 5.

I Theorem 12. Constraint 4 holds for any solution: the attack domains of any two queens never
intersect.

Proof. The proof follows from our construction and problem representation. From Definition 2,
a board is defined by a set of variables, X, where each variable has a single assignment from
V = Q ∪A ∪ {ε}, the set of variable assignments representing queens, attack domains, or empty
squares not under attack. From Definition 11, all variables must have exactly one assignment from
V , thus two queens of different types may not both attack the same square as doing so would
require that variable to have a non-unique assignment and instead take on the value of the tuple,
{λ, γ}. Thus the only case where the attack domains of two queens might overlap is when those
queens are of the same type. From Definitions 6, 7, and 9 and Constraints 1 and 2 we know that
a valid assignment for a board must contain F − 2 squares in the attack set of any queen (except
a degenerate one) [4]. So if there are N non-degenerate queens of a given type on a board there
must be N(F − 2) squares assigned to their attack domains. If two queens of the same type had
overlapping attack domains, fewer than N(F −2) squares would be assigned to the attack domains
of those queens, violating Definitions 7 and 9, as well as violating Constraints 1 and 2. J

I Theorem 13. The set of Constraints 1, 2, 3, 4, and 5 are both necessary and sufficient to ensure
that any satisfying assignment to X represents a potential layout for a set of new independent
reliability syndromes. If no such satisfying assignment is found, no such layout exists.

5 This level-independence can be relaxes, but is not recommended as it opens the question of block importance,
for which there currently exists no domain-inspecific metric, and no metric at all for some domains.

LITES

05:16 Characterizing Data Dependence Constraints for Dynamic Reliability

Proof. For a satisfying assignment to represent a data layout that improves the reliability of the
underlying data storage system it must provide:
Condition 1. A new, and empty, block that may be used to store the new independent reliability

syndromes.
Condition 2. A set of blocks that can be used to calculate the new independent reliability

syndromes.
Condition 3. W such sets per block to establish the required additional level of protection.

Constraint 3 is sufficient for Condition 1, as each indirect queen itself represents the storage
location of a new syndrome and the population board is created by identifying empty blocks in the
storage system by Definition 10. Constraint 5 is sufficient for Condition 3, by definition. These
are both trivially sufficient for their respective conditions as well, by definition.

Condition 2, that of independence, relies on a given block being used once, and only once,
for each independent form of syndrome calculation. Thus the same block may be involved in
both a Galois field operation [2] and XOR parity calculation [6] but may not appear twice for
in the equation for a given block. Two types of parity calculations are relevant for our proof.
The first are those in the pre-existing storage system. The second are those needed for newly
computed syndromes. From Definition 8 we know that the initial board consists of all pre-existing
syndromes represented by linear queens from Definition 7. Constraint 1 requires that for a given
queen it’s attack domain must take on the form of a straight line having either constant rank
but independent file from Constraint 1.2, constant file but independent rank from Constraint 1.1,
or independent rank and independent file from Constraint 1.3 ensuring independence. Newly
computed syndromes are represented by indirect queens, given by Definition 9, placed by the
SMT solver. These indirect queens have their attack sets constrained by Constraint 2 that also
ensures independence. Taken together Constraints 1 and 2 ensure any syndrome computed or
pre-existing is independent of every other block in its computation. Constraint 4 ensures any
syndrome computed or pre-existing is independent of every other syndrome computation used for
the same block. Thus we prove overall sufficiency as Constraints 1, 2, 3, 4, and 5 are sufficient for
Conditions 1, 2, and 3.

If Constraint 3 is violated, not enough free space is available and Condition 1 does not hold. If
Constraints 1, 2, or 4 are violated, independence does not hold, and Condition 2 is violated. If
Constraint 5 is violated not all blocks are protected by the requisite number of syndromes, and
Condition 3 is violated. Thus Constraints 1, 2, 3, 4, and 5 are necessary. J

5.1 Improving Tractability Through Variable Domain Reduction
In order to improve tractability of our solution we attempt to reduce the possible solution space
by reducing the cardinality of the domain of variables in X given by V = Q∪A∪{ε}. We propose
that our problem representation can be simplified without loss of generality through the collapse
of the variable domain.

I Definition 14 (Variable Domain Collapse). We define our variable domain collapse as a process
by that our domain V is collapsed from V = {{∆,Λ,Γ} ∪ {λ, γ} ∪ ε} to V = {∆,Γ, γ, ε} via the
following reduction semantics:

x ∈ X|x = Λ → x = Γ (3)
x ∈ X|x = λ → x = γ (4)

I Theorem 15. Let X ′ be a satisfying assignment of X where each element x ∈ X is assigned
exactly one value from V = Q ∪A ∪ ε such that this assignment satisfies Constraints 1, 2, 3, 4,

E.W.D. Rozier, K. Y. Rozier, and U. Bayram 05:17

and 5. For each x in X such that x = Λ we assign x = Γ. For each x in X such that x = λ we
assign x = γ. The resulting new assignment X ′′ is one where each element x ∈ X is assigned
exactly one value from V = {∆,Γ, γ, ε} such that this assignment satisfies Constraints 1, 2, 3, 4,
and 5. Given that X ′ is a satisfying assignment, X ′′ is also a satsifying assignment.

Proof. Application of the reduction semantics given by Definition 14 results in treating as
equivalent the pairs of symbols (Λ,Γ) and (λ, γ). This has the potential to alter the correctness of
Theorem 12 that relies on Definition 11, to prove all variables must have exactly one assignment
from V to prove two queens of different types may not both attack the same square. If such were
the case Theorem 12 shows doing so would require that square to have a non-unique assignment
and instead take on the value of the tuple, {λ, γ}. Definition 14, however, no longer requires a
variable to take on a non-unique assignment, as λ and γ are now treated as equivalent. We can
prove the result is still correct by noting Constraints 1 and 2 both require attack sets of F − 2
squares for each unique queen. As such the attack domains of linear and indirect queens must
not intersect or either Constraint 1 or Constraint 2 would be violated resulting in a solution that
does not meet the requirements set out by Definition 11. Thus any solution that is satisfying
without Definition 14 is also satisfying under Definition 14 as any satisfying placement of a linear
queen is also a satisfying placement of an indirect queen. While the converse is not true, linear
queens are placed only as part of the initial board given by Definition 8. So long as this initial
placement satisfies 1 under the equivalence given by Definition 14, then any satisfying solution
under Definition 11 is still a satisfying assignment. J

I Definition 16 (Reduction relations on variable assignments). We define a reduction relation over
variable assignments.

xl,r,f → ∆ if xl,r,f ∈ A = {λ,∆,Λ} .

Definition 16 allows us to reduce the total set of possible values a variable can be assigned
by recognizing that the importance of linear and degenerate queens, and their attack domains,
can be reduced to a single value representing a square that a new indirect queen, or it’s attack
domain, cannot occupy due to Constraint 4

5.2 Computational Complexity
While the less restrictive attack domains of our three new queen types would seem to make the
problem less difficult than traditional n-queens, and more equivalent to the trivial n-Rooks problem
[5, 37], the population constraints board serves to complicate the problem of queen placement,
especially as the number of levels we must solve for grows polynomially. The population constraints
board has the effect of creating attack domains in the z-axis when enough queens are placed in a
column. Figure 7 shows the relative difficulty of solving this new variant n-queens problem vs.
traditional n-queens, and highlights the additional complexity despite the more easily satisfied
attack domains of our variant queens. While this graph suggests that scalability is an issue, we
will address scalability concerns in Section 7 through a proposed compositional approach.

6 Solving with Z3

In order to determine if a given data center state and desired protection level is satisfiable, we
utilized Z3 and encoded our problem in the form of variables and uninterpreted functions forming
an SMT problem.

We encode these constraints into Z3 using the assertions shown in Figure 8. Assertion 5
sets the domain of the variables representing the board and ensures satisfaction of Constraint 4.

LITES

05:18 Characterizing Data Dependence Constraints for Dynamic Reliability

0

10

20

30

40

50

60

70

80

3 4 5 6

E
x
e
cu

ti
o
n
 t

im
e
 o

f
Z

3
 i
n
 s

e
co

n
d
s

Number of queens

Traditional N-Queens
Variant N-Queens

Figure 7 Comparison of solution times for Z3 given the placement of Y queens on a Y × Y traditional
n-queens board and a Y 2 × Y × Y variant n-queens board from our problem.

∀l ∈ L,∀r ∈ R,∀f ∈ F (xl,r,f ∈ {λ,∆,Λ, ε}) (5)
∀l ∈ L,∀r ∈ R,∀f ∈ F ((r = bl/F c)→ (xl,r,f = ∆)) (6)
∀l ∈ L,∀r ∈ R,∀f ∈ F ((∃b|bRl)→ (x[l, r, f] = ∆)) (7)

∀r ∈ R,∀f ∈ F (pr,f ≥
∑
l

(xl,r,f = Γ)) (8)

∀l ∈ L(
∑
∀r,∀f

(xl,r,f = λ) ≥W · |F |) (9)

∀l ∈ L(
∑
∀r,∀f

(xl,r,f = Λ) ≥W) (10)

Figure 8 Equations which characterize the n-queens constraints for our variant problem as Z3 assertions.

Assertion 6 removes the entire rank containing the block we are protecting on a given level from
the solution space of indirect queen placement due to preexisting dependence relationships, and
ensures that Constraint 1 is satisfied. Assertion 7 removes any disk containing a block deduplicated
with a block on the disk we are trying to protect due to a preexisting dependence relationship.
Population limits are maintained by assertion 8. Assertion 9 satisfies a weaker form of Constraint 2
when coupled with Constraint 3 as it allows for an indirect queen to potentially have a larger
than necessary attack set. Since this relaxation of Constraint 2 would result in a more reliable
system, we utilize it to make the problem easier for Z3. Finally Assertion 10 ensures satisfaction
of Constraint 5.

6.1 Cascading Solver
We utilized a cascading approach to our solver as discussed in our previous work [28]. This
cascading solver addresses the possibilities of real-time constraints by first generating a further
constrained model based on the Z3 assertions that are global with respect to the choice of level
protection requirements, i.e. Assertions 5, 6, 7, and 8. Our cascading solver takes advantage of
Z3’s capability to manage constraints in the form of a stack containing assertions. This stack
of assertions may contain nested scopes that can be created and destroyed. We examine a set

E.W.D. Rozier, K. Y. Rozier, and U. Bayram 05:19

of pre-computed tables that characterize the likelihood of a satisfying solution for our problem
for various protection levels as a function of the Population Constraint Board. Specifically we
examine both the number of resources available, and the entropy of those available resources. The
entropy of resource allocation can be interpreted as a diversity metric. High entropy systems
are those with more uniform resource distribution. Low entropy systems tend to have resources
concentrated on a few disks.

We then solve for the global scope using Z3’s SimpleSolver to establish the initial model of
our problem, and use this initial model for our cascading solution for the subsequent problems for
q ∈ [qp, qs]. The problem corresponding to qs is known to be satisfiable due to the classification
of our current system based on its resources and entropy, and we can prove that some qs exists
experimentally due to the fact that for q = 1 all possible systems are satisfiable. This solution
for qs guarantees that we will find some (possibly non-optimal) solution, providing additional
reliability. We then solve the problems for the remaining q ∈ [qp, qs − 1] in ascending order
(corresponding to higher probability of satisfiability) until we find an unsatisfiable result.

It is important to note that this solution technique does not result in the addition of a single
additional syndrome at a time, as this would result in a non-optimal solution, and potentially lead
us to believe no satisfying solution exists, when in fact one does due to accidentally overconstraining
our problem through false assumptions. Instead it a successive solution of harder problems based
on nested scoping in Z3, attempting to utilize the available time before our deadline is reached to
find a solution, and then improve on that solution if time remains.

7 Experimental Results and Validation

In order to validate our results we conducted experiments with random initial system states for
both population constraints boards, and data deduplication constraints. All experiments were run
using a single EC2 c4.large instance with 2 virtual CPUs and 3.75 GiB of RAM. We implemented
our solver to print out the resulting boards in a human readable format and hand checked the
results, also collecting performance statistics for the Z3 solutions. The simulated systems were
characterized by their total storage capacity in terms of terabytes with the assumption that each
system consisted of a set of 1TB disks in an 8+2 configuration. Thus a 160TB system would
consist of 160 disks in 16 ranks of 10 files each.

Figure 9 along with Figure 7 provide a summary of the results of our experiments. We found
a sharp satisfiability cliff accompanying the population constraints board that correspond to the
probability of a rank having no available space. This suggests an important observation to account
for when moving forward with a full implementation of software-defined data centers, namely that
balancing of over-provisioned space can be critical when such space becomes rare and the data
center approaches capacity if the excess space is to be used to improve reliability. This limit is
approached even more swiftly for large systems in which many levels are competing for the same
population constraints within a rank.

We found the problem to be less sensitive to deduplication. While we eventually found a
region of unsatisfiable problems at higher deduplication ratios, the more random placement of
deduplicated references ameliorated their constraints on the solution space. It should also be
noted that such constraints only became an issue at very high levels of deduplication, suggesting
that deduplication based dependences are not as difficult to account for as might be expected.

The exponential growth in runtimes is somewhat concerning, as it seems to limit this solution
technique to smaller storage systems, which presents a problem when confronted with the expo-
nential growth of Big Data. Large-scale systems could potentially take infeasible amounts of time
to solve if solved directly. As a consequence of this result we propose that larger systems be solved

LITES

05:20 Characterizing Data Dependence Constraints for Dynamic Reliability

0

2

4

6

8

10

1.5234510

E
x
e
cu

ti
o
n
 t

im
e
 o

f
Z

3
 (

se
co

n
d

s)

sat unsat

Average execution time vs coverage

Population coverage ratio
(a) Run time and satisfiability of random problems as the population constraints
board is made more restrictive.

sat unsat

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

E
x
e
cu

ti
o
n
 t

im
e
 o

f
Z

3
 (

se
co

n
d

s)

Average deduplicated references
 per disk

Average Execution Time vs Deduplication Level

(b) Run time and satisfiability of random problems as the deduplication ratio
is increased.

Figure 9 Partial summary of experimental results.

compositionally. For instance, while a 160TB system takes 74 seconds to solve, if the system is
blocked into two 80TB systems by decomposing individual ranks a satisfying solution for each
system can be found within 2.5 seconds each, and can be solved in parallel. The exponential im-
provements found through compositional solution, coupled with the embarrassingly parallel nature
of the SMT sub-problems created by partitioning the system by rank provides a very scalable
alternative to attacking the entire problem at once. This method has the advantage of respecting
dependence relationships, as when decomposed into separate sub-problems all relationships can be
accounted for between sub-models in a trivial fashion since their proposed solutions will include
only those ranks within a given sub-problem.

Since the population constraint board is known as part of the system state, we can choose to
sort each rank into one of S subproblems based on the rank of the population constraint board
associated with the rank of the Latin board. The satisfiability of the subproblems, depending
primarily on these population constraints, can be maximized by sorting the ranks on the basis of
the population constraints associated with their columns. Using such a solution we are able to

E.W.D. Rozier, K. Y. Rozier, and U. Bayram 05:21

Figure 10 Example of row-wise decomposition.

scale linearly with the size of our data center. We note the potential to further improve solution
by partitioning the initial system on a row-wise basis, as shown in Figure 10. By sorting rows
based on available resources for additional syndromes, and the distribution of those resources, we
may be able to optimize our compositional solution.

In Figure 11 we show the results of experiments we conducted for various board configurations
of varying resource levels, and the entropy of those resources, giving the proportion of observed
boards that were satisfiable, or unsatisfiable. We observe clear trends with respect to available
resources (more resources indicates a higher probability of satisfiability), and the Shannon entropy
of the distributions of those resources (higher entropy distributions are more satisfiable). Thus, for
a given board, we can characterize the satisfiability of the sub-boards resulting from a row-wise
decomposition, allowing us to optimize the sub-boards generated to maximize the probability the
resulting system will be satisfiable for a chosen W .

The run times of the resulting boards were likewise highly regular with respect to resources
and their entropy, as shown in Figure 12. Again we note faster run times for higher numbers of
available resources, and higher entropy distributions of those resources.

7.1 Application to Embedded and Resource Constrained Systems
The results of the experiments shown in Figures 11 and 12 describe a highly regular space can be
generated when our problem is characterized in terms of available resources and entropy. This
space is learnable for problems of a given size via estimation through a random sampling of the
feature space to ensure coverage of various resource allocation levels, and entropies. We utilized
the Kumaraswamy distribution [19] due to it’s beta-like properties for creating distributions with
varying skewness and kurtosis, and due to the closed-form nature of it’s inverted distribution
function [15] to generate a thorough exploration of the space of possible distributions for disk
resources within a pre-existing RAID stripe. By controlling skewness and kurtosis we were able to
produce a number of different resource entropies easily, to ensure even coverage of the underlying
space.

LITES

05:22 Characterizing Data Dependence Constraints for Dynamic Reliability

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
n
tr

o
p
y
 o

f
d
is

k
re

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 w

it
h
in

 a
 s

tr
ip

e
 (

S
h
a
n
n
o
n
s)

Available blocks per stripe

"../results/matrix_q_1_sat_unsat.txt" u 1:($2*0.25):3 matrix

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000

No data

UNSAT

SAT

S
a
ti

sfi
a
b
ili

ty

(a) Satisfiability of rows based on available resources,
and the entropy of resource distribution for W = 1.

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
n
tr

o
p
y
 o

f
d
is

k
re

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 w

it
h
in

 a
 s

tr
ip

e
 (

S
h
a
n
n
o
n
s)

Available blocks per stripe

"../results/matrix_q_2_sat_unsat.txt" u 1:($2*0.25):3 matrix

0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000

0.124 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.214 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.119 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.304 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.184 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.108 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.331 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.000 0.317 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.211 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.346 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.371 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.000 0.351 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.336 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.354 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.386 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.000 0.384 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.360 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.418 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.406 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.417 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.441 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.431 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.421 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.484 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.448 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.528 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.482 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.521 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.503 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.583 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.444 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000

No data

UNSAT

SAT

S
a
ti

sfi
a
b
ili

ty

(b) Satisfiability of rows based on available resources,
and the entropy of resource distribution for W = 2.

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
n
tr

o
p
y
 o

f
d
is

k
re

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 w

it
h
in

 a
 s

tr
ip

e
 (

S
h
a
n
n
o
n
s)

Available blocks per stripe

"../results/matrix_q_3_sat_unsat.txt" u 1:($2*0.25):3 matrix

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000
0.049 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.013 0.200 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.309 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.198 0.361 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.154 0.293 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.376 0.302 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.240 0.397 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.296 0.328 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.232 0.330 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.228 0.330 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.210 0.363 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.216 0.497 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.281 0.503 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.290 0.586 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.341 0.631 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.353 0.650 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.295 0.687 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.282 0.797 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.325 0.825 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.311 0.801 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.326 0.796 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.338 0.830 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.316 0.828 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.300 0.815 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.296 0.876 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.300 0.878 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.289 0.914 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.249 0.910 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.238 0.933 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.243 0.938 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.246 0.966 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.236 0.970 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.226 0.983 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.213 0.996 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.241 0.999 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.200 1.000 1.000 1.000 1.000

0.000 0.000 0.000 0.225 1.000 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.164 1.000 1.000 1.000 1.000

0.000 1.000 1.000 1.000 1.000

No data

UNSAT

SAT

S
a
ti

sfi
a
b
ili

ty

(c) Satisfiability of rows based on available resources,
and the entropy of resource distribution for W = 3.

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
n
tr

o
p
y
 o

f
d
is

k
re

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 w

it
h
in

 a
 s

tr
ip

e
 (

S
h
a
n
n
o
n
s)

Available blocks per stripe

"../results/matrix_q_4_sat_unsat.txt" u 1:($2*0.25):3 matrix

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 1.000

No data

UNSAT

SAT

S
a
ti

sfi
a
b
ili

ty

(d) Satisfiability of rows based on available resources,
and the entropy of resource distribution for W = 4.

Figure 11 Probability of a satisfiable solution for W ∈ [1, 4] based on available resources, and the
entropy of resource distribution.

We make the observation from Figure 11 that a given resource level and entropy level of those
resources can be used to characterize the underlying system as either unsatisfiable for a given
protection level W , satisfiable for a given protection level W , or probabilistically satisfiable
for a given protection level W . In the case that our problem is probabilistically satisfiable, we
note that the probability of satisfiability generally increases with increased entropy of resource
distribution. We explain this finding intuitively by observing that higher diversity of positions
(corresponding with a higher entropy) more often results in the possibility of a satisfiable solution
as it eliminates competition between queens for independent resources within a given rank.

By generating this table in advance we can apply our technique selectively by first choosing
some protection level that our tables indicate is solvable for a system with the currently observed
resource levels and resource entropy, and solving that problem first. If time remains before our
deadline is reached we can these use Figure 12 in conjunction with Figure 11 to estimate if it is
reasonable to attempt a new, higher protection, solution. In this way even though not all disk
layouts are satisfiable for all protection levels we can maximize the likelihood of finding a satisfying
solution, and the probability of achieving a problem of high protection levels.

E.W.D. Rozier, K. Y. Rozier, and U. Bayram 05:23

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
n
tr

o
p
y
 o

f
d
is

k
re

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 w

it
h
in

 a
 s

tr
ip

e
 (

S
h
a
n
n
o
n
s)

Available blocks per stripe

"../results/matrix_q_1_sat_max_time.txt" u 1:($2*0.25):3 matrix

2.059 1.915 1.579 1.870 1.562 1.809 1.640 1.811 1.501 1.529 1.208 1.107 1.868
1.538 1.282 1.214 1.798

1.527 1.794 1.581 1.820 1.499 1.438 0.778 0.811 1.830
1.493 1.873 1.279 1.722 1.463 1.822 1.164 1.258 1.013 0.928 1.765

1.885 1.752 1.512 1.594 1.852 1.513 1.494 1.113 0.937 1.806
1.453 1.847 1.460 1.817 1.295 1.301 1.155 1.001 1.692

1.479 1.889 1.473 1.733 1.546 1.875 1.438 1.366 1.023 1.061 1.915
1.560 1.815 1.193 1.922 1.618 1.858 1.433 1.549 1.001 0.909 1.870

2.004 1.767 1.445 1.876 1.606 1.921 1.287 1.361 1.269 1.225 1.930
1.912 1.530 1.779 1.651 1.978 1.366 1.253 0.975 1.130 1.970

1.550 1.833 1.355 1.886 1.625 1.973 1.428 1.452 1.197 1.198 1.929
1.635 1.864 1.508 1.798 1.636 1.991 1.392 1.367 1.073 1.216 1.820

2.116 1.534 1.988 1.371 1.873 1.627 1.966 1.550 1.316 0.998 1.457 2.060
1.663 1.977 1.409 2.022 1.653 1.908 1.483 1.438 1.106 1.253 2.048
1.713 1.914 1.525 1.883 1.670 1.994 1.286 1.383 1.270 1.304 1.812

2.006 1.547 2.054 1.692 1.968 1.492 1.606 1.217 1.061 1.948
2.219 1.722 2.128 1.618 2.021 1.678 1.972 1.599 1.446 1.248 1.163 1.842

1.736 2.065 1.547 2.005 1.702 2.017 1.371 1.405 1.321 1.412 2.025
1.736 2.129 1.653 2.070 1.727 2.060 1.461 1.542 1.405 1.270 1.956
1.606 2.108 1.652 2.068 1.834 2.155 1.464 1.472 1.588 1.202 2.029

2.230 1.838 2.090 1.679 2.045 1.777 2.120 1.585 1.595 1.342 1.323 1.899
1.810 2.236 1.698 1.830 1.785 2.183 1.666 1.621 1.371 1.224 2.173
1.800 2.301 1.712 2.146 1.811 2.245 1.686 1.736 1.349 1.393 2.281
1.879 2.246 1.751 2.216 1.827 2.237 1.598 1.880 1.716 1.442 2.274

2.383 1.845 2.208 1.901 2.339 1.767 1.605 1.419 1.578 2.481
1.708 2.261 1.778 2.269 1.915 2.267 1.835 1.877 1.630 1.389 2.411
1.970 2.346 1.859 2.255 1.938 2.370 1.706 1.944 1.488 1.458 2.392

2.477 1.815 2.262 2.011 2.368 1.844 1.835 1.676 1.449 2.371
2.497 1.830 2.552 2.054 2.443 1.811 1.881 1.851 1.604 2.634

1.941 2.490 1.968 2.400 1.978 2.499 1.914 1.694 1.437 1.474 2.564
2.436 2.075 2.341 1.996 2.510 1.938 1.833 1.393 1.599 2.465

1.736 2.440 1.996 1.765 2.081 2.427 1.844 1.940 1.628 1.514 2.450
2.549 1.902 2.418 2.053 2.476 1.974 1.808 1.815 1.564 2.450
2.340 2.020 2.505 2.029 2.470 2.016 2.068 1.532 1.674 2.490
2.586 1.939 2.503 2.098 2.505 1.935 2.075 1.697 1.704 2.537

2.050 2.440 2.163 2.551 1.986 2.160 1.638 1.803 2.545
2.479 1.904 2.581 2.198 2.597 2.006 2.058 1.801 1.738 2.695

2.561 2.085 2.716 2.089 1.985 1.936 1.596 2.595
1.221 2.431 2.078 2.590 2.066 2.018 1.611 1.574 2.629

1.447 1.458 1.371 1.091 2.452

No data

0s

1s

3s

5s

UNSAT

E
x
e
cu

ti
o
n
 T

im
e

(a) Maximum observed solution time of Z3 based
on available resources, and the entropy of re-
source distribution for W = 1.

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
n
tr

o
p
y
 o

f
d
is

k
re

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 w

it
h
in

 a
 s

tr
ip

e
 (

S
h
a
n
n
o
n
s)

Available blocks per stripe

"../results/matrix_q_1_sat_mean_time.txt" u 1:($2*0.25):3 matrix

1.438 1.452 1.002 1.455 0.985 1.378 1.139 1.370 0.981 0.983 0.745 0.743 1.411
0.953 0.747 0.731 1.418

0.948 1.401 1.097 1.421 0.978 0.898 0.698 0.713 1.409
0.959 1.436 0.864 1.397 1.058 1.379 0.852 0.885 0.719 0.705 1.360

1.354 1.281 1.406 1.081 1.402 0.890 0.860 0.713 0.698 1.338
0.915 1.412 1.057 1.392 0.898 0.876 0.721 0.709 1.286

1.006 1.359 0.857 1.269 1.072 1.398 0.899 0.875 0.729 0.718 1.349
0.917 1.252 0.806 1.363 1.090 1.356 0.902 0.898 0.719 0.713 1.384

1.407 1.231 0.878 1.261 1.089 1.349 0.886 0.890 0.739 0.724 1.347
1.267 0.847 1.171 1.093 1.323 0.884 0.861 0.731 0.744 1.374

0.950 1.219 0.803 1.308 1.053 1.279 0.886 0.868 0.748 0.749 1.349
0.936 1.177 0.868 1.418 1.077 1.224 0.842 0.829 0.745 0.743 1.297

1.477 1.006 1.329 0.846 1.217 1.044 1.231 0.812 0.851 0.743 0.748 1.270
0.993 1.266 0.852 1.205 0.999 1.189 0.805 0.826 0.754 0.739 1.137
0.989 1.193 0.879 1.204 1.015 1.150 0.790 0.799 0.762 0.741 1.101

1.408 0.896 1.211 1.020 1.159 0.818 0.799 0.762 0.749 1.053
1.556 1.050 1.359 0.895 1.223 1.013 1.194 0.809 0.807 0.762 0.750 1.055

1.039 1.321 0.924 1.248 0.994 1.208 0.842 0.819 0.760 0.757 1.056
1.038 1.465 0.931 1.282 1.007 1.232 0.864 0.869 0.769 0.763 1.125
1.044 1.459 0.939 1.261 1.025 1.212 0.880 0.896 0.762 0.766 1.126

1.644 1.073 1.465 0.966 1.274 1.027 1.261 0.912 0.915 0.768 0.774 1.086
1.081 1.569 0.982 1.409 1.029 1.291 0.929 0.939 0.782 0.780 1.100
1.134 1.574 0.999 1.439 1.056 1.343 0.939 0.944 0.787 0.799 1.143
1.132 1.630 1.009 1.447 1.090 1.418 0.958 0.970 0.806 0.812 1.214

1.683 1.030 1.488 1.112 1.471 0.971 0.973 0.824 0.829 1.269
1.130 1.683 1.054 1.530 1.116 1.539 0.980 0.992 0.843 0.840 1.378
1.183 1.736 1.077 1.589 1.117 1.566 0.999 1.017 0.849 0.853 1.488

1.775 1.078 1.608 1.147 1.570 1.023 1.032 0.857 0.865 1.568
1.808 1.115 1.673 1.167 1.627 1.039 1.039 0.868 0.876 1.633

1.213 1.864 1.122 1.720 1.196 1.641 1.040 1.053 0.874 0.886 1.694
1.874 1.176 1.759 1.208 1.690 1.060 1.062 0.894 0.893 1.687

1.320 1.931 1.192 1.360 1.247 1.718 1.083 1.069 0.906 0.906 1.649
1.960 1.198 1.856 1.264 1.772 1.102 1.100 0.924 0.916 1.637
1.987 1.215 1.875 1.256 1.808 1.139 1.148 0.933 0.940 1.657
2.009 1.299 1.915 1.310 1.870 1.172 1.176 0.953 0.946 1.709

1.323 1.968 1.334 1.947 1.200 1.203 0.964 0.965 1.787
2.195 1.377 2.022 1.393 1.982 1.266 1.250 0.982 0.982 1.851

2.081 1.381 2.045 1.324 1.265 1.002 0.998 1.904
1.198 2.217 1.447 2.118 1.346 1.306 1.023 0.986 1.917

1.188 1.282 0.997 1.013 1.980

No data

0s

1s

3s

5s

UNSAT

E
x
e
cu

ti
o
n
 T

im
e

(b) Mean solution time of Z3 based on available
resources, and the entropy of resource distribu-
tion for W = 1.

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
n
tr

o
p
y
 o

f
d
is

k
re

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 w

it
h
in

 a
 s

tr
ip

e
 (

S
h
a
n
n
o
n
s)

Available blocks per stripe

"../results/matrix_q_2_sat_max_time.txt" u 1:($2*0.25):3 matrix

6.000 6.000 6.000 6.000 6.000 1.823 1.524 1.759 1.309 1.306 1.108 0.906 1.737
1.263 0.806 0.804 1.560

1.316 1.902 1.530 1.839 1.468 1.076 0.788 0.706 1.570
6.000 6.000 6.000 1.587 1.318 1.689 1.367 1.406 1.100 0.866 1.573

6.000 6.000 1.544 1.588 1.771 1.293 1.256 1.004 0.922 1.735
1.389 1.880 1.488 1.773 1.277 1.238 0.978 1.170 1.579

6.000 6.000 1.436 1.810 1.563 1.909 1.609 1.387 1.027 0.871 1.889
6.000 6.000 6.000 1.946 1.601 1.893 1.537 1.582 1.093 1.061 1.860

6.000 6.000 1.247 2.058 1.587 1.930 1.422 1.529 1.046 0.977 1.940
6.000 1.240 1.812 1.644 1.863 1.459 1.540 0.979 1.065 1.989

6.000 6.000 1.010 1.924 1.686 1.965 1.608 1.702 1.090 1.272 1.985
6.000 6.000 1.301 1.560 1.633 1.856 1.630 1.567 1.066 1.171 1.996

6.000 6.000 6.000 1.282 1.958 1.776 1.894 1.558 1.567 1.235 1.136 2.015
6.000 6.000 1.451 1.973 1.717 1.903 1.623 1.627 1.104 1.170 2.009
6.000 6.000 1.600 1.995 1.691 2.075 1.636 1.766 1.247 1.427 2.064

6.000 1.583 2.082 1.732 1.998 1.618 1.676 1.487 1.035 2.064
6.000 6.000 6.000 1.739 2.099 1.773 2.083 1.608 1.566 0.992 1.081 1.944

6.000 6.000 1.660 2.202 1.807 2.143 1.689 1.538 1.418 1.329 2.048
6.000 6.000 1.748 2.340 1.793 2.079 1.788 1.687 1.463 1.511 1.961
6.000 6.000 1.662 2.201 1.861 2.166 1.769 1.779 1.159 1.327 2.149

6.000 6.000 6.000 1.827 2.299 1.879 2.286 1.747 1.706 1.225 1.420 2.146
6.000 6.000 1.822 1.570 2.017 2.342 1.781 1.881 1.346 1.393 2.192
6.000 6.000 1.723 2.347 2.022 2.214 1.742 1.840 1.220 1.295 2.281
6.000 6.000 1.990 2.530 1.950 2.352 1.849 1.868 1.528 1.371 2.315

6.000 1.877 2.494 2.029 2.424 1.886 1.786 1.514 1.564 2.248
6.000 6.000 1.872 2.797 2.162 2.401 1.865 1.857 1.377 1.400 2.382
6.000 6.000 1.916 2.615 2.166 2.521 2.140 1.956 1.488 1.417 2.454

6.000 1.941 2.727 2.227 2.441 1.880 1.980 1.590 1.695 2.428
6.000 2.283 2.985 2.178 2.516 2.022 2.031 1.531 1.660 2.406

6.000 6.000 2.003 2.951 2.222 2.653 1.986 2.070 1.536 1.661 2.475
6.000 2.139 2.942 2.310 2.619 2.009 2.179 1.617 1.621 2.440

6.000 6.000 2.462 1.573 2.451 2.679 2.079 2.040 1.653 1.751 2.568
6.000 2.103 3.161 2.410 2.729 2.071 1.993 1.640 1.595 2.533
6.000 2.148 3.025 2.535 2.943 2.272 2.078 1.692 1.853 2.437
6.000 2.392 3.079 2.357 3.208 2.100 2.048 1.558 1.675 2.496
6.000 2.018 3.131 2.838 3.211 2.281 2.128 1.663 1.569 2.508
6.000 2.222 3.218 2.543 3.208 2.217 2.222 1.540 1.764 2.578

3.124 2.414 2.887 2.302 2.056 1.562 1.728 2.671
6.000 2.220 3.444 2.513 2.766 2.065 1.830 1.454 1.668 2.429

2.092 1.055 1.035 0.991 2.180

No data

0s

1s

3s

5s

UNSAT

E
x
e
cu

ti
o
n
 T

im
e

(c) Maximum observed solution time of Z3 based
on available resources, and the entropy of re-
source distribution for W = 2.

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
n
tr

o
p
y
 o

f
d
is

k
re

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 w

it
h
in

 a
 s

tr
ip

e
 (

S
h
a
n
n
o
n
s)

Available blocks per stripe

"../results/matrix_q_2_sat_mean_time.txt" u 1:($2*0.25):3 matrix

6.000 6.000 6.000 6.000 6.000 1.344 1.065 1.315 0.849 0.842 0.624 0.626 1.319
0.886 0.638 0.639 1.331

0.889 1.336 1.059 1.323 0.842 0.857 0.638 0.625 1.323
6.000 6.000 6.000 1.251 1.048 1.317 0.883 0.914 0.665 0.656 1.191

6.000 6.000 1.264 1.058 1.348 0.882 0.895 0.668 0.659 1.260
0.980 1.374 0.996 1.369 0.867 0.898 0.667 0.675 1.276

6.000 6.000 1.006 1.285 1.015 1.355 0.914 0.964 0.681 0.689 1.342
6.000 6.000 6.000 1.360 1.069 1.360 0.915 0.968 0.696 0.706 1.363

6.000 6.000 0.919 1.223 1.036 1.314 0.893 0.974 0.706 0.703 1.417
6.000 0.859 1.162 1.015 1.270 0.913 0.954 0.727 0.733 1.396

6.000 6.000 0.836 1.250 1.014 1.229 0.897 0.970 0.730 0.739 1.412
6.000 6.000 0.936 1.331 0.985 1.137 0.914 0.945 0.728 0.763 1.441

6.000 6.000 6.000 0.873 1.191 0.950 1.179 0.862 0.899 0.754 0.748 1.212
6.000 6.000 0.907 1.186 0.981 1.081 0.865 0.901 0.733 0.750 1.187
6.000 6.000 0.955 1.207 0.930 1.100 0.868 0.866 0.749 0.766 1.063

6.000 0.937 1.227 0.975 1.138 0.885 0.861 0.760 0.752 1.049
6.000 6.000 6.000 0.931 1.296 0.962 1.205 0.880 0.868 0.747 0.758 1.049

6.000 6.000 0.986 1.317 0.997 1.216 0.887 0.874 0.772 0.767 1.098
6.000 6.000 1.007 1.394 1.028 1.285 0.898 0.865 0.775 0.773 1.143
6.000 6.000 0.996 1.440 1.029 1.309 0.897 0.894 0.773 0.782 1.206

6.000 6.000 6.000 1.043 1.479 1.076 1.381 0.906 0.899 0.783 0.788 1.285
6.000 6.000 1.048 1.323 1.077 1.440 0.957 0.926 0.790 0.803 1.298
6.000 6.000 1.078 1.562 1.132 1.440 0.960 0.953 0.806 0.808 1.352
6.000 6.000 1.096 1.617 1.137 1.488 1.012 0.972 0.824 0.825 1.367

6.000 1.135 1.677 1.178 1.539 1.025 1.011 0.850 0.842 1.360
6.000 6.000 1.138 1.696 1.202 1.621 1.038 1.045 0.860 0.864 1.408
6.000 6.000 1.167 1.754 1.211 1.654 1.040 1.054 0.878 0.876 1.498

6.000 1.182 1.764 1.271 1.694 1.049 1.046 0.876 0.883 1.539
6.000 1.248 1.799 1.270 1.688 1.075 1.053 0.886 0.889 1.603

6.000 6.000 1.262 1.847 1.334 1.721 1.088 1.103 0.895 0.899 1.637
6.000 1.326 1.931 1.369 1.722 1.117 1.105 0.912 0.901 1.631

6.000 6.000 1.312 1.191 1.416 1.789 1.176 1.137 0.925 0.915 1.579
6.000 1.339 2.046 1.461 1.865 1.199 1.185 0.933 0.921 1.571
6.000 1.362 2.113 1.477 1.918 1.251 1.210 0.944 0.939 1.565
6.000 1.406 2.140 1.501 1.979 1.282 1.230 0.953 0.937 1.608
6.000 1.389 2.228 1.566 2.092 1.324 1.260 0.969 0.946 1.667
6.000 1.509 2.279 1.597 2.159 1.348 1.299 0.977 0.965 1.768

2.500 1.685 2.206 1.388 1.302 0.984 0.981 1.824
6.000 1.878 2.611 1.751 2.364 1.458 1.332 0.984 0.980 1.851

2.092 1.055 1.035 0.908 1.832

No data

0s

1s

3s

5s

UNSAT

E
x
e
cu

ti
o
n
 T

im
e

(d) Mean solution time of Z3 based on available
resources, and the entropy of resource distribu-
tion for W = 2

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
n
tr

o
p
y
 o

f
d
is

k
re

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 w

it
h
in

 a
 s

tr
ip

e
 (

S
h
a
n
n
o
n
s)

Available blocks per stripe

"../results/matrix_q_3_sat_max_time.txt" u 1:($2*0.25):3 matrix

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.088 0.942 1.263
0.737 0.883 0.865 1.312

6.000 6.000 6.000 6.000 1.087 0.767 0.887 0.627 1.318
6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.019 0.980 1.005 1.231

6.000 6.000 6.000 6.000 6.000 1.145 1.060 0.940 1.231 1.319
6.000 6.000 6.000 6.000 1.077 1.113 1.077 0.985 1.549

6.000 6.000 6.000 6.000 6.000 6.000 1.319 0.947 1.290 1.005 1.485
6.000 6.000 6.000 6.000 6.000 6.000 1.202 1.196 1.253 0.976 1.527

6.000 6.000 6.000 6.000 6.000 6.000 1.275 1.152 1.142 0.942 1.605
6.000 6.000 6.000 6.000 6.000 1.389 1.296 1.121 1.133 1.605

6.000 6.000 6.000 6.000 6.000 6.000 1.470 1.149 1.245 1.350 1.597
6.000 6.000 6.000 6.000 6.000 6.000 1.370 1.022 1.333 1.237 1.631

6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.402 1.423 1.244 1.282 1.679
6.000 6.000 6.000 6.000 6.000 6.000 1.538 1.642 1.425 1.106 1.672
6.000 6.000 6.000 6.000 6.000 6.000 1.668 1.582 1.184 1.270 1.670

6.000 6.000 6.000 6.000 6.000 1.612 1.400 1.099 1.084 1.706
6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.712 1.637 1.043 1.335 1.618

6.000 6.000 6.000 6.000 6.000 6.000 1.698 1.746 1.229 1.441 1.621
6.000 6.000 6.000 6.000 6.000 6.000 1.699 1.703 1.370 1.129 1.567
6.000 6.000 6.000 6.000 6.000 6.000 1.831 1.890 1.346 1.482 1.603

6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.782 1.903 1.502 1.827 1.712
6.000 6.000 6.000 6.000 6.000 6.000 1.787 2.021 1.402 1.471 1.909
6.000 6.000 6.000 6.000 6.000 6.000 1.966 2.003 1.699 1.454 1.860
6.000 6.000 6.000 6.000 6.000 6.000 2.093 2.118 1.359 1.656 2.016

6.000 6.000 6.000 6.000 6.000 2.308 2.362 1.686 1.538 2.022
6.000 6.000 6.000 6.000 6.000 6.000 2.374 2.235 1.572 1.638 2.169
6.000 6.000 6.000 6.000 6.000 6.000 2.256 2.434 1.559 1.660 2.191

6.000 6.000 6.000 6.000 6.000 2.492 2.380 1.793 1.665 2.143
6.000 6.000 6.000 6.000 6.000 2.287 2.615 1.620 1.723 2.247

6.000 6.000 6.000 6.000 6.000 6.000 2.509 2.585 1.995 1.740 2.141
6.000 6.000 6.000 6.000 6.000 2.459 2.602 2.040 1.812 2.163

6.000 6.000 6.000 6.000 6.000 6.000 2.724 2.572 1.853 1.800 2.330
6.000 6.000 6.000 6.000 6.000 2.575 2.657 1.859 1.908 2.261
6.000 6.000 6.000 6.000 6.000 2.628 2.850 1.955 1.764 2.244
6.000 6.000 6.000 6.000 6.000 2.870 2.828 1.983 1.840 2.249

6.000 6.000 6.000 6.000 2.729 3.010 1.952 1.843 2.306
6.000 6.000 6.000 6.000 6.000 2.986 3.018 1.833 1.994 2.228

6.000 6.000 6.000 2.829 2.904 2.189 1.904 2.332
6.000 6.000 6.000 6.000 2.616 2.706 1.653 1.729 2.279

6.000 1.696 1.614 1.545 1.937

No data

0s

1s

3s

5s

UNSAT

E
x
e
cu

ti
o
n
 T

im
e

(e) Maximum observed solution time of Z3 based
on available resources, and the entropy of re-
source distribution for W = 3.

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
n
tr

o
p
y
 o

f
d
is

k
re

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 w

it
h
in

 a
 s

tr
ip

e
 (

S
h
a
n
n
o
n
s)

Available blocks per stripe

"../results/matrix_q_3_sat_mean_time.txt" u 1:($2*0.25):3 matrix

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.642 0.609 0.886
0.655 0.651 0.620 0.911

6.000 6.000 6.000 6.000 0.999 0.703 0.660 0.593 0.901
6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.722 0.669 0.644 0.978

6.000 6.000 6.000 6.000 6.000 0.896 0.739 0.659 0.644 0.967
6.000 6.000 6.000 6.000 0.917 0.781 0.681 0.659 1.033

6.000 6.000 6.000 6.000 6.000 6.000 0.927 0.758 0.705 0.684 0.964
6.000 6.000 6.000 6.000 6.000 6.000 0.913 0.850 0.712 0.691 1.019

6.000 6.000 6.000 6.000 6.000 6.000 0.944 0.774 0.741 0.702 1.078
6.000 6.000 6.000 6.000 6.000 0.991 0.827 0.768 0.754 1.068

6.000 6.000 6.000 6.000 6.000 6.000 0.941 0.802 0.790 0.785 1.095
6.000 6.000 6.000 6.000 6.000 6.000 0.906 0.765 0.769 0.762 1.038

6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.893 0.797 0.794 0.776 0.963
6.000 6.000 6.000 6.000 6.000 6.000 0.949 0.781 0.797 0.768 0.937
6.000 6.000 6.000 6.000 6.000 6.000 0.999 0.798 0.801 0.757 0.868

6.000 6.000 6.000 6.000 6.000 0.946 0.824 0.803 0.769 0.873
6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.010 0.858 0.808 0.792 0.850

6.000 6.000 6.000 6.000 6.000 6.000 1.076 0.901 0.823 0.805 0.861
6.000 6.000 6.000 6.000 6.000 6.000 1.116 0.971 0.852 0.815 0.916
6.000 6.000 6.000 6.000 6.000 6.000 1.130 1.046 0.849 0.826 0.921

6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.183 1.098 0.865 0.855 0.945
6.000 6.000 6.000 6.000 6.000 6.000 1.232 1.148 0.877 0.872 0.935
6.000 6.000 6.000 6.000 6.000 6.000 1.247 1.150 0.922 0.895 0.955
6.000 6.000 6.000 6.000 6.000 6.000 1.327 1.193 0.943 0.935 1.000

6.000 6.000 6.000 6.000 6.000 1.316 1.201 0.966 0.947 1.042
6.000 6.000 6.000 6.000 6.000 6.000 1.363 1.234 0.994 0.966 1.087
6.000 6.000 6.000 6.000 6.000 6.000 1.343 1.287 1.019 0.988 1.164

6.000 6.000 6.000 6.000 6.000 1.406 1.336 1.044 1.005 1.211
6.000 6.000 6.000 6.000 6.000 1.438 1.362 1.057 1.023 1.272

6.000 6.000 6.000 6.000 6.000 6.000 1.430 1.404 1.069 1.039 1.276
6.000 6.000 6.000 6.000 6.000 1.470 1.398 1.091 1.050 1.287

6.000 6.000 6.000 6.000 6.000 6.000 1.472 1.423 1.117 1.078 1.287
6.000 6.000 6.000 6.000 6.000 1.544 1.437 1.139 1.092 1.262
6.000 6.000 6.000 6.000 6.000 1.588 1.498 1.159 1.111 1.260
6.000 6.000 6.000 6.000 6.000 1.668 1.600 1.179 1.126 1.280

6.000 6.000 6.000 6.000 1.718 1.654 1.213 1.146 1.334
6.000 6.000 6.000 6.000 6.000 1.832 1.772 1.231 1.169 1.359

6.000 6.000 6.000 1.997 1.803 1.258 1.192 1.407
6.000 6.000 6.000 6.000 1.832 1.849 1.250 1.186 1.398

6.000 1.526 1.353 1.246 1.426

No data

0s

1s

3s

5s

UNSAT

E
x
e
cu

ti
o
n
 T

im
e

(f) Mean solution time of Z3 based on available
resources, and the entropy of resource distribu-
tion for W = 3

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
n
tr

o
p
y
 o

f
d
is

k
re

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 w

it
h
in

 a
 s

tr
ip

e
 (

S
h
a
n
n
o
n
s)

Available blocks per stripe

"../results/matrix_q_4_sat_max_time.txt" u 1:($2*0.25):3 matrix

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.184
6.000 6.000 6.000 1.335

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.112
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.124

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.229
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.337

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.310
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.575

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.625
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.777

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.611
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.893

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.667
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.875
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.809

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.599
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.343

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.492
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.674
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.579

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.561
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 2.122
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 2.197
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 2.398

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 2.651
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 2.670
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 2.412

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 2.586
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 2.606

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 2.890
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 2.775

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 3.144
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 3.113
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 5.472
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 2.951

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 2.942
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 3.037

6.000 6.000 6.000 6.000 6.000 6.000 6.000 3.230
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 2.950

6.000 6.000 6.000 6.000 2.732

No data

0s

1s

3s

5s

UNSAT

E
x
e
cu

ti
o
n
 T

im
e

(g) Maximum observed solution time of Z3 based
on available resources, and the entropy of re-
source distribution for W = 4.

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
n
tr

o
p
y
 o

f
d
is

k
re

so
u
rc

e
 d

is
tr

ib
u
ti

o
n
 w

it
h
in

 a
 s

tr
ip

e
 (

S
h
a
n
n
o
n
s)

Available blocks per stripe

"../results/matrix_q_4_sat_mean_time.txt" u 1:($2*0.25):3 matrix

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.785
6.000 6.000 6.000 0.816

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.841
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.784

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.795
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.819

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.866
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.887

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.975
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.954

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.049
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.046

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.981
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.967
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.928

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.894
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.909

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.936
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.960
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.980

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.989
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.037
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.084
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.129

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.176
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.230
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.316

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.370
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.444

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.500
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.539

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.522
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.526
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.528
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.499

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.588
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.678

6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.750
6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.819

6.000 6.000 6.000 6.000 1.910

No data

0s

1s

3s

5s

UNSAT

E
x
e
cu

ti
o
n
 T

im
e

(h) Mean solution time of Z3 based on available
resources, and the entropy of resource distribu-
tion for W = 4

Figure 12 Maximum and mean time to solution for W ∈ [1, 4] based on available resources, and the
entropy of resource distribution.

LITES

05:24 Characterizing Data Dependence Constraints for Dynamic Reliability

8 Conclusions

In this paper we have presented a novel formulation of the n-queens problem using a modular
Latin board, non-traditional queen variants, and column-based population constraints. This
formulation serves as a translation of data dependence constraints and the problem of virtual
syndrome creation for software-defined data structures into SMT allowing for efficient solution that
allows for improved reliability with no additional hardware in over-provisioned systems. While
our problem grows exponentially more difficult for larger storage systems, we provide a scalable
way to achieve similar levels of protection through rank-wise decomposition of the problem space
using population-constraint sorting into embarrassingly parallel subproblems.

The overhead of this method is minimized by several factors, the first being the ability of the
cascading solution to learn the feasibility of the solution space to avoid searching for solutions to
protection levels for which the likelihood of finding a satisfying solution is low, and second due to
the low probability of the need to rebuild from these more complex syndromes. Our system can
function as if it is protected only by RAID 5 or RAID 6 protections, ignoring the extra allocated
blocks according to the schemes discussed in [31, 3]. This new method will form the basis for
a performable dynamic RAID allocation system for use in large-scale storage systems serving
cost-constrained organizations, providing an intelligent software stack that will help to combat
the exponential growth of Big Data.

8.1 Future Work
Now that we have an efficient, scalable method for determining whether there exists a dynamic
reliability syndrome that satisfies its data dependence constraints, we can move onto looking
at other interesting optimizations. Currently we either generate a single strategy for additional
syndrome allocation, or prove that no such allocation exists. However, the option is now open
for us to harness more of the power of Z3 to query the solution space to optimize for secondary
considerations, such as geometries that we find more attractive. For example, we may search for
solutions with such features using the solution enumeration capabilities of Z3 [18].

We plan to implement our solution technique in a hardware-based middleware controller that
monitors back-end data systems, and reshapes incoming file traffic to build the proposed dynamic
allocations of RAID groups in response to predictions for overprovisioning. We can also envision
an extension enabling data storage system designers to query Z3 regarding hypothetical disk
configurations and data dependence constraints as they design a new storage system, thus enabling
them to optimize their designs with respect to the robustness/cost tradeoff before purchasing any
hardware.

Availability

We have made our implementation, all associated source code, and data available under the
terms of the University of Illinois/NCSA Open Source License6 at our laboratory website
http://trust.dataengineering.org/research/nqueens/.

Acknowledgements The authors would like to thank Nikolaj Bjorner, Rohit Dureja, and Varun
Krishna for their helpful comments and corrections.

6 http://opensource.org/licenses/NCSA

http://trust.dataengineering.org/research/nqueens/
http://trust.dataengineering.org/research/nqueens/
http://opensource.org/licenses/NCSA

E.W.D. Rozier, K. Y. Rozier, and U. Bayram 05:25

References
1 Joseph A. Akinyele, Matthew Green, and Susan

Hohenberger. Using SMT solvers to automate
design tasks for encryption and signature schemes.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, 2013 ACM SIGSAC Confer-
ence on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013,
pages 399–410. ACM, 2013. doi:10.1145/2508859.
2516718.

2 H. Peter Anvin. The mathematics of RAID-6,
2007.

3 Ulya Bayram, Eric William Davis Rozier, Pin
Zhou, and Dwight Divine. Improving reliability
with dynamic syndrome allocation in intelligent
software defined data centers. In 45th Annual
IEEE/IFIP International Conference on Depend-
able Systems and Networks, DSN 2015, Rio de
Janeiro, Brazil, June 22-25, 2015, pages 219–230.
IEEE Computer Society, 2015. doi:10.1109/DSN.
2015.46.

4 Ulya Bayram, Kristin Yvonne Rozier, and Eric
William Davis Rozier. Characterizing data de-
pendence constraints for dynamic reliability us-
ing N -queens attack domains. In Javier Campos
and Boudewijn R. Haverkort, editors, Quantitative
Evaluation of Systems, 12th International Confer-
ence, QEST 2015, Madrid, Spain, September 1-3,
2015, Proceedings, volume 9259 of Lecture Notes in
Computer Science, pages 211–227. Springer, 2015.
doi:10.1007/978-3-319-22264-6_14.

5 Jordan Bell and Brett Stevens. A survey of known
results and research areas for n-queens. Discrete
Mathematics, 309(1):1–31, 2009. doi:10.1016/j.
disc.2007.12.043.

6 Peter M. Chen, Edward K. Lee, Garth A. Gib-
son, Randy H. Katz, and David A. Patterson.
RAID: high-performance, reliable secondary stor-
age. ACM Computing Surveys (CSUR), 26(2):145–
185, 1994. doi:10.1145/176979.176981.

7 Peter F. Corbett, Robert English, Atul Goel,
Tomislav Grcanac, Steven Kleiman, James Le-
ong, and Sunitha Sankar. Row-diagonal parity
for double disk failure correction. In Chandu
Thekkath, editor, Proceedings of the FAST’04
Conference on File and Storage Technologies,
March 31 – April 2, 2004, Grand Hyatt Hotel,
San Francisco, California, USA, pages 1–14.
USENIX, 2004. URL: http://www.usenix.org/
events/fast04/tech/corbett.html.

8 Leonardo Mendonça de Moura and Nikolaj Bjørner.
Z3: an efficient SMT solver. In C.R. Ramakrish-
nan and Jakob Rehof, editors, Tools and Al-
gorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings, volume 4963 of Lecture Notes in Com-
puter Science, pages 337–340. Springer, 2008. doi:
10.1007/978-3-540-78800-3_24.

9 Alexandros G. Dimakis, Brighten Godfrey, Mar-
tin J. Wainwright, and Kannan Ramchandran.
Network coding for distributed storage systems.
In INFOCOM 2007. 26th IEEE International

Conference on Computer Communications, Joint
Conference of the IEEE Computer and Commu-
nications Societies, 6-12 May 2007, Anchorage,
Alaska, USA, pages 2000–2008. IEEE, 2007. doi:
10.1109/INFCOM.2007.232.

10 Daniel Duffy and John Schnase. Meeting the big
data challenges of climate science through cloud-
enabled climate analytics-as-a-service. In Pro-
ceedings of the 30th International Conference on
Massive Storage Systems and Technology. IEEE
Computer Society, 2014.

11 B. Eickenscheidt. Das n-damen-problem auf dem
zylinderbrett. feenschach, 50:382–385, 1980.

12 Ibrahim Abaker Targio Hashem, Ibrar Yaqoob,
Nor Badrul Anuar, Salimah Mokhtar, Abdullah
Gani, and Samee Ullah Khan. The rise of "big
data" on cloud computing: Review and open re-
search issues. Inf. Syst., 47:98–115, 2015. doi:
10.1016/j.is.2014.07.006.

13 Casey Henderson. Usenix association
fast 2013 memo, 2015. URL: https:
//www.usenix.org/system/files/conference/
fast13/fast13_memo_021715.pdf.

14 Nathan Jacobson. Lectures in Abstract Al-
gebra: III. Theory of Fields and Galois Theory,
volume 32. Springer Science & Business Media,
2012. URL: http://www.springer.com/in/book/
9780387901244.

15 M.C. Jones. Kumaraswamy?s distribution: A
beta-type distribution with some tractability ad-
vantages. Statistical Methodology, 6(1):70–81,
2009. doi:10.1016/j.stamet.2008.04.001.

16 David A. Klarner. Queen squares. J. Recreational
Math, 12(3):177–178, 1979.

17 Vladimir Klebanov, Peter Müller, Natarajan
Shankar, Gary T. Leavens, Valentin Wüstholz,
Eyad Alkassar, Rob Arthan, Derek Bronish, Rod
Chapman, Ernie Cohen, Mark A. Hillebrand, Bart
Jacobs, K. Rustan M. Leino, Rosemary Monahan,
Frank Piessens, Nadia Polikarpova, Tom Ridge,
Jan Smans, Stephan Tobies, Thomas Tuerk, Mat-
tias Ulbrich, and Benjamin Weiß. The 1st veri-
fied software competition: Experience report. In
Michael J. Butler and Wolfram Schulte, editors,
FM 2011: Formal Methods – 17th International
Symposium on Formal Methods, Limerick, Ireland,
June 20-24, 2011. Proceedings, volume 6664 of Lec-
ture Notes in Computer Science, pages 154–168.
Springer, 2011. doi:10.1007/978-3-642-21437-
0_14.

18 Ali Sinan Köksal, Viktor Kuncak, and Philippe
Suter. Scala to the power of Z3: integrating SMT
and programming. In Nikolaj Bjørner and Viorica
Sofronie-Stokkermans, editors, Automated Deduc-
tion – CADE-23 – 23rd International Conference
on Automated Deduction, Wroclaw, Poland, July
31 – August 5, 2011. Proceedings, volume 6803 of
Lecture Notes in Computer Science, pages 400–406.
Springer, 2011. doi:10.1007/978-3-642-22438-
6_30.

19 Ponnambalam Kumaraswamy. A generalized prob-
ability density function for double-bounded ran-
dom processes. Journal of Hydrology, 46(1):79–88,
1980. doi:10.1016/0022-1694(80)90036-0.

LITES

http://dx.doi.org/10.1145/2508859.2516718
http://dx.doi.org/10.1145/2508859.2516718
http://dx.doi.org/10.1109/DSN.2015.46
http://dx.doi.org/10.1109/DSN.2015.46
http://dx.doi.org/10.1007/978-3-319-22264-6_14
http://dx.doi.org/10.1016/j.disc.2007.12.043
http://dx.doi.org/10.1016/j.disc.2007.12.043
http://dx.doi.org/10.1145/176979.176981
http://www.usenix.org/events/fast04/tech/corbett.html
http://www.usenix.org/events/fast04/tech/corbett.html
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/INFCOM.2007.232
http://dx.doi.org/10.1109/INFCOM.2007.232
http://dx.doi.org/10.1016/j.is.2014.07.006
http://dx.doi.org/10.1016/j.is.2014.07.006
https://www.usenix.org/system/files/conference/fast13/fast13_memo_021715.pdf
https://www.usenix.org/system/files/conference/fast13/fast13_memo_021715.pdf
https://www.usenix.org/system/files/conference/fast13/fast13_memo_021715.pdf
http://www.springer.com/in/book/9780387901244
http://www.springer.com/in/book/9780387901244
http://dx.doi.org/10.1016/j.stamet.2008.04.001
http://dx.doi.org/10.1007/978-3-642-21437-0_14
http://dx.doi.org/10.1007/978-3-642-21437-0_14
http://dx.doi.org/10.1007/978-3-642-22438-6_30
http://dx.doi.org/10.1007/978-3-642-22438-6_30
http://dx.doi.org/10.1016/0022-1694(80)90036-0
http://dx.doi.org/10.1145/1661785.1670144
http://dx.doi.org/10.1145/1661785.1670144
http://dx.doi.org/10.2307/2320871
http://dx.doi.org/10.1109/64.54670
http://dx.doi.org/10.1109/64.54670

05:26 Characterizing Data Dependence Constraints for Dynamic Reliability

20 Adam Leventhal. Triple-parity RAID and bey-
ond. ACM Queue, 7(11):30, 2009. doi:10.1145/
1661785.1670144.

21 Carl P. McCarty. Queen squares. The Amer-
ican Mathematical Monthly, 85(7):578–580, 1978.
doi:10.2307/2320871.

22 Bernard A. Nadel. Representation selection for
constraint satisfaction: A case study using n-
queens. IEEE Expert, 5(3):16–23, 1990. doi:
10.1109/64.54670.

23 Jehan-François Pâris, Ahmed Amer, and Thomas
J. E. Schwarz. Low-redundancy two-dimensional
RAID arrays. In International Conference on
Computing, Networking and Communications,
ICNC 2012, Maui, HI, USA, January 30 – Feb-
ruary 2, 2012, pages 507–511. IEEE Computer So-
ciety, 2012. doi:10.1109/ICCNC.2012.6167474.

24 Jehan-François Pâris, Darrell D. E. Long, and Wit-
old Litwin. Three-dimensional redundancy codes
for archival storage. In 2013 IEEE 21st Inter-
national Symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication
Systems, San Francisco, CA, USA, August 14-
16, 2013, pages 328–332. IEEE Computer Society,
2013. doi:10.1109/MASCOTS.2013.45.

25 David A. Patterson, Garth A. Gibson, and
Randy H. Katz. A case for redundant arrays
of inexpensive disks (RAID). In Haran Boral
and Per-Åke Larson, editors, Proceedings of the
1988 ACM SIGMOD International Conference on
Management of Data, Chicago, Illinois, June 1-
3, 1988., pages 109–116. ACM Press, 1988. doi:
10.1145/50202.50214.

26 Vera Pless. Introduction to the Theory of Error-
Correcting Codes, 3rd Edition. John Wiley & Sons,
1998.

27 Eric W.D. Rozier and Kristin Yvonne Rozier.
SMT-driven intelligent storage for big data. In Pro-
ceedings of the Ninth International Workshop on
Constraints in Formal Verification (CFV 2015),
Austin, Texas, U.S.A., November 2015.

28 Eric W.D. Rozier and Kristin Yvonne Rozier. Cas-
cading solution of data dependence constraints
with Z3. In Proceedings of the Fourteenth In-
ternational Symposium on Artificial Intelligence
and Mathematics (ISAIM 2016), Fort Lauderdale,
Florida, U.S.A., January 2016.

29 Eric William David Rozier and William H. Sanders.
A framework for efficient evaluation of the fault
tolerance of deduplicated storage systems. In
Robert S. Swarz, Philip Koopman, and Michel
Cukier, editors, IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, DSN
2012, Boston, MA, USA, June 25-28, 2012, pages

1–12. IEEE Computer Society, 2012. doi:10.1109/
DSN.2012.6263921.

30 Eric William David Rozier, William H. Sanders,
Pin Zhou, NagaPramod Mandagere, Sandeep Ut-
tamchandani, and Mark L. Yakushev. Modeling
the fault tolerance consequences of deduplication.
In 30th IEEE Symposium on Reliable Distributed
Systems (SRDS 2011), Madrid, Spain, October
4-7, 2011, pages 75–84. IEEE Computer Society,
2011. doi:10.1109/SRDS.2011.18.

31 Eric William David Rozier, Pin Zhou, and Dwight
Divine. Building intelligence for software defined
data centers: modeling usage patterns. In Ronen I.
Kat, Mary Baker, and Sivan Toledo, editors, 6th
Annual International Systems and Storage Con-
ference, SYSTOR’13, Haifa, Israel – June 30 –
July 02, 2013, page 20. ACM, 2013. doi:10.1145/
2485732.2485752.

32 Miguel A Salido and Federico Barber. How to
classify hard and soft constraints in non-binary
constraint satisfaction problems. In Research and
Development in Intelligent Systems XX: Proceed-
ings of AI2003, the Twenty-third SGAI Interna-
tional Conference on Innovative Techniques and
Applications of Artificial Intelligence, pages 213–
226. Springer London, London, 2004. doi:10.
1007/978-0-85729-412-8_16.

33 John L. Schnase, Daniel Q. Duffy, Glenn S.
Tamkin, Denis Nadeau, John H. Thompson,
Cristina M. Grieg, Mark A. McInerney, and Wil-
liam P. Webster. Merra analytic services: Meeting
the big data challenges of climate science through
cloud-enabled climate analytics-as-a-service. Com-
puters, Environment and Urban Systems, 61, Part
B:98–211, 2017. doi:10.1016/j.compenvurbsys.
2013.12.003.

34 Thomas J. E. Schwarz, Darrell D. E. Long, and
Jehan-François Pâris. Reliability of disk arrays
with double parity. In IEEE 19th Pacific Rim In-
ternational Symposium on Dependable Computing,
PRDC 2013, Vancouver, BC, Canada, December
2-4, 2013, pages 108–117. IEEE Computer Society,
2013. doi:10.1109/PRDC.2013.20.

35 Rok Sosic and Jun Gu. Efficient local search
with conflict minimization: A case study of the n-
queens problem. IEEE Trans. Knowl. Data Eng.,
6(5):661–668, 1994. doi:10.1109/69.317698.

36 Vernon Turner, John F Gantz, David Reinsel, and
Stephen Minton. The digital universe of oppor-
tunities: Rich data and the increasing value of the
internet of things. International Data Corporation,
White Paper, IDC_1672, 2014.

37 Eric W. Weisstein. Rooks problem, 2002.

http://dx.doi.org/10.1109/ICCNC.2012.6167474
http://dx.doi.org/10.1109/MASCOTS.2013.45
http://dx.doi.org/10.1145/50202.50214
http://dx.doi.org/10.1145/50202.50214
http://dx.doi.org/10.1109/DSN.2012.6263921
http://dx.doi.org/10.1109/DSN.2012.6263921
http://dx.doi.org/10.1109/SRDS.2011.18
http://dx.doi.org/10.1145/2485732.2485752
http://dx.doi.org/10.1145/2485732.2485752
http://dx.doi.org/10.1007/978-0-85729-412-8_16
http://dx.doi.org/10.1007/978-0-85729-412-8_16
http://dx.doi.org/10.1016/j.compenvurbsys.2013.12.003
http://dx.doi.org/10.1016/j.compenvurbsys.2013.12.003
http://dx.doi.org/10.1109/PRDC.2013.20
http://dx.doi.org/10.1109/69.317698

	lites-v004-i001-frontmatter
	lites-v004-i001-a001-Chen
	Introduction
	Preliminaries
	Task Models
	Periodic Tasks
	Sporadic Tasks
	Release Jitter
	Self-Suspending Tasks
	Segmented Self-Suspending Tasks
	Single-Segment Self-Suspending (aka Deferrable) Tasks
	Assumptions, Busy Intervals, and Task Set Transformations

	The Period Enforcer Algorithm
	The Problem: Back-to-Back Execution
	The Period Enforcement Rule
	Example: Avoiding Back-to-Back Execution
	Incompatibility with the Dynamic Self-Suspension Model

	Classic Analysis of the Period Enforcer Algorithm
	Questions Answered in This Paper

	Period Enforcement Can Induce Deadline Misses
	Deriving a Corresponding Deferrable Task Set
	Incompatibility with Suspension-Based Locking Protocols
	Combining Period Enforcement and Suspension-Based Locks
	Case 1: Locking Takes Effect at Earliest Segment Eligibility Time
	Case 2: Locking Takes Effect Immediately
	Other Protocols and Interpretations
	Discussion

	Concluding Remarks

	lites-v004-i001-a002-Kluge
	Introduction
	Fundamentals
	Task Model
	Abstract and Concrete Task Sets

	Related Work
	TUF-based Scheduling
	(m,k)-firm Real-Time Tasks
	The MKU Algorithm

	New Properties of (m,k)-firm Real-Time Tasks
	Feasibility of Approaches Based on Fixed (m,k)-Patterns
	Schedulability under MKU
	Breakdown Anomalies

	Evaluation Methodology
	Task Parameters
	Simulation
	Parameters & Aims of the Evaluation
	Parameters
	Aims

	Results
	Arbitrary Task Sets and Exact Schedulability Test
	Scheduler Performance
	Performance of Schedulability Tests
	Breakdown Anomalies
	Cross-Initialisation of k-Sequences
	Cancellation of Running Jobs

	Realistic Periods and m Parameters
	Restricted m Parameters
	Realistic Periods
	Combination

	Discussion

	Conclusions
	Acronyms
	Additional Results
	Restricted m Parameter
	Restricted m Parameter and Realistic Periods

	lites-v004-i001-a003-Liu
	Introduction
	Preliminaries
	Cassandra Overview
	Rewriting Logic and Maude
	Statistical Model Checking and PVeStA

	Replicated Data Consistency
	Probabilistic Modeling of Cassandra Designs
	Formalizing Probabilistic Communication in Cassandra
	Alternative Strategy Design

	Quantitative Analysis of Consistency in Cassandra
	Formalization of Consistency Properties
	Strong Consistency
	Read Your Writes
	Monotonic Reads
	Consistent Prefix
	Causal Consistency

	Analysis Results for Consistency Guarantees
	Analysis Results for SC
	Analysis Results for RYW
	Analysis Results for MR
	Analysis Results for CP
	Analysis Results for CC
	Summary and Comparison

	Related Work
	Model-based Performance Analysis of NoSQL stores
	Experimental Consistency Benchmarking in NoSQL stores
	Rewriting Logic-based Analysis of Cloud Computing Systems

	Conclusion

	lites-v004-i001-a004-Hermanns
	Introduction
	The Kinetic Battery Model
	Random KiBaM
	Deterministic Limited KiBaM With Recharging
	Random Limited KiBaM With Recharging
	Markov Task Process
	Approximating Random Limited KiBaM With Recharging
	The Random KiBaM In Practice
	Alternative Approaches
	Conclusion

	lites-v004-i001-a005-Rozier
	Notation
	Introduction
	n-Queens
	Previous Work
	Application to Embedded Systems
	Novel Contributions

	Characterizing File System Dependence
	Reliability Syndromes
	Allocation of New Syndromes

	n-Queens with Dynamic Domains of Attack
	Formal Problem Representation
	Improving Tractability Through Variable Domain Reduction
	Computational Complexity

	Solving with Z3
	Cascading Solver

	Experimental Results and Validation
	Application to Embedded and Resource Constrained Systems

	Conclusions
	Future Work

	Blank Page

