
Volume 4 | Issue 2 | January 2018

Vol. 4, Issue 2 ISSN 2199-2002 http://www.dagstuhl.de/lites

http://www.dagstuhl.de/lites

ISSN 2199-2002

Published online and open access by
the European Design and Automation Association
(EDAA) / EMbedded Systems Special Interest Group
(EMSIG) and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik GmbH, Dagstuhl Publishing, Saar-
brücken/Wadern, Germany.
Online available at
http://www.dagstuhl.de/dagpub/2199-2002.

Publication date
January 2018

Bibliographic information published by the Deutsche
Nationalbibliothek
The Deutsche Nationalbibliothek lists this publica-
tion in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at
http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons At-
tribution 3.0 Germany license (CC BY 3.0 DE): http:
//creativecommons.org/licenses/by/
3.0/de/deed.en.

In brief, this license authorizes each
and everybody to share (to copy,

distribute and transmit) the work under the follow-
ing conditions, without impairing or restricting the
authors’ moral rights:

Attribution: The work must be attributed to its
authors.

The copyright is retained by the corresponding au-
thors.

Digital Object Identifier
10.4230/LITES-v004-i002

Aims and Scope
LITES aims at the publication of high-quality schol-
arly articles, ensuring efficient submission, reviewing,
and publishing procedures. All articles are published
open access, i.e., accessible online without any costs.
The rights are retained by the author(s).

LITES publishes original articles on all aspects of em-
bedded computer systems, in particular: the design,
the implementation, the verification, and the testing
of embedded hardware and software systems; the
theoretical foundations; single-core, multi-processor,
and networked architectures and their energy con-
sumption and predictability properties; reliability
and fault tolerance; security properties; and on
applications in the avionics, the automotive, the
telecommunication, the medical, and the production
domains.

Editorial Board
Alan Burns (Editor-in-Chief)
Bashir Al Hashimi
Karl-Erik Arzen
Neil Audsley
Sanjoy Baruah
Samarjit Chakraborty
Marco di Natale
Martin Fränzle
Steve Goddard
Gernot Heiser
Axel Jantsch
Florence Maraninchi
Sang Lyul Min
Lothar Thiele
Mateo Valero
Virginie Wiels

Editorial Office
Michael Wagner (Managing Editor)
Jutka Gasiorowski (Editorial Assistance)
Dagmar Glaser (Editorial Assistance)
Thomas Schillo (Technical Assistance)

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
LITES, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
lites@dagstuhl.de
http://www.dagstuhl.de/lites

http://www.dagstuhl.de/lites
http://www.dagstuhl.de/dagpub/2199-2002
http://dnb.d-nb.de
http://creativecommons.org/licenses/by/3.0/de/deed.en
http://creativecommons.org/licenses/by/3.0/de/deed.en
http://creativecommons.org/licenses/by/3.0/de/deed.en
http://dx.doi.org/10.4230/LITES-v004-i002
http://www.dagstuhl.de/lites

Contents

Regular Papers

Dynamic and Static Task Allocation for Hard Real-Time Video Stream Decoding
on NoCs

Hashan R. Mendis, Neil C. Audsley, and Leandro Soares Indrusiak 1:1–1:25

EMSBench: Benchmark and Testbed for Reactive Real-Time Systems
Florian Kluge, Christine Rochange, and Theo Ungerer . 2:1–2:23

Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems
Sara Afshar, Moris Behnam, Reinder J. Bril, and Thomas Nolte 3:1–3:30

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lites
http://www.dagstuhl.de/en/about-dagstuhl/

Dynamic and Static Task Allocation for Hard
Real-Time Video Stream Decoding on NoCs∗

Hashan R. Mendis1, Neil C. Audsley2, and Leandro Soares Indrusiak3

1 Real-Time Systems Group, Department of Computer Science,
University of York, UK
hrm506@york.ac.uk

2 Real-Time Systems Group, Department of Computer Science,
University of York, UK
neil.audsley@york.ac.uk

3 Real-Time Systems Group, Department of Computer Science,
University of York, UK
http://orcid.org/0000-0002-9938-2920
leandro.indrusiak@york.ac.uk

Abstract
Hard real-time (HRT) video systems require
admission control decisions that rely on two
factors. Firstly, schedulability analysis of the data-
dependent, communicating tasks within the applic-
ation need to be carried out in order to guarantee
timing and predictability. Secondly, the allocation
of the tasks to multi-core processing elements would
generate different results in the schedulability ana-
lysis. Due to the conservative nature of the state-of-
the-art schedulability analysis of tasks and message
flows, and the unpredictability in the application,
the system resources are often under-utilised. In
this paper we propose two blocking-aware dynamic

task allocation techniques that exploit application
and platform characteristics, in order to increase the
number of simultaneous, fully schedulable, video
streams handled by the system. A novel, worst-
case response time aware, search-based, static hard
real-time task mapper is introduced to act as an
upper-baseline to the proposed techniques. Fur-
ther evaluations are carried out against existing
heuristic-based dynamic mappers. Improvements
to the admission rates and the system utilisation
under a range of different workloads and platform
sizes are explored.

2012 ACM Subject Classification On-chip resource management
Keywords and Phrases real-time multimedia, task mapping, network-on-chip
Digital Object Identifier 10.4230/LITES-v004-i002-a001
Received 2016-06-13 Accepted 2017-04-03 Published 2017-07-07

1 Introduction

Current multiprocessor System-on-Chip (MPSoC) platforms (many-cores) have tens or hundreds
of processing elements (PEs) and often need to support an increased number of applications
simultaneously. Network-on-chip (NoC), interconnects have emerged as the promising solution
for communication infrastructure of such systems, due to its efficiency and scalability [7]. Future
technologies with streaming multimedia applications form a large portion of the application space
that exploit these highly distributed on-chip architectures [33]. The processing load imposed
by computation-intensive applications such as video decoding can be partitioned into tasks

∗ We would like to thank the LSCITS program (EP/F501374/1) and DreamCloud project (EU FP7-611411),
for funding this research and RheonMedia Ltd. for providing industrial case studies.

© Hashan R. Mendis, Neil C. Audsley, and Leandro Soares Indrusiak;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 4, Issue 2, Article No. 1, pp. 01:1–01:25
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hrm506@york.ac.uk
mailto:neil.audsley@york.ac.uk
http://orcid.org/0000-0002-9938-2920
mailto:leandro.indrusiak@york.ac.uk
http://dx.doi.org/10.4230/LITES-v004-i002-a001
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

01:2 Dynamic and Static Task Allocation for Hard Real-Time Video Stream Decoding on NoCs

and distributed among multiple PEs on the many-core platform, to improve metrics such as
performance, utilisation, energy and to meet timing constraints.

This work looks at the resource-aware embedded systems design problem from the software
perspective. Modern MPSoCs have many on-chip resources, such as PEs, communication channels
and main memory controllers, which have to be allocated to applications to optimise on high-
level metrics such as latency, utilisation and power consumption. Efficient task allocations can
reduce NoC usage, and network contention; thereby reducing the response time of the task
set and communication energy consumption. These allocations are generally performed at the
software level, by a resource manager. On the other hand, from a hardware viewpoint, the NoC
communication bandwidth can be reduced (e.g. reducing the link width or frequency) to maximise
the NoC utilisation and save area and power consumption. However, this work focuses solely on
software-based runtime task mapping optimisation, as it assumes the hardware implementation
platform is fixed and it also offers a less costly and more flexible solution.

The nature of allocating and scheduling application tasks to PEs is considered an NP-hard
problem. Design-time (offline/static) mapping techniques that have a global view of the system
and workload, can be used to optimize the task mapping process at system design-time, such that
system resources are efficiently utilised. The complexity and workload characteristics of video
decoding applications depend greatly on the temporal and spatial variations in the video stream;
hence, the workload is highly dynamic and unpredictable. When dealing with live video processing
applications, certain critical application properties are unknown at design-time. Therefore, these
highly varying workloads require runtime (online/dynamic) mapping techniques, based on light-
weight heuristics to allocate and schedule the tasks to PEs whilst the system is operational. Live
video decoding systems have hard timing constraints that need to be guaranteed before admitting
into the system for decoding. These systems often use deterministic video admission control
strategies, which use worst-case timing behaviour of the tasks, resulting in under-utilised systems
[24]. In [23], the authors show that by employing efficient dynamic, application and platform aware
task to PE mapping strategies, the utilisation levels of hard-real time video decoding systems could
be improved. In this work, the mapping approaches in [23] are further evaluated by comparing
against an offline mapper and under different platform and workload conditions.

Violation of timing constraints in video processing systems can lead to degraded quality, but
the system will continue to operate; hence multimedia systems are generally considered soft
real-time (SRT). However, there exists a range of systems that depend on video streams that need
to be processed with hard real-time (HRT) guarantees. For example, in vision-based robot control
systems, accuracy and functionality of the feedback control systems depend on processing video
frames with tight timing restrictions. Another example is in the telesurgery/teleoperation industry
[14], where a doctor performs surgery on a patient without physically being in the same location.
These safety-critical systems require responsive and reliable communication technology as well as
hard real-time guarantees from the video processing systems to function safely. Furthermore, next
generation automated video surveillance systems, will require processing and tracking objects in
hundreds of video streams in real-time; missing deadlines in these systems would lead to reduced
security and delayed response to threats.

Contributions: In order to address the aforementioned issues, we present the following novel
contributions:

A more precise definition of the application model [24, 23] used to represent decoding of
multiple MPEG-2 video streams is presented, including its execution and communication
characteristics (Section 3.1). Very few other work consider data parallel video decoding using
a scalable, distributed memory, message-passing based communication model.

H.R. Mendis, N. C. Audsley, and L. S. Indrusiak 01:3

A response-time analysis (RTA) based, application-aware, deterministic admission controller
(D-AC) is presented in [24]. This work (in Section 4) describes, the underlying D-AC process
algorithmically. Formal definitions of taking into account task graph precedence constraints
within the RTA is also presented.
We present new evaluations (Section 7) of the two application-specific, blocking-aware heuristic
based runtime mapping approaches introduced in [23]:

We present an upper-baseline for evaluation – a genetic algorithm (GA) based static/design-
time task mapping optimisation approach (Section 6), with a novel fitness function that
considers video stream schedulability. This design-time mapper is compared against our
proposed dynamic mappers and other existing runtime mappers.
We present new experimental treatments: varying both the platform size and workload
computation-to-communication ratio, which gives new insight to the strengths and weaknesses
of each evaluated mapping approach.

The rest of this paper is organized as follows. Section 2 presents related work in task mapping
and scheduling. Section 3 introduces the system models. Section 4 presents the deterministic
admission controller. The proposed heuristic based runtime task mapping algorithms are described
in Section 5, followed by the design-time static mapper in Section 6. Section 7 presents the
experimental design and discusses the results. Section 8 concludes this paper.

2 Related Work

Mapping of tasks onto PEs broadly falls under two categories: static and dynamic mapping.
Static mappers (executed at design time) have a complete view of the application, workload and
platform and attempt to find a suitable task to processor placement to optimise for different
metrics such as execution time, throughput, resource utilisation and energy consumption [29]. For
example, Butazzo et al. [6] proposes a static mapper that uses a branch-and-bound algorithm to
partition and map a taskset with precedence constraints, to reduce the computational resources.
However, they assume negligible communication cost between the tasks. Simulated-annealing
based, offline, task and memory mapping for mixed-criticality NoCs have been introduced by
Giannopoulou et al. [13]. Their optimisation technique accounts for the interferences on the shared
memory and the NoC, however they assume a time-triggered NoC with static routes regulated at
the source, which is contrary to our priority-based wormhole switching NoC architecture. The
static mapper presented in this work uses a RTA and points-based fitness function which evaluates
the schedulability of a video stream.

Dynamic mappers (executed at runtime) use heuristics to optimise certain metrics such as
application execution time, energy consumption, temperature, reliability and resource utilisation
[29]. Carvalho et al. [8] exploit the hop-distance and path load between cores, as a dynamic
mapping heuristic to reduce communication packet latency, energy and channel occupation. This
work was later extended by Singh et al. [30] to include PEs that can accommodate multiple tasks.
Kaushik et al. [21] adapts these heuristics to balance both computation and communication, by
using a pre-processing stage to achieve a balanced and reduced task-graph. There also exist hybrid
mapping approaches (e.g. [27]), where design-time computed mapping templates are merged with
runtime heuristic based decisions to reduce average power dissipation. This work focuses on
dynamic mapping strategies that exploit both the application and architecture characteristics.

Ditze et al. [9] presents an extension to the least-laxity-first scheduling algorithm to schedule
the MPEG decoding tasks and an admission controller that enforces QoS constraints of parallel
video streams. However, their feedback based admission controller does not fully guarantee the
schedulability of admitted video streams, but attempts to reduce over-reservation of system

LITES

01:4 Dynamic and Static Task Allocation for Hard Real-Time Video Stream Decoding on NoCs

resources. Bamakhrama et al. [4] presents an analytical framework to determine the minimum
number of processors required to schedule a set of streaming applications with given I/O rates,
while guaranteeing the maximum achievable throughput. Similarly, in [1] the critical-paths of
task-graphs are mapped onto the PEs first, to reduce the average end-to-end worst-case execution
time of a set of streaming applications, such as MP3 and H.263 decoders. They use utilisation tests
to determine mapping feasibility and consider the inter-core communication cost as a constant
cost per hop on the 2D mesh interconnect. Contrarily, we model the interference patterns of the
task communication message flows on a predictable, pre-emptive interconnect. Utilisation based
schedulability tests, have been used to guarantee timing properties of streaming applications,
when using a contention-free TDMA based communication interconnect [15]. However, inefficient
resource reservation in TDMA interconnects lead to unused bandwidth and connection setup
overheads limits scalability [12]. In recent work by Dziurzanski et al. [10], RTA based schedulability
tests have been used to determine if a taskset is schedulable on a processor. RTA tests take into
account the interference caused by higher priority tasks and flows. However, using RTA based tests
online, is expensive and in [10], they perform approximate tests to reduce the overhead and use a
feedback-based control-theoretic approach to reclaim slack in order to improve admission rates.
Similarly, in [25], tasks have been mapped to PEs that have the highest amount of average slack,
where the PE slack values are periodically monitored and sent to a global manager. They state
that a trade-off has to be made between NoC communication load imposed by slack monitoring
and the monitoring frequency which can affect mapping results.

Contrary to many of the discussed related work, in our study we model a homogeneous
multicore platform connected via a scalable, network interconnect with priority-based arbitration
(similar to QNoC [5]); which makes it easier to predict worst-case network contention scenarios.
Furthermore, unlike in existing approaches we do not use any monitoring feedback at runtime,
which results in no communication overhead in the resource management technique. To the best
of our knowledge, the runtime NoC resource management techniques (i.e. runtime task mapping
and admission control), proposed in this work are the only ones aimed at HRT video decoding,
to consider both the interference caused by task blocking and to exploit known video stream
properties.

3 System Model and Problem Formulation

3.1 Application model
This section outlines the multi-stream video decoding application model, with focus on how
the abstract workload is generated. Frames in each video stream, can be of type: I (Intra), P
(Predictive) or B (Bi-directional) encoded; i.e. frame type denoted ft = {I, P,B}. We assume
parallel decoding of multiple MPEG-2 decoded video streams, with a fixed, independent, group-
of-pictures (GoP) structure of IPBBPBBPBBBB (decoding order). According to the MPEG-2
specification this 12 frame GoP structure is recommended to balance compression, facilitate
reasonable random-access points in the stream and to manage error propagation [11]. Decoding an
MPEG stream can be parallelised at different levels of granularity (GoP/frame/slice/macroblock-
level) [22]. In our application model, we assume frame-level data parallel decoding, which does
not involve stream instrumentation.

As shown in the system overview diagram in Figure 1a, the application model has a hierarchical
structure. At the top most level are stream based workflows (Wi), each containing video streams
V Si with arbitrary number of N independent jobs (denoted by Ji). Each of the video streams will
have varying resolutions (res(V Si) = frame height×frame width). A job, represents an MPEG
GoP and are modelled as a directed acyclic graph (DAG) with a fixed dependency structure, as

H.R. Mendis, N. C. Audsley, and L. S. Indrusiak 01:5

(a) (b)

Figure 1 (a) System overview diagram; (b) MPEG GoP data precedence and task communication
graph (Communication traffic between tasks and main-memory not illustrated).

depicted in Figure 1b. Each node in the task graph (TG) represents a real-time frame decoding
task τi and edges represent traffic-flows (flows for short), denoted as Msgi, which are reference
data that needs to be sent to one or more dependent tasks (also referred to as child tasks). A task’s
execution can only start iff its predecessor(s) (also referred to as parent tasks) have completed
execution and their output data is available. As shown in Figure 1b, certain tasks in the TG can
be executed in parallel (e.g. P4, B2, B3) if all the precedence constraints are met.

A task τi is characterised by the following tuple: (pi, ti, xi, ci, ai); where pi is the fixed priority,
ti is the period, xi is the actual computation cost in terms of execution time, ci is the worst-case
computation cost and ai is the arrival time of the task τi. Tasks are sporadic, preemptive and have
fixed priority. Individual task deadlines are unknown; however, each job is considered schedulable
if it completes execution on/before its end-to-end deadline (De2e = |Ji| /fps). fps denotes the
frame rate of the video stream, which we assume is fixed at 25fps for all video streams. A task upon
completing its execution sends its output (i.e. the decoded frame data) as a message flow to the
PEs executing its child tasks (dependent task). A message flow, denoted by Msgi is characterised
by the following tuple: (Pi, Ti, PLi, Ci); where Pi is the priority, Ti is the period, PLi is the
payload and Ci is the basic latency of the message flow Msgi. It is important to note that, if one
or more of a task’s children are assigned to a single PE, then only one data flow is sent to the
PE in order to avoid flow redundancy. Each task also has memory read and write flows which
are not illustrated in Figure 1b. Flows inherit the ti and pi of the sender tasks and the PLi of
transmitting the reference frame data is (res(V Si)×bits per pixel).

3.1.1 Deriving the Task Execution Cost
The computation cost of decoding a video frame and the payload of reference data message flow,
will greatly depend on the temporal and spatial variations of video streams. MPEG decoding
consists of operations such as parse, decode, motion compensation (MC), inverse quantisation
(IQ) and inverse discrete cosine transform (IDCT) etc. At the lowest granularity, MPEG contains
blocks and based on how they are encoded they can be categorised into 9 types as explained by Tan
et al. [31]. Depending on the type of frame and decoding steps performed on the frame, the frame
type to block type relationship may vary, as shown in Table 1. Based on this information, we can
model the frame execution cost as given in Equation (2). Here, the wj term denotes the weight of

LITES

01:6 Dynamic and Static Task Allocation for Hard Real-Time Video Stream Decoding on NoCs

Table 1 Relationship between MPEG block types and frame types (adapted from [31]).

Frame type (ft) M1 M2 M3 M4 M5 M6 M7 M8 M9

I-frame X X
P-frame X X X X
B-frame X X X X X X X

a type j block and the w0 denotes the constant term in the regression model [31]. As per [31],
the regression coefficients wj are fixed for a given decoder regardless of the type/resolution of the
video. We model the number of type j blocks (denoted Mj) as a uniform random variable between
{0,maxMj}, where maxMj as defined in Equation (1), is the maximum amount of blocks for a
given video resolution.

Figure 2 shows frame decoding time distributions of 200 jobs (GoPs) which were synthetically
generated, as per the execution model described before. The distributions show that P/B-frames
have a larger range than I-frames due to the lower amount of coding options used when decoding.
Furthermore, I-frames on average take longer to decode because I-frames have a high number
IDCT only blocks which have a higher weighting. These distributions correlate well with previous
MPEG real video stream decoding analysis seen in [19]. As defined in Equation (3), the WCET
ci of a task of type ft in a video stream is the maximum of all ft type task’s execution costs
xi; therefore, different frame types would have a different ci. For example, in Figure 2, the
I-frame decoding task WCET is ≈ 0.08s, the P-frame decoding WCET is ≈ 0.07s and the B-frame
decoding WCET is ≈ 0.06s. We assume the actual execution cost xi is unknown to the dynamic
task mapping algorithm at runtime.

We emphasise that the task WCET that this work is considering assumes all data a task needs
is available in the local memory at the start of its execution. The data required is provided by the
reference data transfers from parent tasks and reading encoded data from main memory, both
of which occur before the task execution. The communication latencies related to these data
transfers are dealt with separately as part of the end-to-end response time calculation presented
in the preceding sections.

maxMj = res(V Si)
block_size , (0 if block Mj not enabled in frame type) (1)

xi = w0 +
∑

1≤j≤9
wj × rand(0,maxMj) (2)

ci(ft) = max{xi of τi∈V Si | frame type = ft} (3)

3.1.2 Task Priority Assignment
The task and flow priority assignment between different jobs of the same video stream do not
change. The resource manager assigns a priority to each task in the first job (J0) of the video
stream upon admission. These priories are then fixed and the exact same priority values are used
for tasks in subsequent jobs of that stream. This is supported by the fact that each job in the
stream has the same number of tasks and dependency structure.

Isovic et al. [18], introduces a quality and dependency-aware frame priority assignment which
we have adapted to fit our 12-frame GoP sequence as given in Equation (4). For a given video
stream, task priorities are assigned according to Equation (5), where tasks of low resolution
video streams are given higher priority over high-resolution video streams. Here fix denotes the

H.R. Mendis, N. C. Audsley, and L. S. Indrusiak 01:7

Figure 2 Frame decoding time distribution of synthetically generated workload (720× 576 resolution
video, 200 jobs).

frame index within the GoP. This assignment ensures low-resolution video streams will have a
lower chance of blocking resulting in lower response-times than high-resolution streams. The
(tc × offset) component ensures that unique job-level priorities and earliest arrival time is used to
select between equal resolution video streams (tc denotes current time). Flows inherit the priority
of their source tasks. A higher pi value denotes a higher priority.

GoP prfr = {12, 11, 4, 7, 10, 3, 5, 9, 2, 6, 1, 8} (4)

pi = (res(V Si)−GoP prfr [fix]) + (tc × offset) (5)

It is important to note that this work is not trying to solve the priority assignment problem or
propose a new assignment scheme, for dynamic workloads. This work purely attempts to optimise
on the task allocation, for a given priority assignment. We have selected a sensible assignment
policy that reflects common practice in the video streaming industry. The proposed mapping
heuristics can work around any other priority assignment approach.

3.1.3 Job Arrival Rate
Video stream start/end times are arbitrary. We assume the video streams have a variable bit
rate (VBR), which means the video stream data will be arriving at the input of the system at
a variable rate. In reality, the input could be more bursty in nature due to the variability in
the transmission medium (e.g. the Internet). However, we assume that the VBR encoding has a
user-specified upper bound related to the stream frame-rate; therefore the job arrival rate can be
modelled as sporadic with a minimum inter-arrival time. The arrival rate of a job is therefore
modelled as per Equation (6) where Jratemin and Jratemax are workload parameters, usually set to 1.0
and 1.3 respectively. Decreasing Jratemin , would increase the chance of new jobs arriving before the
deadline of the previous job has passed, and increasing Jratemax too much can make the system more
idle. We assume all tasks of a job Ji arrive at the same time instant and hence, the period of all
tasks and flows (i.e. ti and Ti) within a job are equal and set to the minimum inter-job arrival
time (i.e. 12/25=0.48s, for 25fps and 12 tasks per job).

Arrival rate(Ji) = rand(Jratemin×De2e, J
rate
max×De2e) (6)

3.2 Platform Model
The multi-core platform is composed of P homogeneous PEs connected by a NoC. The NoC
platform model uses wormhole packet switching, fixed priority preemptive arbitration, has a

LITES

01:8 Dynamic and Static Task Allocation for Hard Real-Time Video Stream Decoding on NoCs

2D mesh topology and uses the XY deterministic algorithm for routing such as in [5]. XY
deterministic routing assures that the message flows will always use the same resources of the
NoC (i.e. same path) to deliver data from a given specific source and destination. This property
is a requirement of the flow response time analysis used by our deterministic admission controller.
Therefore, any deterministic routing technique that guarantees a network path is compatible with
the presented analysis. The NoC link arbiters are priority-preemptive thus making it easier to
predict the outcome of network contention for specific scenarios. All inter-PE and PE-to-memory
communication occurs via the NoC by passing messages. Each PE contains a local memory, a
priority-preemptive local scheduler, task queue and a dependency buffer. The PE upon completing
a task’s execution, transmits its output to the appropriate PEs dependency buffer. Tasks can
begin execution on a PE iff all its data dependencies have arrived at the dependency buffer. If
two tasks are mapped on the same PE it is assumed they do not need to communicate through
channels of the NoC; hence the output of the source task will immediately be available at the
dependency buffer of its PE. Higher priority tasks that have all dependencies fulfilled can interrupt
already running lower priority tasks. Once a task finishes its execution the local scheduler picks
the next highest priority task with dependencies fulfilled, to be executed. Similarly, higher priority
flows can interfere lower priority flows that share the same network link.

The global input buffers are located in the main memory, and the task data (i.e. the encoded
MPEG frame data) must be transmitted from the main memory via the NoC to the respective PE
before execution (referred to as memory read). Additionally, after the MPEG decoding task has
completed, its output (i.e. decoded MPEG frame data) is transmitted to the frame-buffer located
in the main memory (referred to as memory write). The model assumes an encoded MPEG-2
I-frame (with ≈ 40% frame compression), is twice as big as a P-frame and 4 times as big as a
B-frame [19]. The encoded frame byte size and the decoded frame byte size represents the memory
read and write traffic payloads respectively. We assume memory read flows have higher priority
over data and memory write flows. The platform model assumes 4 main memory controllers
(MMC), placed on the four sides of the NoC. A task communicates with the MMC closest to it.

3.3 Open-Loop Runtime Resource Manager
The resource manager (RM) of the system (Figure 1a), performs task mapping, priority assignment,
admission control (AC) and task dispatching to the PEs. In our platform model we assume the
RM is a separate entity/component, however it could also reside in one of the PEs. Task mapping
and priority assignment is performed only once for a video stream at the admission of the first job
J0; all subsequent jobs of the video stream follow the initial mapping and priority assignment.
The RM also maintains a runtime mapping table (TMT) of the jobs of every active video stream
in the system. This mapping table contains the following task information:

Real-time properties: {ci, ti, pi},
Non-real-time properties: {ft, fix, },
Task mapping: indicates which PE a specific task τi is mapped to.

The TMT is populated with each task of the first job J0 of an admitted video stream. Once the
video stream has stopped/finished, the task entries related to the stream are removed. The RM also
has knowledge of the fixed TG dependency structure used by all video streams. The above TMT
information is looked-up during the deterministic admission control and runtime task mapping
operations. For example, the task mapping techniques proposed in this work, make use of the
information in the TMT (e.g. task WCET, priorities and mapped PE) to determine the worst-case
interference for a mapped task. Therefore, unlike in previous work [30, 15], our proposed resource
management technique is open-loop and does not require any feedback/monitoring mechanism.

H.R. Mendis, N. C. Audsley, and L. S. Indrusiak 01:9

3.4 Problem Statement

A deterministic admission controller (D-AC) decides whether to reject or admit a video stream,
based on the schedulability of the new and existing video streams. This enables the system to
give a hard real-time video stream decoding guarantee to the end-user. However, the D-AC tests
result in under-utilised system resources, due to the pessimistic nature of the RTA [23, 24]. With
proper task to PE mapping approaches, admission rates and system utilisation can be improved.
This is challenging as certain workload characteristics such as execution time, arrival patterns and
task and flow interferences are unknown a priori. We present heuristic based runtime mapping
approaches that consider the current state of the PEs and the task and flow blocking behaviour in
order to minimise communication and computation load of the processing elements. The goal is to
develop task mapping heuristics that will lower the worst-case response-time (WCRT) of the video
stream such that the D-AC will increase its admission rate, leading to better utilised systems.

4 Deterministic Admission Control

The deterministic admission controller (D-AC) is invoked when a new video stream request is
received. It performs RTA to determine if any of the new or existing/active video streams would
miss their end-to-end deadline, by admitting the new video stream. Algorithm 1 shows the steps
involved in D-AC decision process. Firstly, upon arrival of a new video stream, the online task
mapping heuristic is initiated to assign tasks and flows, processor and priority allocations (line
1). The task mapping details are then added temporarily to the TMT (line 2), to account for
the additional resource contention incurred by potentially admitting a new stream. If the video
is rejected, then the entries are removed (line 22). After the task mapping, the flows (and their
real-time properties) resulting from the mapping can be generated (line 3).

With the information above, the calculation of the WCRT of tasks and flows of all video
streams in the system can be initiated (lines 4–11 of Algorithm 1). Higher priority tasks and
flows of one stream can block lower priority tasks and flows of other active video streams. A flow
Msgi can have two types of interference sources – direct and indirect interference. The direct
interference flow set (denoted Sid) are higher priority flows that have at least one physical link
in common with the observed traffic-flow. The indirect flow set (denoted Sii) are higher-priority
flows with no shared links with the observed flow but share at least one link with a flow in Sid.
Equation (9) given in [28, 16] is used to calculate the upper bound for the worst-case network
latency Ri of each traffic flow (Msgi) in wormhole switching, fixed priority preemptive NoCs. The
task WCRT (ri in Equation (7), originally introduced in [3]) is used as release jitter JIi of message
flows. In Equation (7), hp(τi) is the set of higher priority tasks mapped on the same PE and we
have excluded the non-interfering task set ni(τi) due to the known precedence constraints. The
basic latency Ci of a message flow, calculated using Equation (8), is the flow transmission latency
when no flow contention is present. In Equation (8), Hops is the number of hops between source
and destination, RL is the link traversal time, numFlits is the payload size and HL denotes the
time needed to route a packet header. In Equation (9), we adjust Sid, such that non-interfering
flows ni(Msgi) of flow Msgi are excluded due to task precedence constraints. The terms tj and
Tj in Equation (7) and Equation (9) denote the task and flow periods respectively. The calculated
WCRT of tasks and flows are saved in TMT to be used to calculate the WCRT of the video
stream job.

LITES

01:10 Dynamic and Static Task Allocation for Hard Real-Time Video Stream Decoding on NoCs

Algorithm 1 Deterministic admission control pseudo-code.
Input: TMT : Runtime task mapping table;

Real-time task properties of new video stream request V Sk
Output: Boolean AC-decision : admit/reject

// Perform mapping and derive resulting flow set
1: Map all tasks τq ∈ V Sk to NoC PEs and assign priorities.
2: Temporarily insert V Sk task mapping details to TMT
3: Derive all valid periodic flows in system (for above mapping configuration) : FTtemp

// Calculate WCRT of each task and flow in TMT
4: for all τi ∈ TMT do
5: Find interference set hp(τi) (exclude ni(τi))
6: Calculate task WCRT – Equation (7), save value in TMT
7: end for
8: for all Msgi ∈ FTtemp do
9: Find interference sets Sid, Sii (exclude ni(Msgi))
10: Calculate task & flow WCRT – Equation (9) , save value in FTtemp
11: end for

// Calculate WCRT(JCPi) of all video streams
12: for all V Si ∈ TMT do
13: vsp : init. structure for all simple paths of V Si job
14: for all paths ∈ job(V Si) do
15: Calc. path response-time =

∑
Msgq∈path

Rq; save to vsp

16: end for
17: Critical path of V Si job : JCPi = max{vsp}

// Check video stream schedulability
18: if WCRT(JCPi) ≤ De2e then
19: ac_decision = TRUE

20: else
21: ac_decision = FALSE

22: Remove V Sk details from TMT
23: return ac_decision
24: end if
25: end for
26: return ac_decision

rn+1
i = ci +

∑
∀τj∈{hp(τi)\ni(τi)}

⌈
rni
tj

⌉
cj (7)

Ci = (HL×Hops) + (RL× (Hops− 1)) + (HL× numFlits) (8)

Rn+1
i = Ci +

∑
∀Msgj∈{Sid\ni(Msgi)}

⌈
Rni + rj + JIj

Tj

⌉
Cj (9)

In lines 12–24 of Algorithm 1, the WCRT of the critical path of the job WCRT(JCPi) is
calculated. Recall that the video streams use a fixed job structure, hence there are fixed number
of simple paths of the TG known a priori. For each path of a video stream job job(V Si) the
summation of the WCRT of all nodes and edges is calculated (line 15); note that the WCRT of
the source task is included in Ri as release-jitter rj . The job critical path JCPi is the path with
the maximum accumulated cost (line 17). A video stream is granted admission, iff the expression
given in Equation (10) is true for the new and all active video streams in the system (lines 18–24

H.R. Mendis, N. C. Audsley, and L. S. Indrusiak 01:11

in Algorithm 1); this guarantees that the worst-case timing requirements of all existing and new
video streams will be successfully met. It is important to note that the JCPi and WCRT (JCPi) are
properties of a given task-to-PE assignment, hence task mapping is integral to the D-AC decision.

WCRT (JCPi) ≤ De2e (10)

4.1 Exclusion of Non-Interfering Tasks and Flows
Precedence constraints of the tasks are taken in to account when calculating the task and flow
interference. For this analysis, it is assumed there is no overlap between consecutive jobs within the
same video stream. The end-to-end RTA given in [16] assumes a synchronous pipeline execution
mode, where multiple instances of the TG or portions of the TG (i.e. from a prior job in the same
video stream) can be simultaneously executing in the system. In this work, we assume there is no
overlap in execution between consecutive jobs of the same video stream. Hence, when deriving
the hp(τi) of a task, we can exclude dependent/successor tasks. Likewise, when calculating the
direct (Sid) and indirect (Sii) flow interference sets the task precedences are taken into account to
determine non-interfering flows.

We now formally present the non-interference set of tasks and flows with respect to precedence
constraints. Within the application TG, there exists different simple paths (also referred to as
paths). A simple path is a topologically ordered set of nodes and edges which does not have
repeating vertices and are a subset of the TG. For example, the simple path (P1⇒B9) consists
of the frame decoding tasks P1, P4, P7, B9 and the flows between them. We define two distinct
simple path types to and from a node in the TG. The ancestral simple path (expressed as (τ0⇒τi))
consists of path from root node (τ0) to the target node τi; the descendant simple path (expressed
as (τi⇒τ−1)) consists of the path from target node τi to any leaf node (τ−1) in the TG. For
example in the TG (Figure 1b), if we consider τi = P4, then the nodes I0 and P1 will lie on the
ancestral simple path, and the nodes P7 and one leaf node B8/9/10/11 will lie on the descendant
simple path. Hence, the non-interference set of a task τi can be defined as per Equation (11).
Similarly flows in ancestral and descendant simple paths will not interfere with the target flow as
given by Equation (12). Here, the (Msgi : τs → τd) component denotes the target flow Msgi and
its source and destination tasks τs and τd respectively.

ni(τi) = τk ∈ {τ0⇒τi ∪ τi⇒τ−1} (11)
ni(Msgi : τs → τd) = Msgk ∈ {τ0⇒τs ∪ τd⇒τ−1} (12)

5 Proposed Runtime Mapping Approaches

5.1 Least Worst-Case Remaining Slack (LWCRS)
The difference between the task deadline and worst-case computation cost (i.e. task slack), is
used as a primary metric when determining the task-to-PE mapping. The heuristic (Algorithm 2)
takes into account the worst-case blocking factor introduced by hp(τi) to determine the PE that
provides the least worst-case remaining slack (LWCRS) for a target task τi. The mappers make
use of the information stored in the runtime TMT (as described in Section 3.3), to determine the
worst-case blocking for a task. Algorithm 2, iterates through the provided PE_list and calculates
the following for each task-to-PE mapping: RemSlackt – the worst-case remaining slack (WCRS)
of τi – taking into account blocking induced by hp(τi) (line 7); RemSlacklp – the WCRS for each
of the lower-priority tasks already mapped on the PE (lp(τi)), taking into account the (ci) of τi
(line 10-11). A weight (w = RemSlackt +RemSlacklp) is then assigned to all PE in PE_list(line
14); the PE with the lowest w provides the LWCRS. The heuristic attempts to find the PE

LITES

01:12 Dynamic and Static Task Allocation for Hard Real-Time Video Stream Decoding on NoCs

Algorithm 2 _get_PE_least_slack pseudo-code – Find PE with the least worst-case remaining
slack.
Input: τi : target task; TMT : copy of the runtime task mapping table; PE_list : list of PEs to search
Output: tuple : (result PE, search result (boolean))
1: PE_packing = { }
2: for all PEi ∈ PElist do
3: // obtain following from TMT
4: Get MPT (PEi) : tasks already mapped on PEi
5: Get hp(τi), lp(τi) : high/low priority tasks in MPT (PEi)

// get worst-case remaining slack (WCRS) to target task
6: τslacki : task slack w.r.t estimated sub-task deadline
7: RemSlackt = τslacki −

∑
∀τj∈hp(τi)

cj

// get WCRS on low-pri mapped tasks
8: RemSlacklp = { }
9: for all τj ∈ lp(τi) do
10: RemSlackj = τslackj −

∑
∀τk∈hp(τj)

ck

11: Insert RemSlackj to RemSlacklp
12: end for

// populate local data structure
13: if RemSlackt > 0 and ∀x ∈ RemSlacklp|x > 0 then
14: PE_packing [PEi] = RemSlackt +

∑
RemSlacklp

15: end if
16: end for

// if none of the PEs in the list will provide a positive WCRS, then choose the PE with min. utilisation

17: if ∀x ∈ PE_packing|x > 0 then
18: PEj = index of MIN(PE_packing)
19: return (PEj , FALSE)
20: else
21: PEj = _get_PE_min_util(TMT, PE_list)
22: return (PEj , FALSE)
23: end if

mapping that will result in a tight temporal-fit, without missing the deadlines of τi nor any of the
already mapped tasks. Individual task deadlines are unknown, hence they are estimated via the
technique proposed in [20], where the cumulative remaining taskset slack is divided proportional
to ci. If a suitable PE with positive slack is not found, the algorithm will return the PE with
minimum utilisation.

5.2 LWCRS-Aware Mapping

The LWCRS-aware mapping approach (Algorithm 3), makes use of the LWCRS utility function
explained in Section 5.1 as well as tries to minimise distance between communicating tasks. The
primary objective of the algorithm is to tightly pack (i.e in the temporal domain) each task of the
job, into the PEs, in order to leave room for tasks of future video streams. The LWCRS mapper
will ensure that initial PEs in the NoC will be heavily utilised before selecting the next available
PE, whilst not violating the subtask deadlines. This increases the number of simultaneous video
streams that the system can handle without missing any deadlines. LWCRS-aware mapping is
a general purpose technique, that can be applied to map other types of applications that have
dependency/communication patterns.

H.R. Mendis, N. C. Audsley, and L. S. Indrusiak 01:13

Figure 3 Illustration of LWCRS mapping closest parent selection (left) and IPC mapping task grouping
(right).

The algorithm of LWCRS mapping is given in Algorithm 3. The algorithm uses a copy of the
runtime task mapping table TMT (maintained by the RM). The existing task-to-PE mappings
and mapped task properties are stored in the TMT. Algorithm 2 is used within Algorithm 3, to
find a PE which gives the LWCRS (lines 3 and 12). Firstly, the PE which gives the lowest slack is
selected to map the root node of the TG (line 3). For all other nodes in the TG, the algorithm
maps each node with an increasing hop distances distance from its closest parent (lines 9–17). A
nodes’ closest parent is defined as the node with the longest path from the root node. For example
in Figure 3, B5 has 2 parents – P4 and P1; however P4 is the closest parent due to the longer
path from the root node (therefore τPARENTB5 = P4). If no suitable PE with remaining slack is
found, the algorithm maps the target node to the PE with minimum utilisation (lines 17–20). The
algorithm attempts to reduce long-communication routes between communicating tasks in order
to reduce network congestion and communication costs. Each node in the TG is mapped onto a
PE that gives the LWCRS as well as close proximity to τPARENTi (lines 6–15). TMT is updated
in each iteration.

5.3 I and P Frames Combined Mapping (IPC)

Unlike the LWCRS-aware mapper, IPC exploits known application-specific communication and
dependency patterns. By inspecting the video job TG (Figure 3), we can see that the I and P
frames lie on the longest-path in the TG. We define longest-path as the path in the TG with
most number of non-repeating nodes (assuming edge weights are equal). Furthermore, the path
I0 → P1 → P4 → P7 is most often the critical path (CP) of a job, assuming B-frame decoding
tasks do not experience severe blocking. Figure 3 (right) illustrates the TG after the grouping of I
and P frames. Combining the I/P frames together has two distinct advantages : (a) it reduces the
NoC congestion/interference as fewer flows need to be injected into the NoC; (b) it reduces the
end-to-end response time of a job since the TG’s potential CP is executed as soon as possible,
without waiting for message flows. The IPC mapping technique works as follows. Firstly, the I
and P frame decoding tasks of the job are grouped and mapped to the lowest-utilised PE on the
platform. The B-frame decoding tasks are mapped as close to their parent tasks with a 2 hop
distance constraint. The LWCRS heuristic (Algorithm 2 described in Section 5.1) is used to select
a PE within the 2 hop distance region. B-frames have no inter-dependencies, hence they can be
processed in parallel. The B-frame decoding computation cost is lower than I/P frames, hence
they can occupy smaller temporal gaps in the PE task queues.

LITES

01:14 Dynamic and Static Task Allocation for Hard Real-Time Video Stream Decoding on NoCs

Algorithm 3 LWCRS-aware mapping heuristic algorithm pseudo-code.
Input: all tasks in the job (J0), TMT : copy of the runtime task mapping table
Output: task to processing element mapping : MPG (τi → PEi)
1: for all unmapped tasks : τi ∈ J0 do
2: if τi is root_node then
3: (PEi, found)=_get_PE_least_slack(τi, TMT, PEs)
4: Map (τi → PEi); Update TMT;
5: else
6: // obtain following from TMT
7: Get τPARENTi : parent task with max route cost.
8: Get PEPi : PE that τPARENTi was mapped onto

// get neighbours of increasing hop_counts
9: for hc = 1 to MAX_HOPS do
10: N_PEPi = _get_neighbours(PEPi , hc)
11: Append PEPi into N_PEPi
12: (PEi, found) = _get_PE_least_slack(τi, TMT, N_PEPi)
13: if found is TRUE then
14: Map (τi → PEi); Update TMT;
15: break loop; Go to step 1;
16: end if
17: end for

// if no suitable PE is found, select closest min. util. PE
18: if a suitable PE is NOT found then
19: N_PEPi = _get_neighbours(PEPi , hop_count = 1)
20: PEi = _get_PE_min_util(TMT, N_PEPi)
21: Map (τi → PEi); Update TMT
22: end if
23: end if
24: end for
25: return TMT

6 Static Hard Real-Time Mapper

Static-mapping algorithms are used for multiprocessor systems when the application characteristics
and workloads are known at design-time. To evaluate our heuristic based dynamic mapping
techniques, we compare against a static search-based hard real-time (HRT) mapper as introduced
by Sayuti et al. [26]. We adapt and modify this static mapper to suit our application and platform
model. In this particular technique, the authors use a genetic algorithm (GA) based optimisation
strategy to optimise the task to PE mapping approach. GAs have been used in the past to optimise
task allocation for multi/many-core systems [2, 32]; however the work done in [26] was the first to
explore task mapping of hard real-time tasks whilst optimising multiple objectives. GAs start
with a random initial population of candidate solutions and gradually evolves the populations
towards the global optimum using a given fitness statistic. In Sayuti et al. [26] the GA individual
is represented by an integer-based chromosome structure indicating the PE mapping for each task.
As illustrated in Figure 4, their algorithm uses simple evolutionary GA pipeline constructs such
as single-point crossover, bit-flip mutation and binary tournament selection to generate a new
population for each generation. They use elitism to ensure the best individual of each generation is
advanced to the next generation. A multiple objective fitness function (application schedulability
– Equation (9) and power dissipation for every individual mapping solution) is used to guide a
random search towards solutions of increasing fitness. It is important to note however that due to
the random nature of solution development, GAs do not guarantee optimality even when it may
be reached.

H.R. Mendis, N. C. Audsley, and L. S. Indrusiak 01:15

Figure 4 The GA pipeline from [26] adapted and integrated to the experimental design flow.

This static HRT mapper is purely used as an upper baseline, to evaluate the proposed heuristic
based mapping techniques. If workload characteristics are known at design time, we can use
a static HRT mapper to find a mapping configuration that will optimise our chosen metrics.
This obtained experimental upper bound is valuable to assess the performance of the dynamic
mappers results for a given workload. Dynamic mappers rely on fast heuristics and do not have
complete knowledge of the workload at runtime; hence an indication of a good heuristic is one
which shows results as close as possible to the upper-bound. However, recall that static mappers
not only rely on full knowledge of the workload, but also incur a considerable runtime execution
overhead. In this work we show via experimentation that even for small NoCs, under low workload
conditions the static mapper will take up to several hours to find a reasonably optimised mapping
configuration. The computation complexity of the fitness function will increase exponentially as
the workload increases. For these reasons, GA-based static HRT mappers are not suitable for use
in runtime mapping.

The GA-based HRT mapping optimisation given in [26] has been significantly, adapted to
be able to integrate it with our application model and metrics. The red shaded components in
Figure 4 indicate the changes made to the GA and the design flow with respect to the GA in
[26]. In the experimental design flow, the same workload is first generated and input into the GA
pipeline to obtain mapping solutions. The final GA mapping solutions are then taken and used
in the system simulator to obtain performance measurements and compare against the mapping
results provided by the dynamic mappers. The following sub-sections outline the adaptations
done to the GA design in [26].

6.1 Points-Based GA Fitness Function

Unlike in [26] we are concerned with the end-to-end (E2E) schedulability of an entire video stream
rather than individual tasks/flows. We use a novel points-based single-objective fitness function
as described in Algorithm 4. The loop in lines 3–12 evaluates and accumulates the points for
each V Si in the workload (WL). Video streams that have a higher WCRT(JCPi) than their
deadline are given a positive point based on the amount of which they have missed their deadline
(i.e. WCRT (JCPi)−De2e). On the other hand video streams that are fully schedulable are awarded

LITES

01:16 Dynamic and Static Task Allocation for Hard Real-Time Video Stream Decoding on NoCs

Algorithm 4 Points-based GA fitness function.
1: points = 0 //Calculate points for all videos in workload (WL)
2: for all V Si ∈WL do
3: Calculate WCRT of all sporadic tasks and flows of V Si
4: Find JCPi of V Si
5: if JCPi ≥ De2e then
6: // unschedulable
7: points += 1× WCRT(JCP

i)−De2e

De2e

8: else
9: // fully schedulable
10: points += −1× De2e−WCRT(JCP

i)
De2e

11: end if
12: end for
13: return points

a negative point relative to their slack (i.e. De2e −WCRT (JCPi)). The ratios in line 7 and 10 of
Algorithm 4 indicates the extent to which a video stream is unschedulable/schedulable. Individuals
with negative points have a higher fitness score than those with positive points. This points-based
fitness scoring system would enable the GA to pick individuals with task mappings that have lower
distributions of WCRT (JCPi). For example consider the following scenario. Two GA individuals,
A and B have equal number of fully schedulable streams and one unschedulable stream each, but
they have fitness scores −1.65 and −1.15 respectively. This indicates that A’s unschedulable video
missed its deadline by a lower margin than B’s unschedulable video. This differentiation can not
be made if an integer based fitness score is used, where both these individuals would be ranked
equally.

6.2 Application-Specific Adaptations

In addition to the novel fitness function, we introduce certain extensions to the application model
in [26] to accommodate our application specific task-model. For example, precedence constraints
were taken into account when calculating the task/flow interference sets (Section 4.1). Memory
read/write traffic has been incorporated such that for each mapping configuration (i.e. each
chromosome) tasks-to-MMC selection (Section 3.2). Redundant flows are removed for each
chromosome when multiple children are mapped to the same PE (Section 3.1).

6.3 GA Design Optimisations

Due to the extensions above, the fitness evaluation of the GA becomes more complex. To alleviate
this issue, we limit the recursion depth of the WCRT analysis in Equation (9). Furthermore,
a hash table of task mapping solutions and corresponding fitness scores are maintained and
looked-up to avoid having to evaluate the same gene more than once. Subsequently, the GA
evolution cycle terminates immediately if it encounters an individual with an acceptable mapping
solution. Such a mapping solution will result in all the admitted video streams to be schedulable;
in other words, the maximum WCRT (JCPi) of all the video stream is less than the E2E deadline:

max
V Si∈WL

(WCRT (JCPi)) < De2e

H.R. Mendis, N. C. Audsley, and L. S. Indrusiak 01:17

7 Evaluation

7.1 Experiment Design
We wish to evaluate the performance of the proposed task mapping schemes in terms of admission
rates and PE utilisation. Experimental evaluation is performed through a discrete-event, abstract
simulation of a 3x3 NoC platform with the characteristics described in Section 3. The PEs
are assumed to be operating at 200MHz and the NoC frequency is set to 10MHz with 7 clock-
cycle routing latency and 16 byte link width. A lower NoC frequency (i.e. low bandwidth) is
assumed, in order to induce an experimental condition with a reasonable amount of network
utilisation/congestion. The NoC and the PEs use priority-preemptive arbitration and scheduling
respectively. The light-weight NoC simulation component described in [17] is used to model the
NoC communication traffic and interference patterns. The D-AC in Section 4 is used for all the
simulation runs of this experiment.

Synthetic abstract video streams are used as workloads for all experiments as described by the
application model in Section 3.1. The task execution costs are calculated using the block-level
frame decoding cost model described in Section 3.1.1. All synthetic streams have a fixed frame
rate of 25fps and 12 frame GoPs. The inter-arrival time of the video stream jobs are uniformly
distributed between 1.0×De2e and 1.3×De2e.

7.1.1 Varying Workload
The total workload introduced to the system can be defined as a summation of the resolutions of
all the video streams admitted and active in the system, as shown in Equation (13). Mapping
approaches for a range of workload values are evaluated; starting from a single video stream with
230×180 resolution to 9 parallel video streams with 720×576 resolution. Each experiment contains
30 simulation runs with different random seeds, which results in varying video stream arrival
patterns and task execution costs.

Total workload value =
∑

∀V Si∈WL

[frame_h(vi)× frame_w(vi)] (13)

7.1.2 Varying Communication-to-Computation Ratio and NoC Size
The mapping techniques explored in this paper use runtime heuristics such as communication path
load, hop-distance and PE utilisation. Hence, it is interesting to explore the performance of these
techniques, when the application communication-to-computation ratio (CCR) varies. For example,
if an application is computation-bound (low CCR) then standard load-balancing heuristics may
be sufficient. On the other hand if the application is communication-bound (high CCR) then
communication-aware heuristics may perform better. Several previous work in the state-of-the-art
in dynamic task mapping [21, 1] does not consider the influence of varying CCR in their results,
which may lead to biased results.

A single video stream can be represented by a sporadic TG as shown in Figure 1b. Thus,
the CCR of a single video stream can be calculated as the ratio between the total cost of the
communication edges over the total task cost in the TG, as shown in Equation (14). Here,
the communication basic latency and the task WCET are the communication and task costs
respectively. The CCR of a workload can then be defined as the mean CCR of all the parallel
video streams included in the workload (Equation (15)). To change the CCR, we keep the task
computation cost constant and gradually vary the NoC frequency. To evaluate the scalability of
the proposed mappers we perform experiments under different NoC sizes and CCR combinations.

LITES

01:18 Dynamic and Static Task Allocation for Hard Real-Time Video Stream Decoding on NoCs

Data from 30 uniquely seeded simulation runs are obtained. Each run consists of a fixed number
of simultaneous video streams but with different arrival patterns and varying task execution costs.

CCR(V Si)︸ ︷︷ ︸
CCR of a single
video stream

= Total edges cost
Total nodes cost =

∑
∀e∈edges

Ci∑
∀τi∈Ji

ci
(14)

CCRWL =

∑
∀V Si∈WL

CCR(V Si)

|V S|
(15)

7.1.3 Metrics
For each simulation run we measure the video admission-rates and PE and NoC busy times. The
admission rate is calculated as a ratio between the admitted video streams over the total video
stream decoding requests. A D-AC ensures all admitted videos will be fully schedulable. The
percentage PE busy time (also referred to as PE utilisation) is measured as the ratio between the
total active (busy) time of all PEs in the system over the total simulation time. The percentage
NoC busy time (also referred to as NoC utilisation) is the ratio between the total active time of
the NoC links over the total simulation time.

The objective is to increase the admission rate of the system and thereby decrease the PE
idle-time. Higher admission rates using lower NoC usage is advantageous because it can potentially
lead to lower power consumption.

7.2 Baseline Mapping Heuristics
7.2.1 Dynamic Mapping Heuristics
The path-load based best-neighbour (BN) heuristic defined in [8], and the pre-processing (PP)
based algorithm defined in [21] are used as baselines. The original BN algorithm was adapted to
support multiple tasks and have used PE utilisation to determine available PEs, while maintaining
path-load as the main heuristic. Since the dependency pattern of the tasks are assumed to be
known beforehand, the pre-processing stage of the PP algorithm is performed at design-time.
While PP takes into account both the communication and the computation properties of the tasks
the BN heuristic focuses mainly on communication link congestion. Evaluation is also performed
against two load-balancing task allocation heuristics which attempt to evenly distribute the load of
the application across available PEs. The lowest utilised (LU) heuristic iterates through all tasks
in the job and maps each task to the analytical lowest utilised PE. The worst-case utilisation of a
PE is measured as given in Equation (16), where MPT (PEi) denotes all tasks mapped on PEi.
Since we do not know the actual execution cost of the tasks, we use the worst-case computation
cost (ci). At the end of each iteration the respective local mapping table is updated with the new
task-to-PE mapping. Finally, the least mapped (LM) heuristic, selects the PE with the minimum
number of mapped tasks according to the runtime task-mapping table.

U =
∑

∀τi∈MPT (PEi)

[
ci
ti

]
(16)

7.2.2 Static GA-Based HRT Mapper
The GA-based HRT mapper (GA-MP) described in Section 6 is used to act as an upper-baseline
for our proposed task mapping techniques. The workload consisting of multiple video decoding

H.R. Mendis, N. C. Audsley, and L. S. Indrusiak 01:19

streams are generated and fed into both the GA-MP and the abstract simulator (Figure 4).
Task-to-PE mappings solutions obtained via the GA-MP are then evaluated in the discrete-event
abstract simulator. The performance of the static mappings obtained from the GA-MP are then
compared with the dynamic mapping strategies. The crossover and mutation probability rates are
important parameters in the GA-pipeline and for all our experiments we use (0.5, 0.01) respectively.
Higher workloads will be executed with a larger number of GA-evaluations to suit the increasing
complexity of the search problem.

7.3 Discussion of Experimental Results

7.3.1 Dynamic Mapper Performance Under Workload Variation
Figure 5 shows the performance of the different task-mapping heuristics in terms of mean admission
rate and mean PE and NoC busy time, as the level of the workload is increased. Results obtained
by using the dynamic task mappers (i.e. IPC, LWCRS, PP, BN, LM and LU) are first discussed.
The admission rates for all mapping types decrease as the workload is increased, because for high
workloads the AC cannot guarantee the timing requirements will be met, and hence rejections
will be made. Using the IPC and LWCRS task mapping heuristics the WCRT of the jobs can be
reduced, thus allowing the D-AC to admit a higher number of video streams than the baseline
mappers. When comparing with the baseline heuristics, the proposed IPC and LWCRS dynamic
mapping heuristics provide a 10%–20% improvement in low workloads, and an average of 5%
improvement in high workloads, for admission rates. It is important to note that even though
IPC outperforms LWCRS, IPC is an application specific heuristic which makes use of known
characteristics of the video stream.

The PP heuristic outperforms the other baselines (BN, LM, LU) because it attempts to balance
computation and communication by grouping the tasks in a job. The admission rates when using
BN drops lower than LU and LM in the highest workload levels because the path-load heuristic
alone is not sufficient. Higher admission rates result in more tasks being processed by the system,
leading to increased PE utilisation as depicted in Figure 5(middle). However, the PE utilisation is
a function of both the number of video streams admitted and their spatial resolution (e.g. 4 high
resolution streams will yield a higher utilisation than 5 lower resolutions streams). With respect
to the dynamic mapping heuristics, we can see that as the workload increases, the PE utilisation
also increases; however in workload level 225.4 × 104 we see a decline because the admission
rates are low as well as the admitted video streams are of a lower-resolution. The proposed IPC
and LWCRS heuristics outperform the baseline dynamic mappers, except in the case where PP
performs better than LWCRS at workload level 189.8× 104, where the admitted video streams by
PP is of higher resolution than LWCRS. Across the different workloads, the proposed dynamic
mapping methods show an improvement of 5%–15% in PE busy time for workloads over 83.1× 104

The NoC busy time results shown in Figure 5(bottom) complement the PE busy time results
and offers further insight into the mapping behaviour. Lower PE busy times indicate the PEs are
busy waiting for data to arrive at the local buffers, thus increasing the NoC usage. Out of the
proposed dynamic mappers, IPC utilises the NoC more than LWCRS. LWCRS produces a tighter
grouping of tasks than IPC resulting in lower number of PEs being used. Tightly grouping tasks
reduces the number of data flows but does not reduce memory flows; therefore now memory traffic
becomes a bottleneck, primarily congesting the local-link. Hence, LWCRS could still have a higher
WCRT (JCPi), leading to reduced admission rates compared with IPC. In IPC, because 4 tasks in
the job (i.e. I0, P1, P4, P7) are always mapped together, the algorithm will try to find other PEs
to map the B-frame tasks. This leads to more PEs being used than LWCRS and thus a higher
NoC busy time than LWCRS. LU, LM mappers have the highest NoC usage due to the sparse

LITES

01:20 Dynamic and Static Task Allocation for Hard Real-Time Video Stream Decoding on NoCs

Figure 5 Workload vs. (Top: Admission rate; Middle: PE busy time; Bottom: NoC busy time).

distribution of tasks on all PEs. PP shows similar NoC usage to IPC, but it does not consider
blocking, hence, it might place the grouped tasks to PEs that might cause higher interference.

7.3.2 Static Mapper Performance Under Workload Variation
In the Figure 5, GA-MP results denote the task mapping using the genetic algorithm based
static hard real-time mapper. The number of GA evaluations taken to obtain these results are
given in Figure 5(top-right table). GA-MP has full knowledge of the task characteristics and
is used as an upper baseline. The trend of the results closely match the dynamic mappers (i.e.
admission rates decrease and PE busy times increase as the workload is increased). Even though
the GA-MP outperform all the dynamic mappers at every workload level, we notice a gradual
decrease in relative improvement as the workload level increases (e.g. at workload 225.4× 104 the
IPC and GA-MP show comparable mean admission rates). Under certain conditions the GA-MP
and the proposed dynamic mappers show similar results in admission rates, but the GA-MP
has higher PE busy times (e.g. at workload 143.4 × 104 LWCRS show similar admission rates
but poor PE utilisation). This is because in certain scenarios the GA-MP obtains a mapping
which rejects lower resolution video streams but accepts higher resolution streams, thus giving
rise to higher PE busy times. We noticed that GA-MP uses only a few cores per job (on average
2 or 3 cores). Furthermore, the GA tries to map children of the same parent together on the
same PE, thus avoiding redundant data traffic flows. Due to these reasons, the GA-MP mapping
significantly reduces the number of flows injected into the NoC. This reduces the NoC busy time,
flow contention and therefore leading to higher admission rates.

As the workload increases, the number of the tasks and flows as well as their computation
and communication costs increase; hence increasing the complexity of the optimisation problem.
To compensate, the number of evaluations also needed to be increased to obtain a reasonable
performance level. To illustrate this, the GA-based mapping optimisation is executed for the
ten different workloads with a fixed generation and population size (500, 200 respectively). The
search terminates when an acceptable mapping solution is found. Results (Figure 6) show that

H.R. Mendis, N. C. Audsley, and L. S. Indrusiak 01:21

Figure 6 GA-MP performance analysis for different workload levels.

the total execution time (red bars) of the GA increases exponentially as the workload level is
increased and all except the lowest workload level show an execution time in the order of tens of
hours. Workload 189.8× 104 shows a lower execution time, because the number of parallel video
streams are 6 even though the workload value is higher. Note that there is a sudden increase in
GA execution time from 112.4× 104 to 143.4× 104. This is because the number of video streams
have increased from 5 to 7 and also because the GA does not terminate early, as no solution can
be found for the higher workload within the fixed number of evaluations. Hence, both the number
of parallel video streams and their resolutions are directly related to the GA execution time. The
GA was able to find a satisfactory solution for workloads up to 112.4× 104, however a solution
was not found for the larger workloads. Similar to the execution time, we see that the lowest
achieved maxVSi∈WL(WCRT (JCPi)) gets worse as the workload level increases; showing that as
the search space and complexity increases the GA evaluations become computationally expensive
as well as is unable to find a solution within a reasonable time frame.

7.3.3 Scalability and CCR Variation Evaluation

Figure 7 shows the performance variation in the different dynamic mapping techniques when
evaluating for scalability and different communication loads. The y-axis of each subplot in Figure 7
displays the normalised calculated analytical WCRT(JCPi) of the video streams for different
mapping techniques under different NoC sizes and varying CCR values. CCR < 1.0 denote
computation-bound workloads while CCR > 1.0 denotes communication-bound workloads. In this
experiment, we disable the admission-controller, hence all generated video streams are admitted;
still, lower analytical WCRT (JCPi) distributions are preferred as this will lead to higher number of
video streams being schedulable. The level of workload is kept proportional to the number of PEs
in the platform, such that on average (over 30 seeded runs), the workload=2.2× 105 per PE. The
analytical WCRT (JCPi) of all mappers increase as the CCR increases, since the communication
latency has effectively increased. LU and LM are computation-centric mappers, and therefore
their performance deteriorates significantly under higher CCR conditions. Furthermore, LU and
LM may map communicating tasks further apart as the NoC size increases, which results in a
broader distribution of data points. BN does not group tasks together, but takes into account the

LITES

01:22 Dynamic and Static Task Allocation for Hard Real-Time Video Stream Decoding on NoCs

Figure 7 Normalised analytical WCRT(JCPi) obtained using different dynamic mapping approaches,
under varying CCR and NoC sizes.

communication channel load as a metric; hence, it performs better than LM and LU in higher
CCRs but still shows a higher WCRT(JCPi) distribution when compared to PP, LWCRS and
IPC. The proposed IPC mapping method perform relatively better than all the baselines in all
conditions while the proposed LWCRS method performs better than BN, LU and LM. The PP
heuristic which attempts to balance computation and communication, is a strong competitor to
the proposed mapping techniques. It performs better than LWCRS for CCR > 0.5 due to better
grouping of the TG, but still shows a slightly higher WCRT(JCPi) distribution when compared
with IPC. However, the lower bottom whiskers of LWCRS tells us that in certain workload
conditions it can produce a lower WCRT (JCPi) than PP.

H.R. Mendis, N. C. Audsley, and L. S. Indrusiak 01:23

8 Conclusion

This paper formally describes a multi-stream video decoding application model and an algorithm
for a deterministic admission controller, which uses video stream schedulability tests. A novel point-
based, WCRT-aware fitness function for a design-time hard real-time task mapper is presented and
compared against dynamic mapping techniques. This work describes two application and platform
aware runtime task mapping strategies, that attempt to decrease the end-to-end response-time of
the video stream decoding jobs. The first (LWCRS) technique attempts to tightly pack tasks in
the temporal domain by using a novel worst-case remaining slack-aware metric of the tasks. The
second technique (IPC) groups the I and P frame decoding tasks and maps them to a single PE,
and the remaining tasks according to LWCRS. The techniques improve the admission rates of a
hard real-time deterministic admission controller and thereby increasing system utilisation. We
also present extended evaluation of these two mappers against other existing runtime mappers,
under varying platform sizes and communication-to-computation loads.

Simulations carried out reflect that the proposed dynamic task mappers show an improvement
of about 10%–20% in mean admission rates and an improvement of about 5%–15% in PE busy
times, when compared against other existing heuristic based dynamic task-mappers. Furthermore,
better admission rates and PE utilisation can be obtained at a lower usage of the NoC, which
could potentially lead to lower power consumption in the system. The results from the static hard
real-time GA-MP mapping shows that for lower workloads a suitable mapping solution can be
achieved within a reasonable amount of time (3 hours on average). However, for larger workloads
the GA-MP can take on average 100 hours to achieve a task-to-PE mapping which is only 5%–10%
better than the proposed dynamic mappers.

Results also show that mapping heuristics that rely purely on communication/computation
load does not scale well as the NoC size and workload increases. This work shows how the
dynamic mappers behave under different CCR workloads. LWCRS and IPC group tasks together
to minimise communication and to reduce the computation interference; they perform significantly
better than the BN, LU and LM baselines and marginally better than the PP mapping technique
under high CCR workloads. By taking into account task and flow blocking factors, better mapping
decisions can be achieved. For communication and memory bound applications such as parallel
video stream decoding, the performance results of the mapping techniques at higher orders of
CCR are of particular interest. Potential further work in this area will be to explore combined
priority assignment and mapping techniques to reduce the worst-case response time further.

References
1 Hazem Ismail Abdel Aziz Ali, Luís Miguel Pinho,

and Benny Akesson. Critical-Path-First based al-
location of real-time streaming applications on 2D
mesh-type multi-cores. In 2013 IEEE 19th Inter-
national Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA
2013, Taipei, Taiwan, August 19-21, 2013, pages
201–208. IEEE Computer Society, 2013. doi:10.
1109/RTCSA.2013.6732220.

2 Giuseppe Ascia, Vincenzo Catania, and Maurizio
Palesi. A Multi-objective Genetic Approach to
Mapping Problem on Network-on-Chip. J. UCS,
12(4):370–394, 2006. doi:10.3217/jucs-012-04-
0370.

3 Neil C. Audsley, Alan Burns, Mike M. Richard-
son, Ken Tindell, and Andy J. Wellings. Apply-
ing new scheduling theory to static priority pre-

emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993. doi:10.1049/sej.1993.0034.

4 Mohamed A. Bamakhrama and Todor P. Stefanov.
On the hard-real-time scheduling of embedded
streaming applications. Design Autom. for Emb.
Sys., 17(2):221–249, 2013. doi:10.1007/s10617-
012-9086-x.

5 Evgeny Bolotin, Israel Cidon, Ran Ginosar, and
Avinoam Kolodny. QNoC: QoS architecture and
design process for network on chip. Journal of
Systems Architecture, 50(2-3):105–128, 2004. doi:
10.1016/j.sysarc.2003.07.004.

6 Giorgio C. Buttazzo, Enrico Bini, and Yifan Wu.
Partitioning Real-Time Applications Over Mul-
ticore Reservations. IEEE Trans. Industrial In-
formatics, 7(2):302–315, 2011. doi:10.1109/TII.
2011.2123902.

LITES

http://dx.doi.org/10.1109/RTCSA.2013.6732220
http://dx.doi.org/10.1109/RTCSA.2013.6732220
http://dx.doi.org/10.3217/jucs-012-04-0370
http://dx.doi.org/10.3217/jucs-012-04-0370
http://dx.doi.org/10.1049/sej.1993.0034
http://dx.doi.org/10.1007/s10617-012-9086-x
http://dx.doi.org/10.1007/s10617-012-9086-x
http://dx.doi.org/10.1016/j.sysarc.2003.07.004
http://dx.doi.org/10.1016/j.sysarc.2003.07.004
http://dx.doi.org/10.1109/TII.2011.2123902
http://dx.doi.org/10.1109/TII.2011.2123902

01:24 Dynamic and Static Task Allocation for Hard Real-Time Video Stream Decoding on NoCs

7 William J. Dally and Brian Towles. Route Packets,
Not Wires: On-Chip Interconnection Networks. In
Proceedings of the 38th Design Automation Con-
ference, DAC 2001, Las Vegas, NV, USA, June
18-22, 2001, pages 684–689. ACM, 2001. doi:
10.1145/378239.379048.

8 Ewerson Luiz de Souza Carvalho, Ney Laert Vilar
Calazans, and Fernando Gehm Moraes. Dynamic
Task Mapping for MPSoCs. IEEE Design & Test
of Computers, 27(5):26–35, 2010. doi:10.1109/
MDT.2010.106.

9 Michael Ditze, Peter Altenbernd, and Chris
Loeser. Improving Resource Utilization for
MPEG-4 Decoding in Embedded End-Devices.
In Vladimir Estivill-Castro, editor, Computer
Science 2004, Twenty-Seveth Australasian Com-
puter Science Conference (ACSC2004), Dunedin,
New Zealand, January 2004, volume 26 of
CRPIT, pages 133–142. Australian Computer So-
ciety, 2004. URL: http://crpit.com/confpapers/
CRPITV26Ditze.pdf.

10 Piotr Dziurzanski, Amit Kumar Singh, and
Leandro Soares Indrusiak. Feedback-Based Ad-
mission Control for Hard Real-Time Task Alloc-
ation Under Dynamic Workload on Many-Core
Systems. In Frank Hannig, João M. P. Cardoso,
Thilo Pionteck, Dietmar Fey, Wolfgang Schröder-
Preikschat, and Jürgen Teich, editors, Architec-
ture of Computing Systems – ARCS 2016 – 29th
International Conference, Nuremberg, Germany,
April 4-7, 2016, Proceedings, volume 9637 of Lec-
ture Notes in Computer Science, pages 157–169.
Springer, 2016. doi:10.1007/978-3-319-30695-
7_12.

11 ETSI. ETSI TS 101 154 v1.10.1 (2011-06) – di-
gital video broadcasting (DVB) – specification for
the use of video and audio coding in broadcast-
ing applications based on the MPEG-2 transport
stream. Technical report, European Telecommu-
nications Standards Institute (ETSI), June 2011.

12 Mohammad Abdullah Al Faruque and Jörg Hen-
kel. QoS-supported On-chip Communication for
Multi-processors. International Journal of Par-
allel Programming, 36(1):114–139, 2008. doi:10.
1007/s10766-007-0039-0.

13 Georgia Giannopoulou, Nikolay Stoimenov,
Pengcheng Huang, Lothar Thiele, and Ben-
oît Dupont de Dinechin. Mixed-criticality
scheduling on cluster-based manycores with
shared communication and storage resources.
Real-Time Systems, 52(4):399–449, 2016.
doi:10.1007/s11241-015-9227-y.

14 Blake Hannaford, Jacob Rosen, Diana C.W. Fried-
man, Hawkeye H. I. King, Phillip Roan, Lei Cheng,
Daniel Glozman, Ji Ma, Sina Nia Kosari, and Lee
White. Raven-II: An Open Platform for Surgical
Robotics Research. IEEE Trans. Biomed. Engin-
eering, 60(4):954–959, 2013. doi:10.1109/TBME.
2012.2228858.

15 Jia Huang, Andreas Raabe, Christian Buckl, and
Alois Knoll. A workflow for runtime adaptive
task allocation on heterogeneous MPSoCs. In
Design, Automation and Test in Europe, DATE
2011, Grenoble, France, March 14-18, 2011, pages
1119–1134. IEEE, 2011. doi:10.1109/DATE.2011.
5763189.

16 Leandro Soares Indrusiak. End-to-end schedulab-
ility tests for multiprocessor embedded sys-
tems based on networks-on-chip with priority-
preemptive arbitration. Journal of Systems Ar-
chitecture – Embedded Systems Design, 60(7):553–
561, 2014. doi:10.1016/j.sysarc.2014.05.002.

17 Leandro Soares Indrusiak, James Harbin, and
Osmar Marchi dos Santos. Fast Simulation of
Networks-on-Chip with Priority-Preemptive Arbit-
ration. ACM Trans. Design Autom. Electr. Syst.,
20(4):56:1–56:22, 2015. doi:10.1145/2755559.

18 Damir Isovic and Gerhard Fohler. Quality Aware
MPEG-2 Stream Adaptation in Resource Con-
strained Systems. In 16th Euromicro Conference
on Real-Time Systems (ECRTS 2004), 30 June –
2 July 1004, Catania, Italy, Proceedings, pages 23–
32. IEEE Computer Society, 2004. doi:10.1109/
ECRTS.2004.29.

19 Damir Isovic, Gerhard Fohler, and Liesbeth Stef-
fens. Timing Constraints of MPEG-2 Decoding for
High Quality Video: Misconceptions and Realistic
Assumptions. In 15th Euromicro Conference on
Real-Time Systems (ECRTS 2003), 2-4 July 2003,
Porto, Portugal, Proceedings, pages 73–82. IEEE
Computer Society, 2003. doi:10.1109/EMRTS.2003.
1212730.

20 Ben Kao and Hector Garcia-Molina. Deadline As-
signment in a Distributed Soft Real-Time System.
IEEE Trans. Parallel Distrib. Syst., 8(12):1268–
1274, 1997. doi:10.1109/71.640019.

21 Samarth Kaushik, Amit Kumar Singh, and Tham-
bipillai Srikanthan. Computation and commu-
nication aware run-time mapping for NoC-based
MPSoC platforms. In IEEE 24th International
SoC Conference, SOCC 2011, Taipei, Taiwan,
September 26-28, 2011, pages 185–190. IEEE,
2011. doi:10.1109/SOCC.2011.6085078.

22 Cor Meenderinck, Arnaldo Azevedo, Ben H.H.
Juurlink, Mauricio Alvarez, and Alex Ramírez.
Parallel Scalability of Video Decoders. Signal
Processing Systems, 57(2):173–194, 2009. doi:
10.1007/s11265-008-0256-9.

23 Hashan Roshantha Mendis, Neil C. Audsley, and
Leandro Soares Indrusiak. Task allocation for
decoding multiple hard real-time video streams
on homogeneous NoCs. In 13th IEEE Interna-
tional Conference on Industrial Informatics, IN-
DIN 2015, Cambridge, United Kingdom, July 22-
24, 2015, pages 246–251. IEEE, 2015. doi:10.
1109/INDIN.2015.7281742.

24 Hashan Roshantha Mendis, Leandro Soares In-
drusiak, and Neil C. Audsley. Predictability and
Utilisation Trade-off in the Dynamic Management
of Multiple Video Stream Decoding on Network-on-
Chip based Homogeneous Embedded Multi-cores.
In Mathieu Jan, Belgacem Ben Hedia, Joël Goos-
sens, and Claire Maiza, editors, 22nd Interna-
tional Conference on Real-Time Networks and Sys-
tems, RTNS’14, Versaille, France, October 8-10,
2014, page 161. ACM, 2014. doi:10.1145/2659787.
2659826.

25 Marcelo Ruaro, Guilherme A. Madalozzo, and
Fernando Gehm Moraes. A hierarchical LST-based
task scheduler for NoC-based MPSoCs with slack-
time monitoring support. In 2015 IEEE Inter-
national Conference on Electronics, Circuits, and

http://dx.doi.org/10.1145/378239.379048
http://dx.doi.org/10.1145/378239.379048
http://dx.doi.org/10.1109/MDT.2010.106
http://dx.doi.org/10.1109/MDT.2010.106
http://crpit.com/confpapers/CRPITV26Ditze.pdf
http://crpit.com/confpapers/CRPITV26Ditze.pdf
http://dx.doi.org/10.1007/978-3-319-30695-7_12
http://dx.doi.org/10.1007/978-3-319-30695-7_12
http://dx.doi.org/10.1007/s10766-007-0039-0
http://dx.doi.org/10.1007/s10766-007-0039-0
http://dx.doi.org/10.1007/s11241-015-9227-y
http://dx.doi.org/10.1109/TBME.2012.2228858
http://dx.doi.org/10.1109/TBME.2012.2228858
http://dx.doi.org/10.1109/DATE.2011.5763189
http://dx.doi.org/10.1109/DATE.2011.5763189
http://dx.doi.org/10.1016/j.sysarc.2014.05.002
http://dx.doi.org/10.1145/2755559
http://dx.doi.org/10.1109/ECRTS.2004.29
http://dx.doi.org/10.1109/ECRTS.2004.29
http://dx.doi.org/10.1109/EMRTS.2003.1212730
http://dx.doi.org/10.1109/EMRTS.2003.1212730
http://dx.doi.org/10.1109/71.640019
http://dx.doi.org/10.1109/SOCC.2011.6085078
http://dx.doi.org/10.1007/s11265-008-0256-9
http://dx.doi.org/10.1007/s11265-008-0256-9
http://dx.doi.org/10.1109/INDIN.2015.7281742
http://dx.doi.org/10.1109/INDIN.2015.7281742
http://dx.doi.org/10.1145/2659787.2659826
http://dx.doi.org/10.1145/2659787.2659826

H.R. Mendis, N. C. Audsley, and L. S. Indrusiak 01:25

Systems, ICECS 2015, Cairo, Egypt, December 6-
9, 2015, pages 308–311. IEEE, 2015. doi:10.1109/
ICECS.2015.7440310.

26 M. Norazizi Sham Mohd Sayuti and
Leandro Soares Indrusiak. Real-time low-
power task mapping in Networks-on-Chip. In
IEEE Computer Society Annual Symposium on
VLSI, ISVLSI 2013, Natal, Brazil, August 5-7,
2013, pages 14–19. IEEE Computer Socity, 2013.
doi:10.1109/ISVLSI.2013.6654616.

27 Andreas Schranzhofer, Jian-Jia Chen, and Lothar
Thiele. Dynamic Power-Aware Mapping of Ap-
plications onto Heterogeneous MPSoC Platforms.
IEEE Trans. Industrial Informatics, 6(4):692–707,
2010. doi:10.1109/TII.2010.2062192.

28 Zheng Shi, Alan Burns, and Leandro Soares In-
drusiak. Schedulability Analysis for Real Time On-
Chip Communication with Wormhole Switching.
IJERTCS, 1(2):1–22, 2010. doi:10.4018/jertcs.
2010040101.

29 Amit Kumar Singh, Muhammad Shafique, Akash
Kumar, and Jörg Henkel. Mapping on multi/many-
core systems: survey of current and emerging
trends. In The 50th Annual Design Automation
Conference 2013, DAC’13, Austin, TX, USA, May
29 – June 07, 2013, pages 1:1–1:10. ACM, 2013.
doi:10.1145/2463209.2488734.

30 Amit Kumar Singh, Thambipillai Srikanthan,
Akash Kumar, and Wu Jigang. Communication-
aware heuristics for run-time task mapping on
NoC-based MPSoC platforms. Journal of Sys-
tems Architecture – Embedded Systems Design,
56(7):242–255, 2010. doi:10.1016/j.sysarc.2010.
04.007.

31 Ying Tan, Parth Malani, Qinru Qiu, and Qing
Wu. Workload prediction and dynamic voltage
scaling for MPEG decoding. In Fumiyasu Hirose,
editor, Proceedings of the 2006 Conference on
Asia South Pacific Design Automation: ASP-DAC
2006, Yokohama, Japan, January 24-27, 2006,
pages 911–916. IEEE, 2006. doi:10.1109/ASPDAC.
2006.1594802.

32 Mitchell D. Theys, Tracy D. Braun, H. J. Siegal,
Anthony A. Maciejewski, and Y.K. Kwok. Map-
ping tasks onto distributed heterogeneous comput-
ing systems using a genetic algorithm approach.
Solutions to Parallel and Distributed Computing
Problems: Lessons from Biological Sciences, pages
135–178, 2001.

33 Wayne H. Wolf. Multimedia Applications of Mul-
tiprocessor Systems-on-Chips, pages 86–89. IEEE
Computer Society, 2005. doi:10.1109/DATE.2005.
217.

LITES

http://dx.doi.org/10.1109/ICECS.2015.7440310
http://dx.doi.org/10.1109/ICECS.2015.7440310
http://dx.doi.org/10.1109/ISVLSI.2013.6654616
http://dx.doi.org/10.1109/TII.2010.2062192
http://dx.doi.org/10.4018/jertcs.2010040101
http://dx.doi.org/10.4018/jertcs.2010040101
http://dx.doi.org/10.1145/2463209.2488734
http://dx.doi.org/10.1016/j.sysarc.2010.04.007
http://dx.doi.org/10.1016/j.sysarc.2010.04.007
http://dx.doi.org/10.1109/ASPDAC.2006.1594802
http://dx.doi.org/10.1109/ASPDAC.2006.1594802
http://dx.doi.org/10.1109/DATE.2005.217
http://dx.doi.org/10.1109/DATE.2005.217

EMSBench: Benchmark and Testbed for Reactive
Real-Time Systems∗

Florian Kluge†1, Christine Rochange2, and Theo Ungerer3

1 Department of Computer Science, University of Augsburg, Augsburg, Germany
fkuau@gmx.net

2 IRIT, Université de Toulouse, CNRS, France
http://orcid.org/0000-0001-7257-7114
christine.rochange@irit.fr

3 Department of Computer Science, University of Augsburg, Augsburg, Germany
ungerer@informatik.uni-augsburg.de

Abstract
Benchmark suites for real-time embedded systems
(RTES) usually contain only pure computations
that are often used in this domain. They allow to
evaluate computing performance, but do not repro-
duce the complexity and behaviour that is typical
for such systems. Actual RTES have to interact
with the physical environment, which is often re-
flected by code that is executed concurrently. In
this article, we present the software package EMS-
Bench that mimics such complex behaviour, and
highlight some of its use cases. The benchmark
code ems of EMSBench is based on the open-source
engine management system (EMS) FreeEMS. Addi-
tionally, EMSBench contains a trace generator (tg)

that provides input signals for ems and enables to
execute ems close to reality. We provide detailed
descriptions of the ems’s execution behaviour and
of trace generation. EMSBench can be used as
test or benchmark program to compare different
hardware platforms, e.g. in terms of schedulability.
Also, we use EMSBench as a benchmark for static
worst-case execution time (WCET) analysis and
compare these results to measurements performed
on existing hardware. Our results based on the
OTAWA WCET estimation tool show WCET over-
estimations by the static analysis from 11.9% to
41.1% depending on the complexity of the analysed
functions.

2012 ACM Subject Classification Computer systems organization → Real-time systems, Software and
its engineering → Real-time systems software
Keywords and Phrases Real-time benchmark, WCET Analysis, Engine Management System
Digital Object Identifier 10.4230/LITES-v004-i002-a002
Received 2016-07-29 Accepted 2017-05-08 Published 2017-07-07

1 Motivation

Benchmark programs are widely used to assess the performance of execution platforms and
development tools. In hard real-time computing domains, they also play an important role when
comparing tools for WCET analysis. Widely used, for example, is the Mälardalen Benchmark
Suite [4]. A drawback of this and similar suites is that the contained programs do not reproduce the
complexity of actual real-time systems. Usually, each program is a closed system that implements
only a single algorithm. In contrast, actual real-time software mostly consists of multiple interacting
modules. The modules are executed concurrently and may even interfere with each other, thus
mutually affecting each other’s timing behaviour. Also, real-time software usually is an open
system that interacts with processes in the physical world. It must react to physical events and

∗ Parts of this article have been published before in [10].
† Florian Kluge is now with Elektronische Fahrwerkssysteme GmbH.

© Florian Kluge, Christine Rochange, and Theo Ungerer;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 4, Issue 2, Article No. 2, pp. 02:1–02:23
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fkuau@gmx.net
http://orcid.org/0000-0001-7257-7114
mailto:christine.rochange@irit.fr
mailto:ungerer@informatik.uni-augsburg.de
http://dx.doi.org/10.4230/LITES-v004-i002-a002
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

02:2 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

its timing behaviour is heavily depending on the physical processes. Thus, there is also a need for
system benchmarks that enable a more global assessment of real-time platforms. However, only
few works exist that tackle this need.

In our view, a system benchmark could be employed in multiple manners: (1) During platform
(e.g. processor + operating system) development, it may act as a test program to investigate
functional aspects of a platform. When development is finished, the system benchmark will be
used for (2) an experimental evaluation of important aspects of the system. This could be, e.g.,
the evaluation of operating system mechanisms, schedulability analysis, or response-time analysis
(RTA). Finally, the program can be used as a (3) benchmark for the evaluation of WCET analysis
tools. Thus, it would be integrated in the whole development process.

This work is guided by the following requirements:
Complexity. The overall behaviour of the program shall arise from the interaction of multiple

modules. These modules should be scheduled independently from each other.
Reactivity. The program shall react upon external events. Reaction times should be constrained

by deadlines.
Ease of Use. The program should be as easy to use as possible. Thus its potential for a widespread

use would be increased.
When considering actual RTESs, it becomes obvious that there must be a tradeoff between the
first two requirements and the last one. Real RTESs may employ a large variety of sensors to
monitor the physical world. The software can consist of hundreds of tasks. So while being both
complex and reactive, we guess such a software would never be easy to use. For the purpose of
this work, we set our focus differently: We aim to have a program that requires as few as possible
sensor inputs, but still exhibits as much as possible of its original dynamic behaviour.

The software package EMSBench is based on the open source EMS FreeEMS1. We have
stripped down the FreeEMS software such that it requires only positional signals of the crankshaft
as inputs. Additionally, we developed a testbed for EMSBench that generates these input signals
and thus allows to execute the benchmark program. EMSBench is available for download [2]
at GitHub under the conditions of the GNU GPL. The benchmark code derived from FreeEMS
consists mainly of multiple interrupt service routines (ISRs) that interact among each other to
control fuel injection and ignition in a spark ignition engine. Thus, EMSBench exhibits some of
the complexity and reactivity of a real use-case application, even though not on an industrial
scale. We balance these properties against an easy porting to and employment on other hardware
platforms.

In this article, we present the software package EMSBench and examine some of its use-cases.
Therefore, we provide a detailed characterisation of the code’s structure and execution behaviour.
This information is used to ease flow analysis in static WCET estimation which we demonstrate
using the OTAWA toolset [1]. Additional use-cases are execution time measurements and the
schedulability/response-time analysis for tasks. Execution time measurements are derived from
realistic execution traces on two hardware platforms.

We proceed as follows: We describe FreeEMS in Section 2, and the EMSBench software package
in Section 3. Possible uses of the benchmark (execution time measurements, static analysis of
the worst-case execution time, analysis of task interferences) are discussed and experimented
in Section 4. In Section 5, we review existing benchmarks and discuss how they compare to
EMSBench. We conclude this article in Section 6.

1 http://freeems.org/

http://freeems.org/

F. Kluge, C. Rochange, and T. Ungerer 02:3

2 FreeEMS

FreeEMS is an open source engine management system for four-stroke spark-ignition engines. It is
designed for execution on a 16-bit microcontroller from the Freescale HCS12X family. Hitherto, it
was deployed successfully to over 20 different engines. We use version 0.1.1 of FreeEMS as base
for this work. Although newer versions are available, the dependencies between the individual
modules are recognisable more clearly in version 0.1.1. Furthermore, the newer version is split in
many more modules to be applicable more universally. For the purpose of our work using the
newer version thus would only have increased the required effort, but would not have changed the
outcome. FreeEMS is designed such that it can be used with different types of rotary encoders.
For this work, the implementation for a 24/2 camshaft encoder from Denso for engines with
intake-manifold fuel injection was chosen. In the following discussions, the term FreeEMS shall
refer to this specific version of the FreeEMS software.

2.1 Spark Ignition Engine and Engine Management
Before we explain the structure of FreeEMS, let us recall the operation of a spark ignition engine.
Each combustion chamber (cylinder) of the engine is terminated downwards by a movable piston.
Connecting rods join all pistons to the crankshaft. Thus, the vertical movement of the pistons is
converted to an axial movement of the crankshaft. The cylinder housing has at least two valve
openings, one as intake for air and fuel, the other as outlet for exhaust. The valves are controlled
mechanically by two camshafts. These move synchronously with the crankshaft, but only at half
its speed. A spark plug is placed in each cylinder head. The inlet valve discharges into the intake
system.

One vertical movement of a piston resembles one stroke, during which the crankshaft moves
by 180°. A full engine cycle consists of four strokes which corresponds to a movement of the
crankshaft by 720°. During the first stroke, the piston moves downwards and the inlet valve is
open. The cylinder ingests air that is enriched with fuel through an injection valve. During the
following upward movement of the piston during the second stroke, the mixture of air and fuel is
compressed. All valves are closed now. The third stroke is initiated by spark at the spark plug.
The resulting combustion leads to a downward movement of the piston. During the fourth stroke,
exhaust is diverted from the cylinder through the outlet valve by the upward movement of the
piston.

The opening times of the injection valves and the ignition times are controlled by the EMS.
The calculations of the EMS are based on the positions of crank- and camshafts which are captured
with encoders. The duration of injection is mainly influenced by the state of the throttle position,
and additionally by air pressure and temperature. The ignition time, i.e. when the spark is
produced, depends on the position of the crankshaft and the current speed. It is calculated
such that the piston of the cylinder is near its top dead point when the air/fuel mixture ignites.
Additional sensors are used to capture, e.g., temperature and air pressure in some components of
the engine.

2.2 Interfacing with the Physical World
Like any other EMS [6, 23], FreeEMS utilises sensors and actuators to interact with the engine
and the car’s driver. The driver’s command is recognised through the throttle position. Several
temperature and pressure sensors provide information about the current state of the engine and the
environment, e.g. monitoring of exhaust gas oxygen allows to draw conclusions about the current
combustion behaviour. The data collected from these sensors mainly influences the calculation

LITES

02:4 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

of injection and ignition parameters, e.g. the amount of fuel that is injected in each cycle. Most
sensors are connected to A/D converter (ADC) channels of the microcontroller on which FreeEMS
is executed. In total, FreeEMS currently uses 11 ADC channels.

For further monitoring, and also to set outputs in time, FreeEMS uses the enhanced capture
timer (ECT) of the HCS12X microcontroller. The ECT has a global counter and 8 channels
that can either act as input capture (IC) or output compare (OC). The counter is incremented
continuously. If a channel is configured for input capture mode, it monitors an input pin. On
the configured event, e.g. if the input level on the pin toggles, the current value of the global
counter is stored in a register, and an interrupt request (IRQ) is generated. If a channel is used
in output compare mode, a timestamp calculated by software is stored in a register. When the
global counter equals the timestamp, an output action (set high/low, toggle) is performed on a
pin and also an IRQ is generated.

The dynamic behaviour of the engine is monitored with at least one rotary encoder mounted to
the crank- or camshaft. Certain angular positions trigger reactions of the EMS that control actual
fuel injection and ignition. The 24/2 camshaft sensor possesses 24 equally spaced primary teeth
and 2 equally spaced secondary teeth that generate corresponding signals during each camshaft
revolution. The movements of crank- and camshaft are coupled together. The camshaft revolves
with half the speed of the crankshaft. Insofar, the 24/2 camshaft sensor is equivalent to a 12/1
crankshaft sensor. To achieve a low latency and a high accuracy of the EMS reactions, the signal
lines of the encoder are connected to two IC channels of the microcontroller’s ECT. If a tooth
is detected, the IC channel automatically saves the current time stamp from the ECT’s global
counter and raises an IRQ that is handled by one of the FreeEMS ISRs.

The main actuators that are controlled by the EMS are the fuel injection valves, and the spark
coil and plugs. FreeEMS performs fuel injection in a semi-sequential manner, i.e. the injection
valve for any cylinder opens twice per engine cycle and injects fuel into the cylinder’s intake system.
The amount of fuel that is injected is regulated through the opening times of the valves. The
injection valves are controlled through OC channels of the ECT. Opening and closing is performed
automatically by the OC channels at times that are set by FreeEMS. To trigger fuel combustion,
FreeEMS uses wasted-spark ignition: In any cylinder, two sparks are produced during each engine
cycle, but actually only one triggers a combustion. This approach allows to simplify the software
and hardware for ignition distribution. The ignition channels are connected to regular I/O pins of
the microcontroller. The pins are controlled by ISRs that are triggered by periodic interrupt timer
(PIT) units. The PITs are set anew for each new ignition. FreeEMS can generate a tachometer
signal to display the engine’s current revolution speed. Finally, FreeEMS provides a serial (UART)
interface for monitoring and tuning of the EMS.

The minimum hardware requirements to execute FreeEMS on a microcontroller can be summed
up as follows: The controller must possess at least 8 capture/compare (C/C) channels that
can access a global counter. Two periodic interrupt timers are needed for further control of
I/O operations. Additionally, FreeEMS uses another timer to control the execution of periodic
tasks. The original implementation uses the real-time interrupt functionality of the HCS12X
microcontroller. Concerning I/O, at least 25 pins are required in total. 11 pins must be accessible
by an ADC unit. Each of the 8 C/C channels must be connected to a separate I/O pin, 2 for
input from the rotary encoder, and 6 for control of the injection valves. Another 6 output pins
are needed for driving the ignition channels.

2.3 Operation of FreeEMS
The most important relationships between FreeEMS and the underlying hardware are shown in
Figure 1. Two ECT channels (0 and 1 in the figure) are configured as IC. The remaining ECT

F. Kluge, C. Rochange, and T. Ungerer 02:5

IRQ
Set action
Optional set action

0 1 2 3 4 5 6 7ECT
channels

0 1
PIT

PrimaryRPMISR

InjectorXISRInjectorXISR

SecondaryRPMISR

IgnitionDwellISR

IgnitionFireISR

24/2
encoder

Injectors 1-6Injectors 1-6Injectors 1-6 Sparks 1-6Sparks 1-6Sparks 1-6

I/O Pins

Figure 1 Important FreeEMS IRQs and their interaction with with the µC peripherals and external
sensors/actuators.

channels are configured as output compare to trigger up to 6 injection valves. The IC channels
monitor 24/2 encoder mounted to the camshaft. The interrupts generated by these channels
are used by FreeEMS to determine the speed and position of the camshaft. Based on this and
further data (derived from the sensors connected to the ADCs), times for opening the injection
valves are calculated and set in the respective channels. Once an injection valve is opened through
its channel’s timer expiring, it triggers an ISR that reconfigures the channel for closing of the
valve. Similar actions are performed for ignition, i.e. dwelling and firing of the spark plugs. Here,
the PIT of the microcontroller is used. The ignition pins are completely controlled by software
(IgnitionDwellISR, IgnitionFireISR).

The timing requirements for the single ISRs can be derived from their chain of effects: the
PrimaryRPMISR and the InjectionXISRs are responsible for (re-)activating timers, based on
calculations they perform. Obviously, these calculations must be finished before the calculated
timer values expire. Similar requirements can be found in the IgnitionXISRs, which may prepare
their next activation. Numbers about the execution times and the timer values will be presented
in Section 3.4.2, where we discuss the execution behaviour, and in Section 4.1, where we present
execution time measurements.

2.4 Code Structure

The code of FreeEMS can roughly be divided into functions that are performed inside a loop
in the main function, and a number of ISRs. The modules communicate via global variables,
critical sections are protected by disabling interrupts. Figure 2 gives an overview of the most
important modules and their dependencies. First, it shows which modules access global data
(reading/writing). Second, trigger dependencies are indicated in the figure. These can be either
the setting of an interrupt timer, or the use of global flags, if functions in the main loop are
concerned.

LITES

02:6 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

Injection active:
set deactivation

Injection not active:
(set queued activation)

InjectorXISR()

Read sensors

Switch
sensor data

Calculate
fuel/ignition

Switch
control data

COM

main()

Fuel/Ignition
Constants

1ms

RTIISR()

Injection IgnitionDwell IgnitionFire

PrimaryRPMISR()

Injection
Data

IgnitionDwell
Data

IgnitionFire
Data

Charge
Ignition Coil

IgnitionDwellISR()

Activate Ignition

IgnitionFireISR()

RPM
Data

Calculate RPM

SecondaryRPMISR()

Data access Set IRQ trigger Set trigger flag

Figure 2 Structure and dependencies between ISRs and main function tasks in FreeEMS; red frames
indicate critical sections during which IRQs are disabled.

2.4.1 main

After having initialised the whole EMS, the main function executes an infinite loop. Inside the
loop, three tasks are performed:
1. If demanded from other modules, sensors are read. The demand is signalled by a flag in a

global variable. The snapshot of all sensors is stored in a data structure. To ensure consistency
of the structure and a low latency between the single readings, this task is a critical section
during which interrupts are disabled. Reading of new sensor data automatically triggers the
second task.

2. If new sensor data has been read, the sensor data set is switched inside a critical section with
interrupts disabled.

3. Fuel and ignition parameters are calculated based on new sensor data. Both input and output
data structures are allocated twice to ensure that always one structure with consistent data is
available. The input data structure is filled by the previous task in the main function. Switching
between the input (resp. output) structures is performed at the beginning (resp. end) of this
task. Both operations are critical sections that are protected by disabling interrupts.

4. If new parameters have been calculated, the parameter data set is switched inside a critical
section with interrupts disabled.

5. Requests that were received over the serial interface are handled. The requests are used for
debugging, monitoring and tuning of the system. This task can be interrupted any time. It is
not covered by the work at hand and will be ignored in the following considerations.

The code in the main function specifies low-priority tasks, as these can be interrupted any time
(except during critical sections) by an ISR.

F. Kluge, C. Rochange, and T. Ungerer 02:7

2.4.2 PrimaryRPMISR

The PrimaryRPMISR is bound to an IC channel of the platform’s ECT. It is triggered by each
primary pulse of the rotary encoder, i.e. it is executed 24 times each camshaft revolution. It
counts the number of primary pulses since the last secondary pulse. The counter is used together
with the SecondaryRPMISR to ensure synchronism between engine and EMS (see Section 2.4.3). If
a loss of synchronism due to losses of primary or secondary pulses is detected, the ISR terminates
immediately. Else, each second pulse, several control tasks are performed: (1) Injection times are
calculated and the OC timer of the relevant injection channel is set. If another injection is already
pending for the channel, the event is queued for evaluation by the InjectorXISR (see 2.4.4).
(2) Times for charging of the ignition coil (IgnitionDwellISR) and triggering of the ignition
(IgnitionFireISR) are calculated. If no other ignition events are pending, PITs for both events
are set directly. Else, the times are put into queues that are handled by the IgnitionDwellISR
resp. IgnitionFireISR.

2.4.3 SecondaryRPMISR

A second IC channel of the ECT activates the SecondaryRPMISR any time a secondary pulse from
the rotary encoder is captured. The ISR’s main task is to ensure synchronism between the engine
and the EMS. This is achieved by checking whether the correct number of primary pulses has
arrived since the last secondary pulse. For the 24/2 rotary encoder, this means that between any
two secondary pulses 12 primary pulses must occur. If loss of synchronism is detected, a flag is set
to signal this to the PrimaryRPMISR. Additionally, the SecondaryRPMISR calculates the current
revolution speed of the engine.

2.4.4 InjectorXISR

FreeEMS supports up to 6 injection channels. Each injection channel X is handled by a separate
InjectorXISR (with X = 1, 2, . . . , 6), which in turn is bound to a separate OC channel of the ECT.
Activation and deactivation of the injection valve is performed automatically when the associated
interrupt is triggered. If injection was activated when the ISR is released, the time for deactivation
is determined and the channel is configured appropriately. Upon deactivation, the ISR checks
whether another injection event is queued for this channel. If necessary, it sets the timer anew.

2.4.5 IgnitionDwellISR

The IgnitionDwellISR is responsible for charging of the ignition coil. This is done by activating
the power supply of the relevant ignition channel. If further IgnitionDwell events are queued, the
associated PIT channel is restarted with a new offset, else the channel is deactivated.

2.4.6 IgnitionFireISR

Actual ignition is triggered through the IgnitionFireISR. It deactivates the power supply of
the ignition coil which leads to an immediate discharge. The discharge results in a spark at the
associated spark plug. If further IgnitionFire events are queued, the associated PIT channel is
restarted with a new offset, else it is deactivated.

2.4.7 RTIISR

The RTIISR manages the execution of tasks that must be performed periodically. It implements
intervals of 1ms, 100ms, 1 s, and 60 s. The RTIISR is released each 1/8 ms to accommodate also

LITES

02:8 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

for this interval if need should arise. Depending on internal counters, it decides whether a task of
one of the implemented intervals must be executed. Task execution can either take place within
the RTIISR, or the ISR sets corresponding flags to trigger the execution inside the main loop. In
the current implementation, only each 500ms (via the 1ms part of the RTIISR) a flag is set to
trigger sampling of the ADC channels in the main loop.

2.4.8 Further ISRs
The TimerOverflow ISR extends the maximum time span that can be measured with the ECT.
The 16-bit counter of the ECT is configured to be incremented each 0.8 µs. An overflow occurs
after ≈ 52 ms. On each release, the TimerOverflow ISR increments an additional 16-bit counter,
thus extending the counter effectively to 32 bits. An overflow of the thus available time span of
≈ 57min is handled appropriately.

The LowVoltageISR is currently only used for diagnostics and counts the frequency of low
voltage events. The ModDownCtrISR generates a tachometer signal. These three ISRs yield only a
minor contribution to the overall behaviour and therefore are ignored in the following analysis.

2.5 Interaction between ISRs
The interaction between the important ISRs and hardware units is depicted in Figure 1. The
PrimaryRPMISR is the most important ISR in FreeEMS. Supported by the SecondaryRPMISR, it
has exact knowledge about the crankshaft’s position and speed, and thus can calculate the times
for fuel injection and ignition. By setting the relevant timers, it controls the execution of the
injection and ignition ISRs (continuous lines in Figure 1). If there are still pending events for the
timers, the events are queued instead. In this case, the timers are set by the corresponding ISRs
themselves as soon as the pending event occurs (dashed lines). Furthermore, the PrimaryRPMISR
can trigger a recalculation of the injection and ignition parameters that is performed in the main
loop. Reading of sensor data inside the main loop is triggered only by the RTIISR each 500
milliseconds, also leading to a recalculation of the injection and ignition parameters.

3 EMSBench

In this section, we present the software package EMSBench in detail. First, we describe the
changes we made to the FreeEMS code. To execute the code successfully, signal traces must be
generated, which we will discuss in Section 3.2. Furthermore, we explain how EMSBench can be
ported to other hardware platforms, and discuss the timing behaviour of the single modules.

3.1 Code Changes
The FreeEMS code was adjusted to provide a preferably simple program that still exhibits a
behaviour that is as close to the original one as possible. The resulting implementation will be
termed ems in the following. Most accesses to input devices (see Section 2.2) were replaced by
initialised constants. Only the input signals of the rotary encoder were kept as they influence
code execution significantly. By triggering the PrimaryRPMISR, they also trigger the ISRs for
injection and ignition indirectly. The corresponding output signals are produced and can be
tapped from the associated pins. The input signals from the rotary encoder can be provided by a
trace generator that emulates arbitrary driving cycles (see Section 3.2). Due to all other input
values being constant, we expect no variations in the injection times. Ignition times should vary
with the speed of the engine. Thus, EMSBench can only reproduce an abstract variant of an
EMS’s actual behaviour.

F. Kluge, C. Rochange, and T. Ungerer 02:9

Running

ϕ(t)mod 1
nP

= 0/OP

ϕ(t)mod 1
nS

= 0/OS

Input: ϕ(t) ∈ R+

Output: OP ∈ {absent, present}
OS ∈ {absent, present}

Figure 3 Behaviour of the crankshaft rotary encoder.

Portability of the ems to arbitrary platforms is enabled by the definition of a hardware
abstraction layer (HAL). The HAL defines interfaces that are used by ems to control the various
hardware timers and capture/compare channels. It also declares the ems functions that must be
called by platform-specific ISRs that are part of the HAL. Currently, HAL implementations for
the STM32F4-Discovery platform using an ARM Cortex-M4, and a custom FPGA-based Nios II
platform are available.

3.2 Trace Generation
To run the EMSBench benchmark program in a meaningful manner, it needs signal traces that
emulate the behaviour of the 24/2 camshaft sensor. We provide a trace generator that generates
these signals based on driving cycles. Such driving cycles are used to perform reproducible and
comparable experiments with cars. For example, the New European Driving Cycle [13] is widely
used to estimate cars’ fuel consumption. A driving cycle consists of multiple phases, which can, in
turn, consist of one or multiple operations. Acceleration, initial and terminal velocity, duration,
and used gear are given for each operation.

Signal generation in EMSBench is divided in two components: A preprocessor (tgpp) converts
the driving cycle data into a crank shaft cycle. It was introduced because car movement cannot
be directly related to crankshaft movement in all cases. For example, if the clutch is open, car
and crankshaft move independently from each other. Actual signal generation (tg) executes the
crankshaft cycle and generates the corresponding signals on which the ems must react. In the
following, we first describe the model underlying the signal generation, and then its implementation.

3.2.1 Model
The relevant control signals are generated by a rotary encoder that monitors the crankshaft. The
variant of FreeEMS used in this work uses a 24/2 rotary encoder that monitors the camshaft.
This is equivalent to a 12/1 rotary encoder monitoring the crankshaft, which runs with twice
the speed of the camshaft (see Section 2.1). Figure 3 shows a model of the rotary encoder as a
real-time automaton. The current angle of the crankshaft ϕ(t), measured in revolutions of the
crankshaft, is used as input. Depending on the number of primary and secondary teeth, nP and
nS , appropriate primary and secondary signals OP and OS are generated at certain times.

The behaviour of the crankshaft is modeled in Figure 4. This model evolves current angle
ϕ(t) and angular speed ω(t). If a new angular acceleration is set via the input αN , the values for
angular position and speed evolved so far are stored. The current time is used as new time offset
t0. To simplify the model, we assume that the crankshaft initially rotates with idle speed ωI .

When combined, both models describe the signal generation by crankshaft and rotary encoder.
To emulate the signal generation, we have to calculate the concrete signal times from the models
and a given driving cycle. Therefore, angular position ϕ(t) and speed ω(t) must be evolved based
on the current angular acceleration α.

LITES

02:10 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

Running
ϕ(t) = 1

2α(t− t0)2 + ω0(t− t0) + ϕ0
ω(t) = α(t− t0) + ω0

ω0 := ωI

ϕ0 := 0
α := 0
t0 = 0

αN/-
α := αN , ω0 := ω(t), ϕ0 := ϕ(t), t0 := t

Input:
αN ∈ R ∪ {absent}
Output:
ω(t) ∈ R
ϕ(t) ∈ R+

Variables:
α ∈ R
ω0, ϕ0, t0 ∈ R+

Figure 4 Behaviour of the crankshaft.

3.2.2 Preprocessor
The preprocessor tgpp requires two files as input. The first file contains the driving cycle that
shall be emulated. The second file describes the car parameters that are needed to translate from
car speed to angular speed of the crankshaft. These are the dimensions of the tyres, and the
transmission ratios of the gearbox, axles and drive shaft. For idle phases, the idle speed of the
engine and the acceleration with which the engine assumes this speed are given. Additionally,
the file contains data that is directly passed on to signal generation. These are the number of
primary teeth of the rotary encoder, and the angular distance between the secondary tooth and
the preceding primary tooth. We assume that only one secondary tooth exists.

tgpp creates one or multiple crankshaft phases for each operation of the driving cycle. A
crankshaft phase is described by its duration and the angular acceleration that acts on the
crankshaft. We assume that the angular acceleration is constant during a phase. The translation
of one operation into a single crankshaft phase is only possible, if the engine is idle, the car drives
with constant speed, or accelerates or decelerates with closed clutch and set gear. The following
operations are split into multiple crankshaft phases:
Driveaway from standstill is performed by slowly engaging the clutch. For simplification, we

assume that the engine runs with its idle speed until the clutch is fully closed (first phase).
The time of the full closure is calculated from the acceleration of the operation such that the
car speed resembles the idle speed of the engine. In a second phase, the engine is accelerated
as required by the end speed of the operation.

On a gear change the clutch is first opened, and engine speed converges to the idle speed. Then
the gear is changed, and the clutch is closed again. For simplification, we assume that the
opening of the clutch happens instantaneously at the beginning of the operation, and that
during the operation no car speed is lost. So, concerning the crankshaft we can identify two
intervals initially. For further simplification, we assume that each of these takes exactly one
half of the duration of the operation. At the start of the first interval, the clutch is opened,
and we assume that throttle control is free. The crankshaft speed converges to the idle speed
following the idle acceleration. If the idle speed is reached before the end of the interval, we
add another phase during which the angular acceleration α = 0. During the second interval,
the clutch is slowly being closed. We translate the interval to a phase where α is set such that
the angular speed of the crankshaft at the end of the phase resembles the car speed of the
operation, assuming that the throttle is being pressed by the driver.

Deceleration with open clutch is translated to one or two phases, depending on the initial angular
speed ω0. During the first phase, the idle acceleration acts on the crankshaft. If the crankshaft
reaches its idle speed before the end of the operation, we add another phase with α = 0 and
appropriate duration to span the remaining time.

F. Kluge, C. Rochange, and T. Ungerer 02:11

The single phases are stored as an array in a C source file. This file also contains additional
constants that are important for signal generation, e.g. information about the rotary encoder, or
idle speed. The file is then compiled, and linked with the code of the actual signal generator tg.

3.2.3 Signal Generation
The aim of the signal generator tg is to generate primary and secondary signals as they would
be generated by an actual crankshaft sensor when a driving cycle is performed. tg is executed
on an embedded platform. Its task is to evolve angular speed ω(t) and position ϕ(t) according
to the model presented previously, and to generate the primary and secondary signals at the
appropriate times. For the calculations involved, please refer to the tg documentation [20]. We
assume a perfect car driver who follows the operation cycle exactly. However, the throttle position
is currently disregarded in EMSBench and assumed to be constant. Signal generation itself uses
two OC channels of the embedded platform. The channels and associated ISRs are configured
such that at the activation of the channel the pin is activated (logic 1). Simultaneously, the
channel is reconfigured such that the pin is deactivated (logic 0) after a short time. Setting of the
activation times for all channels is exclusively performed by the ISR for the primary channel (see
Algorithm 1) when the channel is deactivated. The sole task of the ISR of the secondary channel
is to set the channel’s deactivation time. Additionally, the ISR for the primary channel has the
following tasks:

After each full revolution, ϕ(t) is re-normalised to 0. Thus, we can keep the value of the
variables in a range with high accuracy. Simultaneously, the time counter is reset and the
current angular speed ω(t) is stored in ω0.
Phase changes are only performed after full revolutions, i.e. when the primary tooth at ϕ(0)
was released. This leads to small deviations between model and implementation (less than 1
revolution per phase change), which can affect only very short phases significantly. During
a phase change, some parameters are recalculated which are used for the calculations of the
succeeding activation times.
The secondary tooth is placed between the third and the fourth primary tooth at φS ∈
[2∆P , 3∆P). Thus, we achieve good dispersal of the computing load of the primary ISR. This
is illustrated in Figure 5, where the secondary tooth is released somewhere in the shaded
area between P2 and P3. The ISR calculates on each second call (when the channel is
deactivated, downward arrows) the next activation time. When it handles the first primary
tooth P0, it performs additionally the re-normalisation, and, if necessary, the phase change.
Furthermore, we require that for the calculation of the secondary tooth as much time is available
as possible. This time is bounded by the distance between two primary teeth. Thus, the
secondary calculation must be finished before the primary tooth preceding the secondary tooth
is activated. Actually, the secondary tooth may be placed also between later primary teeth,
but it should be avoided that the corresponding calculation coincides with renormalisation
and phase change.

Similar to ems, the implementation of tg consists of two parts: A platform-specific abstraction
layer provides a generic interface for managing the hardware units. All calculations are performed
in a platform-independent application layer.

3.3 Adopting EMSBench
To execute ems, the target platform must have a timer device with at least 8 capture/compare
channels that can access a common counter register. Additionally, three timers are required with a
freely configurable activation interval. At least two pins must be connectable to capture/compare

LITES

02:12 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

t

Primary
teeth

Secondary
tooth

P0

C

P1

C

P2

C

P3

C

P4

CR P S

Calculate and set
release time

Figure 5 Timing for teeth calculations; = activation of output pin and first call to ISR; = deactivation
of output pin and second call to ISR; C = Calculation for next primary tooth; R = Renormalisation; P =
Phase change (optional); S = Calculation for secondary tooth.

channels, such that the signals of the trace generator can be routed to the correct device. For
the execution of the trace generator, a timer with at least two compare channels and a common
counter is required.

For all hardware-related functions we have defined a HAL that provides a generic interface for
ems and tg. When porting EMSBench to a certain platform, only the relevant HAL functions
have to be implemented. Due to the widespread use of 32-bit architectures, we have chosen such
one for the implementation of our prototype. In a first step we have implemented EMSBench
on the STM32F4-Disovery platform from ST Microelectronics. This cheap board contains a
STM32F407VGT6 microcontroller, which is based on a ARM Cortex-M4 [19]. The Cortex-M4
implements the ARMv7 instruction set architecture (ISA). The microcontroller has several C/C
timers with each providing up to four C/C channels. To accommodate the requirements of
EMSBench, several C/C timers and their counters are configured to run synchronously with a
common clock. Our second implementation of the HAL is aimed at a self-designed FPGA-based
microcontroller. It uses the Nios II IP-Core from Altera and features a capture/compare timer
with 8 channels which was developed in our group [9]. The main aim of this implementation was
the validation of the HAL.

Porting EMSBench to new platforms requires the implementation of all HAL interface functions.
Detailed instructions on how to proceed with this task can be found in the EMSBench code
repository at GitHub.

3.4 Timing properties

3.4.1 Execution Scenario

ems is executed using the new european driving cycle [13] for trace generation. The whole cycle
consists of an urban and an extra-urban driving cycle. The urban cycle takes 195 s and is repeated
four times, while the extra-urban cycle takes 400 s and is performed once. In total, the cycle
takes 1,180 s (≈ 20minutes). During the cycle, the revolution speed of the crankshaft ranges from
11.67 s−1 to 63.64 s−1 (700 rpm to ≈ 3820 rpm).

The counter frequencies of the C/C timers in both implementations were set such as to
approximate the time base of the original FreeEMS implementation as closely as possible. In
FreeEMS, the counter of the ECT is incremented each 0.8 µs. The same time base is also used for
signal generation by the trace generator.

F. Kluge, C. Rochange, and T. Ungerer 02:13

Algorithm 1 ISR for primary channel.
k ← 0 . Global counter for primary teeth
procedure PrimaryISR

if pin active then
set deactivation time
return

else
if k == 0 then . re-normalise

ω0 ← ω(t)
ϕ0 ← 0
t← 0
if phase change pending then . execute phase change

α← αN

end if
end if
calculate primary release time tP
set primary release time
if k == 1 then . also prepare secondary channel

calculate secondary release time tS
set secondary release time

end if
k ← (k + 1) mod np

end if
end procedure

3.4.2 Execution Behaviour

Most ISRs are executed recurringly according to different time bases. Based on the physical time,
the RTIISR() is called each 125 µs, and performs actual calculations each 1ms. All ISRs that deal
directly with the engine are coupled to the time base that is generated by the rotary sensor of the
crank- or camshaft. Their release frequencies during one revolution of the crankshaft are specified
in Table 1. The PrimaryRPMISR() is released on each primary tooth, i.e. 12 times per crankshaft
revolution. It performs actual work only on each second call, based on an internal counter. On
odd teeth, only internal variables are advanced and debug outputs are set. On even teeth, also
calculations for fuel injection and ignition are performed. The SecondaryRPMISR() is called once
each crank revolution. Each InjectionXISR() is released twice, once for opening and once for
closing of the injection valve. The IgnitionDwellISR() and IgnitionFireISR() are released
six times per revolution, each pair activating a different ignition channel. The frequency of the
crank-angle-triggered ISRs with respect to physical time depends on the current revolution speed
of the crank shaft.

When the adjusted implementation is executed using the standardised driving cycle [13], no
queuing of injection or ignition events can be observed. Instead, all timers are set and activated
directly. Furthermore, all times are aligned such that injection and ignition is finished before the
occurrence of the next PrimaryRPMISR().

Figure 6 shows an exemplary execution sequence of ISRs for one fuel channel. Start times are
derived from ticks of the global clock in the STM32F4-Discovery implementation. Execution on a
different platform will yield similar results, if timer settings are kept similar. Due to abstraction
from many inputs, most times are fixed. Only the closing of the injection valve (Inj-L) varies in

LITES

02:14 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

PrimaryRPM

Inj-H

Ign-Dwell Ign-Fire

Inj-L

0 µs 80 µs 221 µs 318 µs

224 µs 322 µs

Figure 6 Exemplary sequence for one channel; Injection-Low start times vary inside the shaded interval
(box widths are symbolic).

Table 1 Release frequency of crank-angle-triggered ISRs; CR frequency = based on one crankshaft
revolution.

ISR IRQ Source Frequency
CR s−1

PrimaryRPMISR() ECT-IC 12 144–768
SecondaryRPMISR() ECT-IC 1 12–64
InjectionXISR() ECT-OC 2 (×6) 24–128 (×6)
IgnitionDwellISR() PIT 6 60–384
IgnitionFireISR() PIT 6 60–384

time. Here, the behaviour of EMSBench deviates from a real EMS: Assuming the adjustments
described in Section 3.1, one would rather expect the injection times to be constant and the
ignition times to vary, as the latter clearly must depend on the engine’s current speed. We could
trace the depicted behaviour back to a fault in the original implementation of FreeEMS that we
were not able to correct, and to some simplifying assumptions in our adjustment. As the goal of
this work is to provide a benchmark that behaves similar to a real EMS, but not to really control
an engine, we neglect this deviation.

Furthermore, the injection may overlap with the ignition event. Although this may seem
strange in the first place, this behaviour is valid as injection is performed not directly into the
cylinder but into the intake manifold. When an actual ignition occurs, fuel is already injected for
the next cycle of the channel. From the diagram, one can observe that overlaps of ISRs probably
may occur between the Injection-Low ISR and one of the ignition ISRs. This may pose a problem,
as the ignition pins are managed by software inside the ISR and thus dwelling and firing could be
deferred. A deeper discussion of this and similar problems can be found in Section 4.3.

4 Use of EMSBench

4.1 Execution-Time Measurements
In the following, we present the execution-time measurements that we have performed on the
STM32F4-Discovery and our custom Nios II platforms. For each series of measurements, we used
two identical hardware boards, one for trace generation and another to run ems. The counters
of the C/C timers on both boards were configured to run with identical frequencies. For the
PrimaryRPMISR(), two classes of measurements are shown: On even teeth, calculations for fuel and
ignition are performed, while on odd teeth the ISR only basic management functions are executed.
Similarly, the measurements for the InjectorXISRs distinguish the instances for opening and
closing of the injection valves. The different instances of these ISRs are merged in these two
classes.

F. Kluge, C. Rochange, and T. Ungerer 02:15

Table 2 Measured execution times of ISRs and critical sections on the STM32F4-Discovery platform
(clock cycles).

ISR min max avg med

PrimaryRPMISR (even teeth) 1403 1438 1415 1415
PrimaryRPMISR (odd teeth) 361 384 364 364
SecondaryRMPISR 275 291 275 275
InjectorXISR (open) 553 594 561 560
InjectorXISR (close) 508 537 518 516
IgnitionDwellISR 158 169 165 162
IgnitionFireISR 143 153 149 149
RTIISR 112 301 121 112

main (sample) 238 238 238 238
main (switch sensor data) 65 67 66 66
main (switch control data) 53 73 63 63

4.1.1 STM32F4-Discovery
The STM32F407 microcontroller (µC) on this platforms runs at a frequency of 168MHz. The
common clock for the timers has a period of 0.8 µs (125 kHz). Code is executed directly from
on-chip Flash memory. Instruction prefetching and caching are disabled to ease the comparison
of the measurements with static WCET analysis. Volatile data is stored in on-chip SRAM, and
data caching is also disabled. The memory footprint of the ems is about 52 kB for code and about
49 kB for data.

Table 2 shows minimum, maximum, average and median execution times that were observed
during one driving cycle on the STM32F4-Discovery platform. As code and data are loaded
directly from Flash resp. SRAM memories, there is only a low variance in the execution times of
the different ISRs. Compared to the other ISRs, the PrimaryRPMISR for even teeth has a very
high execution time, as it performs a large number of calculations. Also, each InjectorXISR
has to perform several calculations. The other ISRs execute only few calculations or, like the
ISRs related to ignition, only set output pins, and thus have lower execution times. The observed
execution time of the SecondaryRPMISR is mostly 275 cycles. The maximum value of 291 cycles
was observed only once during the driving cycle. It represents a corner case due to error conditions
like lost synchronisation between primary and secondary teeth. Concerning the main function,
only the execution times of the critical sections during which IRQs are disabled are shown. These
numbers stand for the release delay any ISR might experience.

The seemingly high variance in the execution times of the RTIISR is due to the different
branches that can be taken during the ISR. For example, during most calls (7 out of 8), only
a counter is increased. Each 8th call, i.e. each millisecond, the ISR additionally can perform
periodic tasks (see Section 2.4.7). Depending on the number of periods that must be checked and
the amount of work to be performed accordingly, the execution time increases. Table 3 shows
the measured execution times for the different periods that are handled in RTIISR. Tasks with
higher period include the work for lower-period tasks. As the numbers show, the seemingly high
variance in the RTIISR execution times in Table 2 can be attributed to the different branches that
are taken. Inside a single task class in RTIISR, the execution times are quite stable.

We must note that the execution times of the 1 s and 1min paths differ only slightly by one
cycle. This low difference is based on the structure of the assembler code that is generated by the
compiler and the fetch and execution behaviour of the STM32F407 µC, and also on the fact that

LITES

02:16 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

// 1 s code ...
80063ca: cbnz r6, 80063f2 ; branch if 1 min task should NOT be executed

// Now execute 1 min task ...
80063cc: ldrh r0, [r2, #8]
80063ce: strh r4, [r2, #14]
80063d0: adds r3, r0, #1
80063d2: strh r3, [r2, #8]
80063d4: movs r4, #102 ; Execution path indicator (1 min)
80063d6: b.n 80062e6 ; Jump to return block of function

...
80063f2: movs r4, #101 ; Execution path indicator (1 s)
80063f4: b.n 80062e6 ; Jump to return block of function
80063f6: nop

Figure 7 Assembler code of 1min part in RTIISR.

Table 3 Measured execution times of RTIISR depending on execution path (clock cycles).

Period min max avg med

125 µs 112 112 112 112
1ms 183 183 183 183
500ms (via 1ms) 203 203 203 203
100 ms 243 263 243 243
1 s 300 300 300 300
1min 301 301 301 301

no actual work is performed in the 1min path. Concerning fetching of instruction, the processor
always loads a full line of 16 bytes from Flash memory. Thus, fetching from a new line incurs
a longer latency (in our case 4 cycles), while all further instructions from the same line can be
fetched immediately. Any time the 1min path is taken, the 1 s part is also executed. The relevant
part of the assembler code is depicted in Figure 7. The branch instruction at address 80063ca
decides whether the 1min part is executed (branch not taken) or not (branch taken). On the one
hand, if the branch is not taken, the first two instructions are already loaded from Flash, and can
directly be fetched. Only at 80063d0 another long-latency fetch from Flash is necessary. On the
other hand, if the branch is taken, i.e. the 1min part is not executed, the processor incurs a branch
penalty, and also must wait for the new line (containing instructions at 80063f2 and following)
being loaded from Flash. Thus, the overheads of the different paths are lying in balance.

4.1.2 Nios II
The Nios II platform is deployed to a Cyclone II FPGA on a Terasic DE2-70 development board.
The processor runs with a clock frequency of 50MHz. It comprises 32 kB of L1 data and instruction
cache each. We employ the simple capture/compare timer (SCCT) [9] which provides a global
global counter and 8 C/C channels. The global counter of the SCCT is configured to run with
125 kHz. Code and data are both stored in off-chip SDRAM. On this platform, the memory
footprint is about 36 kB for code and 52 kB for data sections. The large difference of the code
size compared to the STM32F4-Discovery stems mainly from the use of a different board support
package.

The execution times measured on the Nios II platform can be found in Table 4. Additionally,
the table also shows the measured execution times of the first execution of each ISR/function

F. Kluge, C. Rochange, and T. Ungerer 02:17

Table 4 Measured execution times of ISRs and critical sections on the Nios II platform (clock cycles).

ISR first min max avg med

PrimaryRPMISR() (even teeth) 1316 732 1422 959 886
PrimaryRPMISR() (odd teeth) 322 290 809 419 306
SecondaryRMPISR() 238 180 352 239 238
InjectorXISR() (open) 462 315 462 347 345
InjectorXISR() (close) 290 255 337 274 273
IgnitionDwellISR() 112 65 112 68 67
IgnitionFireISR() 84 64 114 66 66
RTIISR() 170 66 280 89 82

main() (sample) 174 174 242 213 210
main() (switch sensor data) 35 35 93 37 38
main() (switch control data) 37 34 73 36 37

block, when it was executed with a cold cache. The first execution of each function is not always
the one with the highest execution time, as in some cases a shorter path through the function
may be taken. All execution times exhibit a greater variation due to the caches used on this
platform. In terms of median or average execution time, the results are comparable to those from
the STM32F4-Discovery platform, even though the ratio between any two ISRs may vary. In
average, the execution times are lower due to the usage of SDRAM to store the code and caches.

4.2 Static WCET Analysis
Another suggested use of EMSBench is exercising static WCET analysis techniques and tools. In
this section, we briefly review the main principles of static WCET analysis, then show how it
might be applied to EMSBench. This is illustrated with some preliminary results.

4.2.1 Principles of Static WCET Analysis
The building of a valid scheduling of tasks in a real-time system relies on the knowledge of each
task’s worst-case execution time. In a system that runs tasks in isolation (i.e. where a task
executes without being delayed due to resource sharing with any other piece of software), the
execution time of a task only depends on (a) the initial state of the system (e.g. the contents of
cache memories), and (b) the input data set.

Measurement-based timing analysis techniques require the selection of relevant input data
sets: unfortunately, when the longest possible execution time is searched, it might be difficult to
determine the worst-case input data, or to show that a given input data set leads to an execution
time that is close to the WCET. In addition, initializing the hardware to any possible state before
performing measurements is usually infeasible, while identifying the worst-case state might be
complex. Static WCET analysis techniques instead abstract input data and derive an upper
bound of the execution time that is valid for any input data within a domain that might be
restricted by user-provided annotations (e.g. to express the range of a sensor outputs) and for
any initial hardware state. The usual method to derive this upper bound is the Implicit Path
Enumeration Technique [11] that considers short segments of code (basic blocks). It maximizes the
execution time of the program defined as the sum of the individual execution times of basic blocks
weighted by their respective execution counts, under some constraints on the possible execution
flow (e.g. loop bounds, infeasible paths). Flow constraints can be provided as user annotations [26]

LITES

02:18 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

and/or extracted automatically from the source or binary code [5, 12, 7]. The individual WCETs
of basic blocks are derived from a model of the target hardware (this phase is often referred to
as low-level analysis) [21, 17, 16]. The difficulty of getting detailed and reliable information on
commercial platforms and to design accurate and safe models, is clearly the weak point of static
WCET analysis and we were faced with this issue for the experiments we report in this paper.

Various WCET analysis tools, either commercial or academic, exist [24]. In this paper, we use
the OTAWA toolset [1].

4.2.2 Methodology
In this section, we estimate WCETs considering the STM32F4-Discovery platform that features
a single-core processor. If we assume a non preemptive scheduling scheme, only interrupts can
interfere with tasks and impact their WCETs. Although the Cortex M4 processor does not include
any standard instruction nor data cache, it features a mechanism designed to hide the latency
of accesses to the Flash memory, the ART accelerator. It is based on specific small-size memory
that behaves similarly to a cache memory. An interrupt routine might alter the contents of this
memory and thus degrade the WCET of a task. However, interrupts are disabled during the
execution of interrupt service routines, as well as during the execution of the three critical sections
in the main function. As a consequence, we can safely consider that all the tasks and ISRs under
analysis run in isolation.

The first step when performing the timing analysis of a task is to determine flow facts, primarily
loop bounds and targets of indirect branches (used in switch-like statements). Since OTAWA does
not support value analysis for the ARMv7 ISA, we had to annotate indirect branches with their
possible targets. The code contains few loops which are easy to bound. The only additional flow
facts that had to be specified are the direction of the two conditional branches that distinguish
the even/odd case for PrimaryRPMISR() and the open/close case for InjectorXISR().

The second step of static WCET analysis is to determine the local WCET of sequential pieces
of code, i.e. basic blocks. OTAWA extracts the control flow graph (CFG) of the task under analysis
from the binary code of the application using the indirect branch targets provided as flow fact
annotations. Then, based on a model of the hardware architecture, it determines the worst-case
execution cost of each basic block whatever the execution path before it. This model must reflect
the pipeline architecture and the instruction latencies of the real hardware so that a valid abstract
state of the processor after each basic block can be computed from the initial abstract state (when
the fetching of the block into the pipeline starts), using the technique described in [18].

For the purpose of this paper, we have designed a model of the Cortex M4 processor featured
by the STM32F4-Discovery board. This model was validated against measurements using a
micro-benchmark that we designed to observe specific instruction latencies (taken branches, load
and store accesses to the Flash and SDRAM memories, etc.) as well as the overhead due to the
measurement process (enabling a timer, then reading it after the function under analysis has been
executed). However, we did not model the ART Accelerator device used to hide part of the latency
to the embedded Flash memory. Instead, we have considered the full Flash latency for each access
to a new Flash line. Specific latencies for accesses to the registers of I/O devices and timers have
been considered, based on their address ranges.

4.2.3 Static WCET Estimations
The WCET estimations, as well as the overestimation against the highest observed watermark
(i.e. numbers given in Table 2), are reported in Table 5. It appears that the overestimation is
reasonable (ranging from +11.9% to +41.1%) with respect to what is usually expected from static

F. Kluge, C. Rochange, and T. Ungerer 02:19

Table 5 Estimated WCETs of ISRs and critical sections considering the STM32F4-Discovery platform
(clock cycles).

ISR WCET overestimation

PrimaryRPMISR() (even teeth) 1695 17.9%
PrimaryRPMISR() (odd teeth) 542 41.1%
SecondaryRMPISR() 343 17.9%
InjectorXISR() (open) 668 12.5%
InjectorXISR() (close) 601 11.9%
IgnitionDwellISR() 228 34.9%
IgnitionFireISR() 199 30.1%
RTIISR() 343 14.0%

main() (sample) 304 27.7%
main() (switch sensor data) 88 31,3%
main() (switch control data) 97 32.9%

Table 6 Estimated WCETs of ISRs and critical sections considering the STM32F4-Discovery platform
without ART vs. with a perfect ART (clock cycles).

ISR without ART with a perfect ART

PrimaryRPMISR() (even teeth) 1695 915
PrimaryRPMISR() (odd teeth) 542 254
SecondaryRMPISR() 343 192
InjectorXISR() (open) 668 375
InjectorXISR() (close) 601 325
IgnitionDwellISR() 228 118
IgnitionFireISR() 199 110
RTIISR() 343 216

main() (sample) 304 161
main() (switch sensor data) 88 54
main() (switch control data) 97 51

WCET analysis. However, it can still be considered as a bit high given that the target processor
is very simple and time-predictable. However, not modelling the ART accelerator and assuming
maximum latency for each access to the memory (either Flash or SRAM) is pessimistic and has a
noticeable impact on estimated WCETs. Table 6 gives an insight into this impact by showing
WCETs computed with a perfect (always hit) vs. without ART.

4.3 Interferences
An important aspect in real-time systems is a RTA, which helps to ensure that reactions happen
in time and supports schedulability analysis. The response times of tasks or ISRs must not only
take their execution times into account, but also possible interferences from other tasks/ISRs.
In the following, we discuss the timing interferences that can occur in ems, and how they can
influence reactions.

In the EMS implementation, the main() loop may interfere with the ISRs, and ISRs may
interfere among each other (in terms of delaying each others execution). These interferences can

LITES

02:20 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

delay the execution of an ISR. In the current implementation, the following interferences can occur
(all numbers refer to the STM32F4-Discovery platform):

Any ISR can be delayed through one of the three critical sections in the main() loop. In the
first critical section, input signals from the ADCs are sampled. In our implementation, these
I/O accesses are replaced by reading constants from memory. In the other two critical sections,
only buffers for input resp. injection/ignition data are switched.
The RTIISR() may delay the start of any other ISR and vice versa. The RTIISR() is triggered
according to physical time each 125 µs. All important other ISRs are bound to the crankshaft
rotation. Their trigger times and intervals change over time in accordance with the current
rotation speed of the crankshaft. Occasionally, their activation/execution times may overlap,
resulting in the ISR triggered later being delayed.
As already noted in Section 3.4.2, the activation time of each second instance of any InjectorX-
ISR() (which pulls the output pin back to low) varies inside a certain interval (see Figure 6).
If the associated timer interrupt is triggered very early in the cycle, the execution of the
InjectorXISR() can be delayed by the IgnitionDwellISR(). If it is activated very late, its
execution may overlap with the activation of the IgnitionFireISR() and thus delay actual igni-
tion. It may even happen that the InjectorXISR() is activated after the IgnitionFireISR(),
in which case the InjectorXISR() is delayed.

Not all delays mentioned above have the same criticality. ISRs that are bound to a C/C timer
channel can cope better with an execution delay: On an IC channel, the timestamp of the relevant
event was already stored by the hardware. On an OC channel, the relevant pin output was
already set by the hardware in time. Here, a delay may be critical, if the corresponding ISR
has to set the channel’s timer anew. The IgnitionDwellISR() and IgnitionFireISR() have a
higher sensitivity to execution delays, as the output pins for ignition control are set by software.
This means that e.g. delaying the execution of the IgnitionFireISR() will result in an ignition
happening later. Here, it mainly depends on the actual system (EMS+engine), whether a certain
delay is acceptable. Delays that are incurred by the RTIISR() can only have minor effects on the
behaviour of the EMS. As already specified in the original FreeEMS implementation, tasks that
must be performed periodically should be included in main() loop, while the RTIISR should only
be used to set activation flags. A delay of the RTIISR() can lead to later execution of the relevant
tasks, leading to a certain jitter. However, these tasks actually have to accept that they might be
interrupted any time if they execute outside a critical section, and thus possible delays must be
heeded during design.

To quantify the possible delay of an ISR more clearly, consider the PrimaryRPMISR which has
the highest WCET of all tasks. The STM32F407 µC core runs at 168MHz. Thus, the WCET
of 1695 cycles corresponds to a time of 1695

168MHz ≈ 10.09 µs. Assuming the maximum observed
revolution speed of the crankshaft (63.64 s−1 ≈ 3820 rpm), this time corresponds to an angle
α = 10.09 µs · 63.64 s−1 ≈ 0.16°. For the other critical sections, this angle is even smaller. In [25],
ignition timing is varied in the range of -41° to 10° relative to the top dead point of the piston.
Thus, we infer that the above deviation α is tolerable.

5 Existing Benchmarks and Related Work

Since the initial works on WCET analysis, a growing number of programs have been used
as benchmarks. Earlier works have been evaluated considering short C programs inspired by
algorithms described in [15] (Fast Fourier Transform, FIR filter, array sort, Fibonacci computation,
etc.) and developed at the Singapore National University. Later, these benchmarks have been
included in a larger collection at Mälardalen University [4]. This collection extends the former

F. Kluge, C. Rochange, and T. Ungerer 02:21

one with programs that exhibit more complex flow patterns, so that flow analysis techniques
can be exercised. More recently, the TACLeBench collection has been released [3]. It gathers 55
re-formatted and versioned benchmarks.

The first report of using an industrial application as a WCET benchmark can be found in [8].
The application is on-board software for the Debie satellite instrument that measures impacts
of small space debris or micro-meteoroids. The application consists of six tasks, including three
interrupt service routines, that record information on debris hits and handle the reception of
telecommands as well as the transmission of telemetry. This application is now available as
open-source software2 and has been considered in the last editions of the WCET Tool Challenge3
for which it has been ported to Java. However, no input data generator is publicly available,
which prevents from executing the benchmark to compare measured execution times to statically
estimated WCETs, or from using measurement-based timing analyses.

PapaBench [14] is a benchmark built from Paparazzi, an open-source drone hardware and
software project4. This application consists of two parts, fbw (fly-by-wire) that controls the drone
in flight (engines and flap control, radio link with ground, IR sensor support, stabilization) and
autopilot that controls the GPS and executes a flight plan. It is composed of about 20 tasks
(including ISRs) that are statically scheduled. In contrast, the tasks (ISRs) in EMSBench are
mostly triggered through external events or events that depend on the physical state of the system.

In [22], the authors argue that real-world applications might be too complex for existing
academic WCET tools, mainly because of their complex flow structure. They introduce GenE,
a benchmark generator, that provides flow fact annotations together with the generated code.
Benchmarks are generated from code patterns that are commonly found in real-time applications.
The idea is to focus on these patterns and to get rid of specific/unpredictable flow structures.

6 Conclusions

The work presented in this article was motivated by the fact that only few free benchmark
programs for real-time systems exist that exhibit a behaviour similar to real applications. Widely
spread benchmark suites consist usually of rather small, self-contained programs. More complex
programs have so far only been reported from the aerospace domain [8, 14]. With the software
package EMSBench we are undertaking a step beyond existing benchmarks to close this gap
between actual real-time software and benchmark programs. In this article, we have described
EMSBench and examined several of its use cases.

EMSBench is based on FreeEMS, an open source software for engine management, and was
developed as a system benchmark for embedded real-time systems [10]. It consists of several ISRs
and periodic tasks that are executed concurrently. Thus, it exhibits a behaviour that is significantly
more complex than that of simple linear programs. Especially, some ISRs may interfere with other
ones and delay their execution. The ISRs cannot be scheduled statically, as they must react upon
events occurring in the phyical world with low latency. To ease the use of FreeEMS as a system
benchmark, we have applied adjustments to the code and provide additional programs. We have
removed most of the input dependencies in the ems part of EMSBench, and kept only the use of
the crankshaft decoder. To allow for a realistic execution of ems, we provide a trace generator
(tg) that emulates the behaviour of the crankshaft encoder according to arbitrary driving cycles.
A HAL allows to adapt EMSBench to other hardware platforms.

2 http://www.tidorum.fi/debie1/
3 http://www.mrtc.mdh.se/projects/WTC/
4 https://wiki.paparazziuav.org

LITES

http://www.tidorum.fi/debie1/
http://www.mrtc.mdh.se/projects/WTC/
https://wiki.paparazziuav.org

02:22 EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

We demonstrated the application of EMSBench with several use cases. Timing measurements
were performed on two hardware platforms, the ARM Cortex-M4-based STM32F4-Discovery,
and a self-designed Nios II-based FPGA microcontroller. A static WCET analysis of important
parts of the EMS code from EMSBench was performed using the OTAWA toolset [1]. Reported
WCET estimations considering the STM32F4-Discovery platform are above the longest observed
execution times. Modelling the behaviour of hardware components that have been ignored in this
first study should improve accuracy.

The results of the WCET analysis were used for an analysis of interferences that may occur
between ISRs and periodic functions. Due to the low utilisation generated by the EMS on the
STM32F4-Discovery platform, only minor interferences were identified. However, on platforms
with less performance, the EMS will generate higher utilisation, and thus possibly more serious
interferences might be found. It appears that EMSBench is a valuable benchmark for static
WCET analysis tools. First of all, its structure is very similar to industrial applications that
we could see in projects. Several modules (ISRs or tasks invoked in the main loop) can be
analysed separately. Several of them exhibit different behaviours, depending on when they are
executed (e.g. PrimaryRPMISR() is triggered either by an even or an odd tooth), which suggests
that several scenario-related WCET values can be derived. In addition, the code contains a lot of
indirect branches and a specific WCET could be computed for each possible target (e.g. for the
PrimaryRPMISR() routine related to each injection channel, which should improve the accuracy
of the overall WCET).

Due to its complexity, the use of EMSBench is not restricted to WCET benchmarking. If
used with the accompanying trace generator, it can also act as a test program to evaluate other
aspects of an execution platform. For example, schedulability aspects of an underlying operating
system could be examined based on the results of a WCET analysis. To mimic the higher
processor utilisation of industrial EMSs, some ISRs in EMSBench might be extended by code that
synthetically increases the load. Such code could be based on signal processing algorithms like the
Fast Fourier Transform, to, e.g. imitate software for knocking detection. Thus, higher interferences
could be generated, allowing for a more challenging schedulability analysis. To allow for a more
realistic execution of EMSBench, it would also be interesting to extend signal generation by a
throttle signal. Thus, a higher degree of variance in the ems’s behaviour could be generated as
the injection times would no longer be constant. Further works on EMSBench could include such
extensions, but also fixing bugs and shortcomings that exist in the current version. The source
code of EMSBench is available at https://github.com/unia-sik/emsbench. We encourage the
research community to submit their own HAL implementations for EMSBench via GitHub to
extend the useability of EMSBench.

References
1 Clément Ballabriga, Hugues Cassé, Christine

Rochange, and Pascal Sainrat. OTAWA: An
Open Toolbox for Adaptive WCET Analysis. In
Sang Lyul Min, Robert G. Pettit IV, Peter P.
Puschner, and Theo Ungerer, editors, Software
Technologies for Embedded and Ubiquitous Sys-
tems – 8th IFIP WG 10.2 Int’l Workshop, SEUS
2010, Waidhofen/Ybbs, Austria, October 13-15,
2010. Proceedings, volume 6399 of Lecture Notes
in Computer Science, pages 35–46. Springer, 2010.
doi:10.1007/978-3-642-16256-5_6.

2 Benchmark program and test bed for reactive em-
bedded systems. GitHub repository. URL: https:
//github.com/unia-sik/emsbench.

3 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx,
Björn Lisper, Wolfgang Puffitsch, Christine

Rochange, Martin Schoeberl, Rasmus Bo
Sorensen, Peter Wägemann, and Simon We-
gener. TACLeBench: A Benchmark Collection to
Support Worst-Case Execution Time Research.
In Martin Schoeberl, editor, 16th Int’l Work-
shop on Worst-Case Execution Time Analysis,
WCET 2016, July 5, 2016, Toulouse, France,
volume 55 of OASIcs, pages 2:1–2:10. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/OASIcs.WCET.2016.2.

4 Jan Gustafsson, Adam Betts, Andreas Ermedahl,
and Björn Lisper. The Mälardalen WCET Bench-
marks: Past, Present And Future. In Björn Lisper,
editor, 10th Int’l Workshop on Worst-Case Execu-
tion Time Analysis, WCET 2010, July 6, 2010,
Brussels, Belgium, volume 15 of OASIcs, pages

https://github.com/unia-sik/emsbench
http://dx.doi.org/10.1007/978-3-642-16256-5_6
https://github.com/unia-sik/emsbench
https://github.com/unia-sik/emsbench
http://dx.doi.org/10.4230/OASIcs.WCET.2016.2

F. Kluge, C. Rochange, and T. Ungerer 02:23

136–146. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, Germany, 2010. doi:10.4230/OASIcs.
WCET.2010.136.

5 Jan Gustafsson, Andreas Ermedahl, Christer Sand-
berg, and Björn Lisper. Automatic Derivation of
Loop Bounds and Infeasible Paths for WCET Ana-
lysis Using Abstract Execution. In Proceedings
of the 27th IEEE Real-Time Systems Symposium
(RTSS 2006), 5-8 December 2006, Rio de Janeiro,
Brazil, pages 57–66. IEEE Computer Society, 2006.
doi:10.1109/RTSS.2006.12.

6 Jeff Hartman. How to Tune and Modify En-
gine Management Systems. Motorbooks Workshop.
MBI Publishing Company, 2004.

7 Niklas Holsti, Jan Gustafsson, Linus Källberg, and
Björn Lisper. Analysing Switch-Case Code with
Abstract Execution. In Francisco J. Cazorla, ed-
itor, 15th Int’l Workshop on Worst-Case Execu-
tion Time Analysis, WCET 2015, July 7, 2015,
Lund, Sweden, volume 47 of OASIcs, pages 85–94.
Schloss Dagstuhl – Leibniz-Zentrum fuer Inform-
atik, 2015. doi:10.4230/OASIcs.WCET.2015.85.

8 Niklas Holsti, Thomas Langbacka, and Sami Saar-
inen. Using a worst-case execution time tool
for real-time verification of the DEBIE software.
European Space Agency Publications – ESA SP,
457:307–312, 2000.

9 Florian Kluge. A Simple Capture/Compare Timer.
Technical Report 2015-01, Department of Com-
puter Science, University of Augsburg, June 2015.
doi:10.13140/2.1.1251.2321.

10 Florian Kluge and Theo Ungerer. EMS-
Bench: Benchmark und Testumgebung für reakt-
ive Systeme. In Wolfgang A. Halang and Olaf
Spinczyk, editors, Echtzeit 2015, Informatik Ak-
tuell, pages 11–20. Springer, 2015. doi:10.1007/
978-3-662-48611-5_2.

11 Yau-Tsun Steven Li and Sharad Malik. Perform-
ance Analysis of Embedded Software Using Impli-
cit Path Enumeration. In Bryan Preas, editor, Pro-
ceedings of the 32st Conference on Design Auto-
mation, San Francisco, California, USA, Moscone
Center, June 12-16, 1995., pages 456–461. ACM
Press, 1995. doi:10.1145/217474.217570.

12 Marianne De Michiel, Armelle Bonenfant, Hugues
Cassé, and Pascal Sainrat. Static Loop Bound
Analysis of C Programs Based on Flow Analysis
and Abstract Interpretation. In The Fourteenth
IEEE Internationl Conference on Embedded and
Real-Time Computing Systems and Applications,
RTCSA 2008, Kaohisung, Taiwan, 25-27 August
2008, Proceedings, pages 161–166. IEEE Computer
Society, 2008. doi:10.1109/RTCSA.2008.53.

13 COUNCIL DIRECTIVE of 20 March 1970 on the
approximation of the laws of the Member States on
measures to be taken against air pollution by emis-
sions from motor vehicles. Version from 01.01.2007.

14 Fadia Nemer, Hugues Cassé, Pascal Sainrat,
Jean Paul Bahsoun, and Marianne De Michiel.
PapaBench: a Free Real-Time Benchmark. In
Frank Mueller, editor, 6th Int’l Workshop on
Worst-Case Execution Time (WCET) Analysis,
July 4, 2006, Dresden, Germany, volume 4 of
OASIcs. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2006. doi:10.4230/OASIcs.WCET.2006.
678.

15 William H. Press, Saul A. Teukolsky, William T.
Vetterling, and Brian P. Flannery. Numerical Re-
cipes in C: The Art of Scientific Computing. Cam-
bridge University Press, New York, NY, USA, 1992.
2nd edition.

16 Wolfgang Puffitsch. Efficient Worst-Case Execu-
tion Time Analysis of Dynamic Branch Predic-
tion. In 28th Euromicro Conference on Real-Time
Systems, ECRTS 2016, Toulouse, France, July 5-
8, 2016, pages 152–162. IEEE Computer Society,
2016. doi:10.1109/ECRTS.2016.23.

17 Jan Reineke, Daniel Grund, Christoph Berg,
and Reinhard Wilhelm. Timing predictability
of cache replacement policies. Real-Time Sys-
tems, 37(2):99–122, 2007. doi:10.1007/s11241-
007-9032-3.

18 Christine Rochange and Pascal Sainrat. A Context-
Parameterized Model for Static Analysis of Exe-
cution Times. Trans. HiPEAC, 2:222–241, 2009.
doi:10.1007/978-3-642-00904-4_12.

19 STMicroelectronics. UM1472 User Manual – Dis-
covery kit for STM32f407/417 lines. STMicroelec-
tronics, November 2013.

20 Trace Generation in EMSBench. URL:
https://github.com/unia-sik/emsbench/blob/
master/doc/tg/tg.pdf.

21 Stephan Thesing. Safe and precise WCET determ-
ination by abstract interpretation of pipeline mod-
els. PhD thesis, Saarland University, Saarbrücken,
Germany, 2004. URL: http://scidok.sulb.uni-
saarland.de/volltexte/2005/466/index.html.

22 Peter Wägemann, Tobias Distler, Timo Hönig,
Volkmar Sieh, and Wolfgang Schröder-Preikschat.
GenE: A Benchmark Generator for WCET Ana-
lysis. In Francisco J. Cazorla, editor, 15th Int’l
Workshop on Worst-Case Execution Time Ana-
lysis, WCET 2015, July 7, 2015, Lund, Sweden,
volume 47 of OASIcs, pages 33–43. Schloss Dag-
stuhl – Leibniz-Zentrum fuer Informatik, 2015.
doi:10.4230/OASIcs.WCET.2015.33.

23 Henning Wallentowitz and Konrad Reif, editors.
Handbuch Kraftfahrzeugelektronik: Grundlagen,
Komponenten, Systeme, Anwendungen. Vieweg,
Wiesbaden, 2006.

24 Reinhard Wilhelm, Jakob Engblom, Andreas Er-
medahl, Niklas Holsti, Stephan Thesing, David B.
Whalley, Guillem Bernat, Christian Ferdinand, Re-
inhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter P. Puschner, Jan Staschulat,
and Per Stenström. The worst-case execution-time
problem – overview of methods and survey of tools.
ACM Trans. Embedded Comput. Syst., 7(3):36:1–
36:53, 2008. doi:10.1145/1347375.1347389.

25 Javad Zareei and Amir H. Kakaee. Study and the
effects of ignition timing on gasoline engine per-
formance and emissions. European Transport Re-
search Review, 5(2):109–116, 2013. doi:10.1007/
s12544-013-0099-8.

26 Jakob Zwirchmayr, Pascal Sotin, Armelle Bonen-
fant, Denis Claraz, and Philippe Cuenot. Identify-
ing Relevant Parameters to Improve WCET Ana-
lysis. In Heiko Falk, editor, 14th Int’l Workshop
on Worst-Case Execution Time Analysis, WCET
2014, July 8, 2014, Ulm, Germany, volume 39 of
OASIcs, pages 93–102. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, 2014. doi:10.4230/
OASIcs.WCET.2014.93.

LITES

http://dx.doi.org/10.4230/OASIcs.WCET.2010.136
http://dx.doi.org/10.4230/OASIcs.WCET.2010.136
http://dx.doi.org/10.1109/RTSS.2006.12
http://dx.doi.org/10.4230/OASIcs.WCET.2015.85
http://dx.doi.org/10.13140/2.1.1251.2321
http://dx.doi.org/10.1007/978-3-662-48611-5_2
http://dx.doi.org/10.1007/978-3-662-48611-5_2
http://dx.doi.org/10.1145/217474.217570
http://dx.doi.org/10.1109/RTCSA.2008.53
http://dx.doi.org/10.4230/OASIcs.WCET.2006.678
http://dx.doi.org/10.4230/OASIcs.WCET.2006.678
http://dx.doi.org/10.1109/ECRTS.2016.23
http://dx.doi.org/10.1007/s11241-007-9032-3
http://dx.doi.org/10.1007/s11241-007-9032-3
http://dx.doi.org/10.1007/978-3-642-00904-4_12
https://github.com/unia-sik/emsbench/blob/master/doc/tg/tg.pdf
https://github.com/unia-sik/emsbench/blob/master/doc/tg/tg.pdf
http://scidok.sulb.uni-saarland.de/volltexte/2005/466/index.html
http://scidok.sulb.uni-saarland.de/volltexte/2005/466/index.html
http://dx.doi.org/10.4230/OASIcs.WCET.2015.33
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1007/s12544-013-0099-8
http://dx.doi.org/10.1007/s12544-013-0099-8
http://dx.doi.org/10.4230/OASIcs.WCET.2014.93
http://dx.doi.org/10.4230/OASIcs.WCET.2014.93

Per Processor Spin-Based Protocols for
Multiprocessor Real-Time Systems∗

Sara Afshar1, Moris Behnam2, Reinder J. Bril3, and Thomas Nolte4

1 Mälardalen University, Västerås, Sweden
sara.afshar@mdh.se

2 Mälardalen University, Västerås, Sweden
moris.behnam@mdh.se

3 Mälardalen University, Västerås, Sweden
reinder.j.bril@mdh.se
Technische Universiteit Eindhoven, Eindhoven, The Netherlands
r.j.bril@tue.nl

4 Mälardalen University, Västerås, Sweden
thomas.nolte@mdh.se

Abstract
This paper investigates preemptive spin-based
global resource sharing protocols for resource-
constrained real-time embedded multi-core sys-
tems based on partitioned fixed-priority preemp-
tive scheduling. We present preemptive spin-based
protocols that feature (i) an increased schedulabil-
ity ratio of task sets and reduced response jitter
of tasks compared to the classical non-preemptive
spin-based protocol, (ii) similar memory require-
ments for the administration of waiting tasks as for

the non-preemptive protocol whilst only causing
(iii) a minimal increase of the minimal number of
required stacks per core from one to at most two,
and (iv) strong progress guarantees to tasks. We
complement these protocols with a unified worst-
case response time analysis that specializes to the
classical analysis for the non-preemptive protocol.
The paper includes a comparative evaluation of
the preemptive protocols and the non-preemptive
protocol based on synthetic data.

2012 ACM Subject Classification Computer systems organization~Real-time systems, Software and its
engineering~Multiprocessing / multiprogramming / multitasking, Software and its engineering~Real-time
schedulability
Keywords and Phrases multiprocessor, resource sharing, spin-lock protocols
Digital Object Identifier 10.4230/LITES-v004-i002-a003
Received 2017-02-06 Accepted 2017-10-10 Published 2018-01-08

1 Introduction

In this paper, we consider industrial real-time embedded multi-core systems. These systems
typically control dedicated hardware and have strict timing requirements, e.g. the system shall not
only provide responses to events within well-defined intervals, but also minimizes response-time
fluctuations to guarantee specified quality levels of control. Due to their embedded nature, these
systems are in many cases resource constrained for cost-efficiency reasons. For industrial real-time
multi-core systems, partitioned fixed-priority preemptive scheduling is the defacto standard, i.e.
tasks are statically allocated to cores, as exemplified by AUTOSAR [5], which is a standard for
the automotive industry. For global resource sharing, i.e. sharing of, e.g., data or memory mapped

∗ This work is supported by the Swedish Foundation for Strategic Research via the research program PRESS, the
Swedish Knowledge Foundation and ARTEMIS Joint Undertaking project EMC2 (grant agreement 621429).

© Sara Afshar, Moris Behnam, Reinder J. Bril, and Thomas Nolte;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 4, Issue 2, Article No. 3, pp. 03:1–03:30
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v004-i002-a003
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

03:2 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

I/O between tasks that are executing on different cores, AUTOSAR prescribes spin-based global
resource-access protocols, which is the focus of this paper.

Two main requirements of these systems include cost-efficiency (i.e. resource constraints) and
quality of control (i.e. jitter constraints). As a result of being resource constrained, resource usage,
such as the amount of memory shall be restricted. Given our focus on global resource-access
protocols for industrial embedded multi-core systems, we therefore aim at a high schedulability
ratio of task sets on individual cores and low memory requirements. In the context of single-core
systems, the stack resource policy (SRP) [6], which provides mutual exclusive access to shared
resources, allows tasks to share a single stack by preventing interleaved executions of tasks,
reducing memory requirements. The multiprocessor stack resource policy (MSRP) [18] generalizes
SRP from a single core to a multi-core, whilst maintaining the attractive property of allowing
tasks that are executing on the same core to share a single stack. MSRP essentially provides
non-nested, non-preemptive spinning (i.e. busy-waiting) and non-preemptive resource access to
global resources, and assumes first-in-first-out (FIFO) queueing of tasks that are waiting for those
resources. Non-preemptive spinning has as an attractive side-effect that the length of individual
global resource queues (and even the sum of the lengths of the global resource queues) is bounded
by the number of cores.

On the other hand, embedded systems have jitter constraints. Response time fluctuations, i.e.
response jitter, of control tasks may significantly degrade the control performance and, in the
worst case, make control systems unstable. Response jitter shall therefore be limited for critical
control tasks. The response jitter of a control task is bounded by the difference of the worst-case
and best-case response time of that task [25, 11]. Assuming (a lower bound on) the best-case
response time to be independent of a global resource sharing protocol, the bound on the response
jitter decreases when the worst-case response time decreases. To minimize response jitter, control
tasks are typically given the highest priorities in a system.

Unfortunately, non-preemptive spinning can impose a reduction in system schedulability, since
a task that is spinning on a global resource blocks tasks with a higher priority on the same core
that arrive during its busy-waiting time. Preemptive spin-based protocols reduce the blocking time
of tasks with a priority higher than the priority at which the waiting task is spinning. Moreover,
non-preemptive spinning may significantly increase the worst-case response time of control tasks
due to remote blocking of tasks with a lower priority than the control tasks. preemptive spin-based
protocols can reduce the blocking time of control tasks, thereby reducing their response jitter. In
this paper we focus on a set of spin-based protocols that offer low memory usage and confine
the length of the global resource queues to the number of cores the same as MSRP. Further
in this section, we explore preemptive spin-based protocols, and conclude the section with the
contributions.

1.1 Preemptive spin-based protocols
Before presenting the specific protocol considered in this paper, we first briefly describe this field.
In particular, we identified three main characteristics of preemptive spin-based protocols, being
the spin-lock priority, the ordering during waiting and the impact of preemption on ordering. We
subsequently consider memory requirements and progress guarantees in more detail.

1.1.1 Main characteristics
We use spin-lock priority to refer to the priority at which a task is spinning while waiting for a
global resource. Assuming a fixed spin-lock priority for a spin-based protocol, we identified that
there are five possibilities for tasks to use spin-lock priorities. Tasks can use a fixed spin-lock

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:3

priority (i) per core, (ii) per task, (iii) per resource, (iv) per request and (v) hybrid, i.e. combination
of any of the previous ones.

In the literature, preemptive spin-based global resource sharing protocols typically assume
that a task is spinning at the priority of the task itself, i.e. the task’s “own” or “original” priority
[3, 13, 22, 27, 29] and hence it can be preempted due to the arrival of any higher priority task.
We classify this protocol as of type (ii) and refer to it as OP (own priority).

The second and third characteristic concerns the ordering and the impact of preemption on
ordering. Traditionally, there are two main techniques to determine which task is allowed to access
a global resource when multiple tasks have pending requests, i.e. ordered (also termed queued) or
unordered. In case of ordered, first-in-first-out (FIFO) queueing or queueing based on the priority
of tasks are most common. While using priority-ordered resource queues may cause longer delays
for a set of tasks (low priority tasks), it can decrease the waiting times of higher priority tasks. In
fact, Wieder and Brandenburg [29] have shown that none of the queueing techniques dominates
the other.

For ordered, three policies are typically considered in the literature for handling tasks that are
residing in a global resource queue while being preempted during spinning, being de-queuing [13,
22, 3, 29], skipping [27] and the classic policy upon pre-emption, i.e. a task is neither de-queued
nor skipped. The two former policies are typically used in conjunction with the spin-lock priority
of type (ii), in particular with OP, allowing preempting tasks on the same core to access the
global resource before the preempted task. De-queuing implies that a task that is preempted
while spinning on a global resource is removed from the resource queue. It will again be put in
the global resource queue when it is allowed to continue spinning. As a result, it may have to
wait for, i.e. may be blocked by, additional remote tasks with later requests to the same global
resource. Skipping implies that the task remains in the queue, but is not amenable for selection
when the global resource becomes available. As a result, it may have to wait for an additional
remote task with a later request to the same global resource that has been granted the resource
while it was preempted. Under the classic policy, a task remains in the global resource queue
when preempted and it is granted access to the global resource when it is at the head of the queue
and the resource becomes available.

In this work, we consider spin-based protocols of type (i), where a fixed priority level is used
for spinning for all tasks that are allocated to the same core. Moreover, to be consistent with
MSRP, similar to MSRP [18], we assume FIFO-ordered queueing and the classic policy upon
pre-emption.

1.1.2 Memory Requirements
As we described previously [1], the traditional spin-based and suspension-based global resource
sharing protocols can conceptually be unified by viewing a suspension-based protocol as a spin-
based protocol that uses the lowest priority level on a core, i.e. a priority lower than any “original”
priority of tasks on that core. We refer to a suspension-based protocol as LP (lowest priority)
and to the non-preemptive spin-based protocol as HP (highest priority). The flexible spin-lock
model (FSLM) [1] allows the selection of an arbitrary priority level in the range of LP to HP, and
addressed both specific instantiations of type (i), e.g. LP and HP, and type (ii), i.e. OP. Next to
LP and HP, it also considered CP (ceiling priority), i.e. the highest priority of any task on a core
using a global resource. In this paper, we focus on a particular subset of spin-based protocols from
FSLM, i.e. those protocols that spin at a fixed priority per core in the range [CP,HP] (with a
slight misuse of notation, where we refer to both the protocol and its associated spin-lock priority
by means of the same identifier, e.g. CP). An attractive point of this subset of protocols is that
at most one task at any time on a core can either have a pending request on or access to a global

LITES

03:4 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

resource (see Lemma 12 in [1]). Using protocols from this range in combination with FIFO-ordered
queueing will confine the length of any global resource queue to m, where m is the number of
cores [1]. Using priority levels other than this range from the whole spectrum, such as of LP or
OP, may result in a higher number of pending requests for a global resource on a core and thus
longer queue sizes. Moreover, this subset of protocols can be used with a minimal increase of the
number of required stacks per core. Later, in Section 4, we show that using spin-lock priorities
from the range [CP, HP) requires an increase from one, for MSRP (i.e. HP) to at most two stacks.
This number is significantly lower than when using LP or OP which require in the worst-case n
stacks per core, where n is the number of tasks allocated to that core. We therefore leave the
study of the rest of the spectrum of spin-lock priorities as future work.

1.1.3 Progress Guarantees
As described above, the policies de-queueing and skipping are typically used for handling tasks
that are residing in a global resource queue while being preempted during spinning. Both policies
may, however, significantly increase the remote blocking time experienced by a preempted task.
Under the de-queueing policy, every time a task is preempted during spinning, it has to wait for
all the tasks that have been enqueued which the task was preempted. Therefore, the task may
have to wait in the worst-case for an additional amount of at most m− 1 remote tasks when using
FIFO-ordered queues. Under the skipping policy, in the worst-case, every time a task is waiting
for a global resource it may get preempted by a higher priority task just before it can get access
to the resource and thus it will loose the access to the next queued task. Therefore, it may be
delayed for an additional global resource access on a remote core. To feature the same strong
progress guarantee as non-preemptive spin-based protocols, such as MSRP [18], we use the same
policy as MSRP, where we keep the task in the resource queue upon preemption and immediately
grant the task access to the global resource when it becomes available. In this way, a task has to
wait for at most m− 1 remote tasks when requesting a global resource, thereby preventing extra
delays that can be imposed to a task under both de-queueing and skipping.

1.2 Main contributions and outline
This paper investigates preemptive spin-based global resource sharing protocols for resource-
constrained real-time embedded systems based on partitioned fixed-priority preemptive scheduling.
We focus on protocols with a fixed spin-lock priority per core, where the spin-lock priorities are
taken from the range [CP,HP]. By design, the protocols feature similar memory requirements
for the administration of waiting tasks as for the non-preemptive protocol and strong progress
guarantees to tasks.

This paper has five main contributions. Firstly, we prove that these protocols feature a
minimal increase of the minimal number of required stacks per core from one to at most two.
Secondly, we introduce a special spin-based protocol from the introduced range, denoted by ĈP,
where we (i) prove that it dominates the classical non-preemptive spin-based protocol and all
spin-based protocols that use spin-lock priorities between ĈP and HP, (ii) show by means of
examples that CP and ĈP are incomparable. This means that ĈP performs always equal to or
better than HP, unlike CP. Although ĈP does not dominate CP, still we show that there are
cases in which ĈP performs better than CP. Thirdly, we provide a unified worst-case response
time analysis for these protocols that specializes to the classical analysis for the non-preemptive
protocol. Moreover, we show that our new analysis provides tighter blocking bounds for CP than
the analysis in [1]. Fourthly, we show that there may exist an intermediate spin-lock priority
within the range [CP, ĈP] that can make a task set schedulable if CP and ĈP cannot, which can
be found via a simple linear search. Finally, we perform a comparative evaluation of HP, CP and

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:5

ĈP, based on the schedulability ratio of task sets and the improvement in response times of tasks.
The remainder of this paper is organized as follows. Sections 2 summarizes related work

and Section 3 presents the system model. In Section 4, we prove that the minimal number of
required stacks per core for the spin-based protocols under consideration increases to at most
two. Section 5 proposes a new spin-based protocol ĈP. We subsequently present a generalized
worst-case response time analysis for the protocols in Section 6. A theoretical comparison of HP,
CP, and ĈP is presented in Section 7. In Section 8, a comparative evaluation of HP, CP, and ĈP
is presented. We conclude the paper in Section 9.

2 Related Work

A non-exhaustive amount of work has been done on spin-based resource sharing protocols. In the
following we briefly present the most related synchronization protocols used for multiprocessor
systems.

Mellor-Crummey and Scott [23] investigate scalable spin-based protocols to minimize the
network transactions that lead to contention, with a focus on non-preemptive spin-based protocols
with FIFO-ordering. This work later inspired Craig and Johnson [13, 21] to use a priority-ordered
variant. Whereas Craig [21] mainly focuses on non-preemptive spin-based protocols, Johnson[13]
also investigates preemptive spin-based protocols with FIFO-ordering, using the de-queueing
technique upon preemptions. There are extensions of these works[22, 3] that used a preemptive
version with FIFO-ordering. Another work which has used a preemptive spin-based protocol is by
Takada and Sakamura [27] which is based on a skipping policy. As described above, we neither
use a de-queueing technique nor a skipping technique, because they expose tasks to longer remote
blocking delays.

The Multiprocessor Stack Resource Policy (MSRP) was introduced by Gai et al. [18] for
partitioned systems based on a non-preemptive spin-based protocol. MSRP is an extension of
the Stack Resource Policy (SRP) [6] for multiprocessors and was the first work which carried
out a formal blocking analysis for a spin-based protocol. Global resource waiting queues are
FIFO-ordered under this protocol.

Devi et al. [16] introduced a non-preemptive spin-based protocol for global scheduling under
the EDF policy. Faggioli et al. presented the Multiprocessor Bandwidth Inheritance (M-BWI)
protocol [17], an extension of the Bandwidth Inheritance (BWI) protocol, for reservation-based
scheduling and preemptive spinning. Under their protocol not only a spinning task can be
preempted but also lock holder tasks may be preempted which leads to longer delays for releasing
a resource compared to non-preemptive resource accesses that we use. M-BWI can be used in
open systems where tasks can dynamically be added or removed. The resource queues used in
M-BWI are FIFO-ordered.

The Flexible Multiprocessor Locking Protocol (FMLP) introduced by Block et al. [8] combines
both spin-based and suspension-based protocols. Thus, it is categorized of type per-resource
spin-based protocols in our classification described in Section 1.1.1. Tasks spin non-preemptive on
so-called “short resources” and suspend on so-called “long resources”. FMLP uses FIFO-ordered
global resource queues and has been introduced for both partitioned and global scheduling. The
partitioned FMLP, was later extended for fixed-priority scheduling in [10].

A recent work by Wieder and Brandenburg [29] has investigated both preemptive and non-
preemptive spin-based protocols under four different queue handling policies: FIFO and unordered
spin-based protocols, and priority ordered spin-based protocols with FIFO-ordered and unordered
tie breaking. They use a de-queueing technique in order to avoid transitive arrival blocking
problem which occurs in combination with FIFO-ordered queues and preemptive spin-based

LITES

03:6 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

protocols, where tasks spin with their original priority (which we refer to it as OP). Transitive
arrival blocking occurs when a task waiting in a global resource queue is preempted by a higher
priority task on the core that require the same global resource, thus the higher priority task has
to wait for that lower priority task. This problem does not occur for the spin-lock priority levels
considered in this paper, since spinning is performed at a priority level equal to or higher than the
priority of any task using a global resource. Wieder et al. [29] achieve tighter blocking bounds
using mixed-integer linear program (ILP) techniques to bound the maximum cumulative blocking
imposed to a task. We show later in Section 6.4 how ILP can be used for the set of spin-based
protocols considered in this paper. In this paper, we investigate alternative spin-lock priorities
that can improve schedulability, reduce memory requirements, and reduce response jitter.

The Multiprocessor resource sharing Protocol (MrsP) is a preemptive spin-based protocol that
is proposed by Burns and Wellings [12]. MrsP is an extension of PCP [26] for multiprocessor
fixed-priority partitioned scheduling where each global resource on each core is associated with a
ceiling that is the highest priority among the tasks that request that resource on that core. Since
ceiling of resources are used as the spin-lock priority for tasks on a core, unlike the spin-based
protocols considered in this paper, MrsP uses spin-lock priorities of type (iii) mentioned in
Section 1.1.1. Another key difference of this protocol from the protocols considered in this paper is
that the critical sections are preemptive. Moreover, a helping method [28] has been used for MrsP
where a spinning task donates its spinning time to a task that has locked the resource but cannot
proceed since it has been preempted on its core. Under this method the preempted task migrates
to a core where a task is spinning to lock the same resource and access its locked resource there.
Global resource queues are FIFO-based under this protocol.

3 System Model

Our system consists ofm identical processors executing a set of n sporadic tasks using fixed-priority
partitioned scheduling. The set of tasks allocated to a processor Pk is denoted by TPk . Each
task τi is presented by < Ci, Di, Ti > and consists of an infinite sequence of jobs. Ci denotes
the worst-case execution time of task τi. Ti denotes the minimum inter-arrival time of τi and
Di denotes the relative deadline of τi. We assume constrained deadlines tasks, i.e. Di ≤ Ti. The
priority of the task τi is denoted by πi where πi ≥ 1. Ui denotes the utilization of a task τi and
is calculated as Ui = Ci/Ti. We assume that a task τi has a priority higher than task τj , i.e.,
πi > πj , if i > j, e.g. π2 > π1. We assume tasks with unique priorities on each processor.

Tasks in the system may use local or global resources. Local resources are those that are
accessed only by tasks on the same processor, whereas global resources are accessed by tasks on
different processors. The section of a task that uses global and local resource is called global
and local critical section (gcs,lcs), respectively. The sets of local and global resources which are
accessed by tasks on a processor Pk are denoted by RL

Pk
and RG

Pk
, respectively. Similarly, we

denote the set of local and global resources that are accessed by jobs of a task τi as RSL
i and

RSG
i , respectively. Further, Csi,q denotes the worst-case execution time among all requests of

any job of a task τi for a resource Rq. Moreover, nG
i,q denotes the maximum number of possible

requests by any job of a task τi for a specific global resource Rq. The set of tasks on a processor
Pk requesting access to a specific resource Rq is denoted by TPk,q. Nested resource access is not
the focus of this paper. A complete set of notations can be found in Table 1 in Appendix A.

Based on the partitioned fixed-priority scheduling schema, we categorize the delay that can be
introduced to any task due to resource sharing in this paper into two general blocking notions: (i)
priority inversion blocking (pi-blocking) [24, 26] and (ii) remote blocking. Pi-blocking happens due
to tasks assigned on the same core. When a lower priority job on the same core is scheduled while

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:7

a higher priority task is pending but not scheduled, the lower priority task causes a pi-blocking to
the higher priority task. A job of a task is pending when it has arrived but not finished. Remote
blocking, on the other hand, is the type of blocking that a job of a task experiences due to waiting
for obtaining a global resource that is in use by a task on a remote core. The maximum duration of
remote blocking experienced by a task is referred to as spin-lock time under a spin-based protocol
(see Definitions 10 and 11).

In this paper, we denote the Bi as the total pi-blocking that is imposed to a task τi and we
exclude the spin-lock time of τi from this term.

We assume negligible run-time overhead for the analysis step. We will leave investigation of
such overheads for th next step towards implementation of the protocol.

3.1 General Definitions
Below, we present a set of definitions which will be used in the rest of this paper.

I Definition 1. The highest priority level on a processor Pk is denoted by πmax
Pk

as follows,
πmax
Pk

= max
τi∈TPk

{πi}. This is the spin-lock priority used for the HP spin-based protocol (see

Section 3.4.1).

I Definition 2. Ceiling-based resource-access protocols (such as SRP) assign a ceiling to any local
resource Rl ∈ RL

Pk
, where ceilPk(Rl) = max{πi| τi ∈ TPk ∧Rl ∈ RS

L
i }. [6]

I Definition 3. We denote the highest local ceiling of any regular1 local resource on a processor
Pk as πL

Pk
, where πL

Pk
= max{πi|τi ∈ TPk ∧RS

L
i 6= ∅}, i.e., πL

Pk
∈ [1, πmax

Pk
].

I Definition 4. We denote the highest local ceiling of any global resource on a processor Pk as
πG
Pk, where πG

Pk
= max{πi|τi ∈ TPk ∧RS

G
i 6= ∅}, i.e., πG

Pk
∈ [1, πmax

Pk
]. This is the spin-lock priority

used for the CP spin-based protocol (see Section 3.4.2).

I Definition 5. We denote the highest local ceiling of any resource on a processor (either local or
global) Pk as πLG

Pk
, where πLG

Pk
= max(πL

Pk
, πG
Pk

), i.e., πLG
Pk
∈ [1, πmax

Pk
]. This is the spin-lock priority

used for the ĈP spin-based protocol (see Section 5).

I Definition 6. When a task spins on a processor to acquire a global resource, its priority might
change during spinning depending on the spin-based protocol that is used. The spin-lock priority
of a spin-based protocol σ is denoted by πspinσ

Pk
which denotes an arbitrary spin-lock priority level

that is used for every task when it spins on a processor Pk. We simply use πspin
Pk

if we do not refer
to a specific spin-based protocol. In this paper, we consider πspin

Pk
∈ [πG

Pk
, πmax
Pk

].

I Definition 7. We denote the spin-lock priority used by a task τi as πspin
i . According to our

system model, πspin
i = πspin

Pk
where {∀τi ∈ TPk |RS

G
i 6= ∅, k = 1, ...,m}

I Definition 8. We refer to pi-blocking that is imposed to a task τi ∈ TPk by lower priority tasks
on the same core that request local resources as local blocking due to local resources (LBL) and
global resources as local blocking due to global resources (LBG).

I Definition 9. The LBG delay that is imposed to a task τi ∈ TPk is divided into two different
sections: (a) spin-delay blocking of an LBG which is due to spinning of a lower priority task that
can preempt τi and (b) global resource access blocking of an LBG which is due to non-preemptive
access of a lower priority task to a global resource. Note that a LBG delay does not necessarily need
to contain the spin-delay part, e.g., when the lower priority task access the resource immediately.

1 We define a special (local) spin resource Rspin
Pk

in Rule 21.

LITES

03:8 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

I Definition 10. The maximum time that any task on a processor Pk has to spin to acquire a
global resource Rq ∈ RG

Pk
is referred to as spin-lock time to acquire Rq and is denoted by spinPk,q,

which is the maximum imposed remote blocking to acquire Rq.

I Definition 11. The maximum time that a task τi has to spin to acquire all its global resources
is referred to as spin-lock time of task τi and is denoted by spini, which is the maximum imposed
remote blocking to τi for acquiring all its global resources .

Under spin-based protocols usually the execution times of tasks are inflated by the spin-lock
time [18, 20, 1] as presented by the following definition.

I Definition 12. The inflated execution time of a task τi is denoted by Ći and is calculated as
Ći = Ci + spini.

I Note 13. By definition (see Definition 4), ∀πi > πG
Pk
| τi ∈ TPk =⇒ Ći = Ci since spini = 0.

I Definition 14. Davis et al. [15] defined: algorithm A dominates algorithm B, if all of the task
sets that are schedulable according to algorithm B are also schedulable according to algorithm
A, and task sets exist that are schedulable according to A, but not according to B. Moreover,
algorithms A and B are incomparable, if there exist task sets that are schedulable according to
algorithm A, but not according to algorithm B and vice versa. Since resource sharing protocols
are part of scheduling algorithms, these definitions also apply for spin-based protocols in this
paper. Based on this conclusion, if a task set is schedulable by both algorithms and the worst-case
response times of tasks under spin-based protocol 1 is always smaller than or equal to under
spin-based protocol 2 and there is at least one task that has a strictly smaller worst-case response
time under protocol 1 compared to protocol 2, then by reducing the deadline of this task we create
a new task set for which it is schedulable under protocol 1 but not 2 anymore which infers the
dominance of protocol 1 over 2. Inferred similarly, spin-based protocols 1 and 2 are incomparable
if a task set is schedulable under both protocols and there is a task that has a strictly smaller
worst-case response time under one compared to the other and vice versa.

3.2 Resource Sharing Rules
This section presents the resource sharing rules based on FSLM [1] for any spin-based protocol
with πspin

Pk
∈ [πG

Pk
, πmax
Pk

]. The key idea is that a task τi waiting for a global resource, will busy wait,
i.e. spin, whenever the resource is not available using a specific priority level in the aforementioned
range. However, the priority level on which the task spins is fixed for a core; see Definition 6.

I Rule 15. Local resources are handled by means of the SRP uniprocessor synchronization
protocol [6].

I Rule 16. For each global resource, a FIFO-ordered queue is used to enqueue the tasks waiting
for the related resource.

The key idea behind using FIFO-ordered queues for global resources is to use a similar setup as
the existing protocols (HP and CP), so that the comparison is feasible.

I Rule 17. Whenever a task τi on a processor Pk requests a global resource that is in use by
another processor, it places its request in the associated resource queue and spins. The task will
spin with a priority level πspin

Pk
(Definition 6).

I Rule 18. When a task is granted access to its requested global resource on a processor Pk, its
priority is boosted in an atomic operation to πmax

Pk
+ 1, i.e., it access the resource immediately and

executes non-preemptively on the core.

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:9

𝑅𝑃𝑘
𝑠𝑝𝑖𝑛

is locked

𝑃𝑘

𝑅𝑃𝑘
𝑠𝑝𝑖𝑛

is released -global resource requested

-global resource released

-normal execution

-spin-delay/lcs of 𝑅𝑃𝑘
𝑠𝑝𝑖𝑛

-gcs

-global resource granted

-local resource granted
-local resource released

Figure 1 Spinning on Pk is viewed as locking a special local resource Rspin
Pk

.

I Rule 19. The priority of the task is changed to its original priority as soon as it finishes the
global critical section where it becomes preemptable again.

I Rule 20. When the global resource becomes available (i.e. it is released), the task at the head of
the global resource queue (if any) is granted the resource.

The analysis of blocking bounds and all claims regarding the considered spin-based protocols
in this paper are based on our system model and presented resource sharing rules.

3.3 View on spinning and global resource access
Under a spin-based protocol a task spins whenever it is blocked on a global resource. In classical
spin-based protocols such as MSRP [18, 20] (which we refer to it as HP) as soon as a task is
blocked on a global resource, its priority is increased to the highest on its assigned core. The task
maintains this priority until it releases the resource. In this paper, we use a different approach
which is increasing the priority of the task in two steps. In the first step, i.e., as soon as the task
on a processor Pk request a global resource, its priority is increased to πspin

Pk
. In the second step,

i.e., as soon as the task is granted access to the global resource, its priority is boosted such that it
becomes non-preemptive (see Rule 18). The idea behind increasing the priority of the blocked task
in two steps is to allow the high priority tasks on the core, which may even not use any (global)
resource, to proceed when a lower priority task is waiting.

Conceptually, we can view spinning as accessing a "virtual" local resource (similar to a local
pseudo resource [18]). Under a local resource sharing protocol when a task acquires a local resource
its priority is raised to the ceiling of the resource, which is higher than or equal to the task’s own
priority. Since we only consider spin-lock priorities that are higher than or equal to the priority of
any task using a global resource on the core based on our system model (Definition 6), we can
treat spinning in the same way as acquiring a regular local resource by assigning the ceiling of
such local resource equal to the priority during spinning. The benefit of such a view is that a local
resource sharing protocol can take care of changing the priority of the task for spinning which
removes the need for operating system to take such an action. Moreover, such a view simplifies
validating the analysis. Having this in mind, we refer to such a virtual resource as spin resource
and denote it for a processor Pk as Rspin

Pk
. Rule 21 is the outcome of such a view.

I Rule 21. For each processor Pk a special (local) spin resource Rspin
Pk

is dedicated. Every task
τi on Pk that wants to request a global resource Rq, first locks Rspin

Pk
where, ceilPk(Rspin

Pk
) = πspin

Pk
.

The global resource access of Rq is nested within the local spin resource access of Rspin
Pk

. The spin
resource is released after the global resource is released.

Figure 1 illustrates nesting of the global critical section within the local critical section of the
special local resource Rspin

Pk
. As can be seen, for a task the access time to the local spin resource

consists of two parts: (1) the time that the task non-preemptively access a global resource and (2)
the time that the task is spinning to acquire the global resource. Based on this and according to
Rule 21 and the fact that the maximum time that a task may spin to acquire a global resource Rq
is spinPk,q (see Definition 10), hence we can reformulate Definition 9, as follows.

LITES

03:10 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

τ2

τ1

τ3

τ4

- normal execution

- preempted

0 5 10 time

Legend:

- task activation

- resource requested - granted

- lcs - gcs

- released

- spin-delay/lcs of R
spin

Pk

- blocked

Figure 2 Task τ4 experiences both a spin-delay and a global resource access blocking delay of an LBG.

I Definition 22. Any LBG that is imposed to a task on a processor Pk is due to non-preemptive
access to a global resource of a job of a lower priority task that is nested within an access to
the special spin resource Rspin

Pk
. The maximum duration of such blocking is equal to spinPk,q +

max ∀q,j:τj∈TPk
∧Rq∈RSG

j ∧πj<πi

Csj,q.

In Figure 2 it can be seen that a task τ4 experiences two types of blocking delay from lower
priority tasks, due to both local resource access as well as global resource access. In the time
interval [3, 4) ∪ [8, 10) τ4 experiences LBL from τ3 that has arrived earlier and has requested a
local resource with a ceiling higher than or equal to τ4’s priority. In the time interval [4, 8) it
experiences LBG from τ1 that has arrived earlier and has requested a global resource. τ1 has
issued its request for a global resource at time 0.5, however has got blocked on the resource since
the resource has been in use on a different processor. Thus when τ1 is granted access to the global
resource at time 4 it preempts τ3 and execute its gcs non-preemptively (see Rule 18). By viewing
spinning as access to a special local resource Rspin

Pk
on processor Pk, the time duration in which τ1

is spinning can be viewed as an lcs duration which τ1 access Rspin
Pk

with a ceiling equal to π2.

3.4 Recap of Existing Analysis and Lemmas
In this section we briefly present the blocking analysis of the two existing spin-based protocols
each of which uses a fixed spin-lock priority from the introduced spin-lock range in the system
model, i.e., [πG

Pk, π
max
Pk

].

3.4.1 HP Spin-Based Protocol
Under HP, πspinHP

Pk
= πmax

Pk
(recall Definitions 1 and 6) which makes a task non-preemptive while

spinning. This protocol has been introduced by Gai et al. [18]. Below we present the blocking
delays that occur under this protocol.

LBL (Definition 8) imposed to a task τi ∈ TPk due to normal local resources is denoted as BL
i

and is upper bounded as follows:

BL
i = max

∀j,l:πj<πi∧ τi,τj∈τPk
∧ Rl∈RSL

j ∧ πi≤ceilPk (Rl)

{Csj,l}.
(1)

LBG (Definition 8) imposed to a task τi ∈ TPk is denoted as BG
i and is upper bounded as

follows:

BG
i = max

∀j,q:πj<πi∧τi,τj∈TPk
∧Rq∈RSG

j

{Csj,q + spinPk,q}. (2)

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:11

The total pi-blocking imposed to a task τi ∈ TPk is denoted by Bi and is upper bounded as
follows:

Bi = max{BL
i , B

G
i }. (3)

spinPk,q (Definition 10) and spini (Definition 11) are upper bounded as follows [20]:

spinPk,q =
∑
∀Pr 6=Pk

max
∀τj∈TPr,q

Csj,q. (4)

spini =
∑

∀q:Rq∈RSG
i ∧τi∈TPk

nG
i,q × spinPk,q. (5)

For simplicity, under HP the execution times are inflated with the spin-lock time of the task.
The inflated execution time of a task τi, Ći is calculated according to Definition 12 where spini
incorporated in it is calculated by (5).

3.4.2 CP Spin-Based Protocol
Under CP π

spinCP
Pk

= πG
Pk

(recall Definitions 4 and 6) which makes a task to be non-preemptive
while spinning for any task that uses a global resource on the core. This protocol has been studied
previously [1]. Below we present the blocking delays that occur under this protocol.

LBL (Definition 8) imposed to a task τi ∈ TPk for CP is upper bounded similar as in HP,
according to (1).

LBG (Definition 8) imposed to a task τi ∈ TPk is upper bounded as follows:

BG
i = max

∀j,q:πj<πi∧τi,τj∈TPk
∧Rq∈RSG

j

{Csj,q + spinPk,q|(πi ≤ πG
Pk

)}. (6)

The total pi-blocking imposed to a task τi ∈ TPk Bi is upper bounded as follows:

Bi =
{
BL
i +BG

i if πi > πG
Pk

+ 1
max{BL

i , B
G
i } if πi ≤ πG

Pk
+ 1

. (7)

I Note 23. spinPk,q and spini are calculated as in (4) and (5), respectively and the inflated
execution time of a task τi, i.e., Ći is calculated according to Definition 12.

I Note 24. If πG
Pk

= πmax
Pk

then CP is equal to HP, hence (7) and (6) specialize from (2) and
(3), respectively.

3.4.3 Recap of Useful Lemmas
Here we repeat some lemmas presented previously [1] that will be used in this paper.

I Lemma 25. A job of a task τi ∈ TPk experiences at most one LBL (recall Definition 8) from
any lower priority task when SRP is used for local resource sharing (Property of SRP [6]).

I Lemma 26. A job of a lower priority task τj cannot issue any resource request after any job of
a higher priority task τi on the same core arrives, where πi ≤ πspin

i (Lemma 2 in [1]).

I Lemma 27. A job of a lower priority task τj can cause pi-blocking to any job of a higher priority
task τi at most once, where πi ≤ πspin

i (Lemma 3 in [1]).

LITES

03:12 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

I Note 28. According to Definitions 6 and 7 based on our system model, {∀τi ∈ TPk |RS
G
i 6=

∅ =⇒ πspin
i = πspin

Pk
≥ πG

Pk
}. Since by definition, i.e., Definition 4, πG

Pk
is the highest priority of

any task requesting a global resource therefore, for any such task τi that uses a global resource
πi ≤ πG

Pk
. Thus, πi ≤ πspin

i . As a result Lemmas 26 and 27 are valid based on our system model
as well.

4 Number of Stacks

In this section we present the maximum number of required stacks for tasks that use a spin-lock
priority πspin

Pk
where πspin

Pk
∈ [πG

Pk
, πmax
Pk

]. It has been shown by Gai et al. [18] that HP spin-based
protocol (MSRP) allows using a single stack for all tasks on a core. Here, we show that a spin-based
protocol that uses any spin-lock priority in the range πspin

Pk
∈ [πG

Pk, π
max
Pk

) allows using of only
two stacks for scheduling all tasks on a core. For this purpose, we show that (i) all tasks with
a priority at most πspin

Pk
can share one stack, and (ii) all tasks with a priority higher than πspin

Pk

and smaller than or equal to πmax
Pk

can share another stack. It has been shown [19] that if task
executions are non-interleaved then it is possible to use a single stack for scheduling all tasks.
Therefore, it is enough to show that executions of tasks in group (i) and similarly in group (ii)
are non-interleaved. Non-interleaved execution means that if a job of a task τi preempts a job
of a task τj , the job of τj cannot execute before the job of τi is finished. Thus, we present such
a property by Lemmas 30 and 31 for the execution of tasks in the two above mentioned groups.
First we recapitulate the outcome of using SRP in Lemma 29 which will be used in those two
lemmas.

I Lemma 29. The local resource sharing protocol SRP ensures that once a job is started, it cannot
be blocked due to a local resource until completion; it can only be preempted by higher priority
jobs. [6]

I Lemma 30. For any task τi ∈ TPk where πi ≤ πspin
Pk

a job of a lower priority task which is
preempted by a job of τi cannot execute until the job of τi is finished.

Proof. Proof by contradiction. Let us assume a job of τi preempts a job of a lower priority task
τj with priority πj at time t1, and before τi is finished at time t3 τj preempts τi at time t2. This
implies that at time t2, the priority of τj must have been raised to or above τi’s priority. Three
situations may happen for τj so that its priority is raised: (1) τj accesses a local resource Rl where
ceilPk(Rl) > πi, (2) τj is granted access to the special local spin resource πspin

Pk
due to a request

for a global resource Rg (see Rule 21) where πspin
Pk

> πi and (3) τj accesses a global resource Rg
and becomes non-preemptive (see Rule 18). In Cases (1) and (2), τi is blocked by τj at time t2
which cannot happen according to Lemma 29, having in mind that SRP treats the local spin
resource similar to any other normal local resource. In Case (3) the priority of τj has been raised
to πmax

Pk
+ 1 at time t2. According to Rule 21 τj must first have locked the spin resource, let us

assume at time t0. τj cannot issue any request after arrival of τi at time ta (Lemma 2 in [1]; see
Lemma 26), thus t0 < ta. Further, it is obvious that t1 ≥ ta therefore it is inferred that t0 < t1.
This implies that the priority of τj is raised to πspin

Pk
when it locks Rspin

Pk
at time t0 until t2 where

it gets access to Rg. Therefore, τi could only preempt τj at time t1 if its priority has been raised
higher than πspin

Pk
. The only situation that τi’s priority is raised higher than πspin

Pk
is when it is

granted access to a global resource (see Rule 18). However, according to Rule 21, in order to
access a global resource τi must have locked the local spin resource Rspin

Pk
at time t1 as well. This

is not possible since τj is already holding Rspin
Pk

at time t1. We therefore conclude that τj could
not have preempted τi at time t2 which means that it cannot execute until τi is finished. J

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:13

𝐶𝑃, 𝜋𝑃𝑘
𝐺

 𝐶𝑃 , 𝜋𝑃𝑘
𝐿𝐺

C

B

A

priority level

ranges

𝐻𝑃, 𝜋𝑃𝑘
𝑚𝑎𝑥

Figure 3 Priority ranges when πG
Pk

< πL
Pk

I Lemma 31. For any two tasks τi, τj ∈ TPk where πspin
Pk

< πi, πj ≤ πmax
Pk

a job of τj which is
preempted by a job of τi cannot execute until the job of τi is finished.

Proof. According to Definition 6 πspin
Pk
≥ πG

Pk
thus, by definition (see Definition 4), any task with

a priority higher than πspin
Pk

does not use any global resource. therefore, τi and τj may only share
local resources. Hence, this lemma can be inferred based on Lemma 29. J

I Theorem 32. It is enough to use only two stacks for scheduling tasks on a processor Pk when
selecting spin-based protocols with a spin-lock priority in the range [πG

Pk, π
max
Pk

).

Proof. It is shown by Lemmas 30 and 31 that tasks of group (i) as well as tasks of group (ii) have
non-interleaved executions, respectively. This implies that tasks of each group can use a single
stack. However, tasks of group (i) cannot share the same stack with group (ii). This is due to
the fact that if a task τj from group (i) is blocked on a global resource, i.e., it has locked the
spin resource with ceiling πspin

Pk
but has not yet been granted access to the global resource, it can

be preempted by a task τi from group (ii). If τj is granted access to the global resource before
τi is finished, it raises its priority to πmax

Pk
+ 1 and therefore will preempt τi. This means that

the execution of τi and τj will not be interleaved and cannot share the same stack. We therefore
conclude that all tasks on Pk can be scheduled using two stacks. J

5 A Special Spin-Based Protocol ĈP

In this section we introduce a special spin-based protocol from the range [CP, HP] which we
denote by ĈP. This protocol uses the lowest priority for spinning such that no other task at the
same core using either a local or global resource can preempt during spinning, i.e., π

spin
ĈP

Pk
= πLG

Pk

(recall Definitions 5 and 6). We show in Section 5.1 that ĈP dominates HP and all spin-based
protocols that use spin-lock priorities in between. In Section 5.2, we show by means of an example
that CP and ĈP are incomparable.

When πL
Pk
≤ πG

Pk
, then according to Definition 5 πLG

Pk
= πG

Pk
, having in mind that πG

Pk
is

the spin-lock priority of CP [1]. Therefore, ĈP only differs from CP when πL
Pk
> πG

Pk
. By this

observation we introduce three priority ranges based on these two key priority levels, as illustrated
in Figure 3 which later are elaborated in Sections 7 and 8. We specify these ranges as follows:
(A) ∀π | π > πLG

Pk
, (B) ∀π | πG

Pk
< π ≤ πLG

Pk
and (C) ∀π | π ≤ πG

Pk
where π denotes an arbitrary

priority level on a processor Pk.

5.1 Dominance of ĈP over HP and In-Between Spin-Based Protocols
We show by means of Lemma 33 that, following our proposed spin-lock model, ĈP dominates all
spin-based protocols that use a spin-lock priority higher than πLG

Pk .

LITES

03:14 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

I Lemma 33. ĈP dominates any spin-based protocol that uses a spin-priority level higher than
what is used by ĈP, including HP.

Proof. To prove this we assume an arbitrary spin-based protocol σ with a spin-lock priority
π

spinσ
Pk

higher than that of ĈP, i.e., πspinσ
Pk

> πLG
Pk

on Pk. Let us assume that a lower priority
task τj incurs an LBG to a task τi. According to Definition 22, the LBG delay incurred to τi
is divided into two parts: (a) delay due to a non-preemptive access to the global resource by τj
and (b) delay due to the remaining access to the special local spin resource Rspin

Pk
with ceiling

πspin
Pk

(Definition 21). Since the access to a global resource is non-preemptive (Rule 18) hence the
incurred LBG delay regarding case (a) is incurred to τi under any spin-based protocol, thus under
both ĈP and σ. However, the remaining access to the spin resource by τj will only block τi, i.e.,
τi will incur LBG delay regarding case (b) if and only if πi ≤ πspin

Pk
where πspin

Pk
= πLG

Pk
under ĈP

and πspin
Pk

= π
spinσ
Pk

under σ spin-based protocol. Let us assume three different possible priority
ranges for a task τi on Pk being: (i) πi ≤ πLG

Pk
, (ii) πLG

Pk
< πi ≤ πspinσ

Pk
and (iii) πi > π

spinσ
Pk

. τi will
experience the delay of type (b) using both spin-based protocols σ and ĈP under the condition
of case (i) since πi ≤ πLG

Pk
< π

spinσ
Pk

and will not experience it using both spin-based protocols
under the condition of case (iii) since πi > π

spinσ
Pk

> πLG
Pk

. Thus, for a task under conditions
(i) and (iii), there is no difference in using either of the spin-based protocols. Looking at the
condition of case (ii), however, τi experiences the delay of type (b) using protocol σ but does not
experience the delay using ĈP. This implies that the response time of τi is smaller when using
ĈP compared to when using σ. Hence, when the task set is schedulable under ĈP, we can make
the task set unschedulable under σ by reducing the deadline of τi (see Definition 14). As a result,
ĈP dominates σ. Since σ can be any spin-based protocol where πLG

Pk
< π

spinσ
Pk

, it can be concluded
that ĈP dominates any spin-based protocol with a spin-lock priority higher than that of ĈP, i.e.,
also HP since πLG

Pk
< πmax

Pk
. This finishes the proof. J

From Lemma 33, we draw the following conclusion.

I Corollary 34. If πG
Pk

= πLG
Pk

< πmax
Pk

, then CP dominates HP.

5.2 ĈP and CP incomparability
Next, we show by means of an example that CP and ĈP are incomparable (Definition 14).

I Example 35. In the example depicted in Figure 4 which consists of two scenarios a task set
is scheduled on two processors P1 and P2 where TP1 = τ1, ..., τ6 and TP2 = τ7. T1 = T7 = 100,
T2 = 100.2, T3 = T4 = 101 and T5 = T6 = 106, moreover, D1 = 9, and the deadline for the rest
of the tasks is 20. For each task τi, the given task specifications are specified in the format (Ci,
Csi,l, Csi,g). For the following tasks these values are the same under both scenarios. τ1: (4, 0, 3),
τ2: (1, 0, 1), τ4: (3, 0, 0), τ5: (1, 1, 0) and τ6: (1, 0, 0). Note that value zero implies that the
task does not use that specific resource. Under scenario (1), τ3: (2, 1, 0) and τ7: (7, 0, 5). In
scenario (1) τ4 misses its deadline under ĈP. In scenario (2), τ3: (4, 4, 0) and τ7: (4, 0, 1), and
τ4 misses its deadline under CP in this scenario.Given the tasks resource requesting specification
under both scenarios πspinCP

Pk
= 2 and π

spin
ĈP

Pk
= 5. Since in each scenario τ4 misses its deadline

using either CP or ĈP, thus according to Definition 14 CP or ĈP are incomparable.

6 Generalized Analysis

In this section we derive a general blocking analysis for selection of any arbitrary fixed spin-lock
priority from FSLM where πspin

Pk
∈ [πG

Pk, π
max
Pk

]. To provide the maximum blocking delay to a task,

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:15

τ 4

105 110 115 120100

τ 7

3

2

1

4

(a). CP

6

5
D 4

Original priority

(b). CP

τ 1 τ 1

τ 6

τ 5

τ 3 τ 3

τ 2

τ 1

τ 4

τ 7

3

2

1

4

6

5
D 4

τ 1 τ 1

τ 6

τ 5

τ 3

τ 2

τ 1

Holding 𝑹𝒍:

Access to resource is granted :Task is arrived :Resource is released : Request to resource :

Spinning :Holding 𝑹𝒈:

Deadline:

LBG :LBL :Interference :

Original priority

τ 4

τ 7

3

2

1

4

(a). CP

6

5
D 4

Original priority

(b). CP

τ 1 τ 1

τ 6

τ 5

τ 2

τ 1

τ 3τ 3

τ 4

τ 7

3

2

1

4

6

5
D 4

τ 1 τ 1

τ 6

τ 5

τ 2

τ 1

τ 3

τ 4

(1). Scenario1 (2). Scenario2

105 110 115 120100

105 110 115 120100 105 110 115 120100

P1 P1

P1 P1

P2 P2

P2 P2

Original priority

Figure 4 Incomparability of CP and ĈP. πspinCP
Pk

= 2 and π
spin

ĈP
Pk

= 5 in both scenarios. Scenario (1):
τ4 misses its deadline under ĈP but not under CP. Scenario (2): τ4 misses its deadline under CP but not
under ĈP.

we need the maximum number of occurrence of each type of blocking i.e., LBL and LBG, to a
task , and the incorporation of it with the maximum length of such blocking. To do so, we first, in
Section 6.1, present the maximum possible number of blocking as well as the identified type (i.e.,
LBL/LBG) that a task may experience. Next, in Section 6.2 we calculate the maximum amount
of such blocking using the identified number and type of blocking provided in Section 6.1.

6.1 Number and Type of Blocking
In this section we show by means of Lemmas 37 and 39, and Corollaries 36 and 38 the maximum
number and type of blocking a task τi experiences under three determinant cases: (i) πL

Pk
< πi,

(ii) πi ≤ πspin
Pk

and (iii) πspin
Pk

< πi ≤ πL
Pk

. It is enough to investigate the amount of blocking under
the three aforementioned cases since other cases which appears under the assumption πL

Pk
≤ πspin

Pk

falls under one of the above mentioned categories. As an example under such assumption, the
cases πL

Pk
< πi ≤ πspin

Pk
and πi ≤ πL

Pk
both falls under Case (ii).

Any LBG delay imposed to a task on a core Pk is due to a global resource access of a lower
priority task which according to Definition 22 is nested within the access to the local spin resource
Rspin
Pk

on Pk. According to SRP any job of a task can be blocked for at most one (outermost) local

LITES

03:16 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

critical section of any lower-priority task (Lemma 25). Rspin
Pk

is treated by SRP similar as any
other regular local resource on Pk, thus, Lemma 25 can be extended to the following corollary.

I Corollary 36. A job of any task τi ∈ TPk can experience at most one LBG from any lower
priority task.

Next, we present the type and the maximum number of blocking that a task experiences under
Cases (i) and (ii).

I Lemma 37. A job of a task τi ∈ TPk experiences at most one either LBG or LBL due to normal
local resources from any lower priority task under Cases (i) πL

Pk
< πi or (ii) πi ≤ πspin

Pk
.

Proof. Under Case (i), by definition, τi cannot experience any LBL delay due to a normal local
resource. However, it still can experience blocking due to the local spin resource. Since according
to Definition 22 access to the special local resource contains an access to a global resource. Thus
τi, in the worst-cases, experiences LBG which according to Corollary 36 is at most one from
any lower priority task. Therefore, the lemma is valid for this case. According to Lemma 25, τi
experiences at most one LBL from lower priority task due to requesting local resources. Since
under Case (ii), πi ≤ πspin

Pk
and remembering from Rule 21 that πspin

Pk
is the ceiling of the special

local spin resource on Pk, thus such an LBL to τi can be due to acquiring the local spin resource
by a lower priority task. In other words, the imposed LBL to τi can be either due to a normal
local resource or the spin resource on Pk. Moreover, since the access to the spin resource contains
an access to a global resource, if τi experiences an LBL due to the local spin resource then it
experiences an LBG. This concludes that τi experiences at most one either LBL due to a normal
local resource or an LBG. This finishes the proof. J

To further realize the scenario of Lemma 37 let us assume that in the example in Figure 2
there exists another task τ0 with priority lower than that of τ2 besides τ1 which also arrives earlier
than τ2 and uses the same local resource as τ3. It is easy to observe that either τ1 could issue its
request for the "special" local resource Rspin

Pk
which has a ceiling equal to 2 and delay τ2 upon its

arrival or τ0 could for its normal local resource with ceiling equal to 3.
Next, we present the type and the maximum number of blocking that a task experiences under

Case (iii). According to Corollary 36, a task τi experiences at most one LBG from lower priority
tasks. According to Definition 22 an LBG to a task is due to non-preemptive global resource
access of a lower priority task which is always nested within an access to the special spin resource
Rspin
Pk

. Unlike in Lemma 37, a task τi with a priority πspin
Pk

< πi , cannot experience LBL due to
the special spin resource Rspin

Pk
where ceilPk(Rspin

Pk
) = πspin

Pk
(Rule 21). However, since the access

to global resource is non-preemptive (i.e., the priority of the task is raised higher than any task
when the resource is granted, see Rule 18), thus, in the worst-case, τi experiences the resource
access delay of an LBG from a lower priority task. Further, τi can experience at most one LBL
a from a normal local resource when πi ≤ πL

Pk
where according to Lemma 25 it can be at most

one from any lower priority task. Therefore, the following corollary is drawn from Lemma 25 and
Corollary 36.

I Corollary 38. A job of a task τi ∈ TPk experiences at most one LBL from lower priority tasks
due to a normal local resource and one resource access delay of an LBG from any lower priority
task under Case (iii) πspin

Pk
< πi ≤ πL

Pk
.

The scenario of Corollary 38 can be remembered from Figure 2 where τ4 experiences LBL from
τ3 and resource access blocking of an LBG from τ1.

Next, we identify the set of lower priority tasks from Lemma 38 that causes LBL delay to a
task τi under (iii).

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:17

I Lemma 39. If a job of a task τi ∈ TPk experiences both an LBL and a resource access delay of
an LBG then the LBL is caused by job of a lower priority task τl where πl > πspin

Pk
.

Proof. Let us assume that τi experiences LBG by the lower priority task τm due to a request for
the global resource Rq which is issued at time tm, and it experiences LBL by the lower priority
task τl due to request for the local resource R` which is issued at time tl.

According to Lemma 26 and having in mind Note 28, these requests are issued before τi’s
arrival at time ti, thus, tl < ti and tm < ti. However, one of the possible three following cases can
be valid for tl and tm: (i) tl = tm, (ii) tl < tm, or (iii) tm < tl. According to Rule 21, τm first
locks the special local resource Rspin

Pk
before locking Rq. Moreover, according to SRP, access to a

local resource happens at the time of request. Thus, both τl and τm access R` and the special
local resource Rspin

Pk
at times tl and tm, respectively. Further, according to Lemma 25, one LBL

can happen to τi at any time which rules out the case (i), i.e., tl 6= tm. Moreover, τl causing LBL
to τi implies that it raises its priority to ceil(R`) at time tl where ceil(R`) ≥ πi. Therefore, no
task with priority lower than that of τi can run in the interval [tl, ti]. This rules out case (ii).
Therefore, case (iii) is valid. τm first locks Rspin

Pk
at a time t0 with t0 ≤ tm and raises its priority

to the ceiling of this resource, i.e., πspin
Pk

(Rule 21). Therefore, in order to τl be able to run at time
tl > tm, it must be that πl > πspin

Pk
. This finishes the proof. J

The scenario of Lemma 39 can be remembered from Figure 2 where τ4 experiences both an
LBL and LBG delay from τ3 and τ1, respectively where π3 > πspin

Pk
= 1.

6.2 Amount of Blocking
In this section first we present maximum deuration of LBL and LBG delay that a task experiences
by Corollary 40 and Lemmas 41 and 42. Finally, Theorem 43 concludes the total worst-case
blocking delay calculation experienced by a task.

Maximum LBL duration experienced by a task is presented by the following corollary that is
driven from Lemma 25.

I Corollary 40. The maximum LBL blocking duration experienced by a task τi ∈ TPk is formulated
as follows.

BL
i = max

∀j:πj<πi∧τi,τj∈τPk
BL
i,j , (8)

where BL
i,j is denoted as the maximum LBL delay duration imposed to a task τi ∈ TPk by a local

lower priority task τj and is calculated according to SRP specification [6] as below:

BL
i,j = max

∀l:Rl∈RSL
j

∧πj<πi≤ceilPk (Rl)

{Csj,l}. (9)

In the following, we present the maximum LBG duration experienced by a task from a lower
priority task.

I Lemma 41. The maximum LBG blocking duration experienced by a task τi ∈ TPk from any
job of a local lower priority task τj using a spin-based protocol where πspin

Pk
≥ πG

Pk
is denoted as

BG
i,j(π

spin
Pk

) and is calculated as follows.

BG
i,j(π

spin
Pk

) = max
∀q:Rq∈RSG

j
∧πj<πi

(
Csj,q +

{
spinPk,q if πi ≤ πspin

Pk

0 otherwise

)
, (10)

where spinPk,q =
∑
∀Pr 6=Pk

max
∀τj∈TPr,q

{Csj,q} as in (4).

LITES

03:18 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

Proof. Since LBG is a type of pi-blocking (see Definition 8), thus, according to Lemma 27 (and
having in mind Note 28), any job of a lower priority task τj can cause LBG to any job of a higher
priority task τi at most once. Further according to Definition 22 the maximum duration of such
a delay is spinPk,q + max ∀q,j:τj∈TPk

∧Rq∈RSG
j ∧πj<πi

Csj,q. However, the access to the special local resource

Rspin
Pk

by τj where ceilPk(Rspin
Pk

) = πspin
Pk

can preempt τi only if πi ≤ πspin
Pk

. Based on this (10) is
derived. J

Next, we present the maximum LBG duration experienced by a task from all lower priority
tasks.

I Lemma 42. The maximum LBG blocking duration experienced by a task τi from local lower
priority tasks using a spin-based protocol where πspin

Pk
≥ πG

Pk
is denoted as BG

i (πspin
Pk

) and is
calculated as follows.

BG
i (πspin

Pk
) = max

∀j:πj<πi∧τi,τj∈TPk
{BG

i,j(π
spin
Pk

)}, (11)

where BG
i,j(π

spin
Pk

) is calculated according to (10).

Proof. Follows immediately from Corollary 36 and Lemma 41. J

I Theorem 43. The worst-case total pi-blocking experienced by a task τi ∈ TPk when πG
Pk
≤

πspin
Pk
≤ πmax

Pk
is denoted by Bi(πspin

Pk
) and is calculated as follows.

Bi(πspin
Pk

) =



{
a if πL

Pk
< πi

b if πi ≤ πL
Pk

if πL
Pk
≤ πG

Pk
c if πL

Pk
< πi

d if πspin
Pk

< πi ≤ πL
Pk

e if πi ≤ πspin
Pk

if πG
Pk
< πL

Pk

(12)

where,

a = c = BG
i (πspin

Pk
), (13)

b = e = max(BL
i , B

G
i (πspin

Pk
)), (14)

d =max
(

max
∀j:πj<πi
∧πspin

Pk
<πj

∧τj∈TPk

{BL
i,j}+BG

i (πspin
Pk

), max
∀j:πj<πi
∧πj≤πspin

Pk
∧τj∈TPk

{BL
i,j}

)
, (15)

and BL
i,j, BL

i and BG
i (πspin

Pk
) are calculated according to (9), (8) and (11).

Proof. We prove the calculation of the terms a, b, c, d and e under clauses (a), (b), (c), (d) and
(e), respectively.
Proof of Clauses (a) and (c): when πL

Pk
< πi a task τi cannot experience any LBL due to normal

local resources, thus, BL
i = 0. However, according to Corollary 36, τi can experience at most

one LBG delay which its maximum duration according to Lemma 42 is (13).

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:19

Proof of Clauses (b) and (e): according to the conditions of Clause (b) ∀τi|πi ≤ πL
Pk

, it is valid
that πi ≤ πG

Pk
since πL

Pk
≤ πG

Pk
under this clause. Further, since πG

Pk
≤ πspin

Pk
(Definition 6) thus,

πi ≤ πspin
Pk

under the conditions of Clause (b), which is the same as the condition of Clause (e).
According to Lemma 37, τi experiences at most one either LBL or LBG from lower priority
tasks when πi ≤ πspin

Pk
. Thus, both terms (b) and (e) are inferred based on Corollary 40 and

Lemma 42 which introduce the maximum amount of such blocking.
Proof of Clause (d): we assume that the term d is constructed by three elements λ1, γ and

λ2 such that λ1 = max∀j:πspin
Pk

<πj

∧τj∈TPk

{BL
i,j}, γ = BG

i (πspin
Pk

) and λ2 = max∀j:πj≤πspin
Pk

∧τj∈TPk

{BL
i,j}. We

construct three cases (i), (ii) and (iii) for each of which we present a worst-case blocking delay
that is imposed to τi under this clause.
Case (i): since under the condition of Clause (d) πspin

Pk
< πi ≤ πL

Pk
, thus, according to

Corollary 38 and Lemma 39, τi experience in the worst-case both a resource access delay
of an LBG and an LBL from a lower priority task τj where πspin

Pk
< πj . By considering

Lemma 42 and (9), this leads to τi experience at most a blocking equal to λ1 + γ.
Case (ii): on the other hand, it is true that according to Lemma 25 a task can experience at

most one LBL from any lower priority task. By looking at (8), it is easy to see that the
maximum LBL imposed to τi can be rewritten as max(λ1, λ2).

Case (iii): furthermore, according to Corollary 36, it is also true that a task can experience at
most one LBG from any lower priority task which based on Lemma 42 the maximum of
such delay is the term γ.

All the three aforementioned cases are valid. However, the only way to find the maximum
imposed delay to a task is to find the one that gives rise to the maximum blocking imposed
to τi since they are overlapping cases. According to Lemma 25 the blocking delay derived
under case (i) and case (ii) cannot both be imposed to τi. Similarly, according to Corollary 36
the blocking delay derived under case (i) and case (iii) cannot both be imposed to τi as well.
Further, occurrence of blocking delay of case (ii) and (iii) is case (i). Therefore, to find the
maximum delay imposed to τi we present β that gives the maximum delay imposed under each
of the three cases where, β = max(λ1 + γ, γ,max(λ1, λ2)) = max(λ1 + γ,max(λ1, λ2)). Let us
assume two scenarios: (1) λ1 < λ2 and (2) λ2 ≤ λ1. Under scenario (1), β = max(λ1 + γ, λ2)
which is the same as term d in (12). On the other hand, under scenario (2) β = λ1 + γ.
However, since under this scenario it is derived that λ2 ≤ λ1 + γ, thus, max(λ1 + γ, λ2), i.e.,
term d, gives similar result as β here. As a result both scenarios (1) and (2) can be presented
with the term d. This finishes the proof. J

It is easy to observe that the total pi-blocking to a task τi ∈ TPk , i.e., Bi(π
spin
Pk

) in (16) presented
by Corollary 44 gives similar terms as in (12) under those conditions.

I Corollary 44. Bi(πspin
Pk

) for a task τi ∈ TPk is presented as follows.

Bi(πspin
Pk

) = max
(

max
∀j:πj<πi
∧πspin

Pk
<πj

∧τj∈TPk

{BL
i,j}+BG

i (πspin
Pk

), max
∀j:πj<πi
∧πj≤πspin

Pk
∧τj∈TPk

{BL
i,j}

)
, (16)

I Note 45. Similar to HP and CP, spinPk,q, spini are calculated as in (4) and (5), respectively
and the inflated execution time of a task τi, i.e., Ći is calculated according to Definition 12.

LITES

03:20 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

6.3 Tighter Bounds under CP
In this section, we show by means of Lemma 46 that the new analysis for calculating the blocking
terms given in (16) provides tighter bounds for CP compared to the analysis using (7), i.e. as
given in [1].

I Lemma 46. Maximum blocking imposed to any task τi under CP spin-based protocol, gives
tighter bounds using (16) compared to the blocking analysis given using (7), i.e. as given in [1]in [1].

Proof. We define the maximum blocking under CP that is presented in Section 3.4.2 by (7) as
Bold
i and the maximum blocking under CP that is calculated by (16) as Bnew

i .
By looking at (7), Bold

i is calculated differently, as presented by the following clauses that
depend on the priority πi of τi and the spin-priority πG

Pk
:

(i) if πG
Pk

+ 1 < πi then Bold
i = á+ b́,

(ii) if πi = πG
Pk

+ 1 then Bold
i = max (á, b́),

(iii) if πi ≤ πG
Pk

then Bold
i = max (á, b̃),

where á is the same as (8), i.e., á = max ∀l:Rl∈RSL
j

∧πj<πi≤ceilPk (Rl)

{Csj,l}, b́ = max
∀j,q:πj<πi

∧τi,τj∈TPk∧Rq∈RS
G
j

Csj,q and

b̃ = max
∀j,q:πj<πi

∧τi,τj∈TPk∧Rq∈RS
G
j

{Csj,q + spinPk,q}.

We investigate each clause separately. From (16) let us assume Bnew
i = max(a + b, c) where

a = max
∀j:πj<πi

∧πG
Pk
<πj∧τj∈TPk

{BL
i,j}, b = max

∀j:πj<πi∧τi,τj∈TPk
{BG

i,j(π
spin
Pk

)} calculated from (10) and c =

max
∀j:πj<πi

∧πj≤πG
Pk
∧τj∈TPk

{BL
i,j}. It can be observed under the condition of clause (i) that the set where BL

i,j

is specified in a, i.e., ∀j|πj < πi ∧ πG
Pk
< πj is smaller than the set to specify BL

i,j in á where it
is ∀j|πj < πi. This implies that a ≤ á. It also can be observed that b = b́ since the condition
πi ≤ πspin

Pk
= πG

Pk
is not valid in (10) under this clause. Moreover, it can be seen that the set

to specify BL
i,j is smaller for c than á, which leads to c ≤ á. As a result, Bnew

i ≤ Bold
i under

clause (i).
It can be observed that under the condition of clause (ii) a = 0, b = b́ and c = á, thus
Bnew
i = max(0+ b́, á) which means Bnew

i = Bold
i under clause (ii). Furthermore, it can be observed

that under the condition of clause (iii) a = 0, b = b̃ since the condition πi ≤ πspin
Pk

= πG
Pk

is valid
in (10) under this clause and c = á, thus Bnew

i = max(0 + b̃, á) which leads to Bnew
i = Bold

i under
clause (iii). This finishes the proof. J

6.4 Use of ILP
In this section we discuss the benefit of using optimization approaches such as mixed-Integer linear
program (ILP) for bounding the maximum cumulative blocking imposed to tasks similar to [29]
by Wieder and Brandenburg. Wieder and Brandenburg [29] showed that any blocking analysis
that is based on inflation of the worst-case execution times of tasks with remote blocking can be
pessimistic by a factor of Ω(φ · n) where φ ≈ dWRi

Th
e and τh is a higher priority task that spins

and delays a lower priority task τi (Theorem 1 [29]).
Based on such a result, the tasks on a core with a priority within the range (πG

Pk
, πmax
Pk

] do not
suffer from such pessimism since, by definition, tasks in this range do not use any global resource
(see Note 13). Therefore, using ILP could not tighten the blocking analysis for this range of tasks
nor could benefit our comparative evaluation later in Section 8. Based on the results derived from
Corollaries 49, 50 and 51 we show that it is enough to consider the tasks with a priority within

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:21

the above mentioned range when comparing the effectiveness of different spin-based protocols
with a spin-lock priority from the same range.

However, ILP can tighten the blocking imposed to tasks on a core with a priority within the
range [1, πG

Pk
], where 1 is the lowest possible priority level that a task can have on a core, since for

this range of tasks the worst-case execution times are inflated with the remote blocking parameter
in case those tasks use global resources. For tasks on a core with a priority within the range [1, πG

Pk
]

selecting any spin-based protocol that uses a spin-lock priority within the range [πG
Pk
, πmax
Pk
− 1]

will give the same blocking bound as when using HP (see Lemma 47 in Section 7.1). Therefore,
for the tasks with a priority in the range [1, πG

Pk
] the same ILP constraints that has been presented

for FIFO-ordered non-preemptive spin-based protocols [29] could be used to tighten the blocking
bounds. Therefore, for the simplicity of the experiments we use the traditional analysis based on
inflation of worst-case execution times of tasks when the schedulability of a core is checked for the
set of tasks with a priority lower than this range.

Moreover, the holistic analysis of spin locks [9] encompasses pessimism due to inflating tasks’
execution times [29] which has been overcome by the ILP-based analysis presented in [29]. However,
since ILP cannot tighten the analysis for the set of tasks considered in our comparative evaluation,
therefore, holistic analysis cannot as well. Thus, we do not consider this analysis approach here as
well.

7 Properties of Spin-Based Protocols

In this section we specify the set of tasks on a processor for which the selection of any two
spin-based protocols from the triple (HP, CP, ĈP), yield the same worst-case blocking bounds
for a task τi. This facilitates the evaluation of the results, later, in Section 8. First, we present
Lemmas 47 and 48 under which we show, respectively, that for selection of any two spin-lock
priorities from the range [πG

Pk
, πmax
Pk

] where one is smaller than the other, for a task τi with a
priority either (a) lower than the priority of both or (b) higher than the priority of both if τi
does not use any local resource, using either spin-lock priorities will lead to the same blocking
bounds for τi. This will help us to specify the set of tasks for which using either CP or HP, using
either ĈP or HP and using either either CP or ĈP will lead to the same blocking bounds that we
present by Corollaries 49, 50 and 51, respectively.

I Lemma 47. Assume two different spin-based protocols σ1 and σ2 on Pk, with spin-lock priorities
π

spinσ1
Pk

and πspinσ2
Pk

, respectively, where πspinσ1
Pk

, π
spinσ2
Pk

∈ [πG
Pk
, πmax
Pk

] and πspinσ1
Pk

≤ π
spinσ2
Pk

. For
any task τi ∈ TPk where πi ≤ π

spinσ1
Pk

, using either σ1 or σ2 will yield the same value for the
worst-case blocking Bi.

Proof. We assume Bi which is calculated by (16) is equal to max(A+B,C) where A, B and C
are
A = max ∀j:πj<πi

∧πspin
Pk

<πj∧τj∈TPk

{BL
i,j}, B = BG

i (πspin
Pk

) and C = max ∀j:πj<πi
∧πj≤πspin

Pk
∧τj∈TPk

{BL
i,j}. It is easy

to see that A = 0 for any task τi that πi ≤ π
spinσ1
Pk

. Moreover, B is the same when using either
σ1 or σ2 due to the fact that the condition πi ≤ πspin

Pk
in (10), which is the set from which B is

derived, is satisfied using both σ1 or σ2. Further, C is also the same when using either σ1 or σ2

since the sets ∀j : πj ≤ π
spinσ1
Pk

and ∀j : πj ≤ π
spinσ2
Pk

, which are the sets from which C is derived
when σ1 and σ2 are used, respectively, are the same and leads to ∀j : πj < πi. J

I Lemma 48. Assume two different spin-based protocols σ1 and σ2 on Pk, with spin priority levels
π

spinσ1
Pk

and πspinσ2
Pk

(remember Definition 6), respectively, where πspinσ1
Pk

, π
spinσ2
Pk

∈ [πG
Pk
, πmax
Pk

] and

LITES

03:22 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

π
spinσ1
Pk

≤ πspinσ2
Pk

, and πLG
Pk
≤ πspinσ2

Pk
. For any task τi ∈ TPk where πspinσ2

Pk
< πi, then using either

σ1 or σ2 will lead to the same worst-case blocking results.

Proof. By assuming Bi calculated by (16) equal to max(A+B,C) similar as in proof of Lemma 47,
it is easy to see that A = C = 0 since by πLG

Pk
< πi, by definition τi does not use any local resource

which leads BL
i,j = 0 in (16). Further, the condition of πi ≤ πspin

Pk
in (10), which is the set from

which B is derived, is not satisfied under both σ1 and σ2, thus Bi is the same under both σ1 and
σ2 knowing that by definition, ∀τj |πG

Pk
< πj < πi ⇒ RSG

i = 0. J

7.1 CP versus HP

In the following, we specify the set of tasks on a processor Pk that have the same blocking bounds
for CP and HP.

From Lemma 47 the following corollary can be drawn.

I Corollary 49. For any task τi ∈ TPk where πi ≤ πG
Pk
, (i.e., τi’s priority is in range C in

Figure 3) then using either CP or HP will lead to the same blocking bounds.

7.2 ĈP versus HP

In the following, we specify the set of tasks on a processor Pk that have the same blocking bounds
for HP and ĈP.

From Lemma 47, we draw the following conclusion.

I Corollary 50. For any task τi ∈ TPk where πi ≤ πLG
Pk

, (i.e., τi’s priority is in ranges B or C in
Figure 3) then using either ĈP or HP will lead to the same blocking bounds.

7.3 ĈP versus CP

In the following, we specify the set of tasks on a processor Pk that have the same blocking bounds
for CP and ĈP. This simplifies the comparison of the two protocols later in Section 8.

From Lemmas 47 and 48, we draw the following conclusion.

I Corollary 51. If πG
Pk
≤ πLG

Pk
, for any task τi ∈ TPk where πi ≤ πG

Pk
, or πLG

Pk
< πi (i.e., τi’s

priority is in range C or A in Figure 3) then using either CP or ĈP will lead to the same blocking
bounds.

We already have shown in Section 5.2 by means of an illustrative example that CP and ĈP
are incomparable. The same result is also achievable based on the worst-case response time using
(16) for calculating the blocking term.

I Example 52. The blocking term and worst-case response time of task τ4 in Example35 for
scenario (1) and (2) are denoted by Bsc1−CP

4 , WRsc1−CP
4 and by Bsc2−CP

4 , WRsc2−CP
4 for CP

and by Bsc1−ĈP
4 , WRsc1−ĈP

4 and by Bsc2−ĈP
4 , WRsc2−ĈP

4 for ĈP, respectively. Their values for
τ4 under scenario (1) are as follows: Bsc1−CP

4 = 4, thus WRsc1−CP
4 = 9 and Bsc1−ĈP

4 = 8, thus
WRsc1−ĈP

4 = 13, and under scenario (2) are as follows: Bsc2−CP
4 = 7, thus WRsc2−CP

4 = 12 and
Bsc2−ĈP

4 = 4, thus WRsc2−ĈP
4 = 9. Therefore, τ4 misses its deadline using ĈP in scenario (1)

and using CP in scenario (2).

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:23

7.4 Key Trade-Off Factors
In this section, we elaborate the trade-off factors between CP and ĈP. According to Corollary 51
only if a task’s priority level is within range B, then using ĈP and CP may lead to different
schedulability results. Note that, ĈP exists only when πG

Pk
< πL

Pk
(see Section 5). It can be

observed that the maximum blocking imposed to a task τi with a priority within range B calculated
by (16) results in term e in (12) when ĈP is used and term d when CP is used. Thus, to compare
the maximum blocking delay under CP and ĈP, we should compare (14) and (15). By looking
at these two terms, it can be observed that using CP may cause an extra LBL term besides the
LBG term compared to using ĈP. On the other hand, according to (41) the LBG term can be
smaller under CP compared to ĈP since spinPk,q term is zero for a task τi in range B if CP is
used. In other words, such a task has to wait for its lower priority task’s spin-lock time under ĈP
but not under CP.

Followed by the discussion above, a task τi may experience one extra LBL if CP is used,
whereas it may experience longer LBG if ĈP is used since it has to wait for the spin-lock time of
a lower priority task. These two parameters determine the trade-off factors of the two protocols.
One conclusion from this discussion is that if the extra LBL is not imposed under CP, then CP
outperforms ĈP since under ĈP a task may be delayed longer due to the spinning of lower priority
tasks.

7.5 Intermediate Spin-Based Protocol
In Sections 5.2 and 7.3, we showed that CP and ĈP are incomparable by means of both a trace
example and analysis in Examples 35 and 52, respectively. In this section, we show for the same
example using a third scenario (Scenario 3) through the analysis results that if CP and ĈP cannot
make a task set schedulable on a core, there may exist an intermediate spin-lock priority within the
range (CP, ĈP) that can make the task set schedulable. Under a third scenario (3) we denote the
blocking term and worst-case response time of a task τi under CP by Bsc3−CP

i and WRsc3−CP
i ,

under ĈP by Bsc3−ĈP
i and WRsc3−ĈP

i and under a third protocol which we call C̃P by Bsc3−C̃P
i

and WRsc3−C̃P
i , respectively. Under scenario (3) we again use dedicated task specifications

(Ci, Csi,l, Csi,g) for task τ3 and τ7, i.e., τ3: (2, 2, 0) and τ7: (7, 0, 5). πspinCP
Pk

= 2, π
spin

ĈP
Pk

= 5

and π
spin

C̃P
Pk

= 3. The blocking terms and respective worst-case response times of τ4 under this

scenario are as follows: Bsc3−CP
4 = 5, thus WRsc1−CP

4 = 10 , Bsc3−ĈP
4 = 8, thus WRsc1−ĈP

4 = 13,
and Bsc3−C̃P

4 = 3, thus WRsc1−C̃P
4 = 9. Therefore, since τ4 misses its deadline under both CP

and ĈP but not under C̃P, thus the task set is schedulable under C̃P only. To determine such
spin-lock priority, if any, the priority levels between CP and ĈP need to be explored linearly,
applying worst-case response time calculations using (16). Please note that finding ĈP limits
the search. In general, spin-lock priorities in the range (CP, ĈP) do not necessarily dominate
HP., whereas ĈP does. Moreover, whenever a task set is schedulable by CP and ĈP, this does
not imply that the set is also schedulable by all, some or even any spin-lock priority in the range
(CP, ĈP). We have performed an experiment which shows that out of 8000 task sets C̃P could
only schedule 2 more task sets compared to both CP and ĈP.

8 Evaluation

In this section we present the experimental results of comparing HP, CP and ĈP. According to
Corollaries 49, 50 and 51, it is enough to compare the worst-case response time of tasks of range
B in Figure 3 when comparing CP and ĈP, range A when comparing ĈP and HP and range

LITES

03:24 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

A ∪B when comparing CP and HP. In our experiments, we therefore only consider tasks in the
related range, effectively ignoring tasks that have identical results under the compared protocols.
As we discussed in Section 6.4, using ILP cannot tighten the blocking bounds for this range
of tasks. Therefore, for simplicity, we use the traditional worst-case response time analysis [4]
for all tasks on a core. We run two types of experiments. In our first type of experiments we
calculate the improvement in worst-case response time of tasks of one protocol compared to the
other. We use RTI (a, b) to denote the response time improvement under protocol a compared to
protocol b. Since the response jitter of a task is bounded by the difference of the worst-case and
best-case response time of that task [25, 11] and the best-case response time being independent of
a global resource sharing protocol, the bound on the response jitter decreases when the worst-case
response time decreases. Therefore, response time improvement of tasks are directly correlated
with response jitters. We denote RTI i(a, b) for a task τi as (WRbi−WRai)

max(WRa
i
,WRb

i
) × 100, where WRa

i and
WRb

i denote the worst-case response time of task τi under protocols a and b, respectively. For
a randomly generated task set, we show the percentage of tasks as a function of RTI (a, b). We
have performed the experiments for how different system parameters as the number of processors,
task set utilization, number of tasks per core and local and global critical section lengths can
affect the RTI (a, b). Due to space constraints, we only illustrate RTI for changing the numbers
of cores as well as local critical section lengths here. Further results can be found in [2]. In the
second type of experiments, we compare the system schedulability under HP, CP and ĈP. We
perform the response-time analysis [4] to check the schedulability of task sets according to [18].
For this experiment we have generated 200,000 task sets for 4-processors. We denote PS(C) as
the percentage of the schedulable systems under condition C, e.g., PS(HP∧CP∧¬ĈP) denotes the

percentage of systems that are schedulable under both HP and CP but not under ĈP. This
percentage is calculated based on the number of systems that are schedulable under any of the
three aforementioned spin-based protocols.

8.1 Experimental Setup

In each experiment we randomly generate task sets for each processor. The number m of processors
is selected from the set {4, 8, 12, 16}. For each experiment 1000 schedulable task sets under the
considered protocols are generated. The task set size is the same for each processor and is selected
from the set {20, 40, 60}. Tasks are randomly selected to be dedicated to ranges A, B and C
in Figure 3 such that at least one task is dedicated to priority ranges A and B each in order to
implement ĈP and CP protocols for the sake of comparison. The task set utilization is also the
same for each processor and is selected from the set {0.4, 0.6, 0.8}. The UUnifast algorithm [7]
is used to generate the utilization of each task. The period of each task is randomly generated
from the range [10, 150] ms with a granularity of 10 ms. The worst-case execution time of a task
is calculated by Ci = Ui × Ti. Deadlines of tasks are selected randomly according to a uniform
distribution in the range [Ci + α× (Ti − Ci), Ti] with α = 0.5 as the default [14]. The maximum
number of accesses to local and global resources for each task is 4. The local and global critical
section lengths (lcs and gcs) are generated according to Csq = β × Ci, where β is selected from
the set {0.1, 0.2, 0.3}. The number of local resources per processor as well as number of global
resources per task set is set to 3.

In our basic system configuration which is used for both types of experiments in Sections 8.2
and 8.3, the number of processors is set to m = 4, the task set utilization per core is 0.6, the
number of tasks on each processor is 20, and β = 0.2.

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:25

RTI(CP, 𝐻𝑃)% RTI(CP, 𝐻𝑃)%

0

5

10

15

20

25

30

35

40

45

50

-30 -20 -10 0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
B

 % 2 Processor

4 Processor

8 Processor

12 Processor

16 Processor

0

5

10

15

20

25

-30 -20 -10 0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
B

 % lcs 10% C

lcs 20% C

lcs 30% C

(a) (b)

Figure 5 RTI for CP versus HP for (a) different number of processors m, and (b) different values of
lcs.

8.2 Results for Response Time Improvements
For these experiments bar charts will be used to visualize the results, and the presented graphs
show the distribution of the tasks for the calculated RTI . The X-axis in the graphs represents
RTI (a, b) and the Y-axis shows the percentage of the examined tasks that have that improvement.
Note that, values in the X-axis present a non-continuous range. A bar in a graph that presents
RTI (a, b) with xi as X value and yi as Y value shows that yi% of tasks have an improvement in
the range (xi−1%, xi%] in their response times under protocol b compared to protocol a. Note
that a positive RTI value for a graph representing RTI (a, b), shows that response times under
protocol b are larger compared to protocol a. Similarly a negative RTI value shows that response
times are smaller under protocol b compared to protocol a. The results in Figures 6, 5 and 7
show the variation in distribution of tasks for the calculated RTI values for different numbers
of processors. More experimental results are available in [2] from which similar conclusions are
derived as from the graphs presented here.

8.2.1 Evaluation Results of CP versus HP

Figure 5 shows that CP improves response time of tasks up to 90% compared to HP. In more
detail, it can be observed from Figure 5.(a) that increasing the number of cores leads to more
tasks having larger response time improvement under CP compared to HP. For m = 2 around
1% of tasks have up to 20% improvement. The same trend was also obtained by increasing the
global critical section lengths for which the results can be found in [2]. This results are confirmed
by revisiting (16) where increasing the number of cores and global critical sections is positively
correlated with spinPk,q included in BG

i (πspin
Pk

) which is zero for the compared tasks under CP and
not under HP. Moreover, Figure 6.(b) shows that by increasing the local critical section lengths,
CP’s performance decreases compared to HP with regard to response time improvement. This is
due to the fact that by increasing the local critical sections BL

i,j increases. The same trend was
also obtained by increasing the number of tasks per core [2]. The reason is that by increasing
the number of tasks on a core, the number of tasks in range B may increase as well, which in the
worst-case leads to in an increase in the first BL

i,j term in RHS of (16). This term is zero under HP.
Increasing the task set utilization did not show a significant improvement. The reason is that by
increasing the task set utilization the execution time of tasks are increased leading in an increase
in both local and global critical section lengths which seems to nullify the effect of each other.
The interesting observation is to have both positive and negative RTI values in the graphs which
shows response time improvement under both CP and HP. This confirms the incomparability

LITES

03:26 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

RTI(CP, 𝐶𝑃)%

0

5

10

15

20

25

30

35

40

45

-30 -20 -10 0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 B
 % 2 Processor

4 Processor

8 Processor

12 Processor

16 Processor

RTI(CP, 𝐶𝑃)%

0

5

10

15

20

25

30

35

40

45

-30 -20 -10 0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 B
 % lcs 10% C

lcs 20% C

lcs 30% C

(a) (b)

Figure 6 RTI for CP versus ĈP for (a) different number of processors m, and (b) different values of
lcs.

claim of CP and HP which we previously have shown by examples [1]. In conclusion, the sum of
the percentages for the positive values is larger than the sum of the percentages for the negative
values from graphs. Hence, overall with the given system configuration in these experiments, CP
introduces less delays to tasks compared to HP.

8.2.2 Evaluation Results of CP versus ĈP
Figure 6 shows that, in general, CP improves response time of tasks compared to ĈP which can
reach up to 80%. However, it can be observed that when the number of cores are small ĈP could
improve response time of tasks up to 20%. In more detail, it can be observed in Figure 6.(a) that
for m = 2, roughly 45% of tasks have up to 10% response time improvement under ĈP compared
to CP and around 3% have up to 20% improvement. Similar trend is achieved here as well by
increasing the number of cores, global critical and local critical sections, task set size and utilization
similar to when comparing CP and HP. The reason is that for all tasks of range B the spin-lock
priority under ĈP is higher than their priority similar to spin-lock priority under HP, when
comparing CP versus ĈP compared to when comparing CP and HP. The interesting observation
here is that both positive and negative RTI values exist which confirms the incomparability of
CP and ĈP previously shown by the example in Section 5.2. In conclusion, overall with the given
system configuration in these experiments as well, CP introduces less delays to tasks compared to
ĈP.

8.2.3 Evaluation Results of ĈP versus HP
Figure 7 shows that ĈP improves response time of tasks up to 90% compared to HP. Figure 7.(a)
illustrates that by increasing the number of cores ĈP outperforms HP more, in terms of response
time improvement. The reason is that for tasks of range A, spinPk,q = 0 under ĈP and not under
HP. The interesting observation here is that there are no negative RTI values in any of the related
graphs meaning that response times cannot be improved under the HP compared to ĈP which
confirms dominance of ĈP compared to HP proven by Lemma 33.

8.3 Schedulability Results
In the second type of experiments, the schedulability under HP, CP and ĈP is investigated. The
results show that in general from the schedulable systems, a higher percentage are schedulable
under CP compared to the other two protocols, i.e., PS(CP) = 99.6%, PS(ĈP) = 76.2% and

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:27

RTI(𝐶𝑃,HP)%

0

10

20

30

40

50

60

-10 0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
 %

2 Processor

4 Processor

8 Processor

12 Processor

16 Processor

RTI(𝐶𝑃,HP)%

0

5

10

15

20

25

30

35

-10 0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
ge

 o
f

ta
sk

s
o

f
ra

n
ge

 A
 %

lcs 10% C

lcs 20% C

lcs 30% C

(a) (b)

Figure 7 RTI for ĈP versus HP for (a) different number of processors m, and (b) different values of
lcs.

6
0

.9
 %

1
4

.8
 %

2
3

.9
 %

0
.4

 %

schedulable systems

𝐶𝑃

 𝐶𝑃

𝐻𝑃

Figure 8 Schedulability percentage under HP, CP and ĈP.

PS(HP) = 61.4%. The results show that most of the schedulable systems were schedulable under
all three protocols, i.e., PS(CP∧ĈP∧HP) = 60.9%. Moreover, this results also confirms that ĈP
dominates HP, i.e., all systems that were schedulable under HP were also schedulable under
ĈP, however a percentage of tasks were only schedulable under ĈP and not under HP which is
presented by PS(ĈP)∧¬HP = 14.8%. These schedulability results have also been illustrated in
Figure 8. Note that the values in the graph, illustrate the schedulability of area in which the value
is located.

9 Conclusion and Future Work

In this paper, we investigated spin-based protocols for resource and jitter constrained embedded
multi-core platforms with the aim to improve the cost-efficiency and quality of control as well
as schedulability performance. We have focused on fixed-priority partitioned scheduling which
is the industry’s preferred scheduling approach. For such systems, non-preemptive spin-based
protocols have shown a good performance in improving the systems costs by offering use of one
shared stack for running all tasks residing on a core. However, they have shown a poor efficiency
in preserving the control and schedulability quality of those systems. To address these aspects, we
have investigated preemptive spin-based protocols which give a better promise to pertain all these
factors. Further, we showed that the selection of priority upon which a task spins is significantly
important since it affects the blocking duration and hence the response time and response jitter of
tasks. We have presented spin-lock priorities for preemptive-spin-based protocols for which the
response time of tasks and hence the corresponding response jitters are decreased compared to
when using the non-preemptive spin-based protocol.

We focused on spin-based protocols where a fixed spin-lock priority is used for spinning of
any task on the core in combination with FIFO-ordering policy where under a classical technique
tasks are kept in the queue upon preemption. From this type we focused on a special range that

LITES

03:28 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

offer attractive properties where spinning occurs at a priority at least the highest ceiling of any
global resource which is the spin-lock priority of an existing spin-based protocol CP. Selecting
from this range keeps the remote blocking bound as well as the resource queue size confined to a
factor that is the number of cores in the system, similar to non-preemptive spin-based protocols.
It also guarantees that the number of some resources such as stack used per core is not increased
considerably compared to the non-preemptive spin-based protocols. In this paper we introduced
a special spin-based protocol from this range, called ĈP where we showed that it dominates
the traditional non-preemptive spin-based protocol HP, and all spin-based protocols that use a
spin-lock priority between those used by these two. Further, we showed that ĈP and CP are
incomparable, thus we have provided the blocking analysis for the considered range of spin-locks
in order to enable the comparative evaluation of these incomparable protocols. The new analysis
turns out to give tighter blocking bounds than those previously presented for the CP protocol.

Finally, we showed that if a task set is unschedulable under both CP and ĈP on a processor,
there may exist a spin-based protocol that uses a spin-lock priority in between of those used by
CP and ĈP which can make the task set schedulable. The complexity of finding such spin-based
protocol, if any, is linear and can be a small value. The experimental results showed that, in
general, CP can provide better schedulability results compared to HP and ĈP. Moreover, the
results showed that although ĈP and CP are incomparable, under specific system configurations
tasks can obtain up to 70% improvement in their response times under CP compared to ĈP.
Similarly, tasks can gain up to 90% improvements in their response times under CP and ĈP
compared to HP. It can be viewed from the evaluation results that in general, more tasks can
have shorter response times under CP than under HP and ĈP.

Towards optimizing the spin-based protocols for tasks, we would like to look at the following
steps: optimizing the spin-lock priority (i) per processor, (ii) per task, (iii) per resource and (iv)
per resource access. In this paper we have focused on step (i) for a specific range of spin-based
protocols. We leave the later steps as future work.

References
1 Sara Afshar, Moris Behnam, Reinder J. Bril, and

Thomas Nolte. Flexible spin-lock model for re-
source sharing in multiprocessor real-time systems.
In Proceedings of the 9th IEEE International Sym-
posium on Industrial Embedded Systems, SIES
2014, Pisa, Italy, June 18-20, 2014, pages 41–51.
IEEE, 2014. doi:10.1109/SIES.2014.6871185.

2 Sara Afshar, Moris Behnam, Reinder J. Bril, and
Thomas Nolte. On per processor spin-lock pri-
ority for partitioned multiprocessor real-time sys-
tems. Technical report, Mälardalen Real-Time Re-
search Centre, Mälardalen University, 2014. URL:
http://www.es.mdh.se/publications/3766-.

3 James H. Anderson, Rohit Jain, and Kevin Jef-
fay. Efficient object sharing in quantum-based
real-time systems. In Proceedings of the 19th
IEEE Real-Time Systems Symposium, Madrid,
Spain, December 2-4, 1998, pages 346–355. IEEE
Computer Society, 1998. doi:10.1109/REAL.1998.
739768.

4 Neil C. Audsley, Alan Burns, Mike M. Richard-
son, Ken Tindell, and Andy J. Wellings. Apply-
ing new scheduling theory to static priority pre-
emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993. doi:10.1049/sej.1993.0034.

5 AUTOSAR release 4.1, specification of operating
system, 2013. URL: http://www.autosar.org.

6 Theodore P. Baker. Stack-based scheduling of re-
altime processes. Real-Time Systems, 3(1):67–99,
1991. doi:10.1007/BF00365393.

7 Enrico Bini and Giorgio C. Buttazzo. Measur-
ing the performance of schedulability tests. Real-
Time Systems, 30(1-2):129–154, 2005. doi:10.
1007/s11241-005-0507-9.

8 Aaron Block, Hennadiy Leontyev, Björn B. Bran-
denburg, and James H. Anderson. A flexible real-
time locking protocol for multiprocessors. In 13th
IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications
(RTCSA 2007), 21-24 August 2007, Daegu, Ko-
rea, pages 47–56. IEEE Computer Society, 2007.
doi:10.1109/RTCSA.2007.8.

9 Björn B. Brandenburg. Scheduling and Locking in
Multiprocessor Real-time Operating Systems. PhD
thesis, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA, 2011. AAI3502550.

10 Björn B. Brandenburg and James H. Anderson.
An implementation of the pcp, srp, d-pcp, m-pcp,
and FMLP real-time synchronization protocols in
litmusrt. In The Fourteenth IEEE Internationl
Conference on Embedded and Real-Time Comput-
ing Systems and Applications, RTCSA 2008, Kao-
hisung, Taiwan, 25-27 August 2008, Proceedings,

http://dx.doi.org/10.1109/SIES.2014.6871185
http://www.es.mdh.se/publications/3766-
http://dx.doi.org/10.1109/REAL.1998.739768
http://dx.doi.org/10.1109/REAL.1998.739768
http://dx.doi.org/10.1049/sej.1993.0034
http://www.autosar.org
http://dx.doi.org/10.1007/BF00365393
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1109/RTCSA.2007.8

S. Afshar, M. Behnam, R. J. Bril, and T. Nolte 03:29

pages 185–194. IEEE Computer Society, 2008. doi:
10.1109/RTCSA.2008.13.

11 Reinder J. Bril, Elisabeth F. M. Steffens, and
Wim F. J. Verhaegh. Best-case response times
and jitter analysis of real-time tasks. J. Schedul-
ing, 7(2):133–147, 2004. doi:10.1023/B:JOSH.
0000014069.63823.e7.

12 Alan Burns and Andy J. Wellings. A schedula-
bility compatible multiprocessor resource sharing
protocol - mrsp. In 25th Euromicro Conference on
Real-Time Systems, ECRTS 2013, Paris, France,
July 9-12, 2013, pages 282–291. IEEE Computer
Society, 2013. doi:10.1109/ECRTS.2013.37.

13 Travis S. Craig. Queuing spin lock algorithms
to support timing predictability. In Proceedings
of the Real-Time Systems Symposium. Raleigh-
Durham, NC, December 1993, pages 148–157.
IEEE Computer Society, 1993. doi:10.1109/REAL.
1993.393505.

14 Robert I. Davis and Marko Bertogna. Optimal
fixed priority scheduling with deferred pre-emption.
In Proceedings of the 33rd IEEE Real-Time Sys-
tems Symposium, RTSS 2012, San Juan, PR,
USA, December 4-7, 2012, pages 39–50. IEEE
Computer Society, 2012. doi:10.1109/RTSS.2012.
57.

15 Robert I. Davis and Alan Burns. A survey of
hard real-time scheduling for multiprocessor sys-
tems. ACM Comput. Surv., 43(4):35:1–35:44, 2011.
doi:10.1145/1978802.1978814.

16 UmaMaheswari C. Devi, Hennadiy Leontyev, and
James H. Anderson. Efficient synchronization un-
der global EDF scheduling on multiprocessors. In
18th Euromicro Conference on Real-Time Systems,
ECRTS’06, 5-7 July 2006, Dresden, Germany,
Proceedings, pages 75–84. IEEE Computer Society,
2006. doi:10.1109/ECRTS.2006.10.

17 Dario Faggioli, Giuseppe Lipari, and Tommaso Cu-
cinotta. The multiprocessor bandwidth inheritance
protocol. In 22nd Euromicro Conference on Real-
Time Systems, ECRTS 2010, Brussels, Belgium,
July 6-9, 2010, pages 90–99. IEEE Computer Soci-
ety, 2010. doi:10.1109/ECRTS.2010.19.

18 Paolo Gai, Giuseppe Lipari, and Marco Di Natale.
Minimizing memory utilization of real-time task
sets in single and multi-processor systems-on-a-
chip. In Proceedings of the 22nd IEEE Real-Time
Systems Symposium (RTSS 2001), London, UK,
2-6 December 2001, pages 73–83. IEEE Computer
Society, 2001. doi:10.1109/REAL.2001.990598.

19 Paolo Gai, Giuseppe Lipari, and Marco Di Na-
tale. Stack size minimization for embedded
real-time systems-on-a-chip. Design Autom. for
Emb. Sys., 7(1-2):53–87, 2002. doi:10.1023/A:
1019795414875.

20 Paolo Gai, Marco Di Natale, Giuseppe Lipari,
Alberto Ferrari, Claudio Gabellini, and Paolo

Marceca. A comparison of MPCP and MSRP when
sharing resources in the janus multiple-processor
on a chip platform. In Proceedings of the 9th IEEE
Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS 2003), May 27-30, 2003,
Toronto, Canada, page 189. IEEE Computer Soci-
ety, 2003. doi:10.1109/RTTAS.2003.1203051.

21 Theodore Johnson and Krishna Harathi. A pri-
oritized multiprocessor spin lock. IEEE Trans.
Parallel Distrib. Syst., 8(9):926–933, 1997. doi:
10.1109/71.615438.

22 Leonidas I. Kontothanassis, Robert W. Wis-
niewski, and Michael L. Scott. Scheduler-conscious
synchronization. ACM Trans. Comput. Syst.,
15(1):3–40, 1997. doi:10.1145/244764.244765.

23 John M. Mellor-Crummey and Michael L. Scott.
Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput.
Syst., 9(1):21–65, 1991. doi:10.1145/103727.
103729.

24 Ragunathan Rajkumar. Synchronization in Real-
Time Systems: A Priority Inheritance Approach.
Kluwer Academic Publishers, Norwell, MA, USA,
1991.

25 Ola Redell and Martin Sanfridson. Exact best-
case response time analysis of fixed priority sched-
uled tasks. In 14th Euromicro Conference on
Real-Time Systems (ECRTS 2002), 19-21 June
2002, Vienna, Austria, Proceedings, pages 165–
172. IEEE Computer Society, 2002. doi:10.1109/
EMRTS.2002.1019196.

26 Lui Sha, Ragunathan Rajkumar, and John P.
Lehoczky. Priority inheritance protocols: An ap-
proach to real-time synchronization. IEEE Trans.
Computers, 39(9):1175–1185, 1990. doi:10.1109/
12.57058.

27 H. Takada and K. Sakamura. Predictable spin lock
algorithms with preemption. In 11th IEEE Work-
shop on Real-Time Operating Systems and Soft-
ware (RTOSS’94), pages 2–6, 1994. doi:10.1109/
RTOSS.1994.292571.

28 Hideyuki Takada and Ken Sakamura. A novel
approach to multiprogrammed multiprocessor syn-
chronization for real-time kernel. In Proceedings
of the 18th IEEE Real-Time Systems Symposium
(RTSS ’97), December 3-5, 1997, San Francisco,
CA, USA, pages 134–143. IEEE Computer Society,
1997. doi:10.1109/REAL.1997.641276.

29 Alexander Wieder and Björn B. Brandenburg. On
spin locks in AUTOSAR: blocking analysis of fifo,
unordered, and priority-ordered spin locks. In
Proceedings of the IEEE 34th Real-Time Systems
Symposium, RTSS 2013, Vancouver, BC, Canada,
December 3-6, 2013, pages 45–56. IEEE Computer
Society, 2013. doi:10.1109/RTSS.2013.13.

LITES

http://dx.doi.org/10.1109/RTCSA.2008.13
http://dx.doi.org/10.1109/RTCSA.2008.13
http://dx.doi.org/10.1023/B:JOSH.0000014069.63823.e7
http://dx.doi.org/10.1023/B:JOSH.0000014069.63823.e7
http://dx.doi.org/10.1109/ECRTS.2013.37
http://dx.doi.org/10.1109/REAL.1993.393505
http://dx.doi.org/10.1109/REAL.1993.393505
http://dx.doi.org/10.1109/RTSS.2012.57
http://dx.doi.org/10.1109/RTSS.2012.57
http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1109/ECRTS.2006.10
http://dx.doi.org/10.1109/ECRTS.2010.19
http://dx.doi.org/10.1109/REAL.2001.990598
http://dx.doi.org/10.1023/A:1019795414875
http://dx.doi.org/10.1023/A:1019795414875
http://dx.doi.org/10.1109/RTTAS.2003.1203051
http://dx.doi.org/10.1109/71.615438
http://dx.doi.org/10.1109/71.615438
http://dx.doi.org/10.1145/244764.244765
http://dx.doi.org/10.1145/103727.103729
http://dx.doi.org/10.1145/103727.103729
http://dx.doi.org/10.1109/EMRTS.2002.1019196
http://dx.doi.org/10.1109/EMRTS.2002.1019196
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/RTOSS.1994.292571
http://dx.doi.org/10.1109/RTOSS.1994.292571
http://dx.doi.org/10.1109/REAL.1997.641276
http://dx.doi.org/10.1109/RTSS.2013.13

03:30 Per Processor Spin-Based Protocols for Multiprocessor Real-Time Systems

A Table of Notations

Table 1 Table of notations

Notations Description

Pk processor k
τi task i
Ci worst-case execution time of τi

Ći inflated execution time of τi

Ti minimum inter-arrival time of τi

Di relative deadline of τi

πi priority of τi

TPk set of tasks allocated to processor Pk

Rq resource q
RL

Pk
set of local resources accessed by tasks on Pk

RG
Pk

set of global resources accessed by tasks on Pk

RSL
i set of local resources accessed by jobs of τi

RSG
i set of global resources accessed by jobs of τi

Csi,q worst-case execution time in all τi’s requests on Rq

nG
i,q maximum number of requests of a job of τi for a global resource Rq

TPk,q set of tasks on Pk that request Rq

WRi worst-case response time of τi

BRi best-case response time of τi

RJi response jitter of τi

πmax
Pk

highest priority level on Pk

ceilPk (Rl) ceiling of Rl on Pk

πL
Pk

highest local ceiling of any local resource on Pk

πG
P k highest local ceiling of any global resource on Pk

πLG
Pk

highest local ceiling of any (local or global) resource on Pk

πspin
Pk

an arbitrary fixed spin-lock priority for any task on Pk

π
spinσ
Pk

spin-lock priority of spin-based protocol σ of Pk

LBL local blocking due to local resources
LBG local blocking due to global resources

spinPk,q maximum remote blocking (i.e. spin-lock time) for any task on Pk to acquire Rq

spini maximum total remote blocking (i.e. spin-lock time) for τi to acquire all its resources
Rspin

Pk
the "virtual" local spin resource on Pk

BL
i LBL imposed to a task τi under an arbitrary spin-based protocol

BG
i LBG imposed to a task τi under an arbitrary spin-based protocol
Bi total pi-blocking imposed to a task τi under an arbitrary spin-based protocol

Bi(πspin
Pk

) total blocking to a task τi ∈ TPk under a spin-based protocol with spin-lock priority πspin
Pk

	lites-v004-i002-frontmatter
	lites-v004-i002-a001-mendis
	Introduction
	Related Work
	System Model and Problem Formulation
	Application model
	Deriving the Task Execution Cost
	Task Priority Assignment
	Job Arrival Rate

	Platform Model
	Open-Loop Runtime Resource Manager
	Problem Statement

	Deterministic Admission Control
	Exclusion of Non-Interfering Tasks and Flows

	Proposed Runtime Mapping Approaches
	Least Worst-Case Remaining Slack (LWCRS)
	LWCRS-Aware Mapping
	I and P Frames Combined Mapping (IPC)

	Static Hard Real-Time Mapper
	Points-Based GA Fitness Function
	Application-Specific Adaptations
	GA Design Optimisations

	Evaluation
	Experiment Design
	Varying Workload
	Varying Communication-to-Computation Ratio and NoC Size
	Metrics

	Baseline Mapping Heuristics
	Dynamic Mapping Heuristics
	Static GA-Based HRT Mapper

	Discussion of Experimental Results
	Dynamic Mapper Performance Under Workload Variation
	Static Mapper Performance Under Workload Variation
	Scalability and CCR Variation Evaluation

	Conclusion

	lites-v004-i002-a002-kluge
	Motivation
	FreeEMS
	Spark Ignition Engine and Engine Management
	Interfacing with the Physical World
	Operation of FreeEMS
	Code Structure
	main
	PrimaryRPMISR
	SecondaryRPMISR
	InjectorXISR
	IgnitionDwellISR
	IgnitionFireISR
	RTIISR
	Further ISRs

	Interaction between ISRs

	EMSBench
	Code Changes
	Trace Generation
	Model
	Preprocessor
	Signal Generation

	Adopting EMSBench
	Timing properties
	Execution Scenario
	Execution Behaviour

	Use of EMSBench
	Execution-Time Measurements
	STM32F4-Discovery
	Nios II

	Static WCET Analysis
	Principles of Static WCET Analysis
	Methodology
	Static WCET Estimations

	Interferences

	Existing Benchmarks and Related Work
	Conclusions

	lites-v004-i002-a003-afshar
	Introduction
	Preemptive spin-based protocols
	Main characteristics
	Memory Requirements
	Progress Guarantees

	Main contributions and outline

	Related Work
	System Model
	General Definitions
	Resource Sharing Rules
	View on spinning and global resource access
	Recap of Existing Analysis and Lemmas
	HP Spin-Based Protocol
	CP Spin-Based Protocol
	Recap of Useful Lemmas

	Number of Stacks
	A Special Spin-Based Protocol CP^
	Dominance of CP^ over HP and In-Between Spin-Based Protocols
	CP^ and CP incomparability

	Generalized Analysis
	Number and Type of Blocking
	Amount of Blocking
	Tighter Bounds under CP
	Use of ILP

	Properties of Spin-Based Protocols
	CP versus HP
	CP^ versus HP
	CP^ versus CP
	Key Trade-Off Factors
	Intermediate Spin-Based Protocol

	Evaluation
	Experimental Setup
	Results for Response Time Improvements
	Evaluation Results of CP versus HP
	Evaluation Results of CP versus CP^
	Evaluation Results of CP^ versus HP

	Schedulability Results

	Conclusion and Future Work
	Table of Notations

