
TLM.open: a SystemC/TLM Front-end for the
CADP Verification Toolbox∗

Claude Helmstetter

Verimag – CNRS
2 Avenue de Vignate, 38610 Gières, France
claude.helmstetter@gmail.com

Abstract
SystemC/TLM models, which are C++ programs,
allow the simulation of embedded software before
hardware low-level descriptions are available and
are used as golden models for hardware verification.
The verification of the SystemC/TLM models is
an important issue since an error in the model can
mislead the system designers or reveal an error in
the specifications. An open-source simulator for
SystemC/TLM is provided but there are no tools
for formal verification.

In order to apply model checking to a System-
C/TLM model, a semantics for standard C++ code
and for specific SystemC/TLM features must be

provided. The usual approach relies on the trans-
lation of the SystemC/TLM code into a formal
language for which a model checker is available.

We propose another approach that suppresses
the error-prone translation effort. Given a System-
C/TLM program, the transitions are obtained by
executing the original code using g++ and an ex-
tended SystemC library, and we ask the user to
provide additional functions to store the current
model state. These additional functions generally
represent less than 20% of the size of the original
model, and allow it to apply all CADP verification
tools to the SystemC/TLM model itself.

2012 ACM Subject Classification Hardware, Hardware validation, Functional verification, Transaction-
level verification
Keywords and phrases Model checking, Verification, Simulation, SystemC, Transactional modeling
Digital Object Identifier 10.4230/LITES-v001-i001-a002
Received 2013-03-01 Accepted 2013-04-25 Published 2014-04-25

1 Introduction

The design of abstract models written in SystemC/TLM has become more common in the
development of embedded systems. These models allow the simulation of the embedded software
before the hardware RTL description is available, and are used as golden models for hardware
verification. The verification of the SystemC/TLM models is an important issue since an error in
the model can mislead the system designers or reveals an error in the specifications.

ASI (Accellera Systems Initiative, previously OSCI: Open SystemC Initiative) provides an
open-source simulator for SystemC/TLM and a library SCV (SystemC Verification) to ease test
generation. However, ASI does not provide tools for formal verification. Moreover, while the
SystemC specification allows many schedules for a given test case, the ASI simulator always
exhibits the same schedule. Thus, even if an execution leads to the expected result, another
execution with a different schedule may be erroneous. To find these kind of bugs, many publications
have experimented with the use of model checking.

The problem of verifying C++ and SystemC codes could be avoided by writing transactional
models in a formal language directly. However, in order to model embedded systems at the

∗ This work was achieved when the author was working for INRIA Montbonnot – VASY team. Moreover, this
work was sponsored by the French government and by Conseil Général de l’Isère as part of the Multival
project (pôle de compétitivité Minalogic).

© Claude Helmstetter;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 1, Issue 1, Article No. 2, pp. 02:1–02:18
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v001-i001-a002
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

02:2 TLM.open: SystemC/TLM Verification

transaction level, engineers of industrial companies prefer to use SystemC/TLM. One reason is
that SystemC/TLM provides all the useful features directly, like shared memory and transactional
communication channels. Another reason is that a SystemC/TLM program is mainly C++ code,
so engineers can learn SystemC/TLM quickly, and existing C code can be reused easily.

In order to apply model checking to a SystemC/TLM program, the usual approach relies on
the translation of the SystemC/TLM code into a formal language for which a model checker is
available. A lot of languages and tools have been tested so far (see Subsection 3.1.2). Nonetheless,
there have been few successes with industrial case studies.

We propose another approach that suppresses the translation effort. Basically, an explicit
model checker must be able to execute transitions and store states. Given a SystemC/TLM
program, we assume that the states are the places where processes yield back to the scheduler.
Consequently, transitions correspond to pieces of C++ code delimited by yield points: either wait
statements or return statements from the process main function. We obtain the transitions by
executing the original code using g++ and a SystemC library, as in any simulator. Storing the
state could be done by copying the whole memory used by the simulator, but would be inefficient.
Therefore, we ask the user to provide additional functions to store the current state and restore
a previous state. Part of the state, including the SystemC kernel, is stored automatically; so in
general the user can only store the SystemC module data members.

Following this approach, we have developed a new front-end for the CADP tool suite. The
CADP tool suite includes many tools useful for formal verification and bug finding; the main tool
is an explicit model checker. This article does not introduce a new verification technique (we did
not change anything in CADP) except a pragmatic and efficient way to use existing tools to verify
programs written in a language that has not been designed to ease formal verification. The new
front-end we have developed is not fully automatic since the user must provide some additional
functions; these additional functions generally represent less than 20% of the size of the original
model.

The model checking technique is known to be limited by the state space explosion. Because
we rely on this technique and there are no changes in the core algorithm, we are limited in this
area. Nevertheless, model checking has been applied to many real-life case studies (over 150 using
CADP in many application fields1 most of the times, using model checking allowed to verify
properties or discover bugs. We have written our new front-end in a way that avoids to make the
state space explosion even worse by adding intermediate states and transitions, which was the
case using a previous approach [16]. Experiments which were first made with benchmarks, then
with a single SystemC module, and finally with a basic system, show that we can indeed find bugs
and prove some properties on real-life TLM models.

The remainder of this article is organized as follows. We present briefly SystemC and TLM in
Section 2. Section 3 gives an overview of the related work and presents the existing CADP toolbox.
Section 4 describes our technique to connect SystemC/TLM with CADP. The performances of
TLM.open are evaluated in Section 5 and Section 6 concludes this article.

2 SystemC and TLM

SystemC [1] is a C++ library published by the Accellera Systems Initiative (ASI) and defined by
an IEEE standard which provides classes to describe heterogeneous systems composed of hardware
and software. The architecture of a system is defined by a set of modules connected by synchronous
or asynchronous ports and channels (sc_module, sc_port, ...). Each module contains zero, one, or

1 Case studies achieved using the CADP toolset: http://www.inrialpes.fr/vasy/cadp/case-studies.

http://www.inrialpes.fr/vasy/cadp/case-studies

C. Helmstetter 02:3

various processes (SC_THREAD or SC_METHOD) describing the system’s behavior. SystemC processes
interact using shared memory or communication channels and are synchronized using SystemC
events (sc_event e, e.notify(), wait(e)) with timing annotations (sc_time t, wait(t)).

Each SystemC process is a C++ method that is executed by the SystemC scheduler commu-
nicates with other processes using shared memory and may explicitly suspend itself by executing
a wait statement. When the process is resumed by the scheduler, its execution continues from
the wait statement. Each SystemC process is eligible or running or waiting for a SystemC event.
There is, at most, one running process simultaneously. If the running process notifies an event,
then all processes waiting for this event move from waiting to eligible.

The Transaction Level Modeling (TLM) library [10] built upon SystemC, provides a transaction
mechanism that encapsulates communication protocols (data transfer and synchronization) between
modules and accelerates both model design and simulation. Using a transaction, a process in
an initiator module can directly call the methods exported by a target module. Thus, a process
can read many values from a memory, or set many registers of a peripheral without any costly
inter-process synchronization (no context switch is required). At the TLM level of abstraction,
processes inside the same module communicate using SystemC events and shared variables. A
TLM model can be timed or untimed: a timed model contains timing annotations (sc_time t,
wait(t)) whereas an untimed model does not. An untimed model includes more possible behaviors
than a timed model, increasing the coverage, but also the cost, of the verification.

Because SystemC and TLM are C++ libraries, simulating a SystemC/TLM model does not
require a dedicated SystemC/TLM parser. A SystemC/TLM model is parsed and compiled as
with any C++ program, using a regular C++ compiler, such as g++.

3 Related Works

3.1 Verification of SystemC/TLM models
In order to provide formal verification for SystemC/TLM programs, two approaches were investig-
ated: stateless model checking of a SystemC/TLM program and a translation of a SystemC/TLM
program into a language for which a stateful model checker is available.

3.1.1 Stateless model-checking
A stateless model-checker explores the set of all the possible executions of a given program without
storing the states. Because the states are not stored, a stateless model-checker can execute the
same transition many times. Moreover, if the program under verification has at least one possible
execution that does not terminate then the stateless model-checker will not terminate either.
However, stateless model-checkers have benefits: 1. naive stateless model-checkers are easy to
implement because one just needs to modify the functions used for non-deterministic choices; 2.
their memory consumption is limited (linear in terms of execution lengths).

Many stateless model checking tools have been implemented for SystemC/TLM programs [15,
21, 2]. In order to reduce the number of executions explored, these model-checkers select a subset
for the possible executions; this subset is guaranteed to detect all the errors of a particular family;
such as all the assertion failures or all the deadlocks. All these stateless model-checkers implement
dynamic partial order reduction [5]; the selection of the executions explored is based on the
analysis of detailed execution traces. The dynamic partial order algorithm was specifically adapted
for the particularities of the SystemC scheduling policy.

In particular, [14, 15] show how to validate programs with loose timing annotations encoded by
bounded intervals. This technique extracts a finite subset from the infinite set of the timings allowed

LITES

02:4 TLM.open: SystemC/TLM Verification

by the specification. Given a program that always terminates and without non-deterministic data
choices, this technique detects all the assertion failures and the deadlocks.

These tools give interesting results for small and medium sized industrial examples. Using
SCRV [13], a synchronization error was found in a model of a video decoder provided by STMi-
croelectronics. However, stateless model-checkers can only be applied to terminating programs
without non-deterministic unbounded data inputs.

3.1.2 Translate then verify

For programs that do not terminate, a second approach was investigated. The idea was to translate
the SystemC/TLM program to be verified into another language, and then verify the translated
program using an existing stateful model checker. This approach has first been applied to the
RTL level SystemC descriptions [4, 11].

Many translations and languages have been proposed for the validation of transactional models,
as in [25], which translates SystemC/TLM programs into finite state machines (FSM), similarly [20],
which describes abstraction techniques and a translation from SystemC/TLM to labeled Kripke
structures. Most of these translations are manual, the first exception being the LusSy tool
chain [24], which automatically translates TLM models into synchronous automata with variables;
it provides some simple abstraction techniques (e.g., abstract address representation). The LusSy
tool chain has been connected to many model checkers, including symbolic model checkers based
on BDD or SAT. Some minor examples have been successfully verified, but industrial examples
face the state space explosion problem. There are now other automatic translation tools starting
from SystemC, including [17] that can translate SystemC/TLM models into Uppall models, and
allow verification of liveness properties and timing constraints. [12] translates TLM models into
sequential C programs, in order to use verification tools dedicated to software.

The state space explosion problem appears mainly because TLM models are mostly asynchron-
ous. Thus, after each transition, there are many valid scheduling choices that should be explored.
It is therefore suitable to use the model checkers for asynchronous programs as these model
checkers have been specifically optimized to fight state space explosions arising from asynchrony.
Translation of TLM programs into Promela [27] has allowed TLM models to be verified using
the SPIN checker which uses partial orders to reduce state spaces. Since then other translations
into Promela have been presented [22, 3], allowing the verification of larger models. Note that
the translation defined in [3] was implemented in an automatic tool where other back-ends were
available.

Furthermore, we firstly proposed a translation of TLM to LOTOS [16, 26] that enables
verification of the benchmark of [27] for a slightly greater number of processes than using SPIN.
The translation was fully manual, preventing the approach to scale up.

Next, [7] presented both an extension of our TLM to LOTOS translation and an application to
an industrial case study. As shown in Figure 1, part of the SystemC/TLM code was translated into
LOTOS while data-types and related operations were kept as C++ code, thus strongly reducing
the translation effort. This paper showed that some properties can be checked on industrial code,
but the amount of manual work still limited the efficiency of the approach.

3.2 The CADP verification toolbox

Our goal is to detect synchronization errors between asynchronous processes of SystemC/TLM
programs or to guarantee that the communication protocol they use is correct. For this kind
of task one of the best techniques is model checking and in particular explicit model checking.

C. Helmstetter 02:5

operations on MLOTOS

MLOTOS (i.e. MC)
implementation of

LOTOS processes
modeling the

SystemC processes

on objects of
local computations

class M

linked with
verification tool

interface with the
extracted C++ code

(implement operations
on MLOTOS by calls to

methods of M)

sort MLOTOS

declaration of:

gccCÆSAR

extracted C++ codeLOTOS code

g++

C code

Figure 1 Verification of hybrid LOTOS/C++ models.

R← {initial state} //set of remaining states
E ← ∅ //set of explored states
while (∃x ∈ R) do

foreach transition x→ y do
add the transition x→ y to the LTS
if (y 6∈ E ∪R) then R← R ∪ {y}

R← R \ {x}
E ← E ∪ {x}

end while

Figure 2 Basic algorithm for LTS generation.

A well-known explicit model-checker is SPIN. In this work, we investigated the use of another
model-checker; namely CADP.

CADP (“Construction and Analysis of Distributed Processes”) [9] is a toolbox for the validation
of communication protocols and distributed systems.

The usual entry point for CADP is the language LOTOS. The ISO standard LOTOS [18]
(Language Of Temporal Ordering Specification) is a process algebra used to describe asynchronous
concurrent processes communicating and synchronizing by rendezvous on gates. This language is
well suited for designing communication protocols.

The semantics of a LOTOS specification is formally defined by a state graph, also called an
LTS (labeled transition system) – i.e. a set of states and transitions labeled by gates and offers
between states.

CADP [8] includes a compiler from LOTOS to LTS with many tools exploiting the LTS for
simulation as well as model checking of modal µ-calculus formulae, equivalence checking, test
generation and performance evaluation. The LOTOS to LTS compiler generates the LTS by
executing all transitions of the system under verification; each visited state is recorded, so that
each transition is executed once only. The algorithm is shown in Figure 2.

4 Connecting SystemC/TLM with formal methods

4.1 The architecture of TLM.open
The CADP toolbox architecture is similar to the GNU compiler tool suite, with many front-ends
and back-ends. There is one front-end per input language; the front-end reads a program and
implements some basic analysis (e.g., type checking). Then there is one back-end per CADP
feature, such as simulation, LTS generation, or on-the-fly property checking. The most used front-
ends are caesar.open which manages LOTOS programs and bcg_open which reads compressed

LITES

02:6 TLM.open: SystemC/TLM Verification

library
TLM.open

interface
SystemC

OPEN/CÆSAR
interface

model
SystemC

checkers, etc

ASI library

simulators,
LTS generator,

toolbox
CADPSystemC/TLM

property

helper methods
for OPEN/CÆSAR

restore(char *src)
store(char *dest)

Figure 3 Overview of the verification framework. The model is linked with the SystemC TLM.open
library instead of the ASI library.

and explicit LTS (bcg stands for “binary coded graphs”). All CADP front-ends connect with
CADP back-ends using the OPEN/CÆSAR interface [6].

In this section, we present TLM.open which is a new CADP front-end allowing the use of the
same back-ends as caesar.open and bcg_open. TLM.open is a C and C++ library that implements
two interfaces: the SystemC interface and the OPEN/CÆSAR interface. The architecture of
TLM.open is shown in Figure 3.

A SystemC/TLM program communicates with TLM.open through the SystemC interface as a
SystemC/TLM program communicates with a SystemC simulator. The library TLM.open provides
the same classes as the ASI SystemC simulator, including the sc_module, sc_port, sc_event,
sc_signal, etc.

The OPEN/CÆSAR interface provides the operators required by the CADP model-checker
itself. In order to implement the algorithm described by Figure 2, the following operators are
required and must be provided by the TLM.open front-end:

generation of the initial state
enumeration and simulation of the transitions starting from a given state
efficient storage of a state (requires comparison and hash functions).

To simulate a transition, TLM.open executes the corresponding C++ code of the SystemC/TLM
program. This C++ code is compiled with an unmodified C++ compiler such as g++. TLM.open
does not parse the C++ code itself and does not produce LOTOS code.

The most difficult task is to store and restore the states of the SystemC/TLM program. The
person who writes and verifies the SystemC/TLM program, called user in this paper, has to
provide some additional functions that allow TLM.open to store the states of each SystemC module.
To date, these additional functions have had to be written by hand. Thus, our approach is not
fully automatic.

When TLM.open is used with the LTS generator of CADP, the result is an LTS with two
kinds of transitions. Here, offers are only used to add information to the transitions, and have no
impact on synchronizations or communications.

TE transitions indicate that time has elapsed; the offer gives the duration and the list of events
triggered and processes awakened. For example, “TE !o(+41ms, VGAC.compute)” means that
the SystemC clock has advanced 41 ms and the process “VGAC.compute” is now awake.
EXEC transitions represent the execution of a SystemC process; the offers name the executed
SystemC process, the inputs of this process if the special rand() function of TLM.open was
called (cf. Section 4.3.2) and the outputs generated using the overloaded puts() function. For
example, “EXEC !VGAC.compute !o(image updated, IRQ sent)” means that the SystemC
scheduler has executed the process “VGAC.compute” and this process has printed two messages
“image updated” and “IRQ sent”.

C. Helmstetter 02:7

SystemC
Simulation
Kernel

(TLM.open
implementation)

SC_MODULE(Processor)

data
SystemC
objects

static dynamic
data

data
SystemC
objects

static dynamic
data

SC_MODULE(Memory)
static
data

dynamic
data

static
data

SC
_
M
O
D
U
LE(Bus)

SC_MODULE(Timer)

timer
state

timer
state

timer
state

memory

state
SystemC object

states state
processor

state
memory

SystemC kernel
state

SystemC object
states state

processor
state

memory

SystemC kernel
state

SystemC object
states state

processor
state

SystemC kernel

- only one instance

- data often change

- build during SystemC

the CADP tool

elaboration phase

stored/restored
by the user

stored/
restrored

by TLM.open

Stored states:
- many instances
- each state is constant
- stored (or not) by

- memory size matters

Simulation state:

Figure 4 Memory layout: simulation state and stored states.

4.2 Storing and restoring program states
The TLM.open library includes a SystemC simulator. The state of this simulator consists of the
state (i.e., the current value) of each object that has been instantiated. Some objects are described
by SystemC classes (such as: sc_event, sc_signal, ...) and others are described by user classes.
SystemC modules are hybrid: some class members are inherited from the base class sc_module
but other members are defined by the user.

A stored state contains a copy of each value of the simulator state that may change during the
simulation. A stored state must be as small as possible and does not use the same types as the
simulator states: constant values are not stored, Boolean values can be grouped in one byte using
bit fields.

All objects which are defined by a SystemC class are stored automatically by the TLM.open
library. The other objects are stored using callback functions implemented by the user. Each
SystemC module must provide the following functions:

size_t size() const: number of bytes needed to store a copy of the SystemC module.
size_t alignment() const: specify whether padding bytes are needed.
void store(char *dest) const: store the current state of the module in dest.
void restore(const char *src): restore the state of the module according to the copy
stored in src.

The store() function must generate a canonical representation, so that state comparison can be
done using memcmp() and hash functions can be generated automatically.

Implementing the functions size() and alignment() generally requires only one line of code
for each. The store() function implementation contains two lines of code per module member on
average; similarly the restore() function. Implementing these functions requires some manual
work, but less than translating the whole model into another language.

Theoretically, generating automatically the store() and restore() functions should be
simpler than translating the whole code, because it is not necessary to manage the code describing
the behavior. However, such a generator would have to parse and manage a large part of C++,
and the generated functions would likely be less efficient than those hand-written.

LITES

02:8 TLM.open: SystemC/TLM Verification

4.2.1 Storing modules using flat state
The user has many possibilities to implement the store and restore functions. The basic solution
is to define a new struct type with one field per member of the SystemC module that is not
constant and not managed directly by TLM.open. To store the state, the user filled this new type
by copying values from the C++ class, and inversely, the user filled the C++ class by copying
values from the struct type when the state must be restored. This is shown in the example below.

SC_MODULE(Foo) {
sc_event e; // state stored by the tlm.open library
bool flag; // dynamic data
uint32_t data; // dynamic data
const sc_time period; // static data, not stored
... // module implementation

// code below is used only by TLM.open
struct State { // container type

bool flag; uint32_t data;
void set(Foo *f) const {f->flag=flag; f->data=data;}
void set(const Foo *f) {flag=f->flag; data=f->data;}

};
size_t size() const {return sizeof(State);}
size_t alignment() const {return 4 /*alignmentof(State)*/;}
void store(char *dst) const {

reinterpret_cast<State*>(dst)->set(this);}
void restore(const char *src) {

reinterpret_cast<const State*>(src)->set(this);}
}; // Foo

In this example, storing the state of an instance of Foo requires 8 bytes (i.e.,
sizeof(Foo::State)). If a program contains n modules M1, . . . ,Mn, each module being stored
using a typeMi::State, then each state stored consumes at least Σn

i=1sizeof(Mi::State) bytes.

4.2.2 Storing module using hierarchical state
Most of the time, a transition modifies the state of only one or two modules. If storing a module
consumes a lot of memory, it is then mostly better to use a hierarchical state. Using hierarchical
states, the main state contains a pointer to the module state instead of the module state itself.
When a transition is executed and the module has not been modified, then the new stored state
contains only a pointer to the previously stored value.

Moreover, checking whether the module has been modified by the last transition is not enough.
Even if the module has been modified, it is possible that we already have a copy of its current
state. At the end of a transition, we search all the previous states of this module, which are stored
in a container (hash table or binary tree). If this module state is encountered for the first time,
then it is added to this container, or else we reuse the existing module state.

Here is how the Foo state could be recorded using a hierarchical state:

typedef std::set<const State*, StateCmp> state_set;
static state_set foo_states;
size_t Foo::size() const {return sizeof(State*);}

C. Helmstetter 02:9

void Foo::store(char *dst) const {
State *s = new State(); s->set(this);
std::pair<state_set::iterator,bool> p = foo_states.insert(s);
if (!p.second) delete s; //This Foo state already exists,

// so we reuse the previous version.
*reinterpret_cast<const State**>(dst) = *p.first;}

To compare two states of the whole program, we just need to compare the pointers because
identical module states are never stored in distinct memory locations.

In some cases, hierarchical states can significantly reduce the memory consumption. Moreover,
whereas the OPEN/CÆSAR interface requires the main state to have a fixed size, hierarchical
states allow a module to be stored whose size is not statically bound.

Internally, for all objects that are stored automatically, the TLM.open library uses a flat state
for all objects except SystemC threads (SC_THREAD). Moreover, storing the state of a thread is
done by copying its execution stack. Note that when yielding, the QuickThreads library used by
SystemC pushes the register contents and the program counter on top of the thread stack. As
thread stack sizes vary during simulation because stacks may become large,and because at most
one thread stack is modified during a transition, the hierarchical state technique here is more
efficient than flat states.

4.3 Implementation of the OPEN/CÆSAR interface

4.3.1 Generation of the initial state
The generation of the initial state faces a technical problem. Moreover, SystemC and CADP do
not use the same control flow:

A SystemC simulator creates the initial state by calling the function sc_main, which is
implemented by the user, and the simulation starts when the user calls back the function
sc_start from the sc_main function.
A CADP back-end creates the initial state by calling the function CAESAR_START_STATE, which
is implemented by the front-end and the verification starts after the function
CAESAR_START_STATE returned.

Thus, the CADP back-end calls the function CAESAR_START_STATE of TLM.open, and this
function calls sc_main. The function CAESAR_START_STATE must return when sc_start is called,
before sc_main returns. If one returns in advance of sc_start using a return statement or a C
long jump or a C++ exception then the modules allocated on the stack are destroyed before they
are used. The solution is to execute the sc_main function in a separated thread, which has its own
stack and suspends this thread when sc_start is called. As we do not need real concurrency, this
thread is implemented using the collaborative QuickThreads library, which is used to implement
the SystemC threads too.

4.3.2 Enumerating the transitions
The key function of the OPEN/CÆSAR interface is CAESAR_ITERATE_STATE. This function must
enumerate the transitions starting from a given stored state x. A transition is defined by a label s
(a C string) and the successor state y.

There is at least one transition per eligible process. Assuming all transitions are deterministic,
the TLM.open library behaves as follows:
1. A SystemC process is selected.

LITES

02:10 TLM.open: SystemC/TLM Verification

2. The simulator is set according to the stored state x, by calling the restore function of each
stored object (either a user function for modules, or a TLM.open library function for other
SystemC objects).

3. The transition is executed, until the elected process yields back to the scheduler.
4. The new simulator state is stored in y, by calling the store function of each stored objects.

The label s is created using the name of the elected process, and the outputs generated by the
user using the puts() function.

5. This transition is sent to the back-end.
6. If there is another eligible thread, then go back to step 1.

If no processes are eligible, then TLM.open can let the time elapse until a process is awoken,
just like a regular SystemC simulator. In this case, a specific transition is generated with the label
“TE”. If no process can be awoken by a time elapse, then this means that x is in a deadlock state.
In order to simulate inputs or a non determinism, the TLM.open library provides a rand(int MAX)
function. From the user point of view, this function returns a number between 0 and MAX. In
case of a simulation, an implementation would choose a number randomly. On the contrary,
model checking requires an enumeration of all values. In order to generate the full LTS, each
time TLM.open encounters a call to rand(), it records that another transition exists for the same
process for which values have already been tried. Thus, the same code will be executed MAX+1
times, generating as many LTS transitions. Because a transition may call rand() many times,
TLM.open uses a stack to remember its position in the transition tree. Thus, all input combinations
are finally generated (e.g., “x=rand(2); y=rand(3); wait();” generates 3× 4 = 12 transitions).

4.4 Features and limitations
Most SystemC, TLM and C++ features can be used normally. However, some features require
special care. As aforementioned, the functions puts() and rand() have a special meaning when
used with TLM.open.

4.4.1 The sc_stop function
SystemC provides a function sc_stop() to stop the simulation. Because all states that can be
reached using a simulator must be reached using TLM.open, calling sc_stop() may not stop
the generation of the LTS. With respect to the SystemC specifications, the effect of executing
sc_stop() in a transition x→ y is to eliminate all the successors of y. If other transitions are
pending, then they are explored normally.

4.4.2 Recording the current time
A SystemC simulator, such as the ASI simulator, records the current date. The user can read
this data using the function sc_timestamp(). Because this value is stored in the state, the state
space becomes infinite for all programs containing a timed instruction in an unbounded loop. An
example of such program is:

SC_THREAD(compute); ...
void compute() {

while (true) {wait(1,SC_SEC);}}

To allow the verification of this program, TLM.open provides an option to record only relative
durations. This option disables the function sc_timestamp(). Using this option, the LTS of the
program above has only two states and two transitions: a transition with gate “EXEC” leads
from the initial state to the second state and another transition with gate “TE” leads back to the
initial state.

C. Helmstetter 02:11

void complete() {
wait(e); assert(false);

}

Transmitter

void initiate() {

}
port.f();

Source

void f() {e.notify();}

void compute() {
wait(e); port.f();

}

Sink
void f() {e.notify();}

Figure 5 Source code of the chain benchmark for n = 1.

4.4.3 Pointers and dynamic allocations
It is perfectly safe to use pointers when verifying a SystemC/TLM program with TLM.open. Both
the pointer and the pointed value must be stored (respectively restored) when the module is stored
(resp. restored).

However, dynamic allocations should not be used because a transition can be executed many
times, calling new creates a memory leak (a second object will be created if the transition is
executed again), and calling delete corrupts the memory (memory can be freed twice). There is
one exception: a new statement can be used safely if the corresponding delete statement is found
in the same transition.

If using dynamic allocation is necessary, then the user must define its own memory allocator.
Next, the user must provide store and restore functions to manage the state of the memory
allocator itself. Thus, when a state is restored, the memory allocator knows which objects are
allocated and which memory locations are available.

5 Examples

5.1 The chain benchmark
We evaluate our new front-end on the benchmark proposed in [27] and reused in [16]. This
benchmark consists of a chain of interrupt transmitter modules, whose length is parametrised
by n. Modules communicate through transactions, and processes synchronize with events.

Figure 5 presents the SystemC original benchmark for n = 1. To increase n, one adds a
transmitter module between the last transmitter and the sink module. There are always n+ 2
threads (functions named compute and process) and n+ 1 events (private attribute e of each
module).

It is very easy to use TLM.open to verify this benchmark because the modules do not contain
any dynamic members. Thus, the store and restore functions can be left empty. The state of
the SystemC events and of the SystemC threads (possibly including local variables) are stored
automatically.

We have also tried TLM.open on a modified version of this benchmark. The modified version
uses the SC_METHOD instead of the SC_THREAD. Using SC_METHOD makes the code more difficult to
read, but accelerates the simulation and reduces the memory consumption. When replacing a

LITES

02:12 TLM.open: SystemC/TLM Verification

Figure 6 Screen-shot of the OCIS simulator of CADP (chain benchmark, n = 1).

Table 1 Results of the experiments using TLM.open.

n = 3 7 11 15 17 19 21
LTS generation
(SC_THREAD)

1.1 s 1.2 s 2.3 s 35.3 s 193 s 844 s 4314 s

LTS generation
(SC_METHOD)

1.1 s 1.1 s 1.5 s 11.8 s 62 s 268 s 1445 s

state number 62 1022 16,382 262,142 1,048,574 4,194,302 16,777,214
state number after

minimization
47 767 12,287 196,607 786,431 3,145,727 n.a.

SC_THREAD by a SC_METHOD, local variables have generally to be replaced by module members,
and thus must be stored and restored by the user callback methods.

Among the CADP tools that can be used, there is ocis, an interactive simulator with
backtracking. Figure 6 provides a screen-shot of this tool. Also, for small values of n, the LTS can
be fully generated and displayed (cf. Figure 7).

Table 1 presents the results for the generation of the full LTS, using a Macbook machine with
4 GB of memory. For comparison, [27] verifies this benchmark up to n = 15 (47 seconds), and
[16] verifies this benchmark up to n = 19 (8293 seconds for n = 19, 60.2 seconds for n = 15).
These results show a significant improvement compared to the previous approach based on the
translation into Promela or LOTOS. The efficiency of TLM.open can be explained by two points:

One transition in the LTS corresponds exactly to one SystemC transition (i.e., the execution
of a process between two wait statements.) There are no additional transitions used to mimic
the behavior of the SystemC scheduler.
The memory size of a state is kept as small as possible, allowing the model checker to store
more states.

The modified benchmark in which SC_THREADs have been replaced by SC_METHODs gives identical
LTSes. However, the generation is three times faster, and the memory consumption is reduced:
for n = 19, generating the LTS for the original benchmark requires 650 MB whereas the modified
version requires only 387 MB.

In this experiment, SC_THREADs are stored using hierarchical states. We have tried another

C. Helmstetter 02:13

Figure 7 The LTS of the chain benchmark for n = 1 (output of bcg_edit).

implementation using only flat states. Using the original benchmark with SC_THREADs, the flat
state technique leads to an explosion of the memory consumption: 700 MB instead of 3.5 MB for
n = 12 and the LTS generation is about 1.5 times slower.

5.2 The LusSy benchmark

The thesis [23] describes another SystemC/TLM benchmark, which is similar to the chain
benchmark. The main difference is that the LusSy benchmark uses real transactions which are
routed by a bus model.

It is worth noting that LusSy has a special interpretation of the timing annotations [23].
TLM.open provides an option to mimic the semantics of LusSy. This allows a greater number of
schedules than the official specification, because it considers that all durations are equal.

Using TLM.open, instrumenting this benchmark with store() and restore() functions is
trivial for all modules but the bus model because the whole state is contained in SC_THREAD stacks,
which are automatically stored and restored. The bus model requires about 40 additional lines
of code, used for storing and restoring the list of pending transactions. When using LusSy, no
additional code is needed. However, LusSy does not use the bus model code. Indeed, LusSy is
currently restricted to a few bus models for which a corresponding automaton model has been
manually provided. Modeling a bus using automata requires more work and knowledge than adding
store() and restore() functions. Therfore using LusSy is not easier than using TLM.open.

Table 2 provides the results obtained with TLM.open. It appears that TLM.open uses less
memory than LusSy combined with SMV. Thus, TLM.open can verify this benchmark up to n = 18,
whereas LusSy does not work over n = 13 (with a common memory limit fixed at 512 MB). For
n = 12, TLM.open needs only two seconds where LusSy+SMV spends over one hour.

LITES

02:14 TLM.open: SystemC/TLM Verification

Table 2 Results for the LusSy benchmark verification using TLM.open.

n memory consumption time
n = 15 30.8 MB 11.3 sec
n = 16 64.6 MB 24.1 sec
n = 17 136.1 MB 52.6 sec
n = 18 289.8 MB 116.3 sec

5.3 Application to a timer
This subsection illustrates the features provided by TLM.open by showing how it can be applied
to a simple but realistic example. We consider a timer with two registers; PERIOD and ACK.

Writing a non-null value to PERIOD starts the timer.
When enabled, the timer generates an interrupt periodically.
Writing to ACK acknowledges the interrupt.
Writing 0 to PERIOD stops the timer.

We have 4 TLM models for this timer. The first comes from the SimSoC project [19]; the
second is identical to the first with a bug fix; the third and the fourth were provided respectively
by an engineer and a PhD student.

In order to verify the first TLM model, which contains 80 lines of code, we had to write 17
additional lines of code to implement the store() and restore() functions. The timer verification
requires the design of an environment modeling the commands generated by the embedded software.
For this example, we decided to describe the environment using SystemC code. Here, the code of
the environment process:

void compute () {
switch (rand(5)) {
case 0: puts(‘‘stop’’); port->write(Timer::PERIOD_REG_OFFSET,0); break;
case 1: puts(‘‘start’’); port->write(Timer::PERIOD_REG_OFFSET,5); break;
case 2: puts(‘‘ack’’); port->write(Timer::ACK_REG_OFFSET,1); break;
case 3: {

std::ostringstream oss;
oss <<‘‘read_period:’’ <<port->read(Timer::PERIOD_REG_OFFSET);
puts(oss.str().c_str());
break;}

case 4: {
std::ostringstream oss;
oss <<‘‘read_ack:’’ <<port->read(Timer::ACK_REG_OFFSET);;
puts(oss.str().c_str());
break;}

case 5: puts(‘‘wait’’); next_trigger(5,sc_core::SC_MS); return;
}
next_trigger(sc_core::IMMEDIATE_WAKE_UP);

}

Note that we trigger the timer with only one specific period. Explicit model-checking does not
permit the verification of this model for all values of the period. Thus, we have to assume that
the presence of bugs does not depend on this particular period.

C. Helmstetter 02:15

The last line uses a special feature of TLM.open: the process yields back to the scheduler but
remains eligible. This statement is similar to the yield() statement introduced in [15]. The
rationale of this statement is to break critical sections that would exist in the model but not in
the real system.

Firstly, we applied on-the-fly property checking. The property checker of CADP revealed an
error in the first version: for some particular schedules, the timer could generate an interrupt after
it was stopped. A counter-example was automatically shown, allowing us to fix the bug. Another
minor bug was found in the third version.

Secondly, we applied equivalence checking. We generated the LTS of each timer TLM model,
we hid the internal transitions and we minimized them according to the branching equivalence.
We got the proof that the second and the forth version are bisimilar modulo branching equivalence.
It means that if one contains an error, the other contains the same error. Obviously, the first and
third versions are not bisimilar, since they contain distinct errors.

5.4 Application to a basic system

In order to evaluate the behavior of TLM.open on a system made of many modules, we studied a
basic system that was originally used for practical work. This system was implemented on FPGA.
It contains a MicroBlaze processor, a VGA controller, plus the usual and mandatory peripherals:
bus, memory, timers, interrupt controller. In the SystemC/TLM model, the user can model the
processor, by either using a native wrapper or an instruction set simulator (ISS). The embedded
software compute images and manage the configuration of the peripherals.

For the validation of the embedded software, we decided to use the native wrapper instead
of the ISS. On the one hand, there is nothing that prevents us using the native wrapper for this
software (i.e., no inline assembly code and no dynamic code loading). On the other hand, using
the ISS would multiply the number of states: 1 state per binary instruction with the ISS instead
of one state per explicit synchronization point with the native wrapper.

Thus, we have instrumented all modules with store() and restore() methods. Then, we
changed the output functions so that traces are added to LTS labels instead of sent to the terminal.
Finally, we made some simplifications: 1. we have disconnected the graphical library used by the
VGA module, which means that during model checking we do not display the simulated VGA
screen. 2. We have simplified the TLM protocol so that it no longer uses a transaction pool
because the transaction pool mechanism is only a trick to make simulations a little faster.

Using TLM.open, we generated the LTS corresponding to this basic SystemC model for one
embedded software. Using the bcg_min tool of CADP, the LTS can be reduced to a minimal
LTS. This minimal LTS is small enough to be read by human. By observing this LTS, we notice
that in some cases the processor was receiving an interruption before any other module raised one.
The rationale was a missing dont_initialize() in the SystemC code. Because the occurrence of
this error depends on the scheduling, this bug had not been noticed before we used TLM.open.
After fixing this bug, we generated the minimized LTS again. This second LTS is represented by
Figure 8.

Finally, we tried to add some errors in the embedded software, such as changing an initial
value or disabling a register write in order to verify that all errors can be discovered during model
checking. For each error, we got either a SystemC error message (such as assertion failure coming
from the TLM code) during LTS generation, or an LTS that was not equivalent to the reference
once (equivalence checked using the CADP tool bisimulator).

LITES

02:16 TLM.open: SystemC/TLM Verification

8

4

0

5

1

6

2

7

3

EXEC !VGAC.compute !o(starting)

EXEC !Processor.interrupt_handler

EXEC !Processor.compute !o(finished image)

EXEC !Processor.compute !o(finished image) TE !o(DELTA)

EXEC !VGAC.compute

EXEC !VGAC.compute !o(sending interrupt)

TE !o(DELTA)

TE !o(+41 ms,VGAC.compute)

EXEC !Processor.compute !o(IRQ caught, finished image)

Figure 8 LTS generated for the basic system, after minimization.

6 Conclusion

We presented a new framework for the verification of SystemC/TLM programs. Our new System-
C/TLM front-end avoids the need to translate the whole SystemC/TLM program into another
language. Compared to approaches based on manual translation, the verification using TLM.open
is much simpler: there are less lines of code to write and the engineers do not need to learn a
new modeling language. Moreover, TLM.open allows better scaling than previous works. Thanks
to the numerous tools of CADP, it is now possible to check complex properties and to test the
equivalence of two SystemC/TLM programs.

Note that TLM.open can be used with pure SystemC programs also (i.e., programs not
using TLM). The rationale of calling our tool TLM.open instead of SystemC.open is related to
the abstraction level: the CADP verification toolbox is optimized for asynchronous processes.
SystemC/TLM models use asynchronous processes, but SystemC programs modeling a system at
a lower level of abstraction use synchronous processes. In order to verify synchronous processes,
symbolic model-checker based on BDD or SAT, are in general more efficient than CADP. Thus,
TLM.open can be used for pure SystemC programs, but is not likely to be the most efficient tool.

As explained in [7], the most difficult task when verifying a SystemC/TLM program is to
extract an abstract model that is simple enough to be formally verified. Thus, the main further
work is to integrate TLM.open in the design flow in such a way that this task becomes simple
and safe. Additionally, it would help to automatize the generation of the store() and restore
methods.

References
1 Accellera Systems Initiative. IEEE 1666 Standard:

SystemC Language Reference Manual., 2011. URL:
http://www.accellera.org.

2 Nicolas Blanc and Daniel Kroening. Race analysis
for SystemC using model checking. In 2008 Inter-
national Conference on Computer-Aided Design
(ICCAD’08), November 10–13, 2008, San Jose,
CA, USA, pages 356–363. IEEE, 2008. URL: http:
//doi.acm.org/10.1145/1509456.1509540.

3 Alessandro Cimatti, Iman Narasamdya, and
Marco Roveri. Software model checking SystemC.
IEEE Trans. on CAD of Integrated Circuits and

Systems, 32(5):774–787, 2013. doi:10.1109/TCAD.
2012.2232351.

4 Rolf Drechsler and Daniel Große. Reachability ana-
lysis for formal verification of SystemC. In 2002
Euromicro Symposium on Digital Systems Design
(DSD 2002), Systems-on-Chip, 4–6 September
2002, Dortmund, Germany, pages 337–340. IEEE
Computer Society, 2002. doi:10.1109/DSD.2002.
1115387.

5 Cormac Flanagan and Patrice Godefroid. Dynamic
partial-order reduction for model checking soft-
ware. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Program-

http://www.accellera.org
http://doi.acm.org/10.1145/1509456.1509540
http://doi.acm.org/10.1145/1509456.1509540
http://dx.doi.org/10.1109/TCAD.2012.2232351
http://dx.doi.org/10.1109/TCAD.2012.2232351
http://dx.doi.org/10.1109/DSD.2002.1115387
http://dx.doi.org/10.1109/DSD.2002.1115387

C. Helmstetter 02:17

ming Languages, POPL 2005, Long Beach, Cali-
fornia, USA, January 12–14, 2005, pages 110–121.
ACM, 2005. doi:10.1145/1040305.1040315.

6 Hubert Garavel. Open/cæsar: An OPen software
architecture for verification, simulation, and test-
ing. In Tools and Algorithms for Construction and
Analysis of Systems, 4th International Conference,
TACAS ’98, Held as Part of the European Joint
Conferences on the Theory and Practice of Soft-
ware, ETAPS’98, Lisbon, Portugal, March 28 –
April 4, 1998, Proceedings, pages 68–84. Springer,
1998. Full version available as INRIA Research Re-
port RR-3352. doi:10.1007/BFb0054165.

7 Hubert Garavel, Claude Helmstetter, Olivier
Ponsini, and Wendelin Serwe. Verification of an in-
dustrial SystemC/TLM model using LOTOS and
CADP. In 7th ACM/IEEE International Confer-
ence on Formal Methods and Models for Codesign
(MEMOCODE 2009), July 13–15, 2009, Cam-
bridge, Massachusetts, USA, pages 46–55. IEEE
Computer Society, 2009. doi:10.1109/MEMCOD.
2009.5185377.

8 Hubert Garavel, Frédéric Lang, and Radu
Mateescu. An overview of CADP 2001. European
Association for Software Science and Technology
(EASST) Newsletter, 4:13–24, August 2002. Also
available as INRIA Technical Report RT-0254
(December 2001).

9 Hubert Garavel, Radu Mateescu, Frédéric Lang,
and Wendelin Serwe. CADP 2006: A tool-
box for the construction and analysis of distrib-
uted processes. In Computer Aided Verifica-
tion, 19th International Conference, CAV 2007,
Berlin, Germany, July 3–7, 2007, Proceedings,
volume 4590 of Lecture Notes in Computer Sci-
ence, pages 158–163. Springer, July 2007. doi:
10.1007/978-3-540-73368-3_18.

10 Frank Ghenassia, editor. Transaction-Level Mod-
eling with SystemC. TLM Concepts and Applica-
tions for Embedded Systems. Springer, June 2005.
ISBN 0-387-26232-6.

11 Daniel Große and Rolf Drechsler. CheckSyC: an ef-
ficient property checker for RTL SystemC designs.
In International Symposium on Circuits and Sys-
tems (ISCAS 2005), 23–26 May 2005, Kobe, Ja-
pan, volume 4, pages 4167–4170. IEEE, May 2005.
doi:10.1109/ISCAS.2005.1465549.

12 Daniel Große, Hoang M. Le, and Rolf Drechsler.
Proving transaction and system-level properties
of untimed SystemC TLM designs. In 8th
ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE
2010), Grenoble, France, 26–28 July 2010, pages
113–122. IEEE Computer Society, 2010. doi:10.
1109/MEMCOD.2010.5558643.

13 Claude Helmstetter. Validation de modèles de sys-
tèmes sur puce en présence d’ordonnancements in-
déterministes et de temps imprécis. PhD thesis,
INPG, Grenoble, France, March 2007. URL: http:
//tel.archives-ouvertes.fr/tel-00350929.

14 Claude Helmstetter, Florence Maraninchi, and
Laurent Maillet-Contoz. Test coverage for loose
timing annotations. In Formal Methods: Applic-
ations and Technology, 11th International Work-
shop, FMICS 2006 and 5th International Work-
shop PDMC 2006, Bonn, Germany, August 26–

27, and August 31, 2006, Revised Selected Pa-
pers, volume 4346, pages 100–115. Springer, Au-
gust 2006. doi:10.1007/978-3-540-70952-7_7.

15 Claude Helmstetter, Florence Maraninchi, and
Laurent Maillet-Contoz. Full simulation cov-
erage for SystemC transaction-level models of
systems-on-a-chip. Formal Methods in Sys-
tem Design, 35(2):152–189, 2009. doi:10.1007/
s10703-009-0075-z.

16 Claude Helmstetter and Olivier Ponsini. A com-
parison of two SystemC/TLM semantics for formal
verification. In 6th ACM & IEEE International
Conference on Formal Methods and Models for
Co-Design (MEMOCODE 2008), June 5–7, 2008,
Anaheim, CA, USA, pages 59–68. IEEE Computer
Society, June 2008. doi:10.1109/MEMCOD.2008.
4547687.

17 Paula Herber, Marcel Pockrandt, and Sabine Gles-
ner. Transforming SystemC transaction level
models into UPPAAL timed automata. In 9th
IEEE/ACM International Conference on Formal
Methods and Models for Codesign, MEMOCODE
2011, Cambridge, UK, 11–13 July, 2011, pages
161–170. IEEE, 2011. doi:10.1109/MEMCOD.2011.
5970523.

18 ISO/IEC. Lotos – a formal description technique
based on the temporal ordering of observational
behaviour. International Standard 8807, Interna-
tional Organization for Standardization – Informa-
tion Processing Systems – Open Systems Intercon-
nection, Genève, September 1989.

19 Vania Joloboff and Claude Helmstetter. SimSoC:
A SystemC TLM integrated ISS for full system sim-
ulation. In Circuits and Systems, 2008. APCCAS
2008. IEEE Asia Pacific Conference on. IEEE,
2008. doi:10.1109/APCCAS.2008.4746381.

20 Daniel Kroening and Natasha Sharygina. Formal
verification of SystemC by automatic hard-
ware/software partitioning. In 3rd ACM & IEEE
International Conference on Formal Methods and
Models for Co-Design (MEMOCODE 2005), 11–
14 July 2005, Verona, Italy, Proceedings, pages
101–110. IEEE, 2005. doi:10.1109/MEMCOD.2005.
1487900.

21 Sudipta Kundu, Malay K. Ganai, and Rajesh
Gupta. Partial order reduction for scalable testing
of SystemC TLM designs. In Proceedings of the
45th Design Automation Conference, DAC 2008,
Anaheim, CA, USA, June 8–13, 2008, pages 936–
941. ACM, 2008. doi:10.1145/1391469.1391706.

22 Kevin Marquet, Matthieu Moy, and Bertrand
Jeannet. Efficient Encoding of SystemC/TLM
in Promela. In Workshop on Design, Ana-
lysis and Tools for Integrated Circuits and
Systems at the International MultiConference
of Engineers and Computer Scientists 2011,
DATICS-IMECS, pages 1039–1044, 2011. URL:
http://www.iaeng.org/publication/IMECS2011/
IMECS2011_pp1039-1044.pdf.

23 Matthieu Moy. Techniques and Tools for the
Verification of Systems-on-a-Chip at the Transac-
tion Level. PhD thesis, INPG, Grenoble, France,
December 2005. URL: http://www-verimag.imag.
fr/~moy/phd/.

24 Matthieu Moy, Florence Maraninchi, and Laurent
Maillet-Contoz. LusSy: an open tool for the

LITES

http://dx.doi.org/10.1145/1040305.1040315
http://dx.doi.org/10.1007/BFb0054165
http://dx.doi.org/10.1109/MEMCOD.2009.5185377
http://dx.doi.org/10.1109/MEMCOD.2009.5185377
http://dx.doi.org/10.1007/978-3-540-73368-3_18
http://dx.doi.org/10.1007/978-3-540-73368-3_18
http://dx.doi.org/10.1109/ISCAS.2005.1465549
http://dx.doi.org/10.1109/MEMCOD.2010.5558643
http://dx.doi.org/10.1109/MEMCOD.2010.5558643
http://tel.archives-ouvertes.fr/tel-00350929
http://tel.archives-ouvertes.fr/tel-00350929
http://dx.doi.org/10.1007/978-3-540-70952-7_7
http://dx.doi.org/10.1007/s10703-009-0075-z
http://dx.doi.org/10.1007/s10703-009-0075-z
http://dx.doi.org/10.1109/MEMCOD.2008.4547687
http://dx.doi.org/10.1109/MEMCOD.2008.4547687
http://dx.doi.org/10.1109/MEMCOD.2011.5970523
http://dx.doi.org/10.1109/MEMCOD.2011.5970523
http://dx.doi.org/10.1109/APCCAS.2008.4746381
http://dx.doi.org/10.1109/MEMCOD.2005.1487900
http://dx.doi.org/10.1109/MEMCOD.2005.1487900
http://dx.doi.org/10.1145/1391469.1391706
http://www.iaeng.org/publication/IMECS2011/IMECS2011_pp1039-1044.pdf
http://www.iaeng.org/publication/IMECS2011/IMECS2011_pp1039-1044.pdf
http://www-verimag.imag.fr/~moy/phd/
http://www-verimag.imag.fr/~moy/phd/

02:18 TLM.open: SystemC/TLM Verification

analysis of systems-on-a-chip at the transac-
tion level. Design Automation for Embedded
Systems, 10(2–3):73–104, 2005. doi:10.1007/
s10617-006-9044-6.

25 Bernhard Niemann and Christian Haubelt. Form-
alizing TLM with communicating state machines.
In Forum on specification and Design Languages,
FDL 2006, September 19–22, 2006, Darmstadt,
Germany, Proceedings, pages 285–293. ECSI, 2006.

26 Olivier Ponsini and Wendelin Serwe. A sched-
ulerless semantics of TLM models written in Sys-
temC via translation into LOTOS. In FM 2008:
Formal Methods, 15th International Symposium

on Formal Methods, Turku, Finland, May 26–30,
2008, Proceedings, volume 5014 of Lecture Notes in
Computer Science, pages 278–293. Springer, 2008.
doi:10.1007/978-3-540-68237-0_20.

27 Claus Traulsen, Jérôme Cornet, Matthieu Moy,
and Florence Maraninchi. A SystemC/TLM se-
mantics in Promela and its possible applications.
In Model Checking Software, 14th International
SPIN Workshop, Berlin, Germany, July 1–3,
2007, Proceedings, volume 4595 of Lecture Notes in
Computer Science, pages 204–222. Springer, 2007.
doi:10.1007/978-3-540-73370-6_14.

http://dx.doi.org/10.1007/s10617-006-9044-6
http://dx.doi.org/10.1007/s10617-006-9044-6
http://dx.doi.org/10.1007/978-3-540-68237-0_20
http://dx.doi.org/10.1007/978-3-540-73370-6_14

	Introduction
	SystemC and TLM
	Related Works
	Verification of SystemC/TLM models
	Stateless model-checking
	Translate then verify

	The CADP verification toolbox

	Connecting SystemC/TLM with formal methods
	The architecture of TLM.open
	Storing and restoring program states
	Storing modules using flat state
	Storing module using hierarchical state

	Implementation of the OPEN/CÆSAR interface
	Generation of the initial state
	Enumerating the transitions

	Features and limitations
	The sc_stop function
	Recording the current time
	Pointers and dynamic allocations

	Examples
	The chain benchmark
	The LusSy benchmark
	Application to a timer
	Application to a basic system

	Conclusion

