
Blocking Optimality in Distributed Real-Time
Locking Protocols
Björn B. Brandenburg

Max Planck Institute for Software Systems (MPI-SWS)
Paul-Ehrlich-Straße G 26, 67663 Kaiserslautern, Germany
bbb@mpi-sws.org

Abstract
Lower and upper bounds on the maximum prior-
ity inversion blocking (pi-blocking) that is gener-
ally unavoidable in distributed multiprocessor real-
time locking protocols (where resources may be
accessed only from specific synchronization proces-
sors) are established. Prior work on suspension-
based shared-memory multiprocessor locking proto-
cols (which require resources to be accessible from
all processors) has established asymptotically tight
bounds of Ω(m) and Ω(n) maximum pi-blocking
under suspension-oblivious and suspension-aware
analysis, respectively, where m denotes the total
number of processors and n denotes the number
of tasks. In this paper, it is shown that, in the
case of distributed semaphore protocols, there exist
two different task allocation scenarios that give rise
to distinct lower bounds. In the case of co-hosted
task allocation, where application tasks may also

be assigned to synchronization processors (i. e., pro-
cessors hosting critical sections), Ω(Φ ·n) maximum
pi-blocking is unavoidable for some tasks under any
locking protocol under both suspension-aware and
suspension-oblivious schedulability analysis, where
Φ denotes the ratio of the maximum response time
to the shortest period. In contrast, in the case of
disjoint task allocation (i. e., if application tasks
may not be assigned to synchronization processors),
only Ω(m) and Ω(n) maximum pi-blocking is fun-
damentally unavoidable under suspension-oblivious
and suspension-aware analysis, respectively, as in
the shared-memory case. These bounds are shown
to be asymptotically tight with the construction
of two new distributed real-time locking protocols
that ensure O(m) and O(n) maximum pi-blocking
under suspension-oblivious and suspension-aware
analysis, respectively.

2012 ACM Subject Classification Real-time systems, Synchronization
Keywords and phrases distributed multiprocessor real-time systems, real-time locking, priority inversion,
blocking optimality
Digital Object Identifier 10.4230/LITES-v001-i002-a001
Received 2013-08-29 Accepted 2014-06-11 Published 2014-09-12

1 Introduction

The principal purpose of a real-time locking protocol is to provide tasks with mutually exclusive
access to shared resources such that the maximum blocking incurred by any task can be bounded
a priori. Such blocking is problematic in real-time systems and must be bounded because it
increases worst-case response times, and hence may cause deadline violations if left unchecked.
Real-time locking protocols should thus avoid blocking as much as possible. Unfortunately, if tasks
require exclusive access, some blocking is inherently possible and can generally not be avoided.
This naturally raises the question of optimality: if some blocking is inevitable when using locks,
then what is the minimal bound on worst-case blocking that any locking protocol can guarantee?
In other words, when can a real-time locking protocol be deemed (asymptotically) optimal?

This question has long been answered for uniprocessor systems [2,44,48], where it has been
shown that the real-time mutual exclusion problem can be solved with O(1) maximum blocking:
the priority ceiling protocol (PCP) [44, 48] and the stack resource policy (SRP) [2] both ensure

© Björn B. Brandenburg;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 1, Issue 2, Article No. 1, pp. 01:1–01:22
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v001-i002-a001
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

01:2 Blocking Optimality in Distributed Real-Time Locking Protocols

that the maximum blocking incurred by any task is bounded by the length of a single (outermost)
critical section, which is obviously optimal.

In the multiprocessor case, the picture is not as straightforward, and not as complete. First of
all, there are two classes of multiprocessor locking protocols to consider: spin-based (or spin lock)
protocols, in which waiting tasks remain scheduled and execute a delay loop, and suspension-based
(or semaphore) protocols, in which waiting tasks suspend to make the processor available to other
tasks. Of the two classes, spin locks are much simpler to analyze: with non-preemptive FIFO spin
locks, a lock acquisition is delayed by at most one critical section on each other processor [23, 29],
and it is easy to see that this cannot be improved upon in the general case.

In the case of multiprocessor real-time semaphore protocols, however, the question of blocking
optimality is considerably more challenging, and has only recently been answered in part [11,16,
18, 49]. In particular, it has been answered only for the case of shared-memory multiprocessor
semaphore protocols, which fundamentally require shared resources to be accessible from all
processors because they assume that tasks execute critical sections locally on the processor(s)
on which they are scheduled. In this paper, we extend the theory of blocking optimality to
distributed multiprocessor semaphore protocols, which are required if (some) shared resource(s)
can be accessed only from specific (subsets of) processors.

1.1 Motivation
Besides the fact that the restriction to shared-memory systems in prior work is an obvious
limitation, our work is motivated by the observation that there are many systems that either
inherently require, or at least can benefit from, distributed real-time locking protocols.

For instance, in the absence of a shared memory or on heterogeneous hardware platforms
(e. g., if only some processor cores support special-purpose instructions), the execution of critical
sections can be inherently restricted to specific processors. Similarly, when tasks share physical
resources such as network links, I/O co-processors, graphics processing units (GPUs), or digital
signal processors (DSPs), certain devices may be accessible only from specific processors.

Second, even if all processors technically could access all shared resources, it sometimes is
preferable to centralize resource access nonetheless. For example, many shared-memory multicore
processors intended for embedded systems are not cache-consistent (e. g., Infineon’s Aurix platform
for automotive applications does not support hardware-based cache coherency). On such a platform,
the coherency of shared data structures either must be managed in software (thus introducing an
additional implementation burden), or alternatively the execution of critical sections can simply
be centralized on a dedicated processor with the help of a distributed real-time locking protocol.
In fact, even on a cache-consistent shared-memory platform, it can be beneficial to centralize the
execution of critical sections due to cache affinity issues [39]. Furthermore, the use of distributed
real-time locking protocols in shared-memory systems can also yield improved schedulability [14].

As the final example, consider multi-kernel operating systems [6, 51], where each core is
managed as a uniprocessor and system-wide resource management is carried out using message
passing. Multi-kernels tend to aggressively optimize locality—intuitively, they form a “distributed
system on a chip”—with the effect that some resources may be accessed only on specific cores.

In each of these examples, the critical sections of some tasks must be executed on a specific
remote processor, since executing them locally is either infeasible or disallowed. This renders
shared-memory semaphore protocols as studied in [11,16,18,49] inapplicable, and a distributed
real-time semaphore protocol must be employed instead.

Naturally, as in the uniprocessor and shared-memory cases, distributed real-time locking
protocols should minimize blocking to the extent possible. However, to the best of our knowledge,
blocking optimality in distributed real-time locking protocols has not been studied to date, and it

B.B. Brandenburg 01:3

is thus not even clear what the minimal “extent possible” is, nor is it known how protocols should
be structured to obtain (asymptotically) optimal blocking bounds. In this paper, we seek to close
this gap in the understanding of multiprocessor real-time synchronization.

1.2 Related Work
The first discussion of the effects of uncontrolled blocking in real-time systems and possible
solutions dates back to the Mesa project [36]. Sha et al. [48] were the first to study the problem
from an analytical point of view and proposed uniprocessor protocols that provably bound the
worst-case blocking duration. As already mentioned, the Sha et al.’s PCP [48] and Baker’s SRP [2]
were the first uniprocessor semaphore protocols to ensure optimal blocking bounds.

In the first work on synchronization in multiprocessor real-time systems, Rajkumar et al. [45]
proposed the distributed priority ceiling protocol (DPCP) [44, 45] for partitioned1 multiprocessors,
which applies the PCP on each processor and uses “agents” to carry-out critical sections on
behalf of tasks assigned to remote processors. As the first and prototypical distributed real-
time semaphore protocol, the DPCP is central to this paper and reviewed in greater detail in
Section 2.2.2. Rajkumar also developed the first suspension-based shared-memory real-time locking
protocol, namely the multiprocessor priority ceiling protocol (MPCP) [43],2 an extension of the
PCP for partitioned shared-memory multiprocessors based on priority queues. Like the DPCP,
the MPCP uses the regular PCP for local resources (i. e., resources used on only one processor),
but when accessing global resources (i. e., resources used by tasks on multiple processors), tasks
execute critical section on their assigned processor in the MPCP (rather than delegating resource
access to “agents” as in the DPCP). In contrast to the PCP and the SRP, which are obviously
optimal on a uniprocessor, the MPCP and the DPCP were not studied from a blocking optimality
perspective.

Favoring spin locks over semaphores, Gai et al. [28, 29] developed the MSRP, a multiprocessor
extension of the SRP for partitioned shared-memory multiprocessors, wich employs non-preemptive
FIFO spin locks for global resources and the SRP for local resources; Devi et al. [23] similarly
analyzed non-preemptive FIFO spin locks in the context of globally scheduled multiprocessors.3
As already pointed out, it is not possible to construct spin lock protocols that ensure, in the
worst case, asymptotically less blocking to all tasks than the protocols by Gai et al. [28, 29] and
Devi et al. [23], although it is possible to use priority-ordered spin locks [32, 33, 41] to ensure that
some tasks are less susceptible to blocking than others [52].

In subsequent work on shared-memory real-time locking protocols (both spin-based and
suspension-based), numerous new protocols, analysis improvements, and evaluations have been
presented [10,11,14,17,19,20,22,24,26,27,35,40,42,47]; however, in contrast to this paper, they
are not primarily concerned with questions of blocking optimality.

Perhaps more closely related are two studies targeting different notions of optimality. Soon
after the MPCP was proposed, Lortz and Shin [38] observed that ordering conflicting critical
sections by scheduling priority, as in the MPCP, does not always yield the best results in terms of
schedulability, and proposed using FIFO queues or semaphore-specific locking priorities instead.
They further showed that assigning per-semaphore locking priorities that maximize schedulability

1 Under partitioned scheduling, each task is statically assigned to a processor, and each processor is scheduled
individually using a uniprocessor policy.

2 The name “multiprocessor priority ceiling protocol” originally referred to the DPCP in [45], but was later
repurposed to refer to the MPCP in [43]. We follow the terminology from [35, 43, 44], wherein the MPCP
denotes the shared-memory variant.

3 Under global scheduling, all processors serve a shared ready queue and tasks migrate among all processors.

LITES

01:4 Blocking Optimality in Distributed Real-Time Locking Protocols

is an NP-complete problem [38]. More recently, Hsiu et al. [31] studied three problems related to
finding task and resource assignments that minimize system-wide resource usage (i. e., the number
of processors hosting real-time tasks, the number of processors hosting shared resources, and
the total number of processors) assuming a distributed, priority-queue-based semaphore protocol
similar to the DPCP. Unsurprisingly, they found the exact optimization problems to be intractable
(NP-hard). In contrast to Hsiu et al.’s work [31], the notion of optimality studied herein focuses
on the locking protocol itself (and not system-wide allocation properties), which makes it possible
to find simple, asymptotically optimal solutions, as we show in Section 5.

Most closely related to this paper is [16], which was the first work to consider blocking optimality
in (shared-memory) multiprocessor real-time systems, and from which we adopt the analytical
framework and key definitions (as reviewed in detail in Section 2.3). In short, it was shown that
even in the shared-memory case alone, there exist not only one, but two lower bounds on maximum
blocking [16]. This is because there exist two sets of analysis assumptions, termed suspension-aware
and suspension-oblivious schedulability analysis, that yield different lower bounds due to differences
in how semaphore-related suspensions are accounted for during schedulability analysis. More
precisely, in a system with m processors and n tasks, a lower bound of Ω(n) was established in
the suspension-aware case, whereas the suspension-oblivious case yields a lower bound of Ω(m).
In other words, it was shown that there exist pathological scenarios in which some tasks incur
blocking that is (at least) linear in the number of processors (under suspension-oblivious) or linear
in the number of tasks (under suspension-aware analysis), regardless of the employed locking
protocol. These bounds have further been shown to be asymptotically tight with the construction
of practical shared-memory semaphore protocols that ensure bounds on maximum blocking that
are within a small constant factor of the established lower bounds [11,13,16,18,25,49,50].

To the best of our knowledge, no equivalent results are known for the case of distributed
multiprocessor real-time semaphore protocols.4

1.3 Contributions
We study the question of optimal blocking in distributed multiprocessor real-time semaphore
protocols and show that there exist two distinct task allocation strategies, which we call co-hosted
and disjoint task allocation, that lead to different lower bounds on blocking. In the disjoint
case, synchronization processors are dedicated exclusively to executing critical sections and may
not host real-time tasks, whereas in the co-hosted case tasks also execute on synchronization
processors. Notably, in a co-hosted scenario, we observe two surprising results:
1. in terms of the lower bound, there is no difference between suspension-aware and suspension-

oblivious analysis, in contrast to the shared-memory case; and
2. blocking can be asymptotically worse than in an equivalent shared-memory system by a factor

of Φ, where Φ denotes the ratio of the maximum response time and the minimum period
(formalized in Section 2)—we establish Ω(Φ · n) as a lower bound on maximum blocking under
both suspension-oblivious and suspension-aware analysis (Theorem 8).

We further show that any “reasonable” distributed locking protocol that does not artificially delay
requests (formalized as “weakly work-conserving” in Section 2) causes at most O(Φ · n) blocking
(Theorem 10); any “reasonable” protocol is hence asymptotically optimal in the co-hosted case.

4 The material presented herein was previously made available online in preliminary form as an unpublished
manuscript [12]. Based on [12], an in-kernel implementation and a fine-grained linear-programming-based
blocking analysis of the protocol presented in Section 5.1 was previously discussed and evaluated in [14].
Whereas [14] focuses on accurate (non-asymptotic) analysis and practical concerns, the material presented in
Sections 3–5 pertains exclusively to questions of optimality and has previously not been published.

B.B. Brandenburg 01:5

In contrast to the co-hosted case, we show that, under disjoint task allocation, distributed
locking protocols exist that ensure blocking bounds analogous to the shared-memory case: we
establish lower bounds of Ω(n) and Ω(m) under suspension-aware and suspension-oblivious
analysis, respectively, and show these bounds to be asymptotically tight by constructing two new
distributed real-time semaphore protocols that ensure O(n) and O(m) maximum blocking under
suspension-aware and suspension-oblivious analysis, respectively (Theorems 12 and 14).

The remainder of the paper is organized as follows. Section 2 provides essential definitions and
a detailed review of the needed background. Section 3 establishes a lower bound on blocking with
the construction of a task set that exhibits pathological blocking under co-hosted task allocation,
and argues that prior constructions apply in the case of disjoint task allocation. Section 4 considers
the co-hosted case and shows that any “reasonable” distributed locking protocol without artificial
delays ensures maximum blocking within at most a constant factor of the established lower bound.
Section 5 pertains to the case of disjoint task allocation and introduces two new protocols that
establish the asymptotic tightness of the lower bounds under suspension-oblivious and suspension-
aware analysis. Finally, Section 6 concludes with a discussion of the impact of communication
delays.

2 Background and Definitions

In this section, we establish required definitions and review key prior results. In short, the results
presented in this paper apply to sets of sporadic real-time tasks with arbitrary deadlines that are
provisioned on a multiprocessor platform comprised of non-uniform processor clusters. Shared
resources are accessible only from select synchronization processors and may be accessed from
other processors using remote procedure calls (RPCs). These assumptions are formalized as follows;
a summary of our notation is subsequently given at the end of the section in Table 1.

2.1 System Model
We consider the problem of scheduling a set of n sporadic real-time tasks τ = {T1, . . . , Tn}
on a set of m processors. A sporadic task Ti is characterized by its minimum inter-arrival
separation (or period) pi, its per-job worst-case execution time ei, and its relative deadline di,
where ei ≤ min(di, pi). Each task releases a potentially infinite sequence of jobs, where two
consecutive jobs of a task Ti are released at least pi time units apart.

We let Ji denote an arbitrary job of task Ti. A job is pending from its release until it completes,
and while it is pending, it is either ready and may be scheduled on a processor, or suspended and
not available for scheduling. A job Ji released at time ta has its absolute deadline at time ta + di.
Both tasks and jobs are sequential: each job can be scheduled on at most one processor at a time,
and a newly released job cannot be processed until the task’s previous job has been completed.

A task’s maximum response time ri describes the maximum time that any Ji remains pending.
A task Ti is schedulable if it can be shown that ri ≤ di; the set of all tasks τ is schedulable if
each Ti ∈ τ is schedulable. We define Φ to be the ratio of the maximum response time and the
minimum period; formally Φ , maxi{ri}

mini{pi} .
The set of m processors consists of K pairwise disjoint clusters (or sets) of processors, where

2 ≤ K ≤ m. We let Cj denote the jth cluster, and let mj denote the number of processors in Cj ,
where

∑K
j=1 mj = m. A common special case is a partitioned system, where K = m and mj = 1

for each Cj . However, in general, clusters do not necessarily have a uniform size. We preclude the
special case of K = 1 and m1 = m because distributed locking protocols are relevant only if there
are at least two clusters (i. e., the case of K = 1 and m1 = m corresponds to a globally scheduled
shared-memory platform, which is already covered by prior work [11,15,16,18]).

LITES

01:6 Blocking Optimality in Distributed Real-Time Locking Protocols

For notational convenience, we assume that clusters are indexed in order of non-decreasing
cluster size: mj ≤ mj+1 for 1 ≤ j < K. In particular, m1 denotes the (or one of the) smallest
cluster(s) in the system (with ties broken arbitrarily). Since K ≥ 2, we have m1 ≤ m

2 . This fact is
exploited by the lower-bound argument in Section 3.

Each task Ti is statically assigned to one of the K clusters; we let C(Ti) denote Ti’s assigned
cluster. Each cluster is scheduled independently according to a work-conserving job-level fixed-
priority (JLFP) scheduling policy [21]. Two common JLFP policies are fixed-priority (FP) scheduling,
where each task is assigned a fixed priority and jobs are prioritized in order of decreasing task
priority, and earliest-deadline first (EDF) scheduling, where jobs are prioritized in order of
decreasing absolute deadlines (with ties broken arbitrarily).

In general, a JLFP scheduler assigns each pending job a fixed priority and, at any point in
time, schedules the mj highest-priority ready jobs (or agents, see below) in each cluster Cj . Jobs
may freely migrate among processors belonging to the same cluster (i. e., global JLFP scheduling
is used within each cluster), but jobs may not migrate across cluster boundaries. Note that this
model includes the partitioned scheduling of shared-memory systems (each processor forms a
singleton cluster). Each cluster may use a different JLFP policy. Our results apply to any JLFP
policy.

Next, we discuss how resources may be shared in the assumed system architecture.

2.2 Distributed Real-Time Semaphore Protocols

In many real-time systems, tasks may have to share serially reusable resources (e. g., co-processors,
I/O ports, shared data structures, etc.). This paper is concerned with systems in which mutually
exclusive access to such resources is governed by a distributed (binary) semaphore protocol. In a
distributed semaphore protocol, each resource can be accessed only from a (set of) designated
processor(s); critical sections must hence be executed remotely if tasks use resources that are not
local to their assigned processor.

We next formalize the assumed resource model and review a distributed semaphore protocol.

2.2.1 Resource Model

The tasks in τ are assumed to share nr resources (besides the processors). Each shared resource `q
(where 1 ≤ q ≤ nr) is local to exactly one of the K clusters (but can be accessed from any cluster
using RPC invocations). We let C(`q) denote the cluster to which `q is local. Cluster C(`q) is
also called the synchronization cluster for `q.

To allow tasks to use non-local resources, access to each shared resource is mediated by one or
more resource agents. To use a shared resource `q, a job Ji invokes an agent on cluster C(`q) to
carry out the request on Ji’s behalf using a synchronous RPC. After issuing an RPC, Ji suspends
until notified by the invoked agent that the request has been carried out. A locking protocol such
as the DPCP (reviewed in Section 2.2.2) determines how concurrent requests are serialized.

We let Ni,q denote the maximum number of times that any Ji uses `q, and let Li,q denote
the corresponding per-request maximum critical section length, that is, the maximum time that
the agent handling Ji’s RPC requires exclusive access to `q as part of carrying out any single
operation invoked by Ji. For notational convenience, we require Li,q = 0 if Ni,q = 0 and define
Lmax , max{Li,q | 1 ≤ q ≤ nr ∧ Ti ∈ τ}.

Jobs invoke at most one agent at any time, and agents do not invoke other agents as part of
handling a resource request (i. e., resource requests are not nested). An agent is active while it is
processing requests, and inactive otherwise. While active, an agent is either ready (and can be

B.B. Brandenburg 01:7

scheduled) or suspended (and is not available for execution). Active agents are typically ready,
but may suspend temporarily when serving a request that involves synchronous I/O operations.

Following Rajkumar et al. [44, 45], we assume that jobs can invoke agents without significant
delay. That is, we assume that the overhead of cluster-to-cluster communication is negligible,
in the sense that any practical system overheads can be incorporated into task parameters
using standard overhead accounting techniques (e. g., see [11, Ch. 7]). If a distributed locking
protocol is implemented on top of a platform with dedicated point-to-point links, or if the
maximum communication delay across a shared network can be bounded by a constant (e. g.,
when communicating over a time-triggered network [34]), this assumption is appropriate, as any
constant invocation cost can be accounted for using standard overhead accounting techniques.
Further, such communication delays do not affect the blocking analysis per se (i. e., they do not
affect the contention for shared resources) and thus can be ignored when deriving asymptotic
bounds. We revisit the issue of non-negligible communication delays in Section 6.

Finally, in a real system, there likely exist resources in each cluster that are shared only
among local tasks. Such local resources can be readily handled using shared-memory protocols (or
uniprocessor protocols) and are not the subject of this paper. We hence assume that each resource
`q is accessed by tasks from at least two different clusters.

Given our resource model, a locking protocol is required to determine how agents are prioritized,
how conflicting requests are ordered, and when jobs may invoke agents. We next review the classic
protocol for this purpose, namely the DPCP.

2.2.2 The Distributed Priority Ceiling Protocol

As the first (distributed) real-time semaphore protocol for multiprocessors, the DPCP [44, 45] can
be considered to be the prototypical distributed semaphore protocol for partitioned fixed-priority
(P-FP) scheduling, a special case of the clustered JLFP scheduling assumed in this paper. We
briefly review the DPCP as a concrete example of the considered class of protocols.

The DPCP fundamentally requires mj = 1 for each cluster (or, rather, partition) Cj . Each
resource `q is statically assigned to a specific processor and may not be directly used on other
processors. Rather, tasks residing on other processors must indirectly access the resource by
issuing RPCs to resource agents. To this end, the DPCP provides one resource agent Aq,i for each
resource `q and each task Ti. To ensure a timely completion of critical sections, resource agents
are subject to priority boosting, which means that they have priorities higher than any regular task
(and thus cannot be preempted by regular jobs). Nonetheless, under the DPCP, resource agents
acting on behalf of higher-priority tasks may still preempt agents acting on behalf of lower-priority
tasks. That is, an agent Aq,h may preempt another agent Ar,l if Th has a higher priority than Tl.
After a job has invoked an agent, it suspends until its request has been carried out.

On each processor, conflicting accesses are mediated using the PCP [44, 48]. The PCP assigns
each resource a priority ceiling, which is the priority of the highest-priority task (or agent) accessing
the resource, and, at runtime, maintains a system ceiling, which is the maximum priority ceiling of
any currently locked resource. A job (or agent) is permitted to lock a resource only if its priority
exceeds the current system ceiling. Waiting jobs/agents are ordered by effective scheduling priority,
and priority inheritance [44, 48] is applied to prevent unbounded “priority inversion” (Section 2.3).

From an optimality point of view, not all of the details of the DPCP are relevant. Therefore,
we abstract from the specifics of the DPCP in our analysis to consider a larger class of “DPCP-like”
protocols, as defined next.

LITES

01:8 Blocking Optimality in Distributed Real-Time Locking Protocols

2.2.3 Simplified Protocol Assumptions
Specifically, in this paper, we focus on the class of distributed real-time locking protocols that
ensure progress by means of two properties adopted from the DPCP [44, 48].
A1 Agents are priority-boosted: agents always have a higher priority than regular jobs.
A2 The distributed locking protocol is weakly work-conserving: a resource request R for a resource

`q is unsatisfied at time t (i. e., R has been issued but is not yet being processed) only if
some resource (but not necessarily `q) is currently unavailable (i. e., some agent is currently
processing a request for any resource).

Assumption A1 is necessary to expedite request completion since excessive delays cannot
generally be avoided if jobs can preempt agents. Assumption A2 rules out pathological protocols
that “artificially” delay requests. We consider this form of work conservation to be “weak” because
it does not require the requested resource to be unavailable; a request for an available resource
may also be delayed if some other resource is currently in use. Notably, the DPCP is only
weakly work-conserving (and not work-conserving w.r.t. each resource) since requests for available
resources may remain temporarily unsatisfied due to ceiling blocking [44,48].

Assumptions A1 and A2 together ensure that any delay in the processing of resource requests
can be attributed exclusively to other resource requests.

Another simplification pertains to the use of agents. Under the DPCP, jobs do not require
agents to access resources local to their assigned processor since jobs can directly participate
in the PCP. In a sense, this can be seen as jobs taking on the role of their agent on their local
processor. To simplify the discussion in this paper, we assume herein that resources are accessed
only via agents (i. e., jobs invoke agents even for resources that happen to be local to their assigned
processors). This does not change the algorithmic properties of the DPCP.

Finally, we assume that there is only a single local agent for each resource. As seen in the
DPCP [44,45], it can make sense to use more than one agent per resource; however, in the following,
we abstract from such protocol specifics and let a single agent Aq represent all agent activity
corresponding to a resource `q.

A key assumption in our system model is that both tasks and resources are statically assigned
to clusters, which gives rise to two allocation scenarios, as we discuss next.

2.2.4 Co-Hosted and Disjoint Task Allocation
Processor clusters that host resource agents are called synchronization clusters. Conversely,
processor clusters that host sporadic real-time tasks are called application clusters.

In this paper, we establish asymptotically tight lower and upper blocking bounds on maximum
blocking in two separate scenarios, which we refer to as “co-hosted” and “disjoint” task allocation,
respectively. Under co-hosted task allocation, the set of application clusters overlaps with the set
of synchronization clusters, that is, there exists a cluster that hosts both tasks and agents. In
contrast, under disjoint task allocation, clusters may host either agents or tasks, but not both. The
significance of these two allocation strategies is that they give rise to two distinct lower bounds on
worst-case blocking, as will become apparent in Section 3.

Next, we give a precise definition of what actually constitutes “blocking.”

2.3 Priority Inversion Blocking
The sharing of resources subject to mutual exclusion constraints inevitably causes some delays
because conflicting concurrent requests must be serialized. Such delays are problematic in a
real-time system if they lead to an increase in worst-case response times (i. e., if they affect

B.B. Brandenburg 01:9

some ri). Conversely, delays that do not affect ri are not considered to constitute “blocking” in
real-time systems. This is captured by the concept of priority inversion [44,48], which, intuitively,
exists if a job that should be scheduled according to its base priority is not scheduled, either
because it is suspended (while waiting to gain access to a shared resource) or because a job or
agent with elevated effective priority prevents it from being scheduled. To avoid confusion with
other interpretations of the term “blocking” (e. g., in an OS context, “blocking” often is used
synonymously with suspending), the term priority inversion blocking (pi-blocking) denotes any
resource-sharing-related delay that affects worst-case response times [16]. We let bi denote a
bound on the maximum pi-blocking incurred by any job of task Ti.

2.3.1 Suspension-Oblivious vs. Suspension-Aware Analysis
Prior work has shown that there exist in fact two kinds of priority inversion [16], depending on
how suspensions are accounted for by the employed schedulability analysis. The difference arises
because many published schedulability tests simply assume the absence of self-suspensions, which
are notoriously difficult to analyze (e. g., see [46]), and thus ignore a major source of pi-blocking.
Such suspension-oblivious (s-oblivious) schedulability tests can still be employed to analyze task
systems that exhibit self-suspensions, but require pi-blocking to be accounted for pessimistically
by inflating each execution requirement ei by bi prior to applying the schedulability test. This
results in sound, but likely pessimistic results: over-approximating all pi-blocking as additional
processor demand is safe because converting execution time to suspensions does not increase the
response time of any task (under preemptive JLFP scheduling), but is also likely pessimistic as the
processor load is lower in practice than assumed during analysis.

As an example of an s-oblivious schedulability test, consider Liu and Layland’s classic unipro-
cessor EDF utilization bound for implicit-deadline tasks: a set of independent sporadic tasks
τ is schedulable under EDF on a uniprocessor if and only if

∑
Ti∈τ

ei

pi
≤ 1 [37]. This test is

s-oblivious because tasks are assumed to be independent (i. e., there are no shared resources)
and because jobs are assumed to always be ready (i. e., there are no self-suspensions). However,
even if these assumptions are violated (i. e., if bi > 0 for some Ti), Liu and Layland’s utilization
bound can still be used after inflating all execution costs ei by the maximum pi-blocking bounds
bi [11,16,18]. That is, in the presence of locking-related self-suspensions, a set of resource-sharing,
implicit-deadline sporadic tasks τ is schedulable under EDF on a uniprocessor if

∑
Ti∈τ

ei+bi

pi
≤ 1.

While s-oblivious schedulability analysis may at first sight appear too pessimistic to be useful,
it is still relevant because some of the pessimism can actually be “reused” to obtain less pessimistic
pi-blocking bounds [11,16,18], and because many published multiprocessor schedulability tests
(e. g., [3–5,7–9,30]) do not account for self-suspensions explicitly.

In contrast, suspension-aware (s-aware) schedulability analysis explicitly accounts for all effects
of pi-blocking. For instance, response-time analysis (RTA) for (uniprocessor) FP scheduling [1, 35]
is a good example of effective s-aware schedulability analysis, and can be applied to partitioned
scheduling as follows. Let bri denote a bound on maximum remote pi-blocking (i. e., pi-blocking
caused by tasks or agents assigned to remote clusters), and let bli denote a bound on maximum
local pi-blocking (i. e., pi-blocking caused by tasks or agents assigned to cluster C(Ti)), where
bi = bri + bli. Then, assuming constrained deadlines (i. e., di ≤ pi), a task Ti’s maximum response
time ri is bounded by the smallest positive solution to the recursion [1, 35]

ri = ei + bri + bli +
∑

Th∈hp(Ti)

⌈
ri + brh
ph

⌉
· eh, (1)

where hp(Ti) denotes the set of tasks assigned to processor C(Ti) with higher priorities than Ti.
Equation (1) is an s-aware schedulability test because bi = bri + bli is explicitly accounted for.

LITES

01:10 Blocking Optimality in Distributed Real-Time Locking Protocols

This difference—explicit vs. implicit suspension accounting—has a profound impact on the
exact nature of pi-blocking, as we review next.

2.3.2 S-Oblivious and S-Aware PI-Blocking
From the point of view of schedulability analysis, a priority inversion exists if a job is delayed
(i. e., not scheduled) and this delay cannot be attributed to the execution of a higher-priority job.5
Prior work [11,16, 18] has shown that, since s-oblivious schedulability analysis over-approximates
a task’s processor demand, the definition of “priority inversion” depends on the type of analysis.

I Definition 1. Under s-oblivious schedulability analysis, a job Ji of a task Ti assigned to cluster
Cj = C(Ti) incurs s-oblivious pi-blocking at time t if Ji is pending but not scheduled and fewer
than mj higher-priority jobs of tasks assigned to Cj are pending [16].

I Definition 2. Under s-aware schedulability analysis, a job Ji of a task Ti assigned to cluster
Cj = C(Ti) incurs s-aware pi-blocking at time t if Ji is pending but not scheduled and fewer than
mj higher-priority ready jobs of tasks assigned to Cj are scheduled [16].

Note that there cannot be fewer pending higher-priority jobs than there are scheduled higher-
priority jobs (i. e., a scheduled job is necessarily also pending). Hence, if a job Ji incurs s-oblivious
pi-blocking at a time t, then it incurs also s-aware pi-blocking at time t. However, the converse
does not hold: if Ji incurs s-aware pi-blocking time t, then it may be the case that it does not
incur s-oblivious pi-blocking at time t. More precisely, Ji incurs s-aware pi-blocking, but not
s-oblivious pi-blocking, at time t if there are at least mj higher-priority jobs pending, but fewer
than mj of them are scheduled at time t.

In other words, if Definition 1 is satisfied, then Definition 2 is satisfied as well. Therefore,
an upper bound on s-aware pi-blocking (Definition 2) implies an upper bound on s-oblivious pi-
blocking (Definition 1), as previously pointed out in [16]. Conversely, a lower bound on s-oblivious
pi-blocking (Definition 1) also implies a lower bound on s-aware pi-blocking (Definition 2). We
use this relationship in Section 3.

From a practical point of view, the difference between s-oblivious and s-aware pi-blocking
suggests that it is useful to design locking protocols specifically for a particular type of analysis.
From an optimality point of view, which we review next, the difference between s-oblivious
and s-aware pi-blocking is fundamental because—in shared-memory systems—the two types of
analysis have been shown to yield two different lower bounds on the amount of pi-blocking that is
unavoidable under any locking protocol [11,16].

2.3.3 PI-Blocking Complexity
As discussed in Section 1, blocking optimality is concerned with finding the smallest possible bound
on worst-case blocking. To enable systematic study of this question, maximum pi-blocking, formally
max{bi | Ti ∈ τ}, has been proposed as a metric of blocking complexity in prior work [11,16,18].

Concrete bounds on pi-blocking must necessarily depend on each Li,q—long requests will cause
long priority inversions under any protocol. Similarly, bounds for any reasonable protocol grow
linearly with the maximum number of requests per job. Thus, when deriving asymptotic bounds,
we consider, for each Ti,

∑
1≤q≤nr

Ni,q and each Li,q to be constants and assume n ≥ m. All
other parameters are considered variable (or dependent on m and n).

5 Regular interference due to the scheduling of higher-priority jobs is accounted for by any sound schedulability
test. A priority inversion exists if additional delay is incurred.

B.B. Brandenburg 01:11

Table 1 Summary of notation.

Symbol Definition

m total number of processors
K number of clusters, 2 ≤ K ≤ m
Cj the jth cluster, 1 ≤ j ≤ K
mj number of processors in Cj

n total number of tasks
Ti the ith sporadic task, 1 ≤ i ≤ n
Ji a job of Ti

ei Ti’s WCET
pi Ti’s period
di Ti’s relative deadline
ri Ti’s max. response time

C(Ti) Ti’s assigned cluster

Symbol Definition

nr number of shared resources
`q the qth shared resource, 1 ≤ q ≤ nr

Aq the agent handling requests for `q

C(`q) cluster to which `q is local

Ni,q max. number of requests of any Ji for `q

Li,q max. critical section length of Ti w.r.t. `q

Lmax max. Li,q for any Ti and any `q

bi max. pi-blocking incurred by any Ji

Φ ratio of the longest max. response time of
any Ti and the shortest period of any Ti

Under these assumptions, it was shown [11,16, 18] that, in the case of shared-memory locking
protocols, the lower bound on unavoidable pi-blocking depends on whether s-oblivious or s-aware
schedulability analysis is employed. More specifically, it was shown that there exist pathological
task sets such that maximum pi-blocking is linear in the number of processors m (and independent
of the number of tasks n) under s-oblivious analysis, but linear in n (and independent of m) under
s-aware analysis [11,16,18]. Further, it was shown that these bounds are asymptotically tight with
the construction of shared-memory semaphore protocols that ensure for any task set maximum
pi-blocking that is within a constant factor of the established lower bounds. In other words, in
the case of shared-memory semaphore protocols, the real-time mutual exclusion problem can be
solved such that max{bi | Ti ∈ τ} = Θ(m) under s-oblivious schedulability analysis, and such that
max{bi | Ti ∈ τ} = Θ(n) under s-aware schedulability analysis [11,16,18].

We can now precisely state the contribution of this paper: in the following sections, we establish
upper and lower bounds on max{bi | Ti ∈ τ} under s-oblivious and s-aware schedulability analysis
for distributed (i. e., DPCP-like) real-time locking protocols, thereby complementing the earlier
results on shared-memory (i. e., MPCP-like) real-time locking protocols [11, 16, 18]. For ease of
reference, the notation used in this paper is summarized in Table 1.

3 Lower Bounds on Maximum PI-Blocking

We start by establishing a lower bound on maximum s-oblivious and s-aware pi-blocking in the
case of co-hosted task allocation. To establish a general lower bound, it is sufficient to construct
an example task set that demonstrates that the claimed amount of pi-blocking (either s-aware or
s-oblivious) is always possible under any locking protocol compliant with Assumptions A1 and A2.
To this end, we establish the existence of pathological task sets in which some task always incurs
Ω(Φ · n) pi-blocking due to priority boosting (Assumption A1), regardless of whether s-oblivious
or s-aware schedulability analysis is used. This family of task sets is defined as follows.

I Definition 3. For a given smallest cluster size m1, a given number of tasks n (where n ≥
m ≥ 2 ·m1), and an arbitrary positive integer parameter R (where R ≥ 1), let τ seq(n,m1, R) ,
{T1, . . . , Tn} denote a set of n periodic tasks, with parameters as given in Table 2, that share one
resource `1 local to cluster C1 (i. e., C(`1) = C1).

LITES

01:12 Blocking Optimality in Distributed Real-Time Locking Protocols

Table 2 Parameters of the tasks in τ seq(n,m1, R), where a = 1 and b = 2 if m1 > 1, and a = 1
2 and

b = 1 if m1 = 1. Tasks T1, . . . , Tm1 are assigned to the first cluster C1; all other tasks are assigned in a
round-robin fashion to clusters other than C1. Recall that n ≥ m ≥ 2 ·m1.

ei pi di Ni,1 Li,q C(Ti)
R·n

2 R · n R · n 0 0 C1 for i ∈ {1, . . . ,m1}
a n n+ 1 1 b C(2+i mod(K−1)) for i ∈ {m1 + 1, . . . , 2 ·m1}
a n n+ 1 1 a C(2+i mod(K−1)) for i > 2 ·m1 (if any)

151050 time

C2

C1 T1

T2

T3

T4

A1

T5

3 4 5 3 4 5 3 4 5
job release

job completion

RPC issued

critical section

suspended

reply received

3
scheduled on processor

41 2

Figure 1 Example schedule of the task set τ seq(n,m1, R) as specified in Table 2 for K = 2, m1 = 2,
m2 = 2, n = 5, and R = 3. There are five tasks T1, . . . , T5 assigned to K = 2 clusters sharing one resource
`1, which is local to cluster C1. Agent A1 is hence assigned to cluster C1. The small digit in each critical
section signifies the task on behalf of which the agent is executing the request. Deadlines have been
omitted from the schedule for the sake of clarity. By construction, the scheduling policy employed to
schedule jobs is irrelevant (for simplicity, assume FP scheduling, where lower-indexed tasks have higher
priority than higher-indexed tasks). The response-time of T2 is r2 = n · R = 5 · 3 = 15 since it has the
lowest priority in its assigned cluster C1, and because agent A1 is continuously occupying a processor.

The task set τ seq(n,m1, R) depends on the smallest cluster size m1 because, by construction,
the maximum pi-blocking will be incurred by tasks in cluster C1. Note in Table 2 that the
maximum critical section lengths (w.r.t. `1) depend on m1, which is required to accommodate the
special case of m1 = 1. We first consider the case of m1 > 1.

In the following, we assume a synchronous periodic arrival sequence, that is, each task Ti
releases a job at time zero and periodically every pi time units thereafter. We consider periodic
tasks (and not sporadic tasks) in this section because it simplifies the example, and since periodic
tasks are a special case of sporadic tasks and thus sufficient to establish a lower bound.

For simplicity and without loss of generality, we further assume that each job of tasks
Tm1+1, . . . , Tn immediately accesses resource `1 as soon as it is allocated a processor (i. e., at the
very beginning of the job). This results in a pathological schedule in which tasks Tm1+1, . . . , Tn
are serialized. Figure 1 depicts an example schedule for K = 2, m1 = 2, m2 = 2, n = 5, and
R = 3.

We begin by observing that the agent servicing requests for `1, denoted A1 in the following,
continuously occupies one of the processors in cluster C1.

I Lemma 4. If m1 > 1, then only m1−1 processors of cluster C1 service jobs of tasks T1, . . . , Tm1 .

B.B. Brandenburg 01:13

Proof. By construction, the agent A1 servicing requests for resource `1 is located in cluster C1.
By Assumption A1, when servicing requests, agent A1 preempts any job of T1, . . . , Tm1 . By
Assumption A2, and since there exists only a single shared resource, agent A1 becomes active as
soon as a request for `1 is issued. Thus, a processor in C1 is unavailable for servicing jobs of tasks
T1, . . . , Tm1 whenever A1 is servicing requests issued by jobs of tasks Tm1+1, . . . , Tn.

Consider an interval [ta, ta + n), where ta = x · n and x ∈ N. Assuming a synchronous,
periodic arrival sequence, tasks Tm1+1, . . . , Tn each release a job at time ta. Upon being scheduled,
each such job immediately accesses resource `1 and suspends until its request is serviced. As a
result, regardless of the JLFP policy used to schedule jobs, A1 is active during [ta, ta + n) for
the cumulative duration of all requests issued by jobs of tasks Tm1+1, . . . , Tn released at time
ta. Assuming each request requires the maximum time to service, agent A1 is thus active for a
duration of

n∑
i=m1+1

Ni,1 · Li,1 =
2m1∑

i=m1+1
Ni,1 · Li,1 +

n∑
i=2m1+1

Ni,1 · Li,1 =
2m1∑

i=m1+1
2 +

n∑
i=2m1+1

1 = n

time units during the interval [ta, ta+n), regardless of how the employed locking protocol serializes
requests for `1. Hence, only m1 − 1 processors are available to service jobs of T1, . . . , Tm1 during
the interval [ta, ta+n). Since such intervals are contiguous (as ta = x ·n and x ∈ N), one processor
in C1 is continuously unavailable to jobs of T1, . . . , Tm1 under any JLFP scheduling policy and
any distributed locking protocol satisfying assumptions A1 and A2. J

This in turn implies that the execution of one of the jobs of tasks T1, . . . , Tm1 is delayed.

I Lemma 5. If m1 > 1, then max {ri | 1 ≤ i ≤ m1 } = R · n.

Proof. Consider an interval [ta, ta+R ·n), where ta = x ·R ·n and x ∈ N. Assuming a synchronous,
periodic arrival sequence, tasks T1, . . . , Tm1 each release a job at time ta. Regardless of the (work-
conserving) JLFP policy employed to assign priorities to jobs, one of these m1 jobs will have lower
priority than the other m1 − 1 ready pending jobs in cluster C1. Recall that we assume that
priorities are unique (i. e., any ties in priorities are subject to arbitrary but consistent tie-breaking).
Let Jl denote this lowest-priority job. By Lemma 4, there are only m1 − 1 processors available
to service jobs. Thus Jl will only be scheduled after one of the other jobs has finished execution.
Since each task assigned to cluster C1 has a worst-case execution time of ei = R·n

2 , in the worst
case, job Jl is not scheduled until time ta + R·n

2 , and then requires another el = R·n
2 time units of

processor service to complete. Hence, max {ri | 1 ≤ i ≤ m1 } = 2ei = R · n. J

So far we have considered only the case of m1 > 1. By construction, the same maximum
response-time bound arises also in the case of m1 = 1.

I Lemma 6. If m1 = 1, then max {ri | 1 ≤ i ≤ m1 } = R · n.

Proof. If m1 = 1, then there is only one task assigned to cluster C1. The single processor in C1 is
available to jobs of T1 only when A1 is inactive. Recall from Table 2 that the maximum critical
section lengths of tasks Tm1+1, . . . , Tn are halved if m1 = 1. Analogously to Lemma 4, it can thus
be shown that, in the worst case, the single processor in C1 is available to T1 for only n

2 time units
out of each interval [x · n, x · n+ n), where x ∈ N.

Consider an interval [ta, ta +R · n), where ta = x ·R · n and x ∈ N. Assuming a synchronous
arrival sequence, task T1 releases a J1 at time ta. In the worst case, J1 requires e1 = R·n

2 time
units to complete. Assuming maximum interference by A1 (i. e., if the processor is unavailable to
J1 for n

2 time units every n time units), J1 will accumulate e1 time units of processor service only
by time ta + 2ei = ta +R · n. J

LITES

01:14 Blocking Optimality in Distributed Real-Time Locking Protocols

Since there are m1 processors and m1 pending jobs in cluster C1, all pending jobs should
be immediately scheduled under any work-conserving scheduling policy. However, since the
priority-boosted agent occupies one of the processors, this is not the case, which implies that one
job incurs s-oblivious pi-blocking (under any work-conserving JLFP policy).

I Lemma 7. Under s-oblivious schedulability analysis, max {bi | Ti ∈ τ seq(n,m1, R)} ≥ R·n
2 .

Proof. By construction, there are at most m1 pending jobs in cluster C1 at any time. Hence any
delay of a pending job constitutes s-oblivious pi-blocking (recall Definition 1): bi = ri− ei for each
Ti ∈ {T1, . . . , Tm1}, regardless of the employed JLFP scheduling policy. Since ei = R·n

2 for each
Ti ∈ {T1, . . . , Tm1}, we have max {bi | 1 ≤ i ≤ n} ≥ max {ri | 1 ≤ i ≤ m1 } − R·n

2 . By Lemmas 5
and 6, max {ri | 1 ≤ i ≤ m1 } = R · n, and thus max {bi | 1 ≤ i ≤ n} ≥ R · n− R·n

2 = R·n
2 . J

Since the agent A1 and tasks T1, . . . , Tm1 share a cluster in τ seq(n,m1, R), and because the s-
oblivious pi-blocking implies s-aware pi-blocking, we obtain the following lower bound on maximum
pi-blocking under co-hosted task allocation.

I Theorem 8. Under JLFP scheduling, using either s-aware or s-oblivious schedulability analysis,
there exists a task set such that, under co-hosted task allocation, max{bi} = Ω(Φ · n) under
any weakly work-conserving distributed multiprocessor real-time semaphore protocol that employs
priority-boosted agents (i. e., under protocols matching Assumptions A1 and A2).

Proof. By Lemma 7, there exists a task set τ seq(n,m1, R) such that, under s-oblivious schedula-
bility analysis, any JLFP policy, and any distributed multiprocessor semaphore protocol satisfying
Assumptions A1 and A2, max {bi | Ti ∈ τ seq(n,m1, R)} ≥ R·n

2 for any R ∈ N. Recall from
Section 2.1 that Φ = max{ri}

min{pi} , and hence Φ = R·n
n = R in the case of τ seq(n,m1, R). Since R can

be freely chosen, we have max{bi} = Ω(R · n) = Ω(Φ · n) under s-oblivious schedulability analysis.
Recall from Section 2.3 that s-oblivious pi-blocking implies s-aware pi-blocking (i. e., Definition 2

holds if Definition 1 is satisfied). The established lower bound on s-oblivious pi-blocking therefore
also applies to s-aware pi-blocking [16], and thus max{bi} = Ω(Φ · n) under either s-aware or
s-oblivious schedulability analysis. J

Compared to a shared-memory system, where the shared-memory mutual exclusion problem
can be solved with Θ(n) maximum s-aware pi-blocking in the general case [11, 16], Theorem 8
shows that maximum pi-blocking under distributed locking protocols is asymptotically worse by
a factor of Φ. Maximum s-oblivious pi-blocking is also asymptotically worse—the equivalent
shared-memory mutual exclusion problem can be solved with Θ(m) maximum s-oblivious pi-
blocking [11, 16, 18] (recall that we assume n ≥ m). Note that, Φ, the ratio of the maximum
response time and the minimum period, can in general be arbitrarily large and is independent
of either m or n. This suggests that, from a schedulability point of view, the mutual exclusion
problem is fundamentally more difficult in a distributed environment.

The observed discrepancy, however, is entirely due to the effects of preemptions caused by
priority-boosted agents. While it is not possible to avoid priority boosting entirely (otherwise
excessive pi-blocking could result when agents are preempted by jobs with large execution costs),
such troublesome preemptions can be easily ruled out by disallowing the co-hosting of agents
and tasks in the same cluster. And in fact, when using such a disjoint task allocation approach,
the asymptotic lower bounds on maximum pi-blocking under distributed locking protocols are
identical to those previously established for shared-memory semaphore protocols. The matching
lower bounds can be trivially established with the setup previously used in [16]; we omit the
details here and summarize the correspondence with the following theorem.

B.B. Brandenburg 01:15

I Theorem 9. There exist task sets such that, under JLFP scheduling, disjoint task allocation, and
any distributed real-time semaphore protocol satisfying Assumptions A1 and A2, max{bi} = Ω(n)
under s-aware schedulability analysis and max{bi} = Ω(m) under s-oblivious schedulability analysis.

Having established lower bounds on s-oblivious and s-aware pi-blocking under both co-hosted
and disjoint task allocation, we next explore the question of asymptotic optimality—how to
construct protocols that ensure upper bounds on maximum pi-blocking that are within a constant
factor of the established lower bounds? We begin with the co-hosted case in Section 4, and consider
the disjoint case in Section 5 thereafter.

As a final remark, we note that the task set τ seq(n,m1, R) as given in Table 2 contains tasks
with relative deadlines larger than periods (i. e., di > pi for i > m1). This is purely a matter of
convenience; asymptotically equivalent bounds can be derived with implicit-deadline tasks.

4 Asymptotic Optimality under Co-Hosted Task Allocation

Theorem 8 shows that there exist pathological scenarios in which the choice of real-time locking
protocol is seemingly irrelevant: regardless of the specifics of the employed locking protocol,
worst-case pi-blocking is asymptotically worse than in a comparable shared-memory system simply
because resources are inaccessible from some processors. Curiously, from an asymptotic point of
view, protocol-specific rules are indeed immaterial: any distributed real-time locking protocol that
does not starve requests is asymptotically optimal in the case of co-hosted task allocation.

I Theorem 10. Under any JLFP scheduler, any weakly-work-conserving, distributed real-time
semaphore protocol that employs priority boosting (i. e., any protocol matching Assumptions A1
and A2) ensures O(Φ · n) maximum pi-blocking, regardless of whether s-aware or s-oblivious
schedulability analysis is employed.

Proof. Recall from Definition 2 that a pending job Jb incurs s-aware pi-blocking if Jb is not
scheduled and not all processors in its assigned cluster are occupied by higher-priority jobs. This
happens either when (i) Jb is suspended while waiting for a resource request to be completed, or
when (ii) Jb is preempted by a priority-boosted agent that executes on behalf of another job.

Concerning (i), the completion of Jb’s own requests can only be delayed by other requests
(and not by the execution of other jobs) since agents are priority-boosted, and since the employed
distributed locking protocol is weakly work-conserving (i. e., whenever one of Jb’s requests is
delayed, at least one other request is being processed by some agent).

Concerning (ii), agents only become active when invoked by other jobs.
Hence the total duration of all requests (issued by jobs of any task) that are executed while Jb

is pending provides a trivial upper bound on the maximum cumulative agent activity, and hence
also on the maximum total duration of pi-blocking incurred by Jb.

To this end, consider for any task Tx the maximum number of jobs of Tx that execute while
Jb is pending, which is bounded by

⌈
rx+rb

px

⌉
.6 Since there are n tasks in total, this implies that

at most
∑n
x=1

⌈
rx+rb

px

⌉
=
∑n
x=1

⌈
rx

px
+ rb

px

⌉
≤
∑n
x=1

⌈
maxi{ri}
mini{pi} + maxi{ri}

mini{pi}

⌉
= n · d2Φe = O(Φ · n)

jobs (in total across all tasks) are executed while Jb is pending. Since
∑
`q
Ni,q · Li,q = O(1)

for each Ti (i. e., since each job issues at most a constant number of requests), it follows that
maxi{bi} = O(n · Φ), regardless of any protocol-specific rules.

Recall from Section 2.3 that s-oblivious pi-blocking implies s-aware pi-blocking (i. e., if Defini-
tion 1 is satisfied, then Definition 2 holds, too). Hence, an upper bound on s-aware pi-blocking

6 See e. g. [11, Ch. 4] for a formal proof of this well-known bound.

LITES

01:16 Blocking Optimality in Distributed Real-Time Locking Protocols

implicitly also upper-bounds s-oblivious pi-blocking, and thus maxi{bi} = O(n · Φ) under either
s-oblivious or s-aware schedulability analysis. J

As a corollary, Theorem 10 implies that the DPCP, which orders requests according to task
priority, is asymptotically optimal in the co-hosted setting. However, it also shows that requests
may be processed in arbitrary order (e. g., in FIFO order, or even in random order) without
losing asymptotic optimality (as long as at least one request at a time is satisfied and agents are
priority-boosted), which is surprising as the queue order is crucial in the shared-memory case [16].

As already noted in the previous section, by prohibiting the co-hosting of resources and tasks—
that is, somewhat counter-intuitively, by making the system less similar to a shared-memory
system (in which tasks and critical sections are necessarily co-hosted, i. e., executed on the same set
of processors)—it is indeed possible to ensure maximum s-aware pi-blocking that is asymptotically
no worse than under a shared-memory locking protocol. We establish this fact next by introducing
two new protocols that realize O(n) and O(m) maximum pi-blocking under s-aware and s-oblivious
schedulability analysis, respectively, in the case of disjoint task allocation. As one might expect,
the choice of queue order is significant in this case.

5 Asymptotic Optimality under Disjoint Task Allocation

Prior work [11,15,16,18] has established shared-memory protocols that yield upper bounds on
maximum s-aware and s-oblivious pi-blocking of O(n) and O(m), respectively. These protocols,
namely the FIFO Multiprocessor Locking Protocol (FMLP+) for s-aware analysis [11,15] and the
family of O(m) Locking Protocols (the OMLP family) for s-oblivious analysis [11,16,18], rely on
specific queue structures with strong progress guarantees to obtain the desired bounds. In the
following, we show how the key ideas underlying the FMLP+ and the OMLP family can be adopted
to the problem of designing asymptotically optimal locking protocols for the distributed case
studied in this paper. We begin with the slightly simpler s-aware case.

5.1 Asymptotically Optimal Maximum S-Aware PI-Blocking
Inspired by the FMLP+ [11], the Distributed FIFO Locking Protocol (DFLP) relies on simple FIFO
queues to avoid starvation. Notably, the DFLP ensures O(n) maximum s-aware pi-blocking under
disjoint task allocation and transparently supports arbitrary, non-uniform cluster sizes (i. e., unlike
the DPCP, the DFLP supports distributed systems consisting of multiprocessor nodes with mj > 1
for some Cj and allows mj 6= mh for any j 6= h). We first describe the structure and rules of the
DFLP, and then establish its asymptotic optimality.

5.1.1 Rules
Under the DFLP, conflicting requests for each serially-reusable resource `q are ordered with a
per-resource FIFO queue FQq. Requests for `q are served by an agent Aq assigned to `q’s cluster
C(`q). Resource requests are processed according to the following rules.
1. When Ji issues a request R for resource `q, Ji suspends and R is appended to FQq. Ji’s

request is processed by agent Aq when R becomes the head of FQq.
2. When R is complete, it is removed from FQq and Ji is resumed.
3. Active agents are scheduled preemptively in the order in which their current requests were

issued (i. e., an agent processing an earlier-issued request has higher priority than one serving
a later-issued request). Any ties can be broken arbitrarily (e. g., in favor of agents serving
requests of lower-indexed tasks).

4. Agents have statically higher priority than jobs (i. e., agents are subject to priority-boosting).
We next show that these simple rules yield asymptotic optimality.

B.B. Brandenburg 01:17

5.1.2 Blocking Complexity
The co-hosted case is trivial since the DFLP uses priority boosting (Rule 4) and because it is
weakly work-conserving (requests are satisfied as soon as the requested resource is available—see
Rule 1); Theorem 10 hence applies.

To show asymptotic optimality in the disjoint case, we first establish a per-request bound on
the number of interfering requests that derives from FIFO-ordering both requests and agents.

I Lemma 11. Let R denote a request issued by a job Ji for a resource `q and let Tx denote a
task other than Ti (i. e., i 6= x). Under the DFLP, jobs of Tx delay the completion of R with at
most one request.

Proof. Ji’s request R cannot be delayed by later-issued requests since FQq is FIFO-ordered and
because agents are scheduled in FIFO order according to the issue time of the currently-served
request. Since R is not delayed by later-issued requests (and clearly not by earlier-completed
requests), all requests that delay the completion of R are incomplete at the time that R is issued.
Since tasks and jobs are sequential, and since jobs request at most one resource at a time, there
exists at most one incomplete request per task at any time. J

An O(n) bound on maximum s-aware pi-blocking follows immediately since each of the other
n − 1 tasks delays Ji at most once each time Ji requests a resource, and since agents cannot
preempt jobs in the disjoint setting.

I Theorem 12. Under the DFLP with disjoint task allocation, max{bi} = O(n).

Proof. Let Ji denote an arbitrary job. Since, by assumption, no agents execute on Ji’s cluster, Ji
incurs pi-blocking only when suspended while waiting for a request to complete. By Lemma 11,
each other task delays each of Ji’s

∑
q Ni,q requests for at most the duration of one request,

that is, per request, Ji incurs no more than n · Lmax s-aware pi-blocking. Since Ji issues at
most

∑
q Ni,q requests, and since by assumption

∑
q Ni,q = O(1) and Lmax = O(1), we have

bi ≤ n · Lmax ·
∑
q Ni,q = O(n). J

The DFLP is thus asymptotically optimal with regard to maximum s-aware pi-blocking, under
both co-hosted (Theorem 10) and disjoint task allocation (Theorem 12). In contrast, the DPCP
does not generally guarantee O(n) s-aware pi-blocking in the disjoint case since it orders conflicting
requests by task priority and is thus prone to starvation issues (this can be shown similarly to the
lower bound on priority queues established in [11,16]).

This concludes the case of s-aware analysis. Next, we consider the s-oblivious case.

5.2 Asymptotically Optimal Maximum S-Oblivious PI-Blocking
In this section, we define and analyze the Distributed O(m) Locking Protocol (D-OMLP), which
augments the OMLP family with support for distributed systems.

In order to prove optimality under s-oblivious analysis, a protocol must ensure an upper bound
of O(m) s-oblivious pi-blocking. Since there are n ≥ m tasks in total, if each task is allowed to
submit a request concurrently, excessive contention could arise at each agent: if an agent is faced
with n concurrent requests, it is not possible to ensure O(m) maximum s-oblivious pi-blocking
regardless of the order in which requests are processed. Thus, it is necessary to limit contention
early within each application cluster (where job priorities can be taken into account) to only allow
a subset of high-priority jobs to invoke agents at the same time. In the interest of practicality,
such “contention limiting” should not require coordination across clusters, but rather must be

LITES

01:18 Blocking Optimality in Distributed Real-Time Locking Protocols

based on only local information. As we show next, this can be accomplished by reusing (aspects
of) two protocols of the OMLP family.

The first technique is to introduce contention tokens, which are virtual, cluster-local resources
that a job must acquire prior to invoking an agent. This technique was previously used in the
shared-memory OMLP variant for partitioned JLFP scheduling [16]. By limiting the number of
contention tokens to m in total (i. e., by assigning exactly mj such tokens to each cluster Cj),
each agent is faced with at most m concurrent requests.

This in turn creates the problem of managing access to contention tokens. However, since
contention tokens are a cluster-local resource, this reduces to a shared-memory problem and prior
results on optimal shared-memory real-time synchronization can be reused. In fact, as there
may be multiple contention tokens in each cluster (if mj > 1), of which a job may use any one,
this reduces to a k-exclusion problem (where k denotes the number of tokens per cluster in this
case). Several asymptotically optimal solutions for the k-exclusion problem under s-oblivious
analysis have been developed [18, 25, 50], including a variant of the OMLP [18]; the contention
tokens can thus be readily managed within each cluster using any of the available k-exclusion
protocols [18,25,50]. These considerations lead to the following protocol definition.

5.2.1 Rules
Under the D-OMLP, there are mj contention tokens in each cluster Cj , for a total of m =

∑K
j=1 mj

such tokens. As in the DFLP, there is one agent Aq and a FIFO queue FQq for each resource `q.
Jobs may access shared resources according to the following rules. In the following, let Ji

denote a job that must access resource `q.
1. Before Ji may invoke agent Aq, it must first acquire a contention token local to cluster C(Ti)

according to the rules of an asymptotically optimal k-exclusion protocol.
2. Once Ji holds a contention token, it immediately issues its request R by invoking Aq and

suspends. R is appended to FQq and processed by Aq when it becomes the head of FQq.
3. When R is complete, it is removed from FQq. Ji is resumed and immediately relinquishes its

contention token.
4. Active, ready agents are scheduled preemptively in order of non-decreasing request enqueueing

times (i. e., while processing R, agent Aq’s priority is the point in time at which R was
enqueued in FQq). Any ties in the times that requests were enqueued can be broken arbitrarily.

5. Agents have a statically higher priority than jobs (i. e., agents are subject to priority-boosting).

As shown next, the contention tokens in combination with FIFO-ordering requests and agents
yield an asymptotically optimal maximum s-oblivious pi-blocking bound.

5.2.2 Blocking Complexity
As with the DFLP, the co-hosted case is trivial since Theorem 10 applies to the D-OMLP.

In the disjoint case, we first establish a bound on the maximum token-hold time, since jobs can
incur s-oblivious pi-blocking both due to Rule 1 (i. e., when no contention tokens are available)
and due to Rules 2 and 4 (i. e., when R is preceded by other requests in FQq or if Aq is preempted
while processing R).

I Lemma 13. A job Ji holds a contention token for at most m · Lmax time units per request.

Proof. By Rules 1 and 3, a job Ji holds a contention token while it waits for its request R to be
completed. Analogously to Lemma 11, since FQq is FIFO-ordered and since agents are scheduled
in FIFO order w.r.t. the time that requests are enqueued (Rule 4), the completion of R can only

B.B. Brandenburg 01:19

be delayed due to the execution of requests that were incomplete at the time that R was enqueued
in FQq. By Rule 1, only jobs holding a contention token may issue requests to agents. Since there
are only m =

∑K
j=1 mj contention tokens in total, there exist at most m− 1 incomplete requests

at the time that R is enqueued in FQq. Hence, R is completed and Ji relinquishes its contention
token after at most m · Lmax time units. J

By leveraging a k-exclusion protocols that is asymptotically optimal under s-oblivious analysis
(Rule 1), Lemma 13 immediately yields an O(m) bound on maximum s-oblivious pi-blocking.

I Theorem 14. Under the D-OMLP with disjoint task allocation, max{bi} = O(m).

Proof. Let H denote the maximum token-hold time. By Lemma 13, the maximum token-hold time
is H = m · Lmax = O(m). Further, H represents the “maximum critical section length” w.r.t. the
contention token k-exclusion problem. By Rule 1, an asymptotically optimal k-exclusion protocol
is employed to manage access to contention tokens within each cluster. Applied to a cluster with
mj processors, the k-exclusion problem can be solved such that jobs incur s-oblivious pi-blocking
for the duration of at most O

(mj

k

)
critical section lengths per request [18, 25, 50]. Under the

D-OMLP, there are k = mj contention tokens in each cluster Cj . Hence, in the disjoint setting, a
task assigned to cluster Cj incurs O

(
mj

mj
·H
)

= O(H) = O(m) s-oblivious pi-blocking. J

The D-OMLP is thus asymptotically optimal under s-oblivious schedulability analysis, and
hence a natural extension of the OMLP family to the distributed real-time locking problem.

6 Conclusion

In this paper, we studied blocking optimality in distributed real-time locking protocols. We
identified two different task and resource allocation strategies, namely co-hosted and disjoint task
allocation, that give rise to different answers to this question. In the co-hosted case, under both
s-aware and s-oblivious analysis, Ω(Φ · n) maximum pi-blocking is unavoidable in the general case,
whereas in the disjoint case, Ω(n) maximum s-aware and Ω(m) maximum s-oblivious pi-blocking
are the fundamental lower bounds. The significance of these bounds is that the lower bound on
maximum pi-blocking in the case of co-hosted task allocation is asymptotically worse than in an
equivalent shared-memory scenario. In contrast, disjoint task allocation yields the same lower
bounds already known from the analysis of shared-memory synchronization.

We further showed that the established lower bounds are asymptotically tight. In the co-
hosted case, any distributed locking protocol satisfying Assumptions A1 and A2 is asymptotically
optimal (Theorem 10). To prove asymptotic tightness in the disjoint case, we introduced two new
distributed real-time semaphore protocols. Specifically, the DFLP is asymptotically optimal under
s-aware analysis, and the D-OMLP is asymptotically optimal under s-oblivious analysis, both w.r.t.
the maximum pi-blocking metric.

Pi-blocking is generally undesirable, and hence protocols that guarantee lower asymptotic
pi-blocking bounds are intuitively preferable. Our results are the first formal characterization of
the fundamental limits on pi-blocking in a distributed setting and serve to structure the design
space of distributed real-time locking protocols. However, one should also note that a lower
asymptotic pi-blocking bound does not necessarily imply better overall schedulability.

For one, while disjoint task allocation permits lower bounds on pi-blocking, it also requires
dedicating some cluster(s) to agents, which, depending on constant factors such as the level of
contention and critical section lengths, may decrease the overall utilization of the system. Whether
disjoint task allocation is beneficial is thus a workload-specific question that must be answered
individually for each task set.

LITES

01:20 Blocking Optimality in Distributed Real-Time Locking Protocols

Further, asymptotic optimality does not imply that an asymptotically optimal protocol is
always preferable to a non-optimal one. Rather, blocking bounds of asymptotically similar locking
protocols can still differ significantly in absolute terms. Whether a particular locking protocol
is suitable for a particular task set depends on both the task set’s specific requirements and a
protocol’s constant factors, which asymptotic analysis does not reflect. In particular, this is the
case under co-hosted task allocation, where all distributed locking protocols (in the considered
class of protocols) differ only in terms of constant factors. Fine-grained (i. e., non-asymptotic)
bounds on maximum pi-blocking suitable for schedulability analysis are thus required for practical
use and to enable a detailed comparison. Such bounds should not only reflect a detailed analysis
of protocol rules, but also exploit task-set-specific properties such as per-task bounds on request
lengths and request frequencies. For the DFLP and the DPCP, we have recently developed such
bounds [14]; the same techniques could also be applied to analyze the D-OMLP.

As noted in Section 2.2, we have made the assumption that jobs can invoke agents with
“negligible” overheads (i. e., with overheads that can be accounted for using known overhead
accounting techniques [11]). This is a reasonable assumption in platforms with point-to-point
links, in systems with networks employing TDMA or time-triggered [34] arbitration policies, or if
distributed semaphore protocols are implemented on top of a (large) shared-memory platform
(e. g., see [14] for such a case). However, the assumption may be more problematic in systems
that require explicit message routing across a shared, dynamically arbitrated network. Assuming
there exists an upper bound ∆i,q on the message delay between a task Ti and each agent Aq,
such delays can be incorporated by simply increasing Ti’s self-suspension time by 2∆i,q for each
agent invocation (under the D-OMLP, the maximum token-hold time is increased by 2∆i,q as
well). If ∆i,q can be considered constant (i. e., if ∆i,q = O(1) from an asymptotic analysis point
of view), then the asymptotic upper and lower bounds established in this paper remain unaffected.
If, however, ∆i,q depends on m or n, or on other non-constant factors, then additional analysis is
required, which may be an interesting direction for future work.

In another opportunity for future work, it will also be interesting to explore how to accommodate
nested requests, that is, how to allow complex requests that require agents to invoke other agents.
Ward and Anderson have recently shown that arbitrarily deep nesting can be supported in shared-
memory locking protocols without loss of asymptotic optimality [49]; however, it remains to be
seen how their techniques can be extended to distributed real-time semaphore protocols.

References
1 Neil C. Audsley, Alan Burns, Mike F. Richard-

son, Ken Tindell, and Andy J. Wellings. Apply-
ing new scheduling theory to static priority pre-
emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993.

2 Theodore P. Baker. Stack-based scheduling of re-
altime processes. Real-Time Systems, 3(1):67–99,
1991. doi:10.1007/BF00365393.

3 Theodore P. Baker. Multiprocessor EDF and dead-
line monotonic schedulability analysis. In 24th
IEEE Real-Time Systems Symposium, RTSS’03,
pages 120–129. IEEE Computer Society, December
2003. doi:10.1109/REAL.2003.1253260.

4 Sanjoy K. Baruah. Techniques for multiproces-
sor global schedulability analysis. In 28th IEEE
Real-Time Systems Symposium, RTSS’07, pages
119–128. IEEE Computer Society, December 2007.
doi:10.1109/RTSS.2007.48.

5 Sanjoy K. Baruah, Vincenzo Bonifaci, Alberto
Marchetti-Spaccamela, and Sebastian Stiller. Im-

proved multiprocessor global schedulability analy-
sis. Real-Time Systems, 46(1):3–24, 2010. doi:
10.1007/s11241-010-9096-3.

6 Andrew Baumann, Paul Barham, Pierre Évariste
Dagand, Timothy L. Harris, Rebecca Isaacs, Si-
mon Peter, Timothy Roscoe, Adrian Schüpbach,
and Akhilesh Singhania. The multikernel: a new
OS architecture for scalable multicore systems. In
Jeanna Neefe Matthews and Thomas E. Ander-
son, editors, 22nd ACM Symposium on Operat-
ing Systems Principles 2009, SOSP’09, pages 29–
44. ACM, October 2009. doi:10.1145/1629575.
1629579.

7 Marko Bertogna and Michele Cirinei. Response-
time analysis for globally scheduled symmetric
multiprocessor platforms. In 28th IEEE Real-
Time Systems Symposium, RTSS’07, pages 149–
160. IEEE Computer Society, December 2007. doi:
10.1109/RTSS.2007.41.

http://dx.doi.org/10.1007/BF00365393
http://dx.doi.org/10.1109/REAL.2003.1253260
http://dx.doi.org/10.1109/RTSS.2007.48
http://dx.doi.org/10.1007/s11241-010-9096-3
http://dx.doi.org/10.1007/s11241-010-9096-3
http://dx.doi.org/10.1145/1629575.1629579
http://dx.doi.org/10.1145/1629575.1629579
http://dx.doi.org/10.1109/RTSS.2007.41
http://dx.doi.org/10.1109/RTSS.2007.41

B.B. Brandenburg 01:21

8 Marko Bertogna, Michele Cirinei, and Giuseppe Li-
pari. Improved schedulability analysis of EDF on
multiprocessor platforms. In 17th Euromicro Con-
ference on Real-Time Systems, ECRTS’05, pages
209–218. IEEE Computer Society, July 2005. doi:
10.1109/ECRTS.2005.18.

9 Marko Bertogna, Michele Cirinei, and Giuseppe
Lipari. Schedulability analysis of global schedul-
ing algorithms on multiprocessor platforms. IEEE
Transactions on Parallel and Distributed Systems,
20(4):553–566, 2009. doi:10.1109/TPDS.2008.129.

10 Aaron Block, Hennadiy Leontyev, Björn B. Bran-
denburg, and James H. Anderson. A flexible real-
time locking protocol for multiprocessors. In 13th
IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications,
RTCSA’07, pages 47–56. IEEE Computer Society,
August 2007. doi:10.1109/RTCSA.2007.8.

11 Björn B. Brandenburg. Scheduling and Locking
in Multiprocessor Real-Time Operating Systems.
PhD thesis, The University of North Carolina at
Chapel Hill, 2011. URL: http://www.cs.unc.edu/
~bbb/diss/.

12 Björn B. Brandenburg. A note on blocking op-
timality in distributed real-time locking protocols.
unpublished manuscript, 2012. URL: https://www.
mpi-sws.org/~bbb/papers/index.html.

13 Björn B. Brandenburg. A fully preemptive multi-
processor semaphore protocol for latency-sensitive
real-time applications. In 25th Euromicro Con-
ference on Real-Time Systems, ECRTS’13, pages
292–302. IEEE, July 2013. doi:10.1109/ECRTS.
2013.38.

14 Björn B. Brandenburg. Improved analysis and eval-
uation of real-time semaphore protocols for P-FP
scheduling. In 19th IEEE Real-Time and Em-
bedded Technology and Applications Symposium,
RTAS’13, pages 141–152. IEEE Computer Society,
April 2013. doi:10.1109/RTAS.2013.6531087.

15 Björn B. Brandenburg. The FMLP+: An asymp-
totically optimal real-time locking protocol for
suspension-aware analysis. In 26th Euromicro
Conference on Real-Time Systems, ECRTS’14,
pages 61–71. IEEE, July 2014.

16 Björn B. Brandenburg and James H. Anderson.
Optimality results for multiprocessor real-time
locking. In 31st IEEE Real-Time Systems Sympo-
sium, RTSS’10, pages 49–60. IEEE Computer Soci-
ety, November 2010. doi:10.1109/RTSS.2010.17.

17 Björn B. Brandenburg and James H. Ander-
son. Spin-based reader-writer synchronization
for multiprocessor real-time systems. Real-
Time Systems, 46(1):25–87, 2010. doi:10.1007/
s11241-010-9097-2.

18 Björn B. Brandenburg and James H. Anderson.
The OMLP family of optimal multiprocessor real-
time locking protocols. Design Automation for
Embedded Systems, online first:1–66, July 2012.
doi:10.1007/s10617-012-9090-1.

19 Björn B. Brandenburg, John M. Calandrino,
Aaron Block, Hennadiy Leontyev, and James H.
Anderson. Real-time synchronization on multipro-
cessors: To block or not to block, to suspend
or spin? In 14th IEEE Real-Time and Em-
bedded Technology and Applications Symposium,

RTAS’08, pages 342–353. IEEE Computer Society,
April 2008. doi:10.1109/RTAS.2008.27.

20 Alan Burns and Andy J. Wellings. A schedula-
bility compatible multiprocessor resource sharing
protocol – MrsP. In 25th Euromicro Conference
on Real-Time Systems, ECRTS’13, pages 282–291.
IEEE, July 2013. doi:10.1109/ECRTS.2013.37.

21 John Carpenter, Shelby Funk, Philip Holman,
Anand Srinivasan, James H. Anderson, and San-
joy K. Baruah. A categorization of real-time mul-
tiprocessor scheduling problems and algorithms. In
Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. Chapman Hall/CRC, 2004.

22 Yang Chang, Robert I. Davis, and Andy J.
Wellings. Reducing Queue Lock Pessimism in Mul-
tiprocessor Schedulability Analysis. In 18th Inter-
national Conference on Real-Time and Network
Systems, pages 99–108, Toulouse, France, Novem-
ber 2010. URL: http://hal.archives-ouvertes.
fr/hal-00546915.

23 UmaMaheswari C. Devi, Hennadiy Leontyev, and
James H. Anderson. Efficient synchronization un-
der global EDF scheduling on multiprocessors. In
18th Euromicro Conference on Real-Time Systems,
ECRTS’06, pages 75–84. IEEE Computer Society,
July 2006. doi:10.1109/ECRTS.2006.10.

24 Arvind Easwaran and Björn Andersson. Resource
sharing in global fixed-priority preemptive multi-
processor scheduling. In Theodore P. Baker, ed-
itor, 30th IEEE Real-Time Systems Symposium,
RTSS’09, pages 377–386. IEEE Computer Society,
December 2009. doi:10.1109/RTSS.2009.37.

25 Glenn A. Elliott and James H. Anderson. An op-
timal k-exclusion real-time locking protcol moti-
vated by multi-gpu systems. In Sébastien Faucou,
Alan Burns, and Laurent George, editors, 19th
International Conference on Real-Time and Net-
work Systems, RTNS’11, pages 15–24, September
2011. URL: http://rtns2011.irccyn.ec-nantes.
fr/files/rtns2011.pdf.

26 Dario Faggioli, Giuseppe Lipari, and Tommaso
Cucinotta. The multiprocessor bandwidth inher-
itance protocol. In 22nd Euromicro Conference
on Real-Time Systems, ECRTS’10, pages 90–99.
IEEE Computer Society, July 2010. doi:10.1109/
ECRTS.2010.19.

27 Dario Faggioli, Giuseppe Lipari, and Tommaso Cu-
cinotta. Analysis and implementation of the mul-
tiprocessor bandwidth inheritance protocol. Real-
Time Systems, 48(6):789–825, 2012. doi:10.1007/
s11241-012-9162-0.

28 Paolo Gai, Giuseppe Lipari, and Marco Di Na-
tale. Minimizing memory utilization of real-time
task sets in single and multi-processor systems-on-
a-chip. In 22nd IEEE Real-Time Systems Sym-
posium, RTSS’01, pages 73–83. IEEE Computer
Society, December 2001. doi:10.1109/REAL.2001.
990598.

29 Paolo Gai, Marco Di Natale, Giuseppe Lipari,
Alberto Ferrari, Claudio Gabellini, and Paolo
Marceca. A comparison of MPCP and MSRP when
sharing resources in the janus multiple-processor
on a chip platform. In 9th IEEE Real-Time
and Embedded Technology and Applications Sym-
posium (RTAS’03 2003), page 189. IEEE Com-

LITES

http://dx.doi.org/10.1109/ECRTS.2005.18
http://dx.doi.org/10.1109/ECRTS.2005.18
http://dx.doi.org/10.1109/TPDS.2008.129
http://dx.doi.org/10.1109/RTCSA.2007.8
http://www.cs.unc.edu/~bbb/diss/
http://www.cs.unc.edu/~bbb/diss/
https://www.mpi-sws.org/~bbb/papers/index.html
https://www.mpi-sws.org/~bbb/papers/index.html
http://dx.doi.org/10.1109/ECRTS.2013.38
http://dx.doi.org/10.1109/ECRTS.2013.38
http://dx.doi.org/10.1109/RTAS.2013.6531087
http://dx.doi.org/10.1109/RTSS.2010.17
http://dx.doi.org/10.1007/s11241-010-9097-2
http://dx.doi.org/10.1007/s11241-010-9097-2
http://dx.doi.org/10.1007/s10617-012-9090-1
http://dx.doi.org/10.1109/RTAS.2008.27
http://dx.doi.org/10.1109/ECRTS.2013.37
http://hal.archives-ouvertes.fr/hal-00546915
http://hal.archives-ouvertes.fr/hal-00546915
http://dx.doi.org/10.1109/ECRTS.2006.10
http://dx.doi.org/10.1109/RTSS.2009.37
http://rtns2011.irccyn.ec-nantes.fr/files/rtns2011.pdf
http://rtns2011.irccyn.ec-nantes.fr/files/rtns2011.pdf
http://dx.doi.org/10.1109/ECRTS.2010.19
http://dx.doi.org/10.1109/ECRTS.2010.19
http://dx.doi.org/10.1007/s11241-012-9162-0
http://dx.doi.org/10.1007/s11241-012-9162-0
http://dx.doi.org/10.1109/REAL.2001.990598
http://dx.doi.org/10.1109/REAL.2001.990598

01:22 Blocking Optimality in Distributed Real-Time Locking Protocols

puter Society, May 2003. doi:10.1109/RTTAS.
2003.1203051.

30 Joël Goossens, Shelby Funk, and Sanjoy K.
Baruah. Priority-driven scheduling of periodic
task systems on multiprocessors. Real-Time Sys-
tems, 25(2-3):187–205, 2003. doi:10.1023/A:
1025120124771.

31 Pi-Cheng Hsiu, Der-Nien Lee, and Tei-Wei Kuo.
Task synchronization and allocation for many-
core real-time systems. In Samarjit Chakraborty,
Ahmed Jerraya, Sanjoy K. Baruah, and Sebastian
Fischmeister, editors, 11th International Confer-
ence on Embedded Software, EMSOFT’11, pages
79–88. ACM, October 2011. doi:10.1145/2038642.
2038656.

32 Craig T. Jin. Queuing spin lock algorithms to
support timing predictability. In Real-Time Sys-
tems Symposium, pages 148–157, December 1993.
doi:10.1109/REAL.1993.393505.

33 Theodore Johnson and Krishna Harathi. A priori-
tized multiprocessor spin lock. IEEE Transactions
on Parallel and Distributed Systems, 8(9):926–933,
1997. doi:10.1109/71.615438.

34 Hermann Kopetz, Astrit Ademaj, Petr Grillinger,
and Klaus Steinhammer. The time-triggered eth-
ernet (TTE) design. In Eighth IEEE Interna-
tional Symposium on Object-Oriented Real-Time
Distributed Computing ISORC’05, pages 22–33.
IEEE Computer Society, May 2005. doi:10.1109/
ISORC.2005.56.

35 Karthik Lakshmanan, Dionisio de Niz, and Ra-
gunathan Rajkumar. Coordinated task schedul-
ing, allocation and synchronization on multipro-
cessors. In Theodore P. Baker, editor, 30th IEEE
Real-Time Systems Symposium, RTSS’09, pages
469–478. IEEE Computer Society, December 2009.
doi:10.1109/RTSS.2009.51.

36 Butler W. Lampson and David D. Redell. Experi-
ence with processes and monitors in mesa. Com-
munications of the ACM, 23(2):105–117, 1980. doi:
10.1145/358818.358824.

37 C. L. Liu and James W. Layland. Scheduling algo-
rithms for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46–61,
1973. doi:10.1145/321738.321743.

38 Victor B. Lortz and Kang G. Shin. Semaphore
queue priority assignment for real-time multipro-
cessor synchronization. IEEE Transactions on
Software Engineering, 21(10):834–844, 1995. doi:
10.1109/32.469457.

39 Jean-Pierre Lozi, Florian David, Gaël Thomas,
Julia L. Lawall, and Gilles Muller. Remote core
locking: Migrating critical-section execution to
improve the performance of multithreaded applica-
tions. In Gernot Heiser and Wilson C. Hsieh, edi-
tors, 2012 USENIX Annual Technical Conference,
pages 65–76. USENIX Association, June 2012.
URL: https://www.usenix.org/conference/
atc12/technical-sessions/presentation/lozi.

40 Georgiana Macariu and Vladimir Cretu. Lim-
ited blocking resource sharing for global multi-
processor scheduling. In Karl-Erik Årzén, edi-
tor, 23rd Euromicro Conference on Real-Time Sys-
tems, ECRTS’11, pages 262–271. IEEE Computer
Society, July 2011. doi:10.1109/ECRTS.2011.32.

41 Evangelos P. Markatos and Thomas J. LeBlanc.
Multiprocessor synchronization primitives with pri-

orities. In 8th IEEE Workshop on Real-Time Op-
erating Systems and Software, pages 1–7, 1991.

42 Farhang Nemati, Moris Behnam, and Thomas
Nolte. Independently-developed real-time systems
on multi-cores with shared resources. In Karl-Erik
Årzén, editor, 23rd Euromicro Conference on Real-
Time Systems, ECRTS’11, pages 251–261. IEEE
Computer Society, July 2011. doi:10.1109/ECRTS.
2011.31.

43 Ragunathan Rajkumar. Real-time synchroniza-
tion protocols for shared memory multiprocessors.
In 10th International Conference on Distributed
Computing Systems, ICDCS’90, pages 116–123.
IEEE Computer Society, May 1990. doi:10.1109/
ICDCS.1990.89257.

44 Ragunathan Rajkumar. Synchronization in Real-
Time Systems: A Priority Inheritance Approach.
Kluwer Academic Publishers, Norwell, MA, USA,
1991.

45 Ragunathan Rajkumar, Lui Sha, and John P.
Lehoczky. Real-time synchronization protocols for
multiprocessors. In 9th IEEE Real-Time Systems
Symposium, RTSS’88, pages 259–269. IEEE Com-
puter Society, December 1988. doi:10.1109/REAL.
1988.51121.

46 Frédéric Ridouard, Pascal Richard, and Francis
Cottet. Negative results for scheduling indepen-
dent hard real-time tasks with self-suspensions.
In 25th IEEE Real-Time Systems Symposiumm,
RTSS’04, pages 47–56. IEEE Computer Society,
December 2004. doi:10.1109/REAL.2004.35.

47 Simon Schliecker, Mircea Negrean, and Rolf Ernst.
Response time analysis in multicore ecus with
shared resources. IEEE Transactions on Industrial
Informatics, 5(4):402–413, 2009. doi:10.1109/TII.
2009.2032068.

48 Lui Sha, Ragunathan Rajkumar, and John P.
Lehoczky. Priority inheritance protocols: An ap-
proach to real-time synchronization. IEEE Trans-
actions on Computers, 39(9):1175–1185, 1990. doi:
10.1109/12.57058.

49 Bryan C. Ward and James H. Anderson. Sup-
porting nested locking in multiprocessor real-time
systems. In Robert Davis, editor, 24th Euromi-
cro Conference on Real-Time Systems, ECRTS’12,
pages 223–232. IEEE Computer Society, July 2012.
doi:10.1109/ECRTS.2012.17.

50 Bryan C. Ward, Glenn A. Elliott, and James H.
Anderson. Replica-request priority donation: A
real-time progress mechanism for global locking
protocols. In 2012 IEEE International Confer-
ence on Embedded and Real-Time Computing Sys-
tems and Applications, RTCSA’12, pages 280–289.
IEEE Computer Society, August 2012. doi:10.
1109/RTCSA.2012.26.

51 Richard West, Ye Li, and Eric S. Missimer.
Time management in the Quest-V RTOS. In
8th Annual Workshop on Operating Systems
Platforms for Embedded Real-Time Applica-
tions, 2012. URL: http://www.cs.bu.edu/fac/
richwest/papers/questv-multicore.pdf.

52 Alexander Wieder and Björn B. Brandenburg. On
spin locks in AUTOSAR: blocking analysis of
fifo, unordered, and priority-ordered spin locks.
In IEEE 34th Real-Time Systems Symposium,
RTSS’13, pages 45–56. IEEE, December 2013. doi:
10.1109/RTSS.2013.13.

http://dx.doi.org/10.1109/RTTAS.2003.1203051
http://dx.doi.org/10.1109/RTTAS.2003.1203051
http://dx.doi.org/10.1023/A:1025120124771
http://dx.doi.org/10.1023/A:1025120124771
http://dx.doi.org/10.1145/2038642.2038656
http://dx.doi.org/10.1145/2038642.2038656
http://dx.doi.org/10.1109/REAL.1993.393505
http://dx.doi.org/10.1109/71.615438
http://dx.doi.org/10.1109/ISORC.2005.56
http://dx.doi.org/10.1109/ISORC.2005.56
http://dx.doi.org/10.1109/RTSS.2009.51
http://dx.doi.org/10.1145/358818.358824
http://dx.doi.org/10.1145/358818.358824
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1109/32.469457
http://dx.doi.org/10.1109/32.469457
https://www.usenix.org/conference/atc12/technical-sessions/presentation/lozi
https://www.usenix.org/conference/atc12/technical-sessions/presentation/lozi
http://dx.doi.org/10.1109/ECRTS.2011.32
http://dx.doi.org/10.1109/ECRTS.2011.31
http://dx.doi.org/10.1109/ECRTS.2011.31
http://dx.doi.org/10.1109/ICDCS.1990.89257
http://dx.doi.org/10.1109/ICDCS.1990.89257
http://dx.doi.org/10.1109/REAL.1988.51121
http://dx.doi.org/10.1109/REAL.1988.51121
http://dx.doi.org/10.1109/REAL.2004.35
http://dx.doi.org/10.1109/TII.2009.2032068
http://dx.doi.org/10.1109/TII.2009.2032068
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/ECRTS.2012.17
http://dx.doi.org/10.1109/RTCSA.2012.26
http://dx.doi.org/10.1109/RTCSA.2012.26
http://www.cs.bu.edu/fac/richwest/papers/questv-multicore.pdf
http://www.cs.bu.edu/fac/richwest/papers/questv-multicore.pdf
http://dx.doi.org/10.1109/RTSS.2013.13
http://dx.doi.org/10.1109/RTSS.2013.13

	Introduction
	Motivation
	Related Work
	Contributions

	Background and Definitions
	System Model
	Distributed Real-Time Semaphore Protocols
	Resource Model
	The Distributed Priority Ceiling Protocol
	Simplified Protocol Assumptions
	Co-Hosted and Disjoint Task Allocation

	Priority Inversion Blocking
	Suspension-Oblivious vs. Suspension-Aware Analysis
	S-Oblivious and S-Aware PI-Blocking
	PI-Blocking Complexity

	Lower Bounds on Maximum PI-Blocking
	Asymptotic Optimality under Co-Hosted Task Allocation
	Asymptotic Optimality under Disjoint Task Allocation
	Asymptotically Optimal Maximum S-Aware PI-Blocking
	Rules
	Blocking Complexity

	Asymptotically Optimal Maximum S-Oblivious PI-Blocking
	Rules
	Blocking Complexity

	Conclusion

