
Computation Offloading for Frame-Based Real-Time
Tasks under Given Server Response Time Guarantees
Anas Toma1 and Jian-Jia Chen2

1 Department of Informatics, Karlsruhe Institute of Technology, Germany
anas.toma@student.kit.edu

2 Department of Informatics, TU Dortmund University, Germany
jian-jia.chen@cs.uni-dortmund.de

Abstract
Computation offloading has been adopted to im-
prove the performance of embedded systems by
offloading the computation of some tasks, espe-
cially computation-intensive tasks, to servers or
clouds. This paper explores computation offloading
for real-time tasks in embedded systems, provided
given response time guarantees from the servers, to
decide which tasks should be offloaded to get the
results in time. We consider frame-based real-time
tasks with the same period and relative deadline.
When the execution order of the tasks is given,
the problem can be solved in linear time. How-

ever, when the execution order is not specified,
we prove that the problem is N P-complete. We
develop a pseudo-polynomial-time algorithm for
deriving feasible schedules, if they exist. An ap-
proximation scheme is also developed to trade the
error made from the algorithm and the complexity.
Our algorithms are extended to minimize the peri-
od/relative deadline of the tasks for performance
maximization. The algorithms are evaluated with a
case study for a surveillance system and synthesized
benchmarks.

2012 ACM Subject Classification Software and its engineering, Scheduling, Computer systems organiz-
ation, Real-time systems
Keywords and phrases Computation offloading, task scheduling, real-time systems
Digital Object Identifier 10.4230/LITES-v001-i002-a002
Received 2013-02-28 Accepted 2014-08-22 Published 2014-11-14

1 Introduction

In the recent years, a significant increase in the development of mobile devices has been achieved.
They have become devices that provide various computation-intensive services and applications,
including video, audio, images, etc. Also, mobile robots have become more and more popular
and important in the recent years. For instance, the sales of service robots for personal and
household purposes have been increased significantly in the past years, i. e., 35% increase in
2010 [7]. Furthermore, the number of service robots sold per year is also expected to increase in
the next few years [7].

However, due to the resource constraints on both mobile devices and robots, their computation
capabilities are still quite limited. For some applications on these devices, if the peak performance
requirement happens rarely or is not always required, designing the embedded system for the
extreme case to achieve the peak performance is usually too pessimistic, as most resources will be
wasted. Moreover, when increasing the performance of an embedded system, we will also usually
increase the power consumption, the weight, and also the cost of the devices.

Improving the embedded systems just for extreme cases, for executing some computation-
intensive applications, may waste the device resources in normal cases if the extreme case is needed
rarely. Therefore, computation offloading can be used to move a task from a resource-constrained
device (here, we call it a client) to one or more devices (here, we call them servers). Figure 1

© Anas Toma and Jian-Jia Chen;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 1, Issue 2, Article No. 2, pp. 02:1–02:21
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v001-i002-a002
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

02:2 Computation Offloading under Given Server Response Time Guarantees

τ1

τ2
τ3

Cloud of computers

τ1

τ2

τ3

τ4

τ5

Scheduler

Offloaded tasks

{τ1,τ2,τ3}

Locally executed tasks

{τ4,τ5}

Server 1 Server 2

τ4 τ5

Embedded

System

τ1

τ2

τ3

Cloud of computers

Server 1

Server 2
τ4 τ5

Embedded

System

τ1

τ2

τ3

τ4

τ5

Scheduler

Offloaded tasks

{τ1,τ2,τ3}

Local tasks

{τ4,τ5}

Figure 1 Offloading Mechanism.

illustrates the computation offloading mechanism. The task can be a part of an active program
(e. g., function, class, etc.) or a complete one. The servers can either provide faster execution in
general (e. g., powerful desktop, an array of high-performance blade servers, cloud of computers,
etc.) or accelerate the execution for some specific tasks (e. g., digital signal processing (DSP) units
for signal decoding/encoding, General-purpose computing on graphics processing units (GPGPU)
for accelerating, etc.). Furthermore, the server may be slower than the client. For such a case,
the offloading may also be beneficial. Because the computation is done remotely, the energy
consumption of the client can be reduced, or another task can be executed on the client while
awaiting the results from the servers.

For example, some computation-intensive real-time tasks may be required to run on the
Electronic Control Units (ECUs), that are distributed in the the automobiles, for specific time.
However, this resource-constrained ECUs may not be able to finish the tasks execution in time.
Improving the ECUs just for the extreme cases, if they happen rarely, to execute computation-
intensive tasks may waste the resources in the normal cases and increases their cost. Therefore,
offloading the computation-intensive tasks to a server (i. e., an additional processing unit inside
the automobile with timing predictable communication), that serves all the ECUs in the extreme
cases, is a cheaper and more flexible solution.

The idea of computation offloading has been studied previously [16, 9, 17, 10, 6, 3, 12, 8].
The existing approaches decide whether to execute a task locally or offload it without changing
the execution order for the independent tasks. So, the client remains idle during the remote
execution of an offloaded task until the result of this task returns from the server. Also, they
consider, implicitly, a dedicated server for each client to run the offloaded task immediately.
Furthermore, most of the existing computation offloading approaches either do not consider the
timing satisfaction requirement for real-time properties, e. g., in [9, 16, 10, 6, 17], or use pessimistic
offloading mechanism for deciding whether a task can be offloaded [12]. Timing requirements
are important for real-time embedded systems, in which the results may become useless or even
harmful to the client if the deadlines are missed.

Our Contributions. In this paper, computation offloading is exploited for real-time systems to
meet the timing constraints. We consider frame-based real-time tasks with the same period and
relative deadline under given response time guarantees from the servers. Our model is more

A. Toma and J. Chen 02:3

applicable for real-time embedded systems than the existing related work [16, 9, 17, 10, 6, 3, 12],
in which (1) the client can execute another task locally while some offloaded tasks are executed
on the servers, and (2) the server is not dedicated to a client to provide the service immediately,
but provide a certain response timing assurance for the offloaded tasks. Our contributions are as
follows:

We prove that the offloading problem is NP-complete even for frame-based real-time tasks
with the same period and relative deadline without a specified execution order.
We develop algorithms for deciding which tasks to be offloaded and how the tasks are executed to
meet the timing constraints, for frame-based real-time tasks. We consider two cases, depending
on whether the execution order of the tasks on the client is given or not. In case the order is
given, the problem can be solved efficiently. Otherwise, we develop a pseudo-polynomial-time
algorithm to derive a feasible schedule, if and only if it exists.
We also provide an approximation scheme to trade the error made from the algorithm and the
time/space complexity.
Our algorithms can also be extended to maximize the sampling rate of the frame-based tasks
by minimizing the period/relative deadline of the tasks.
We evaluate for our proposed algorithms using a case study of a real-world application and
randomly synthesized benchmarks. In our case study, a surveillance system is used to capture
images periodically and execute four tasks within a deadline (i. e. sampling period).

The remainder of this paper is organized as follows: Section 2 summarizes the related work on
computation offloading. Section 3 provides system model. Section 4 presents an efficient algorithm
when the execution order is given. The hardness of the studied problem is shown in Section 5.
Section 6 presents our approaches when the execution order is not given. Experimental results are
presented in Section 7, and Section 8 concludes the paper.

2 Related Work

Computation offloading has been adopted in the literature to satisfy real-time requirements [12],
improve performance [16], save energy [9, 17, 10, 6], and improve the quality of service [3].

For reducing the execution time and also the response time, Nimmagadda et al. [12] propose
an offloading framework for mobile robots to satisfy the real-time constraints. Also, Wolski et
al. [16] formulate computation offloading as a statistical decision problem by considering both
the client and the servers are in computational grids. Offloading decisions in both of the above
approaches are based on the comparison between two values: (1) the local execution time, and
(2) the summation of the expected remote execution time in the server(s) and data transfer time.
If the second value is less than the first one for a specific task, then this task is offloaded to the
server(s) [12, 16].

Hong et al. [6] present an offloading strategy with three offloading options to reduce the
energy consumption. Their strategy is dedicated for content-based image retrieval applications in
mobile systems. For handheld devices, Li et al. [9] develop a scheme to run a program (task) by
characterizing its corresponding client subtasks and server subtasks for executing on the client
and servers, respectively. They build a cost graph for each program and use a branch-and-bound
algorithm to minimize the energy consumption of the client. Moreover, Li et al. [10] also develop a
computation offloading scheme by applying the standard maximum-flow/minimum-cut algorithm
for deciding the server and client subtasks. For reducing the energy consumption, Xian et al. [17]
apply timeout mechanism so that a task will be offloaded to a server if it cannot be finished before
the timeout (timestamp) set for it. A middleware for mobile Android platforms is developed by
Kovachev et al. [8] to offload the computation-intensive tasks from the mobile device to a remote

LITES

02:4 Computation Offloading under Given Server Response Time Guarantees

τ1

D0

 C1

τ2

 S2

τ2

 I2

Local

Processor

Server

Processor

Figure 2 Timing parameters for two tasks.

cloud. The Offloading decision is represented as an optimization problem and solved using Integer
Linear Programming (ILP).

3 System Model

We consider a system of one client and one or more servers for computation enhancement. Servers
may provide higher computation capability than the client. On the client side, a set of frame-based
real-time tasks arrive periodically and require execution within a common relative deadline. The
tasks can be offloaded to the servers, but the results should be returned in time, i. e., no later
than the deadline. The tasks are independent in execution without precedence constraints. The
client has to schedule task executions to satisfy the real-time constraints.

3.1 Client Side
Suppose that we are given a set T of n independent frame-based real-time tasks. Each task τi
in T (for i = 1, 2, . . . , n) represents an execution unit, and it can be considered as an infinite
sequence of instances, which called jobs. All the tasks have the same arrival time 0, period D and
relative deadline D, i. e., with implicit deadlines. Each task τi ∈ T is associated with the following
timing parameters:

Worst-case local execution time Ci: If task τi is decided to be executed locally on the client,
the worst-case execution time required to finish task τi is up to Ci.
Setup time Si: is the execution time required on the client so that the required information
can be sent to a corresponding server for offloading. It includes transmission time to the server
and any local pre-processing operations such as data compression and transformation. As a
result, when a task τi is offloaded, it has to be executed on the client for up to Si amount of
time, we say that τi is settled for offloading. After the setup time finishes on the client for
offloading, the corresponding server can start task processing on its side.1
Round-trip offloading time Ii: the interval length starting from the end of setting up Si for
task τi until getting the result from the server. If a server, or a processor, with a speed-up
factor of α is dedicated for each offloaded task, then Ii is equal to the execution time on its side
which can be computed as Ci

α . Otherwise, when the server may handle more than one task,
the server has its own scheduling policy and it provides a response time guarantee Ii for each
task. The client contacts the server/s before scheduling to get the values of Ii. Subsection 3.3
describes how this value can be calculated.

1 If the transmission time can be estimated with the worst case when the communication fabric is timing predictable,
the worst-case transmission time can be used for guaranteeing the setup time. Otherwise, a pessimistic estimation can
be used for providing soft timing analysis. For example, the transmission time can be computed as Z

β , where Z is the
estimated maximum size of the offloaded data and β is the estimated lowest network bandwidth between the client and
the server.

A. Toma and J. Chen 02:5

τ1

U1

τ2

U2

τi

Ui

τn

Un
∑n

i=1
Ui = Uck

Client 1

U c1

Client k

U ck

Client m

U cm
∑m

k=1
Uck = 100 %

Utilization = 100 %

Server

Figure 3 The distribution of the server’s utilization.

Figure 2 shows these timing parameters for two tasks, where task τ1 is locally executed and
task τ2 is offloaded. We assume that the results returned from the servers need very short post
processing time, which is negligible. For instance, the returned results in our case study are
the coordinates of the moving object or the distance between it and the cameras. Therefore, an
offloaded task is said to meet the deadline/timing constraint if the result can return before the
deadline. Our model is a special case of a general model (where each task has its own arrival time,
period and relative deadline) that has never been considered before for offloading. Also, we prove
that the offloading problem for this model is NP-complete.

We say that a task is locally executed if it is processed on the client, while a task is called
offloaded if it is processed on a server. The finishing time of a locally-executed task is the time
that the task finishes its local execution. The finishing time of an offloaded task is its round-trip
offloading time plus the time that this task is settled for offloading.

3.2 Server Side
The server can provide offloading services for more than one client, and the offloading decisions
from a client will not control how the servers schedule the tasks. The servers can have their own
scheduling policies to handle the tasks that are offloaded from the clients. They can decide how to
provide the response time guarantee by themselves. For example, servers can use Earliest Deadline
First (EDF) scheduling algorithm or resource reservation servers to ensure Ii. The response time
guarantee can be either (1) hard if the scheduling in the servers and the communication fabric
between the client and the servers are both timing predictable, or (2) soft if only the scheduling
in the servers is timing predictable. However, for each case, when the client has the information
about the round-trip offloading time, the open problem is how to meet the timing constraint by
exploiting the services provided from the servers.

3.3 Calculating the Value of Ii

To calculate the value of Ii, the server has to provide a response time guarantee for the offloaded
tasks. Resource reservation technique [2] (the resource here is the CPU of the server) can be used
to provide such guarantee, and then satisfy the real-time constraints. In Resource Reservation
Server2 (RRS) model, the client can be given a bandwidth or a budget guarantee. In this paper,
we consider the Total Bandwidth Server (TBS) model [14, 15] as a RRS on the server side. In this

2 This is a logical server, inherited from the literature.

LITES

02:6 Computation Offloading under Given Server Response Time Guarantees

model, the server reserves a specific bandwidth (or utilization) U ck for each requesting client, if it
is possible. U ck represents the fraction of the processor bandwidth of the server that is assigned to
the client k, where 1 ≤ k ≤ m and m is the total number of clients. The total reserved (or given)
utilization for all clients should not exceed 100 %, i. e.,

∑m
k=1 U

c
k = 100 %. Using this technique,

the server is able to provide offloading services for more than one client without violating the
real-time constraints.

For a client k with a given bandwidth of U ck and n tasks, the server allocates a TBS for each
task τi with a utilization of Ui, such that

∑n
i=1 Ui = U ck to preserve the system feasibility. Figure 3

shows how the utilization of the server can be distributed. A client k with a given utilization
of U ck can divided it equally over all of its tasks, i. e., Ui = Uck

n , or with different ratios based on
a specific algorithm. A task τi with a given utilization of Ui seems to be executed alone on a
processor (TBS) which is 1

Ui
times slower than the processor of the server. The TBS assigns an

absolute deadline di(t) for each offloaded task τi as follows:

di(t) = max{t, di(t−)}+ Ri
Ui

,

where t is the arrival time of the task at the server side, di(t−) is the absolute deadline of the
previous instance (or frame), Ri is the remote execution time of the task (the execution time on
the server side), and di(0−) is defined as 0. The offloaded tasks are scheduled on the server side
using the Earliest Deadline First (EDF) algorithm based on the assigned TBS deadlines.

The candidate tasks for offloading are the tasks with Si + Ii ≤ D, i. e., feasible for offloading.
Therefore, all the offloaded tasks finish within the deadline D (before the next frame), and then
t > di(t−). Also, the task τi arrives at the server side immediately after the setting up time Si
(the transmission time is included in Si). So, the round-trip offloading time can be calculated as
Ii = Ri

Ui
. In this way, each task can be executed independently of the behavior or the order of the

other tasks.

3.4 Problem Definition

The problem explored in this paper is defined as follows:
Given a set T of n frame-based real-time tasks, the SElective Real-Time Offloading (SERTO)
problem is to schedule the tasks and to decide when and what to offload without violating timing
constraints for a client.

We consider two types of input instances of the SERTO problem, depending on whether the
task execution ordering on the client is given or not. When the execution order is given and has
to be preserved, we suppose that τi is executed on the client (either with Si amount of time for
offloading or Ci amount of time for local execution) before τj if i < j.

A schedule of a set T of tasks for the SERTO problem is an assignment of the executions
of the tasks either on the client locally or on a remote server with computation offloading. A
schedule is feasible if the finishing times of all locally-executed and offloaded tasks are within
the deadline D. A scheduling algorithm is said to be optimal offloading scheduling algorithm if
it is able to find a feasible schedule, if and only if one exists. Moreover, as we are dealing with
frame-based real-time tasks, we always consider how to scheduling within a frame, starting from
time 0. Therefore, the response time of a task is the same as the finishing time of a task.

Suppose that xi is equal to 1 if task τi is decided to be offloaded; otherwise, xi is 0. We use a
vector ~xn = (x1, x2, . . . , xn) to denote an offloading decision for the given n tasks.

A. Toma and J. Chen 02:7

Algorithm 1 GMF
1: t1 ← 0;
2: for i = 1 to n do
3: if Si < Ci and ti + Si + Ii ≤ D then
4: τi is assigned for offloading;
5: ti+1 ← ti + Si;
6: else if ti + Ci ≤ D then
7: τi is assigned for local computation;
8: ti+1 ← ti + Ci;
9: else

10: return “There is no feasible schedule”;
11: end if
12: end for

4 Greedy Minimum Finishing Algorithm

In this section we consider a set T of tasks with a given execution order. Let the tasks be indexed
based on the given execution order from 1 to n, where n is the number of tasks. The problem is
to decide whether a task should be executed locally or to be offloaded without violating timing
constraints.

Under the given ordering, the SERTO problem can be solved by a greedy algorithm, called
Greedy Minimum Finishing (GMF). Suppose that ti is the time when task τi can start to execute
in the client, either offloaded or locally executed. The greedy algorithm simply makes the decision
to offload a task τi if it is beneficial and feasible: that is, if Si < Ci (beneficial for offloading)
and ti + Si + Ii ≤ D (feasible for offloading). If it is either not beneficial (Si ≥ Ci) or not
feasible (ti + Si + Ii > D) for offloading, the algorithm checks if it can be executed locally, i. e.,
ti +Ci ≤ D. Otherwise, there is no feasible solution. Algorithm 1 presents the pseudo-code of the
GMF algorithm. The time complexity of the algorithm is O(|T |).

I Theorem 1. The GMF algorithm is an optimal offloading scheduling algorithm for the SERTO
problem when the execution ordering is given.

Proof. This theorem can be proved by an induction on the value ti. We claim that ti+1 in the
GMF algorithm is the earliest time on the client that τi finishes its local execution or is settled
for offloading and τi+1 can start to run by following the given ordering. For the base case, when
i = 1, the statement is correct by definition.

Inductive step: Assume that tk+1 is the earliest time on the client that τk finishes its local
execution or is settled for offloading and τk+1 can start to run, for k ≥ 2. There are two cases to
run task τk+1:

τk+1 is offloaded: For such a case, we know that tk+1 + Sk+1 + Ik+1 ≤ D and Sk+1 ≤ Ck+1.
τk+1 is locally executed: For such a case, we know that either tk+1 + Sk+1 + Ik+1 > D or
Sk+1 > Ck+1.

For both cases, we know that tk+2 is also the earliest time on the client that τk+1 finishes its local
execution or is settled for offloading and τk+2 can start to run.

Clearly, if task τk+1 cannot finish before the deadline D, the schedule is infeasible and there is
no feasible schedule for the first k + 1 tasks. Therefore, based on the induction hypothesis, this
theorem is proved. J

LITES

02:8 Computation Offloading under Given Server Response Time Guarantees

D0

Local

Processor
S1

 I1

S2

 I2

S3

 I3

C4 C5

Server

Processor(s)

Figure 4 Example of optimal ordering for a set of tasks.

5 Hardness of the SERTO Problem

This section presents the NP-completeness of the SERTO problem. Throughout this section, we
implicitly consider the case that the execution ordering is not specified. Before presenting the
hardness, we need the following lemma for deciding the optimal execution order on the client,
provided that the computation offloading decisions have been made.

I Lemma 2. If the execution order is not specified, all the offloaded tasks should be executed
before any locally-executed task.

Proof. Suppose that τi is decided to be locally executed, while task τj is to be offloaded. If a
feasible schedule executes τi on the client before the next task τj in the schedule starts on the
client, we can also swap the execution ordering of τi and τj on the client to be still feasible. Let τi
starts to run on the client at time t at the original schedule. So, the total finishing time of the two
tasks τi and τj is equal to t+Ci + Sj + Ij ≤ D (because the schedule is feasible). After swapping,
the finishing time of τj is now at most t+Sj +Ij , the finishing time of τi now is at most t+Sj +Ci,
and the total finishing time of both tasks is at most max{t+Sj+Ij , t+Sj+Ci}. Therefore, the the
total finishing time of the two tasks after swapping is less than before swapping without violating
the feasibility of the schedule, because max{t+ Sj + Ij , t+ Sj + Ci} < t+ Ci + Sj + Ij ≤ D.

After swapping, the worst-case finishing time of the other tasks does not change. By repeating
the above procedure, we know that the statement in the lemma holds. J

When the offloading decision ~xn for the tasks is known, we define di = xi(D−Ii)+(1−xi)D as
the virtual offloaded deadline. If there is a feasible schedule based on an offloading decision ~xn, then
executing the tasks by following the order of di = xi(D − Ii) + (1− xi)D non-decreasingly is also
a feasible schedule. This ordering is called Earliest Virtual Offloaded Deadline First (EVODF).
Please refer to Figure 4, as an illustration example for an optimal ordering for a given set of five
tasks. We have the following lemma for EVODF.

I Lemma 3. If the execution order is not specified and there is a feasible schedule based on the
offloading decisions, the schedule by using EVODF is also a feasible schedule.

Proof. Suppose that a given schedule is feasible. By Lemma 2, we can reorder the execution
ordering, such that any locally-executed task should be executed after the offloaded tasks, to
maintain the feasibility. Now, for two consecutively offloaded tasks τi and τj in that feasible
schedule, if di > dj and τi starts its execution at time t on the client before τj , we can still swap
these two jobs to maintain the feasibility. Suppose that the server returns the result of task τi
at time fi = t+ Si + Ii and τj at time fj = t+ Si + Sj + Ij , respectively. By the definition of
di > dj , we know that Ii < Ij .

A. Toma and J. Chen 02:9

D

I

A

Figure 5 Illustration for the N P-completeness proof of the SERTO problem.

Clearly, due to the feasibility before swapping, we know that fi = t + Si + Ii ≤ D and
fj = t+Si+Sj+Ij ≤ D. Therefore, the finishing time f ′j of τj after swapping is f ′j = t+Sj+Ij ≤ D,
and the finishing time of τi after swapping is f ′i = t+ Sj + Si + Ii < t+ Sj + Si + Ij ≤ D. Clearly,
after swapping, the worst-case finishing time of the other tasks does not change.

By repeating the above procedure, we know that the schedule by using (EVODF) is also a
feasible schedule. J

Based on Lemma 3, we have the following lemma for testing whether an offloading decision
results in a feasible schedule or not.

I Lemma 4. Suppose that tasks τi ∈ T for i = 1, 2, ..., n are ordered non-decreasingly according to
D − Ii. An offloading decision ~xn, xi = {0, 1}, results in a feasible schedule (by using EVODF)
if and only if (a)

∑n
j=1 xjSj + (1− xj)Cj ≤ D and (b) xkIk +

∑k
j=1 xjSj ≤ D,∀k = 1, 2, . . . , n.

Proof. This comes directly from Lemma 3. J

Now, we will prove the NP-completeness of the SERTO problem when the execution ordering
is unknown.

I Theorem 5. The SERTO problem is NP-complete if the execution order is not given.

Proof. Due to Lemma 3, verifying whether an offloading decision with EVODF scheduling is
feasible or not can be done in polynomial time. Therefore, the SERTO problem is in NP. The
NP-completeness can be proved by a reduction from the SUBSET SUM problem [4]: Given a
set of integers V = {v1, v2, . . . , vn} and an integer A, the problem is to find a subset V] of V such
that

∑
vi∈V] vi = A. For each vi in V, the reduction creates τi with

Ci = 2vi, Si = vi,
Ii = I = 2((

∑
vj∈V vj)−A), and

D = 2
∑
vj∈V vj −A.

Since all the tasks have the same round-trip offloading time and by Lemma 4, for an offloaded
task set T] (with the corresponding set V]), the resulting EVODF schedule is feasible if and only
if
∑
τi∈T] Si ≤ D − I and

∑
τi∈T] Si +

∑
τi∈T \T] Ci ≤ D, see Figure 5.

By the construction of task set T , we know that∑
vi∈V]

vi =
∑
τi∈T]

Si ≤ D − I = A (1)

and ∑
τi∈T]

Si +
∑

τi∈T \T]
Ci ≤ D

⇒ 2
∑
vi∈V

vi −
∑
vi∈V]

vi ≤ 2
∑
vj∈V

vj −A ⇒
∑
vi∈V]

vi ≥ A. (2)

LITES

02:10 Computation Offloading under Given Server Response Time Guarantees

τi-1

0

Slack

 S2

τi

 t

Client

Processor

Server

Processor

τi

di-1 ti

τi-1

di

τi-1

Slack

τi

τi

di-1ti

τi-1

di

τ1

0

Slack

τ4
Client

Processor

Server

Processor

τ3

d1

t2

τ1

d2

Slack

t1

τ2

τ2

G(4,t)

Figure 6 An example for illustrating the dynamic programming parameters.

Therefore, by (1) and (2), we know that there exists such a V] with
∑
vi∈V] vi = A, if and only

if the reduced input instance for the SERTO problem has a feasible schedule by offloading the
corresponding task set T] created from V].

Since the reduction is in linear time complexity, we know that the SERTO problem is NP-
complete. J

6 Algorithms for Tasks without Specified Ordering

In this section, we consider real-time tasks without any specified ordering, and present our
proposed scheduling algorithms for the SERTO problem. We will present a pseudo-polynomial-
time algorithm and an approximation algorithm with polynomial-time complexity. At the end of
the section, we will extend our algorithms to find the minimum D for executing the frame-based
real-time tasks to maximize the performance.

6.1 Dynamic Real-time Scheduling Algorithm
Based on dynamic programming, we introduce Dynamic Real-time Scheduling (DRS) algorithm to
find a feasible solution for the SERTO problem. At the beginning, tasks τi ∈ T for i = 1, 2, ..., n
are ordered non-decreasingly according to D − Ii.

An offloading decision ~xi for the first i tasks, i. e., {τ1, τ2, . . . , τi}, is said partially feasible for
offloading (or a partially feasible offloading decision) if the offloaded tasks can finish the execution
in the servers before the given deadline D. Similar to Lemma 4, we know that a vector ~x is partially
feasible for offloading for {τ1, τ2, . . . , τi} if and only if xkIk +

∑k
j=1 xjSj ≤ D,∀k = 1, 2, . . . , i.

Our strategy is to build a dynamic programming table by maintaining and storing some
scheduling results for the partially feasible offloading decisions for the first i tasks. Specifically,
among all the partially feasible offloading decisions for {τ1, τ2, . . . , τi}, let G(i, t) be the minimum
total local execution time for the locally-executed tasks under the constraint that the total setup
time for the offloaded tasks in {τ1, τ2, . . . , τi} is less than or equal to t. Figure 6 presents an
example of four tasks {τ1, τ2, τ3, τ4} with the dynamic programming parameters, where {τ1, τ2}
are offloaded and {τ3, τ4} are executed locally. That is, for a given i and t, the value G(i, t) is the
objective function of the following integer linear programming (ILP):

minimize
i∑

j=1
(1− xj)Cj (3a)

s.t.
i∑

j=1
xjSj ≤ t (3b)

xkIk +
k∑
j=1

xjSj ≤ D ∀k = 1, 2, . . . , i (3c)

xj ∈ {0, 1} ∀j = 1, 2, . . . , i. (3d)

A. Toma and J. Chen 02:11

For notational brevity, when the above ILP has no feasible solution, G(i, t) is defined as ∞.
Moreover, G(i, t) =∞ when t < 0.

The optimal solution for (3) is also called optimal partially offloaded decision when the total
local setup time for the offloaded tasks in these i tasks is no more than t. Clearly, when i is 1, we
know that

G(1, t) =
{

0 if S1 ≤ t ≤ D − I1
C1 otherwise . (4)

Instead of solving the above ILP for building G(i, t), the construction of G(i, t), for i ≥ 2, can
be achieved by using the following recurrence:

G(i, t) = min


{
G(i− 1, t− Si) if t ≤ D − Ii
∞ otherwise

G(i− 1, t) + Ci

. (5)

Suppose that ~x]i−1 is the corresponding partially feasible offloading decision for {τ1, τ2, . . . , τi−1}
with respect to the result in G(i − 1, t− Si). Similarly, let ~x†i−1 be the corresponding partially
feasible offloading decision for {τ1, τ2, . . . , τi−1} with respect to the result in G(i − 1, t). The
recursive function in (5) represents the selection of the minimum solution by comparing two cases:

Case 1: task τi is offloaded when its local setup execution finishes at time t. For such a case,
if t + Ii > D, offloading τi is an infeasible offloading decision; otherwise, we consider the
offloading decision ~x]i−1 for the first i− 1 tasks, in which the total local execution time of this
solution is as the same as that in ~x]i−1, i. e., G(i− 1, t− Si).
Case 2: task τi is locally executed. Therefore, we consider the offloading decision ~x†i−1 for the
first i− 1 tasks. As a result, the total local execution time of this solution is the sum of Ci
and the total local execution time in solution ~x†i−1. That is, Ci +G(i− 1, t).

We assume in this subsection that Si is a non-negative integer for a task τi in T . The
standard dynamic-programming procedure can be applied by constructing a table with n rows for
i = 1, 2, . . . , n and bDc+ 1 columns for t = 0, 1, 2, . . . , bDc.

I Lemma 6. For given integers i and t, the recursive function defined in (4) and (5) computes
the optimal solution for G(i, t).

Proof. The optimality is proved by induction on i. For the base case, G(1, t) = 0 if there
is enough time for feasible offloading of task τ1. Otherwise τ1 is locally executed, and then
G(1, t) = C1, which is optimal.

Inductive step: Assume that G(i − 1, t) is optimal for the subproblem for the first i − 1
tasks with i ≥ 2 for any given t ≥ 0 (i. e., the ILP described in (3)). Recall that the two
offloading decisions ~x]i−1 and ~x†i−1 which represent the optimal partially offloading decisions for
{τ1, τ2, . . . , τi−1} when the total local setup time for the offloaded tasks in these i− 1 tasks is no
more than t− Si and t, respectively.

Suppose for contradiction that ~x∗i is a partially feasible offloading decision for {τ1, τ2, . . . , τi}
in which

∑i
j=1 x

∗
jSj ≤ t and

∑i
j=1(1− x∗j)Cj < G(i, t). There are two cases for task τi in ~x∗i .

Case 1: x∗i is 0 (τi is locally executed) in ~x∗i . Clearly, under the assumption
∑i
j=1(1−x∗j)Cj <

G(i, t), we know that
i∑

j=1
Cj(1− x∗j) =Ci +

i−1∑
j=1

Cj(1− x∗j) < G(i, t) ≤1 Ci +
i−1∑
j=1

Cj(1− x†j),

LITES

02:12 Computation Offloading under Given Server Response Time Guarantees

where ≤1 comes from the construction of G(i, t) in (5). Hence, the offloading decision ~x∗i−1
by excluding x∗i from ~x∗i is a partially feasible offloading decision for the first i− 1 tasks with∑i−1
j=1 Sjx

∗
j ≤ t and

∑i−1
j=1 Cj(1− x∗j) <

∑i−1
j=1 Cj(1− x

†
j), which contradicts the optimality of

G(i− 1, t).
Case 2: x∗i is 1 (τi is offloaded) in ~x∗i . Clearly, we know that Si ≤ t ≤ D − Ii for such a case;
otherwise, ~x∗i is not a partially feasible offloading decision. With this case, we know that

i∑
j=1

Cj(1− x∗j) =
i−1∑
j=1

Cj(1− x∗j) < G(i, t) ≤
i−1∑
j=1

Cj(1− x]j).

Therefore, the offloading decision ~x∗i−1 by excluding x∗i from ~x∗i is a partially feasible offloading
decision for the first i−1 tasks with

∑i−1
j=1 Sjx

∗
j ≤ t−Si and

∑i−1
j=1 Cj(1−x∗j) <

∑i−1
j=1 Cj(1−x

]
j),

which contradicts the optimality of G(i− 1, t− Si).
Hence, based on the induction hypothesis, the lemma is proved. J

Now, based on Lemma 6, for an input task set T , to verify whether a feasible schedule exists
for the SERTO problem or not, we just have to check whether there exists 0 ≤ t ≤ D with
G(n, t) + t ≤ D.

I Theorem 7. There exists t with G(n, t) + t ≤ D if and only if there exists a feasible schedule
for the SERTO problem.

Proof. If: Suppose ~xn is the corresponding offloading decision for a feasible schedule of the SERTO
problem. Let ` be the maximum index with x` = 1. That is, xj is 0 for j > `. As the schedule is
feasible, we know that ~xn is also a partially feasible offloaded decision when t is set to

∑`
j=1 Sjxj .

Therefore, based on Lemma 6, we have
∑n
j=1 Cj(1 − xj) ≥ G(n,

∑`
j=1 Sjxj). The necessary

condition for being a feasible schedule for the SERTO problem, is
∑`
j=1 Sjxj+

∑n
j=1 Cj(1−xj) ≤ D.

This implies that
∑`
j=1 Sjxj +G(n,

∑`
j=1 Sjxj) ≤ D. Therefore, when t is

∑`
j=1 Sjxj , we know

that G(n, t) + t ≤ D.
Only-If: Suppose t∗ is with G(n, t∗) + t∗ ≤ D. We can backtrack the dynamic programming

table to obtain an offloading decision ~x∗n for the given n tasks such that it satisfies the constraints
described in (3) when t is set to t∗ and i is set to n. Since G(n, t∗) + t∗ ≤ D, based on Lemma 4,
we know that the resulting schedule by using EVODF scheduling policy is a feasible schedule. J

I Theorem 8. The DRS algorithm is an optimal offloading scheduling algorithm with time
complexity O(n logn+ nD) for the SERTO problem when there is no specified execution ordering.

Proof. The optimality comes from Theorem 7. The time complexity of constructing G(i, t) for
i = 1, 2, . . . , n and t = 0, 1, 2, . . . , bDc is O(n logn+ nD), since it takes O(n logn) to sort task set
T and O(nD) to build the dynamic-programming table. For back-tracking a solution from an
entry t with G(n, t∗)+ t∗ ≤ D, the time complexity is O(n). Therefore, the overall time complexity
is O(n logn+ nD), which is pseudo-polynomial time. The space complexity is O(nD), but it can
be improved to O(D) by discarding the entries G(i− 2, t) when building G(i, t). J

6.2 Approximation for DRS Algorithm
As the SERTO problem is NP-complete, solving the problem in polynomial time is not possible
unless NP = P. To allow a polynomial-time algorithm, some approximation is needed. This
subsection presents a methodology to reduce the time complexity so that the user can trade the
complexity with the approximation of the derived solution.

A. Toma and J. Chen 02:13

 Si

0

τi

1K 2K 3K

 S'i s

t

Time unit after

Approximation

Figure 7 Approximation example.

Let K = εD
n be the time unit after approximation, where ε > 0 is a user-specified parameter

that determines the approximation granularity. This means that a time unit after approximation
is equal to K amount of time before approximation. The exact algorithm requires the assumption
that all the timing parameters are integers and has pseudo-polynomial complexity. However, if the
timing parameters are real numbers, the algorithm will not work. In this case, the real numbers
can be rounded up to the nearest integers. But, this will affect the accuracy of the algorithm.
Also, in the case of a large value of D, the time and space complexities of the algorithm will be
high. Therefore, the approximation is used to trade the accuracy with time and space complexities
for both cases, depending on the user parameter ε. Both complexity and accuracy are inversely
proportional to the value of ε, which determines the value of K. If the value of K is less than
1, the timing parameters are scaled up to increase the accuracy. But, it will also increase the
complexity of the algorithm. On the other hand, if the value of K is greater than 1, the timing
parameters are scaled down which is used to reduce the complexity of the algorithm for a large
value of D. As a consequence, we will get a less accurate result. For K = 1, the approximation
does not have any effect.

For each task τi, we construct a corresponding task τ ′i as follows:
S′i = K

⌈
Si
K

⌉
(rounded up to the nearest time unit, i. e. integer multiples of K),

I ′i = Ii − (S′i − Si), and
C ′i = Ci.

Figure 7 shows an approximation example, where the time unit after approximation (K) is
equal to 4 and the setup time Si is rounded-up to the next time unit (2K).

Let T ′ be the resulting task set after transformation. Moreover, we also set D′ either to D or to
(1 + ε)D, to be explained later. As all the setup times are integer multiples of K, we can construct
the dynamic programming table by considering only the integer multiples of K. Therefore, we
define G′(i, t) as the minimum total local execution time for the locally executed tasks under the
constraint that the total rounded-up setup time for the offloaded tasks in {τ ′1, τ ′2, . . . , τ ′i} is less
than or equal to t ·K

G′(1, t) =
{

0 S′1
K ≤ t ≤

D′−I′i
K

C ′1 otherwise
. (6)

For i ≥ 2,

G′(i, t) = min


{

G′(i− 1, t− S′i
K) ∀t ≤ D′−I′i

K

∞ otherwise

G′(i− 1, t) + C ′i

. (7)

LITES

02:14 Computation Offloading under Given Server Response Time Guarantees

The time t in the equations above represents the time after approximation, which is represented
in K unit of time. Therefore, the timing parameters S′i and D′ − I ′i should be divided by K to be
consistent with the new time scale.

I Lemma 9. For given integers i and t, the recursive function defined in (6) and (7) computes
the optimal solution for a partially feasible offloading decision for the first i tasks in T ′.

Proof. This is similar to the proof for Lemma 6 J

The following theorem shows the feasibility by adopting the dynamic programming for the
resulting solutions.

I Theorem 10. When D′ is set to D, and there exists t with 0 ≤ t ≤
⌊
D′

K

⌋
and G′(n, t)+t·K ≤ D′,

the offloading decision by backtracking the dynamic programming table built for T ′ is a feasible
schedule of the original task set T by using EVODF scheduling policy.

Proof. This basically comes directly from the definition of T ′. Suppose that ~xn is an offloading
decision for such a t after by backtracking the dynamic programming table built for T ′. Therefore,
with the fact

∑n
j=1 xjS

′
j ≤ t ·K, we know that

t ·K ≥
n∑
j=1

xjS
′
j ≥

n∑
j=1

xjSj ,

and, for all k = 1, 2, . . . , n, as I ′k + S′k is equal to Ik + Sk and xkI ′k +
∑k
j=1 xjS

′
j ≤ D, we have

D ≥ xk(Ik + Sk) +
k−1∑
j=1

xjS
′
j ≥ xkIk +

k∑
j=1

xjSj .

Therefore, we know that ~xn is a partially feasible offloading decision with
∑n
j=1 xjSj ≤ t · K.

Since G′(n, t) + t ·K ≤ D′, the statement holds due to Lemma 4. J

I Theorem 11. If there exists a feasible schedule for T , then there exists t with 0 ≤ t ≤
⌊
D′

K

⌋
and G′(n, t) + t ·K ≤ D′ when D′ is set to (1 + ε)D.

Proof. Suppose that ~x∗n is the offloading decision of a feasible schedule for T . By Lemma 4,∑n
j=1 x

∗
jSj + (1− x∗j)Cj ≤ D and x∗kIk +

∑k
j=1 x

∗
jSj ≤ D for k = 1, 2, . . . , n.

By the definition of T ′ and K = εD
n , we know that

n∑
j=1

x∗jS
′
j ≤

n∑
j=1

x∗j (Sj +K) ≤ K · n+
n∑
j=1

x∗jSj ≤ εD +
n∑
j=1

x∗jSj . (8)

Similarly, for k = 1, 2, . . . , n, we have

x∗kIk +
k∑
j=1

x∗jSj ≤ x∗k(Ik + Sk) +
k−1∑
j=1

x∗jS
′
j ≤ x∗k(Ik + Sk) + εD +

k−1∑
j=1

x∗jSj ≤ (1 + ε)D.

Let t′ be
∑n

j=1
x∗jS

′
j

K , in which t′ is an integer and t′ ≤
⌊
D′

K

⌋
. Then, by Lemma 9 for the

optimality in G′(i, t′), we know that G′(n, t′) ≤
∑n
j=1(1− x∗j)Cj . Therefore, together with (8),

A. Toma and J. Chen 02:15

we know that

G′(n, t′) + t′ ·K = G′

(
n,

∑n
j=1 x

∗
jS
′
j

K

)
+

n∑
j=1

x∗jS
′
j

≤
n∑
j=1

(1− x∗j)Cj +
n∑
j=1

x∗jSj + εD ≤ (1 + ε)D = D′,

which proves the theorem. J

We now analyze the time complexity.

I Theorem 12. For a given ε > 0 and D′, evaluating whether there exists exists t with 0 ≤ t ≤⌊
D′

K

⌋
and G′(n, t) + t ·K ≤ D′ is with time complexity O(n

2

ε).

Proof. The construction of task set T ′ takes only O(n). The construction of G′(i, t) requires
O(nDK) = O(n

2

ε), since K is set to εD
n . J

6.3 Maximizing the Sampling Rate
The SERTO problem so far is for determining a feasible schedule if there exists. Another extension
is to minimize the deadline/period D for the frame-based real-time tasks so that the sampling
rate of the frame-based tasks can be maximized. The DRS algorithm can be adopted to find
the optimal value of D with a binary search. Suppose that Dlower and Dupper are the lower and
upper bounds of the feasible deadlines in the current iteration in the binary search, respectively.
Initially, Dupper is

∑n
i=1 Ci and Dlower is

∑n
i=1 min{Si, Ci}.

Moreover, suppose that ~xn is the offloading decision for a feasible schedule by setting D to
Dlower +Dupper

2 . We also know that setting D to

D] = max
{

max1≤k≤n{xkIk +
∑k
j=1 xjSj},∑n

j=1(1− xj)Cj + xjSj

}
is also feasible. Therefore, if such an offloading decision ~xn is found, the efficiency, with respect
to the time complexity, of the binary search can be further improved by setting the next D
to Dlower +D]

2 , as any D > D] has feasible schedules. Clearly, the whole procedure is still with
pseudo-polynomial time.

When the approximation in Section 6.2 is adopted, the above binary search still works with
polynomial-time complexity. Due to Theorems 10 and 11, the derived solution is at most (1 + ε)
times the minimum feasible deadline of the input instance, by ignoring the error due to the
termination condition of the binary search.

7 Experimental Results

In our experiments, our DRS algorithm, with and without approximation, is evaluated by adopting
a surveillance system as a case study and synthesis workload simulation.

7.1 Case Study of a Surveillance System
We use a surveillance system that performs four real-time tasks to evaluate our DRS algorithm,
and compare it with Nimmagadda et al. [12] algorithm and by offloading all the tasks. The system
captures two images at the same time, left and right, periodically. Left and right images are used
for a stereo vision task. For the other tasks, one image is used for processing. The tasks are
frame-based real-time tasks and independent, described as follows:

LITES

02:16 Computation Offloading under Given Server Response Time Guarantees

Table 1 Timing parameters of case study tasks (ms).

τi Description Ci
With encoding Without encoding

Si Ii - Multi. Ii - Single Si Ii - Multi. Ii - Single
τ1 Motion Detection 30 31 33 117 7 21 141
τ2 Object Recognition 220 3 102 102 2 102 102
τ3 Stereo Vision 88 34 47 115 16 41 127
τ4 Motion Recording 18 31 29 115 7 14 148

Motion Detection: The motion is detected using the background subtraction technique [13].
The system computes the running average of the captured frames, and each new frame is
subtracted from the moving average. Then, the output is processed to get the contours of the
moving objects [5].
Object Recognition: It is used to recognize a given object from the input image. Scale
Invariant Feature Transform (SIFT) method [11] is used to extract features, which are not
affected by object size, position or rotation.
Stereo Vision: Stereo vision is used to generate a depth map for left and right images to
calculate the distance between the surveillance system and the object of interest. Stereo
imaging [1] is adopted in the implementation.
Motion Recording: It records video for detected motion for further human check.

The system remains idle until a motion is detected. Then, it starts executing all the tasks
above. Before sending an image to the server(s), scaling, encoding, or both of them may be
performed on the image. Although scaling and encoding can reduce the size of the transfered
image for reducing the communication overhead, they consume more time on the local device for
scaling and encoding. The time used for scaling, encoding, and sending on the client for a task is
considered as the setup time in our case study. For the server side, we consider two cases. First, a
dedicated server (or processor) for each task, if offloaded. Second, we assume that we have only
one server where a scheduling algorithm is used to schedule all the offloaded tasks, in which Ii
may be larger than Ci for some task τi.

We consider four scenarios: (Scenario 1) images are encoded before sending and a dedicated
server is used for each offloaded task (multiple servers), (Scenario 2) images are encoded before
sending and only one server is used for all the offloaded tasks (single server), (Scenario 3) images
are sent without encoding and a dedicated server is used for each offloaded task, and (Scenario 4)
images are sent without encoding and only one server is used for all the offloaded tasks.

Timing parameters for the tasks in the four scenarios are given in Table 1, where the time
values are in milliseconds based on measurements. If the system performs all the tasks locally,
they will finish by 356 ms, which will be considered as the deadline (sampling period) in our case
study here. We explore the three offloading approaches to reduce the local finishing time, i. e.,
increase the sampling rate.

Figure 8 shows the total local finishing time on the client side, and the time at which the last
result returns back from the server side. In Scenario 1, tasks τ2 and τ3 are offloaded in both DRS
and Nimmagadda et al. [12] algorithms. Although the offloading decisions in the previous scenario
are the same for both algorithms, the total finishing time in DRS is shorter. This is because DRS
algorithm continues local execution after offloading, while Nimmagadda et al. [12] remains idle
waiting for the results from the server side. The decision of the Nimmagadda et al. [12] algorithm
in Scenario 2 is the same as in Scenario 1. It does not change by having multiple servers because
Nimmagadda et al. [12] algorithm remains idle during offloading. DRS algorithm just offloads
task τ2 in Scenario 2 and 4.

A. Toma and J. Chen 02:17

85

234

99
105

186

128

0

50

100

150

200

250

DRS Nimm. et al. All offloaded

T
im

e
 (

m
s)

Algorithm

Local finishing

time
Last returned

result

(a) Scenario 1

139

234

99
105

186

214

0

50

100

150

200

250

DRS Nimm. et al. All offload

T
im

e
 (

m
s)

Algorithm

Local finishing

time
Last returned

result

(b) Scenario 2

32

207

32

104

189

104

0

50

100

150

200

250

DRS Nimm. et al. All offload

T
im

e
 (

m
s)

Algorithm

Local finishing

time
Last returned

result

(c) Scenario 3

138

207

32

104

189
180

0

50

100

150

200

250

DRS Nimm. et al. All offload

T
im

e
 (

m
s)

Algorithm

Local finishing

time
Last returned

result

(d) Scenario 4

Figure 8 Case study results.

In Scenarios 3, DRS algorithm offloads all the tasks because their setup time Si is less than
their local execution time Ci, and they are feasible for offloading. Nimmagadda et al. [12] algorithm
offloads all the tasks except task τ4 in Scenario 3 and 4, because its local time is less than the
summation of the expected remote execution time and the data transfer time. We observe that all
the three evaluated algorithms reduce the local finishing time, but our algorithm has the minimum
finishing time in all scenarios.

7.2 Simulation Setup and Results
We also perform simulations by using synthetic workload for task τi generated as follows:

Ci: Randomly generated integer values from 1 to 50 ms with uniform distribution.
Si: Randomly generated integer values from 1 to Ci with uniform distribution.
Ii: Ii = Ci

α , where α is the speed-up factor of the server, i. e., the response time from the server
is α times faster than the execution time of the local client. α is randomly generated such that
0 < α ≤ m, where m is the maximum value of α.

We perform 100 rounds in the experiment. In each round, a set of 25 frame-based real-time
tasks is randomly generated according to the above conditions. Each task set is evaluated by
ten different settings according to m values, where m = {0.005, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2, 4, 8}.
By using small m values, we simulate servers that require longer response time than the local
execution time for tasks. While by using large m values, we simulate servers that are faster than
the client and can process almost immediately for any offloaded tasks.

The normalized finishing time reduction of an algorithm for a task set is the finishing time for
the task set execution after using the derived schedule divided by the finishing time for the same
task set if all tasks are executed locally. Also, the normalized sampling period is the finishing time
for the input task set using the approximation DRS algorithm described in 6.2 divided by the
finishing time for the same task set using the DRS algorithm.

For the rest of this section, we will discuss the simulation results for the three offloading
approaches using the task sets described above. Also, we evaluate the approximation DRS
algorithm described in Section 6.2. Figure 9 shows the number of offloaded tasks for different m
values. Nimmagadda et al. [12] algorithm offloads tasks only when the server is faster than the
client. But, DRS algorithm offloads tasks even to server(s) with longer response time, while they
are feasible. Also, we observe that the number of the offloaded tasks increases proportionally to
m value.

LITES

02:18 Computation Offloading under Given Server Response Time Guarantees

0

5

10

15

20

25

0.005 0.025 0.05 0.1 0.25 0.5 1 2 4 8

A
v
er

ag
e

n
u
m

b
er

 o
f

o
ff

lo
ad

ed
 t

as
k
s

m

Nimm. et al.

DRS

Figure 9 Number of offloaded tasks for synthesized tasks.

300

350

400

450

500

550

600

650

0.005 0.025 0.05 0.1 0.25 0.5 1 2 4 8

A
v
er

ag
e

fi
n
is

h
in

g
 t

im
e

(m
s)

m

Nimm. et al.
DRS
All local

Figure 10 Finishing time for synthesized tasks.

Figure 10 illustrates the average finishing time for the generated task sets. Nimmagadda et
al. [12] algorithm reduces the local execution time only when the server is faster than the client,
because it doesn’t offload tasks with m ≤ 1 as shown in Figure 9. The improvement of DRS
algorithm, compared to Nimmagadda et al. [12] algorithm, is up to 44.7 %.

Figure 11 shows the average normalized finishing time reduction. Again, Nimmagadda et
al. [12] algorithm does not help in finishing time reduction for the same reason in Figures 9 and
10. Furthermore, the finishing time reduction in DRS algorithm is more than in Nimmagadda
et al. [12] algorithm because Nimmagadda et al. [12] algorithm remains idle during offloading.
In Figure 11, offloading all the tasks is not useful for m ≤ 2 and the finishing time exceeds the
summation of local execution for all the tasks, because the round-trip offloading time for most
of the tasks is relatively large. DRS algorithm reduces the finishing time in all cases because it
offloads only the beneficial and optimal tasks for offloading. The average finishing time using DRS
algorithm is reduced up to 52 % of the local execution.

Figure 12 shows the average execution time of DRS algorithm, where n is the number of input
tasks. The algorithm is evaluated with different number of input tasks (5, 10, 15, 20 and 25) and
different deadlines (300, 400, 500, 600 and 700 ms). As the deadline value increases, the average
execution time also increases, but more rapidly for larger number of tasks. Nevertheless, the
execution time of the algorithm is very short and negligible relative to the deadline.

A. Toma and J. Chen 02:19

0

10

20

30

40

50

60

70

80

90

100

0.005 0.025 0.05 0.1 0.25 0.5 1 2 4 8

A
v
er

ag
e

n
o

rm
al

iz
ed

fi

n
in

sh
in

g
 t

im
e

re
d

u
ct

io
n
 %

m

All offloaded
Nimm. et al.
DRS

Figure 11 Finishing time reduction for synthesized tasks.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

300 400 500 600 700

A
v
er

ag
e

ex
ec

u
ti

o
n
 t

im
e

o
f

D
R

S
 a

lg
o
ri

th
m

 (
m

s)

Deadline (ms)

n=25

n=20

n=15

n=10

n=5

Figure 12 Execution time of DRS algorithm.

The above results are based on the DRS algorithm. Now, we will present the results based on
the approximation in Section 6.2. Figure 13 shows the effect of the approximation parameter ε
on the finishing time of approximation DRS algorithm for different m values. As the m value
increases, which also implies an increase in the number of offloaded tasks, the average normalized
sampling period also increases, because the offloading decision is affected by the rounded-up setup
time for the offloaded tasks. For m ≥ 0.5, the average normalized sampling period is nearly
the same because almost all of the tasks are offloaded in this case. Clearly, the ε value affects
the accuracy of the approximation for DRS algorithm. When the value ε increases for worse
approximation, the finishing time of the tasks also usually, but not always, increases.

8 Conclusion

In this paper, we present two offloading algorithms, GMF and DRS, for real-time embedded
systems. Our algorithms can be used to schedule tasks with and without specified execution order
to meet the deadline. Also, they can be used to maximize the sampling rate for tasks execution.
Our experimental results show that, even by offloading to server(s) with shorter response time,
using DRS algorithm can result in significant finishing time reduction. The experiments also

LITES

02:20 Computation Offloading under Given Server Response Time Guarantees

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

0.1 0.2 0.3 0.4 0.5

A
v
er

ag
e

n
o
rm

al
iz

ed
 s

am
p
li

n
g
 p

er
io

d

ε

m=8
m=4
m=2
m=1
m=0.5
m=0.25
m=0.1
m=0.05
m=0.025
m=0.005

Figure 13 Normalized sampling period for synthesized tasks.

reveal that DRS algorithm reduces the finishing time up to 52 % of the total local execution time,
and improves the finishing time of other existing offloading algorithms up to 44.7 %.

References
1 Gary R. Bradski and Adrian Kaehler. Learn-

ing OpenCV – computer vision with the
OpenCV library: software that sees. O’Reilly,
2008. URL: http://www.oreilly.de/catalog/
9780596516130/index.html.

2 Giorgio C. Buttazzo. Hard Real-time Comput-
ing Systems. Springer US, 2011. URL: http:
//www.springer.com/978-1-4614-0675-4.

3 Luis Lino Ferreira, Guilherme D. Silva, and
Luís Miguel Pinho. Service offloading in adapt-
ive real-time systems. In Zoubir Mammeri, ed-
itor, IEEE 16th Conf. on Emerging Technolo-
gies & Factory Automation (ETFA’11), Toulouse,
France, September 5–9, 2011, pages 1–6. IEEE,
2011. doi:10.1109/ETFA.2011.6059236.

4 M.R. Garey and David S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

5 Rafael C. Gonzalez and Richard E. Woods. Di-
gital Image Processing (3rd Edition). Prentice-
Hall, Inc., NJ, USA, 2008. URL: http://www.
imageprocessingplace.com/.

6 Yu-Ju Hong, Karthik Kumar, and Yung-Hsiang
Lu. Energy efficient content-based image retrieval
for mobile systems. In Int’l Symp. on Circuits
and Systems (ISCAS’09), 24–17 May 2009, Taipei,
Taiwan, pages 1673–1676. IEEE, 2009. doi:10.
1109/ISCAS.2009.5118095.

7 IFR International Federation of Robotics. Service
Robot Statistics, September 2011. URL: http:
//www.ifr.org/service-robots/statistics/.

8 Dejan Kovachev, Tian Yu, and Ralf Klamma. Ad-
aptive computation offloading from mobile devices
into the cloud. In 10th IEEE Int’l Symp. on
Parallel and Distributed Processing with Applic-
ations (ISPA’12), Leganes, Madrid, Spain, July
10–13, 2012, pages 784–791. IEEE, 2012. doi:
10.1109/ISPA.2012.115.

9 Zhiyuan Li, Cheng Wang, and Rong Xu. Com-
putation offloading to save energy on handheld
devices: a partition scheme. In 2001 Int’l Conf.
on Compilers, Architecture, and Synthesis for Em-
bedded Systems (CASES’01), pages 238–246, 2001.
URL: http://portal.acm.org/citation.cfm?id=
502217.502257.

10 Zhiyuan Li, Cheng Wang, and Rong Xu. Task al-
location for distributed multimedia processing on
wirelessly networked handheld devices. In 16th
Int’l Parallel and Distributed Processing Symp.
(IPDPS’02), 15–19 April 2002, Fort Lauderdale,
FL, USA, CD-ROM/Abstracts Proceedings. IEEE
Computer Society, 2002. doi:10.1109/IPDPS.2002.
1015589.

11 David G. Lowe. Object recognition from local
scale-invariant features. In Int’l Conf. on Com-
puter Vision (ICCV’99), Vol. 2, pages 1150–1157,
1999. URL: http://dl.acm.org/citation.cfm?
id=850924.851523.

12 Yamini Nimmagadda, Karthik Kumar, Yung-
Hsiang Lu, and C. S. George Lee. Real-time mov-
ing object recognition and tracking using computa-
tion offloading. In 2010 IEEE/RSJ Int’l Conf. on
Intelligent Robots and Systems (IROS’10), Octo-
ber 18–22, 2010, Taipei, Taiwan, pages 2449–2455.
IEEE, 2010. doi:10.1109/IROS.2010.5650303.

13 Massimo Piccardi. Background subtraction tech-
niques: a review. In 2004 IEEE Int’l Conf. on
Systems, Man & Cybernetics (ICSMC’04), The
Hague, Netherlands, 10–13 October 2004, pages
3099–3104. IEEE, 2004. doi:10.1109/ICSMC.2004.
1400815.

14 Marco Spuri and Giorgio C. Buttazzo. Efficient
aperiodic service under earliest deadline schedul-
ing. In 15th IEEE Real-Time Systems Symp.
(RTSS’94), San Juan, Puerto Rico, December 7–

http://www.oreilly.de/catalog/9780596516130/index.html
http://www.oreilly.de/catalog/9780596516130/index.html
http://www.springer.com/978-1-4614-0675-4
http://www.springer.com/978-1-4614-0675-4
http://dx.doi.org/10.1109/ETFA.2011.6059236
http://www.imageprocessingplace.com/
http://www.imageprocessingplace.com/
http://dx.doi.org/10.1109/ISCAS.2009.5118095
http://dx.doi.org/10.1109/ISCAS.2009.5118095
http://www.ifr.org/service-robots/statistics/
http://www.ifr.org/service-robots/statistics/
http://dx.doi.org/10.1109/ISPA.2012.115
http://dx.doi.org/10.1109/ISPA.2012.115
http://portal.acm.org/citation.cfm?id=502217.502257
http://portal.acm.org/citation.cfm?id=502217.502257
http://dx.doi.org/10.1109/IPDPS.2002.1015589
http://dx.doi.org/10.1109/IPDPS.2002.1015589
http://dl.acm.org/citation.cfm?id=850924.851523
http://dl.acm.org/citation.cfm?id=850924.851523
http://dx.doi.org/10.1109/IROS.2010.5650303
http://dx.doi.org/10.1109/ICSMC.2004.1400815
http://dx.doi.org/10.1109/ICSMC.2004.1400815

A. Toma and J. Chen 02:21

9, 1994, pages 2–11. IEEE Computer Society, 1994.
doi:10.1109/REAL.1994.342735.

15 Marco Spuri and Giorgio C. Buttazzo. Schedul-
ing aperiodic tasks in dynamic priority systems.
Real-Time Systems, 10(2):179–210, 1996. doi:
10.1007/BF00360340.

16 Richard Wolski, Selim Gurun, Chandra Krintz,
and Daniel Nurmi. Using bandwidth data to make
computation offloading decisions. In 22nd IEEE
Int’l Symp. on Parallel and Distributed Processing

(IPDPS’08), Miami, Florida USA, April 14–18,
2008, pages 1–8. IEEE, 2008. doi:10.1109/IPDPS.
2008.4536215.

17 Changjiu Xian, Yung-Hsiang Lu, and Zhiyuan
Li. Adaptive computation offloading for energy
conservation on battery-powered systems. In
13th Int’l Conf. on Parallel and Distributed Sys-
tems (ICPADS’07), December 5–7, 2007, Hsinchu,
Taiwan, pages 1–8. IEEE Computer Society, 2007.
doi:10.1109/ICPADS.2007.4447724.

LITES

http://dx.doi.org/10.1109/REAL.1994.342735
http://dx.doi.org/10.1007/BF00360340
http://dx.doi.org/10.1007/BF00360340
http://dx.doi.org/10.1109/IPDPS.2008.4536215
http://dx.doi.org/10.1109/IPDPS.2008.4536215
http://dx.doi.org/10.1109/ICPADS.2007.4447724

	Introduction
	Related Work
	System Model
	Client Side
	Server Side
	Calculating the Value of Ii
	Problem Definition

	Greedy Minimum Finishing Algorithm
	Hardness of the SERTO Problem
	Algorithms for Tasks without Specified Ordering
	Dynamic Real-time Scheduling Algorithm
	Approximation for DRS Algorithm
	Maximizing the Sampling Rate

	Experimental Results
	Case Study of a Surveillance System
	Simulation Setup and Results

	Conclusion

