
Implementing Mixed-criticality Systems Upon a
Preemptive Varying-speed Processor
Zhishan Guo and Sanjoy K. Baruah

University of North Carolina, Chapel Hill, NC, USA, {zsguo,baruah}@cs.unc.edu

Abstract
A mixed criticality (MC) workload consists of com-
ponents of varying degrees of importance (or “crit-
icalities”); the more critical components typically
need to have their correctness validated to greater
levels of assurance than the less critical ones. The
problem of executing such a MC workload upon
a preemptive processor whose effective speed may
vary during run-time, in a manner that is not com-
pletely known prior to run-time, is considered.

Such a processor is modeled as being character-
ized by several execution speeds: a normal speed
and several levels of degraded speed. Under normal
circumstances it will execute at or above its normal
speed; conditions during run-time may cause it to

execute slower. It is desired that all components of
the MC workload execute correctly under normal
circumstances. If the processor speed degrades, it
should nevertheless remain the case that the more
critical components execute correctly (although the
less critical ones need not do so).

In this work, we derive an optimal algorithm
for scheduling MC workloads upon such platforms;
achieving optimality does not require that the pro-
cessor be able to monitor its own run-time speed.
For the sub-case of the general problem where there
are only two criticality levels defined, we addition-
ally provide an implementation that is asymptoti-
cally optimal in terms of run-time efficiency.

2012 ACM Subject Classification Real-Time Schedulability
Keywords and phrases Mixed criticalities, varying-speed processor, preemptive uniprocessor scheduling
Digital Object Identifier 10.4230/LITES-v001-i002-a003
Received 2014-04-23 Accepted 2014-08-26 Published 2014-11-17

Editor Neil Audsley

1 Introduction

As stated in the title, this paper is concerned with the implementation of mixed-criticality systems
upon varying-speed processors. We start out by explaining these terms.

Varying-speed CPUs. Due to cost and related considerations, there is an increasing trend in
embedded computing towards implementing safety-critical systems upon commercially available
general-purpose processors (commonly known as commercial off-the-shelf or COTS processors).
The special-purpose processors previously used in implementing safety-critical systems were
designed to be highly predictable in the sense that tight bounds on the run-time behavior of a
system could be a priori determined during system design time itself. However, such design-time
predictability is difficult to achieve with COTS processors that are typically engineered to provide
good average-case performance rather than worst-case guarantees. Such design-time predictability
is nevertheless essential for safety-critical functionalities whose correctness must be validated to
very high levels of assurance prior to system deployment. In this paper, we focus upon one aspect of
guaranteeing real-time performance upon COTS processors despite their inherent unpredictability:
worst-case execution time (WCET).

The WCET abstraction plays a central role in the analysis of real-time systems. For a specific
piece of code and a particular platform upon which this code is to execute, the WCET of the code
denotes (an upper bound on) the amount of time the code takes to execute upon the platform.

© Zhishan Guo and Sanjoy K. Baruah;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 1, Issue 2, Article No. 3, pp. 03:1–03:19
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v001-i002-a003
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de


03:2 Implementing Mixed-criticality Systems Upon a Preemptive Varying-speed Processor

Determining the exact WCET of an arbitrary piece of code is provably an undecidable problem.
Devising analytical techniques for obtaining tight upper bounds on WCET is currently a very
active area of research, and sophisticated tools incorporating the latest results of such research
have been developed (see [16] for an excellent survey). WCET tools require that some assumptions
be made about the run-time behavior of the processor upon which the code is to execute; for
example, the clock speed of the processor during run-time must be known in order to be able to
determine the rate at which instructions will execute. However, conditions during run-time, such
as changes to the ambient temperature, the supply voltage, etc., may result in variations in the
clock speed. For instance, a system may be designed to have its CPU clock speed(s) reduced
into a certain value temporarily whenever it is detected that core temperature gets higher than a
threshold. Such variation is likely to be further exacerbated in the future, with the increasing
trend in computer architecture towards Globally Asynchronous Locally Synchronous, or GALS,
circuit designs. In order to be able to guarantee that the values they compute are correct under
all run-time conditions, a WCET tool must make the most pessimistic assumptions regarding
clock speed: that during run-time the clock speed takes on the lowest possible value. If this lowest
possible value is highly unlikely to be reached in practice during actual runs, then a significant
under-utilization of the CPU’s computing capacity will be observed during run-time.

Mixed-criticality Systems. In safety-critical hard-real-time systems, there is little that can be
done about such under-utilization of platform resources. But as stated above, another increasing
trend in embedded computing is the move towards mixed-criticality (MC) systems, in which
functionalities of different degrees of importance or criticalities are implemented upon a common
platform. As a consequence the real-time systems research community has recently devoted much
attention to better understanding the challenges that arise in implementing such MC systems
(see [5] for a review of some of this work). The typical approach has been to validate the correctness
of highly critical functionalities under more pessimistic assumptions than the assumptions used
in validating the correctness of less critical functionalities. For instance, a piece of code may be
characterized by a larger WCET in the more pessimistic analysis and a smaller WCET in the
“normal” (less pessimistic) analysis [15]. All the functionalities are expected to be demonstrated
correct under the normal analysis, whereas the analysis under the more pessimistic assumptions
need only demonstrate the correctness of the more critical functionalities.

The results reported in this paper fall within the same framework as this prior work. However,
rather than considering variations in estimating WCET, we assume that each piece of code
is characterized by a single WCET, and focus instead on the variations in run-time speed of
the processing platform. As in earlier work, the mixed-criticality nature of the system that is
considered in this paper is reflected in the fact that while we would like all functionalities to
execute correctly under normal circumstances, it is essential that the more critical functionalities
execute correctly even under pathological conditions which, while extremely unlikely to occur in
practice, cannot be entirely ruled out. To express this formally, we model the workload of a MC
system as being comprised of a collection of real-time jobs – these jobs may be independent, or
they may be generated by recurrent tasks. Each job is characterized by a release date, a (single)
WCET, a deadline, and a criticality level ∈ {1, 2, . . . ,m} expressing its degree of importance,
with larger values denoting greater importance. We desire to schedule the system upon a single
preemptive processor. This processor is a varying-speed one that is characterized by a sequence of
m speeds 1 = s1 > s2 > . . . > sm. The run-time behavior of this processor is as follows: while
under normal circumstances it completes at least one unit of execution during each time unit
(equivalently, it executes as a speed-1, or faster, processor), its speed may degrade to lower values
during run-time. The precise manner in which the speed will vary during run-time is not a priori



Z. Guo and S. K. Baruah 03:3

known. We seek a scheduling strategy that for all l, 1 ≤ l ≤ m guarantees to correctly execute
all those jobs that have criticality ≥ l, provided the processor speed never falls below sl during
run-time.

The following example illustrates this model.

I Example 1. Consider the following collection of two jobs, to be scheduled on a preemptive
processor with specified speeds s1 = 1 and s2 = 1

2 :

Job Criticality Release date WCET Deadline
J1 lo 0 3 5
J2 hi 1 4 10

An Earliest Deadline First (EDF) [12] schedule for this system prioritizes J1 over J2. This
is fine if the processor does not degrade: J1 executes over the interval [0, 3) and J2 over [3, 7),
thereby resulting in both deadlines being met.

Now suppose that the processor were to degrade at some instant within the time-interval [0, 10]:
a correct scheduling strategy should execute the hi-criticality job J2 to complete by its deadline
(although it may fail to execute J1 correctly). But consider the scenario where the processor
degrades to some speed s′ < 4

7 , or ≈ 0.55) starting at time-instant 3: in the EDF schedule J2
would obtain merely (10− 3)× s′ < 4 units of execution prior to its deadline at time-instant 10.
We therefore conclude that EDF does not schedule this system correctly.

An alternative scheduling strategy could instead execute jobs as follows on a normal (speed-1)
processor: J1 over the interval [0, 1); J2 over [1, 3); J1 again, over [3, 5); and finally J2 over [5, 7):

-

0 1 2 3 4 5 6 7 8 9 10

J1’s d’line

?

J2’s d’line

?
J1

J2 J1
J2

If the processor degrades to a speed < 1 at any instant during this execution then the processor
immediately switches to executing J2 until it completes.

It may be verified that this scheduling strategy will result in J2 completing by its deadline
regardless of when (if at all) the processor degrades to any speed ≥ 1

2 , and in both deadlines being
met if the processor remains normal (or degrades at any instant ≥ 5).

Contributions and Organization. As mixed-criticality (MC) systems increasingly come to be
implemented upon commodity processors, we believe it imperative that real-time scheduling
theory provide an understanding of how to implement these systems to meet the twin goals of
providing correctness guarantees at high levels of assurance to the more critical functionalities
while simultaneously making efficient use of platform resources. As discussed above, commodity
processors tend to execute at varying speeds as ambient conditions change; in order to make
correctness guarantees at very high levels of assurance upon such varying-speed processors, it
may be necessary to consider the possibility that the processor is executing at a very low speed.
In this paper, we seek to define a formal framework for the scheduling-based analysis of MC
systems that execute upon CPUs which may be modeled as varying-speed processors. To this
end, in Section 2 we describe a very simple model for representing MC systems. In Section 3
we propose, analyze, and evaluate an algorithm for the preemptive uniprocessor scheduling of
MC systems that can be represented using this model. In Section 4 we consider the special case
where there are only two criticality levels (such MC systems have been called dual-criticality

LITES



03:4 Implementing Mixed-criticality Systems Upon a Preemptive Varying-speed Processor

systems in the literature), and provide a more efficient algorithm for this restricted case. In
Section 5, we discuss the computational complexity of the problem when preemption is forbidden.
In Section 6, recurrent tasks are considered and a scheduling strategy is provided when unbounded
preemption is permitted. We conclude in Section 7 by placing this work within the larger context
of mixed-criticality scheduling, and briefly enumerate some important and interesting directions
for further research.

Relationship to Prior Work. The years since Vestal’s seminal paper in 2007 [15] have seen a
large amount of research in mixed-criticality scheduling. Much of this research considers a model
in which each job is characterized by multiple WCETs. The results from this prior research can
be directly applied to our problem, in the following manner. Consider a job in our setting that
has WCET c and is being scheduled on a varying-speed processor with normal speed s1 = 1 and
degraded speeds s2, . . . , sm. This job may be represented in the multiple-WCET model as a job
with a normal WCET of c and more pessimistic WCETs of c/s2, . . . , c/sm; if all jobs execute for no
more than their normal WCETs then all jobs should execute correctly, while if some jobs execute
beyond their normal WCETs then only some of the jobs (those with criticality levels exceeding a
particular value) are required to execute correctly. It is not difficult to show that the algorithms
proposed in prior work for scheduling MC systems with multiple WCET specifications can be used
to schedule this transformed system, and that the resulting scheduling strategy correctly schedules
our (original) system upon the varying-speed processor. Hence, all the problems considered in
this paper could in principle be solved by simply transforming to the earlier, multiple-WCET,
model, and applying the previously-proposed solution techniques.

However, in [2] we showed that one can sometimes do better than such an approach. This was
observed to be because the problem we are considering here, of MC scheduling on varying-speed
processors, is simpler (from a computational complexity perspective) than the previously-considered
problem of MC scheduling with multiple-WCETs specified. For instance, whereas determining
preemptive uniprocessor feasibility for a collection of independent MC jobs specified according to
the multiple-WCET model is known [3] to be NP-hard in the strong sense, in Section 3 we will
present an optimal polynomial-time algorithm for solving the same problem in our model. For the
case of dual-criticality systems of implicit-deadline sporadic tasks on preemptive uniprocessors, a
speedup lower bound of 4/3 had been established [4] for the multiple-WCETs model, whereas [2]
had provided an optimal (speedup-1) algorithm.

This paper extends our recent work [2] in several significant directions. First (as stated above),
the results in [2] were only shown to hold for mixed-criticality systems that are implemented upon
varying-speed processors for which just two speeds are specified; this paper extends these results
to be applicable to mixed-criticality systems implemented upon varying-speed processors with an
arbitrary number of speeds specified. Second, [2] had derived a linear-programming (LP) approach
to solving the problem in the two-level case (thereby establishing that the problem could be solved
in polynomial time). In this paper, we derive an altogether different algorithm for solving the
two-speed case, that has a worst-case run-time of O(n logn) where n is the number of jobs in the
instance; this is more efficient than the earlier LP-based approach. And finally, the concept of
self-monitoring by processors was introduced [8] as a means of distinguishing between processors
that do or do not “know” at each instant during run-time, what their precise speeds are. While
the algorithms derived in [2] assume that the processor possesses the self-monitoring property, the
algorithms we derive here do not require this property to hold.

A Note. Although we have chosen to model the problem in terms of real-time jobs executing on
varying-speed processors, the model (and our results) are also applicable to the transmission of



Z. Guo and S. K. Baruah 03:5

time-sensitive data on potentially bandwidth-varying communication media. Specifically, they
are particularly relevant to data-communication problems in which time-sensitive data and data-
streams must be transmitted over communications media which can provide a high bandwidth
under most circumstances but can only guarantee some lower bandwidths: the high bandwidth
would correspond to the normal processor speed, and the lower bandwidths to the degraded
speeds. We therefore believe that this work is relevant to problems of factory communication,
communication within automobiles or aircraft, wireless sensor networks, etc., in addition to
processor scheduling of mixed-criticality workloads.

2 Model

We start out considering mixed-criticality systems that can be modeled as collections of independent
jobs; a model for recurrent tasks is considered in Section 6. In our model, a mixed-criticality
real-time workload consists of basic units of work known as mixed-criticality jobs. Each mixed-
criticality (MC) job Ji is characterized by a 4-tuple of parameters: a release date ai, a WCET
ci, a deadline di, and a criticality level χi ∈ {1, 2, . . . ,m}. Note that this WCET ci is measured
based upon some constant unit-speed processor – a job with WCET of ci may require a period of
length ci/s when executing on a speed-s processor.

Let t1, t2, . . . , tk+1 denote the at most 2n distinct values for the release date and deadline
parameters of the n jobs, in increasing order (i. e., tj < tj+1 for all j). These release dates and
deadlines partition the time-interval

[
mini{ai},maxi{di}

)
into k intervals, which we will denote

as I1, I2, . . . , Ik, with Ij denoting the interval [tj , tj+1).
A mixed-criticality instance I is specified by specifying
a finite collection of MC jobs J = {J1, J2, . . . , Jn}, and
a varying-speed processor that is characterized by a normal speed s1 (without loss of generality,
assumed to be 1) and some specified degraded processor speeds s2, . . . , sm in strictly decreasing
order; i. e., sm < sm−1 < . . . < s2 < 1.

The interpretation is that the jobs in J are to execute on a single shared processor that has m
modes: a normal mode and (m− 1) degraded modes. In the normal mode, the processor executes
as a unit-speed processor and hence completes one unit of execution per unit time, whereas in
degraded mode l it completes fewer than sl−1, but at least sl, units of execution per unit time, for
l = 2, . . . ,m.

The processor starts out executing at its normal speed. It is not a priori known when, if at
all, the processor will degrade: this information only becomes revealed during run-time when the
processor actually begins executing at a slower speed. We seek to determine a correct scheduling
strategy, which is formally defined as follows:

I Definition 2 (Correct Scheduling Strategy). A scheduling strategy for MC instances is correct if it
possesses the property that upon scheduling any MC instance I = (J = {J1, J2, . . . , Jn}, s1, . . . , sm),
each job Ji completes by its deadline if the processor executes at speeds ≥ sχi

throughout its
scheduling window [ai, di).

3 A Scheduling Algorithm

In this section we present efficient strategies for scheduling preemptable mixed-criticality instances.
We start out with a general overview of our strategy. Given an instance I, prior to run-time we
will construct a scheduling table S(I) which prescribes the amounts of execution to be received by
each job during each interval. During run-time, scheduling decisions are made according to this
scheduling table. Amounts within each interval are executed in the decreasing order of criticality

LITES



03:6 Implementing Mixed-criticality Systems Upon a Preemptive Varying-speed Processor

levels (greater criticality first). A job is dropped at its deadline if it has not completed execution by
then. Note that we do not discard a job with criticality level lower than ` even when the processing
speed is detected to have fallen to some value in the range (s`+1, s`]) – such a mechanism improves
the likelihood of lower criticality jobs meeting their deadlines despite processor degradation1

In the remainder of this section we present, and prove the correctness of, a simple linear-
programming based algorithm for constructing the scheduling table S(I) optimally. By optimal,
we mean that if there is a correct scheduling strategy (Definition 2 above) for an instance I,
then the scheduling strategy described above is a correct scheduling strategy with the scheduling
table we will construct. We start out identifying the following (obvious) necessary condition for
MC-schedulability:

I Lemma 3. In order that a correct scheduling strategy exists for MC instance I = (J , s1, . . . , sm),
it is necessary that for each criticality level l = 1, . . . ,m, EDF correctly schedules all the jobs in I
with criticality level ≥ l upon a speed-sl uniprocessor.

Given any instance I, it can be efficiently determined whether I satisfies the necessary conditions
of Lemma 3: for each l, simply simulate the EDF scheduling of all the jobs in I with criticality-level
≥ l upon a speed-sl processor. In the remainder of this section, let us therefore assume that any
instance under consideration satisfies these necessary conditions. (I.e., any instance that fails
these conditions can obviously not have a correct scheduling strategy, and is therefore flagged as
being unschedulable.)

Given an MC instance I = ({J1, J2, . . . , Jn}, s1, . . . , sm) that satisfies the conditions of
Lemma 3, we now describe how to construct a linear program (LP) such that a feasible so-
lution for this linear program can be used to construct scheduling table S(I).

To construct our linear program we define n× k variables xi,j , 1 ≤ i ≤ n; 1 ≤ j ≤ k. Variable
xi,j denotes the amount of execution we will assign to job Ji in the interval Ij , in the scheduling
table that we are seeking to build.

The following n constraints specify that each job receives adequate execution in the normal
schedule: ∑

j|tj≥ai∧di≥tj+1

xi,j

 ≥ ci, for each i, 1 ≤ i ≤ n; (1)

while the following k constraints specify the capacity constraints of the intervals:(
n∑
i=1

xi,j

)
≤ s1(tj+1 − tj), for each j, 1 ≤ j ≤ k. (2)

Within each interval, jobs will be executed in the priority order of their criticality levels; i. e.,
amounts from higher criticality level jobs get executed first. (That is, the interval Ij will have a
block of level-m criticality execution of duration

∑n
i:χi=m xi,j , followed by blocks of l-criticality

execution of duration
∑
i:χi=l xi,j with l from m− 1 down to 1, in order.) It should be evident

that any scheduling table generated in this manner from xi,j values satisfying the above (n+ k)
constraints will execute all jobs to completion upon a normal (non-degraded) processor. It now
remains to write constraints for specifying the requirements with respect to degraded conditions –
that the higher-criticality jobs complete execution even in the event of the processor degrading
into corresponding modes.

1 An example of such benefit will be shown in the execution analysis (Item 2) of Example 4, where J2 with
criticality level of 2 may meet its deadline despite the processor speed falling to below s2 during [a2, d2).



Z. Guo and S. K. Baruah 03:7

Since within each interval, amounts are executed in decreasing order of criticality level, we
observe that the worst-case scenarios occur when the processing speed drops at the very beginning
of a time interval, since that would leave the minimum computing capacity. For each {p, l},
1 ≤ p ≤ k, 2 ≤ l ≤ m, we represent the possibility that the processor degrades into speed-sl mode
at the start of the interval Ip in the following manner:
(i) Suppose that the processor degrades into speed-sl mode at time-instant tp; i. e., the start of

the interval Ip. Henceforth, only jobs of criticality ≥ l must be fully executed in order to
meet their deadlines.

(ii) Hence for each tq ∈ {tp+1, tp+2, · · · , tk+1}, constraints must be introduced to ensure that the
cumulative remaining execution requirement of all jobs of criticality ≥ l with deadline at or
prior to tq can complete execution by tq on a speed-sl processor.

(iii) This is ensured by writing a constraint ∑
i|(χi≥l)∧(di≤tq)

q−1∑
j=p

xi,j

 ≤ sl(tq − tp). (3)

Note that for any job Ji with di ≤ tq,
(∑q−1

j=p xi,j
)
represents the remaining execution

requirement of job Ji at time-instant tp. The outer summation on the left-hand side is simply
summing this remaining execution requirement over all the jobs of criticality ≥ l that have
deadlines at or prior to tq.

(iv) A moment’s thought should convince the reader that rather than considering all tq’s in
{tp+1, tp+2, · · · , tk+1} as stated in (2) above, it suffices to only consider those that are
deadlines for some job of criticality ≥ l.

(v) The Constraints (3) above only prevent missing deadlines after tp when the (degraded)
processor is continually busy over the interval between tp and the missed deadline; what
about deadline misses when the processor is not continually busy over this interval (and
the right-hand side of the inequality of Constraints (3) therefore does not reflect the actual
amount of execution received)? We point out that for such a deadline miss to occur, it must
be the case that there is a subset of jobs of criticality ≥ l – those with release dates and
deadlines between the last idle instant prior to the deadline miss and the deadline miss itself
– that miss their deadlines on a speed-sl processor. But this would contradict our assumption
that the instance passes the necessary conditions of Lemma 3, i. e., all the jobs of criticality
≥ l together (and therefore, every subset of these jobs) execute successfully on a speed-sl
processor.

The entire linear program is listed in Figure 1, and the steps of our LP-based table-driven
mixed-criticality scheduling approach, titled Algorithm tdmc-LP, is described in Figure 2.

It is evident that during run-time Algorithm tdmc-LP is performing a typical interval-by-
interval execution – unless idleness is detected, no amount of execution that is assigned in later
intervals can be “promoted” (executed in an earlier interval).

Note that due to processor degradation, it is possible that some amounts of execution that
were assigned to an interval may not have completed by the end of the interval. In such a case,
we do not simply drop these execution amounts, but pass them over into the subsequent interval.
The reason for this additional modification during run time is that Constraints (3) only provide
guarantees as to the total amount of execution provided for each job until its deadline. This can
be done by adding the unfinished part of the amounts into the corresponding rows in the column
of the scheduling table at the end of each interval (as described in Step 2b)2. The rationale behind
such maintenance during run-time will also be shown in Example 4.

2 Note that here Ex(i, j) does not denote the total execution time of job Ji within Interval Ij – the processing
speed during run-time needs to be considered as well.

LITES



03:8 Implementing Mixed-criticality Systems Upon a Preemptive Varying-speed Processor

Given: MC instance ({J1, J2, . . . , Jn}, s1, . . . , sm), with job release-dates and deadlines partition-
ing the time-line over [mini{ai},maxi{di}) into the k intervals I1, I2, . . . , Ik.
Determine values for the xij variables, i = 1, . . . , n, j = 1, . . . , k satisfying the following con-
straints:

For each i, 1 ≤ i ≤ n, ∑
j|tj≥ai∧di≥tj+1

xi,j

 ≥ ci. (1)

For each j, 1 ≤ j ≤ k,(
n∑
i=1

xi,j

)
≤ s1(tj+1 − tj). (2)

For each p, 1 ≤ p ≤ k, for each l, 2 ≤ l ≤ m, and for each q, p < q ≤ (k + 1) ∑
i|(χi≥l)∧(di≤tq)

q−1∑
j=p

xi,j

 ≤ sl(tq − tp). (3)

Figure 1 Linear program for constructing the scheduling table.

Given: J = ∪ni=1{Ji} to be scheduled on a varying-speed processor with speed thresholds
s1, . . . , sm.

Construct the scheduling table S according to Figure 1, with xi,j denoting the amount of
execution assigned to job Ji during the interval Ij , for each pair (i, j).
For each interval Ij , j = 1 up to k:
1. Higher-criticality execution is performed before lower-criticality ones within each interval,

while amounts with the same criticality level may be executed in any order.
2. At the end of the interval; i. e., at time t = tj

a. If tj is some unfinished job’s deadline, then the job is dropped; this is indicated by
setting xi,j ← −1 ∀i for which di = tj .

b. Other unfinished executions (if any) need to be carried over into the next interval; i. e.,
∀i such that di > tj , xi,j+1 ← xi,j+1 +xi,j−Ex(i, j), where Ex(i, j) denotes the amount
of execution that job Ji received within Interval Ij .

3. Whenever an idleness is detected, we may execute the (released) jobs with amounts assigned
to later interval(s) in the same priority order described in Step 1.

Figure 2 Basic steps of the proposed scheduling algorithm tdmc-LP.



Z. Guo and S. K. Baruah 03:9

Ji ai ci di χi

J1 0 3 5 1
J2 2 1 5 2
J3 0 c3 d3 3

(a)

-

-

-

0 1 2 3 4 5 d3

J1

J2

J3

6 ?

6 ?

6 ?

(b)

-
0 1 2 3 4 5 6 7 8 9 10 11

I1 I2 I3

J3
J1 J2

J1 J3

(c)

Figure 3 Illustrating Example 4. The jobs are listed in (a), and depicted graphically in (b). The
scheduling table that is constructed is depicted in (c).

(We also point out that the execution order when an idleness is detected, as described in
Step 3, represents an optimization in run-time behavior that has nothing to do with correctness –
the proof of Theorem 5 will go through even if the processor is left idled until the end of such an
interval.)

Before proving its correctness and optimality, we first illustrate the operation of Algo-
rithm tdmc-LP by means of a simple example.

I Example 4. We will consider a MC instance I consisting of three jobs with parameters as
depicted in Figure 3(a), with c3’s value left unspecified for now, and d3 assumed to be larger
than 5.

The release dates and deadlines of these three jobs define three intervals: I1 = [0, 3); I2 = [3, 5);
I3 = [5, d3), as illustrated in Figure 3(b).

Since there are three jobs in I (n = 3), Constraints (1) of the LP will be instantiated to
the following three inequalities, specifying that all three jobs receive adequate execution in the
scheduling table S(I) to execute correctly on a normal (non-degraded) processor:

x11 + x12 ≥ 3;
x22 ≥ 1;

x31 + x32 + x33 ≥ c3.

There are also three intervals I1, I2, and I3. Constraints 2 of the LP will therefore yield the
following three inequalities, specifying that the capacity constraints of the intervals are met:

x11 + x21 + x31 ≤ 2;
x12 + x22 + x32 ≤ 3;
x13 + x23 + x33 ≤ d3 − 5.

LITES



03:10 Implementing Mixed-criticality Systems Upon a Preemptive Varying-speed Processor

It remains to instantiate the Constraints (3), that were introduced to ensure correct behavior in
the event of processor degradation. In this example there are three criticality levels, and thus
a need to consider degradation cases of both speed-s2 and speed-s3. These must be separately
instantiated to model the possibility of the processor degrading at the start of each of the three
intervals I1, I2 and I3. We consider these separately:

Degradation at the start of I1. In this case, Constraints (3) is instantiated three times:
speed-s2 for tm = 5, and both speed-s2 and speed-s3 for tm = d3:

x21 + x22 ≤ (5− 0) s2;(
x21 + x22 + x23

)
+
(
x31 + x32 + x33

)
≤ (d3 − 0) s2;

x31 + x32 + x33 ≤ (d3 − 0) s3.

Degradation at the start of I2. This case is similar as the above one that Constraints (3) is
instantiated once for tm = 5 and twice for tm = d3:

x22 ≤ (5− 2) s2;(
x22 + x23

)
+
(
x32 + x33

)
≤ (d3 − 2) s2;

x32 + x33 ≤ (d3 − 2) s3.

Degradation at the start of I3. In this case, Constraints (3) is instantiated twice, for tm = d3
with speeds s2 and s3:

x33 ≤ (d3 − 5) s2;
x33 ≤ (d3 − 5) s3.

(Note that there are nine variables and fourteen constraints in this particular example.)

Continuing with this example, suppose that c3 and d3 are 3 and 11 respectively, with degraded
speeds s2 = 1/2 and s3 = 1/3. A possible solution to the LP would assign the xij variables the
following values: x11 x12 x13

x21 x22 x23
x31 x32 x33

 =

 1 2 0
0 1 0
1 0 2

 .
As a consequence, the scheduling table would be as depicted in Figure 3(c).

We can see that this scheduling table yields a correct scheduling strategy: observe that there
are three contiguous blocks of execution of criticality-level 2 or greater: [0, 1), [2, 3), and [5, 7),
and consider the possibility of the processor degrading during each:

If the processor degrades to speed-s2 during [0, 2), then J3 will execute over [0, 2) and [5, 9),
while J2 can execute over [2, 4). Both jobs of criticality ≥ 2 would thus meet their deadlines
on the speed-1/2 processor. J1 is executed over [4, 5) and dropped at t = 5.
If the processor degrades to speed-s3 during [0, 2), then for the first interval [0, 2), J3 will be
executed. However the assigned amount x31 = 1 may not be finished in case the processor
degrades early, say at t = 0. As a result, the scheduling table needs to be updated at time
t = 2 according to Step 2b in Figure 2: x32 ← (0 + 1− 2/3), or 1/3. J3 will therefore get to
execute over [2, 3) and [5, 11), and meet its deadline, on the speed-1/3 processor. Time interval
[3, 5) will be used to execute J2, and both J1 and J2 will be dropped at time t = 5 in the
worst case, leaving x12 and x22 the value of −1 for reference. In case the processor degrades to
speed-s3 late, say at t = 0.5 (while remaining at unit-speed beforehand), the assigned amount
x31 = 1 can be finished upon t = 2, and thus although under a slowest speed condition, J2
may finish on time be executing over [2, 5).



Z. Guo and S. K. Baruah 03:11

If the processor degrades to a speed of either s2 or s3 during [2, 5), then J2 would execute prior
to J1 within this interval and gets finished on time. Job J3 will not continue its execution until
t = 5 since x32 = 0 – it only needs two additional units of execution which will be obtained by
executing over the third interval [5, 9).
If the processor degrades to speed-s2 (or s3) during [5, 7), J3 will still meet its deadline since
it has completed one unit of execution prior to the processor degradation – it needs two more
units, which will be obtained by executing over [5, 9) (or [5, 11)) on the speed-1/2 (or 1/3)
processor.

We thus see that the solution of the LP does indeed yield a feasible scheduling strategy according
to the proposed run time strategies in tdmc-LP. J

Observe that Algorithm tdmc-LP is performing “best-effort execution” – it only discards a
job if it has not completed by its deadline, and not merely because a processor degradation is
detected. We now formally show that it is guaranteed that the assigned execution amounts with
criticality level no lower than ` will nevertheless get executed so long as processing speed remains
at least as large as s` (as required under the correctness definition).

I Theorem 5. Algorithm tdmc-LP is correct.

Proof. The proof is by contradiction. Assume that some job Ji with criticality level χi has not
completed by its deadline di = tq (at the end of Interval Iq−1), while the processor remains at (or
above) a speed of sχi over the interval [ai, di).

From constraints (3), we know that total assigned amounts of execution with criticality level
no lower than χi for intervals that lie within [ai, di) cannot exceed sχi

× (di − ai). Given the fact
that no amount with lower criticality level(s) can be executed within the interval [ai, di) (since
else Ji would have been assigned and executed during the execution of lower criticality amounts),
there must be some “carry-in” amounts of execution with criticality level no lower than χi due
to Step 2b. Let tp denote the end of the last interval (before ai) with either idleness or some
execution of amounts with criticality level lower than χi (so that no amount assigned before tp
with criticality level ≥ χi can be “carried-in”). It is now evident that Constraints (3) must be
violated for Interval [tp, tq) under speed sχi

. J

I Theorem 6. Algorithm tdmc-LP is optimal – whenever it fails to maintain correctness, no
other algorithm can.

Proof. From Theorem 5, Algorithm tdmc-LP fails only when there is no feasible solution to the
LP described in Figure 1. Since the three set of constraints are all necessary ones according to
Lemma 3, violations of any of them indicates that the given instance is not schedulable under
some circumstances (e. g., speed performances during run-time). Thus no other algorithm can
maintain correctness as well. J

Bounding the Size of This LP. It is not difficult to show that the LP of Figure 1 is of size
polynomial in the number of jobs n in MC instance I as well as the number of criticality levels m:

The number of intervals k is at most 2n− 1. Hence the number of xi,j variables is O(n2).
There are n constraints of the form (1), and k constraints of the form (2). The number of
constraints of the form (3) can be bounded from above by (nkm), since for each p ∈ {1, . . . , k},
there can be no more than n tq’s corresponding to deadlines of jobs. Since k ≤ (2n− 1), it
follows that the number of constraints is O(n) +O(n) +O(n2m), which is O(n2m).

Since it is known [10, 9] that a linear program can be solved in time polynomial in its representation,
it follows that our algorithm for generating the scheduling tables for a given MC instance I takes
time polynomial in the representation of I.

LITES



03:12 Implementing Mixed-criticality Systems Upon a Preemptive Varying-speed Processor

4 The Two-criticality-level Case

In this section, we revisit the same restricted version of the problem that was addressed in [2],
and derive a more efficient algorithm for solving it. That is, we consider dual-criticality systems
executing on a variable-speed processor characterized by just two speeds: a normal speed (assumed
as 1) and a degraded speed (designated as s, with s < 1). We use the standard designations of lo
and hi to denote the lower and higher criticality levels respectively. We propose an alternative
method to the Linear Programming approach presented in [2] (and extended for > 2 levels
in Section 3 above) for constructing the scheduling table, and show that this new method is
computationally very efficient.

At a high level, our algorithm is organized in a manner similar to the one described in Section 3:
Given a dual-criticality MC instance I, we will first construct a scheduling table S(I), and then
make run-time job-dispatch decisions in a manner that is compliant with this scheduling table.

To construct the scheduling table, we first identify (Step 1 below) the latest time intervals
during which the hi-criticality jobs must execute if they are to complete execution on a degraded
processor; having identified these intervals, we construct (in Step 2) an EDF schedule for the
hi-criticality jobs in these intervals.

Step 1. Considering only the hi-criticality jobs in the instance, determine the intervals during
which the jobs would execute upon a speed-s processor, if
1. each job executes for its hi-criticality WCET,
2. execution occurs as late as possible.

It is evident that these intervals may be determined by considering the jobs in non-increasing
order of their deadlines (i. e., latest deadline first), and taking the cumulative execution requirements
of these jobs. These intervals may therefore be determined in O(nhi lognhi) time (which comes
from the time complexity of EDF), where nhi denotes the number of hi-criticality jobs.

Step 2. Construct an EDF schedule for the hi-criticality jobs upon a preemptive processor that
has speed s during the intervals determined in Step 1 above, and speed zero elsewhere.

It follows from the optimality property3 of EDF that if this step fails to ensure that each
hi-criticality job receives adequate execution prior to its deadline, then no scheduling algorithm
can guarantee correctness (see Definition 2) for this instance. We would therefore report failure:
this MC instance is not feasible. The remainder of this section assumes that Step 2 above was
successful in completing each hi-criticality job prior to its deadline.

We now describe how to use this EDF schedule to construct the scheduling table – recall
that this scheduling table is used for job dispatch decisions upon both the normal and degraded
processor, and is therefore constructed assuming a normal-speed (i. e., speed-1) processor.

Step 3. To construct the scheduling table, partition the time-line over [mini{ai},maxi{di}] into
the k intervals I1, I2, . . . , Ik. (Recall, from Section 2, that these are the intervals defined by the
release dates and deadlines of all the jobs – lo-criticality and hi-criticality.)
3.1 For each hi-criticality job Ji and each interval I` in which it is scheduled in the EDF schedule

constructed in Step 2 above, execute Ji within this interval for an amount xi` which equals

3 Although the optimality proof of EDF in [12], which is based on a swapping argument, assumes that the
processor speed remains constant, it is trivial to extend the proof to apply to processors that are only available
during limited intervals, or indeed to arbitrary varying-speed processors.



Z. Guo and S. K. Baruah 03:13

Ji ai ci di χi

J1 1 2 10 hi
J2 5 1 8 hi
J3 6 2 15 hi
J4 0 4 6 lo
J5 1 2 10 lo
J6 10 3 13 lo

Figure 4 All jobs considered in Example 7, where ai, ci, and di stands for release date, WCET, and
deadline respectively.

to the amount of execution that Ji is allocated during Interval I` in the EDF scheduled
constructed in Step 2 above.

3.2 Assign lo-criticality jobs by simulating the EDF-scheduling of the lo-criticality jobs in the
remaining capacity of the scheduling table – i. e., in the durations that are not already allocated
to the hi-criticality jobs during Step 3.1 above.

3.3 If during this EDF simulation there is any capacity left over within an interval (because the
supply of currently-active lo-criticality jobs has been exhausted), then move over hi-criticality
jobs, that had been assigned to later intervals in the scheduling table during Step 3.1 above,
into the current interval. In so doing favor earlier-deadline jobs over later-deadline ones.

Note that Step 3.3 is not necessary for correctness; rather, it is an optimization.

We illustrate this table construction process by means of the following example.

I Example 7. Consider the instance consisting of the six jobs J1–J6 shown in tabular form in
Figure 4, to be implemented upon a processor of minimum degraded speed s = 1/2.

In Step 1, we determine the intervals upon which the hi-criticality jobs J1–J3 would need to
execute if they were to complete as late as possible, upon a degraded processor (one of speed-1/2);
this is represented in the following diagram:

-
0 5 10 15

a1

6

a2

6

a3

6

d2

?

d1

?

d3

?

J1J2
J3

In Step 2, we construct an EDF schedule of thel hi-criticality jobs J1–J3 upon a speed-1/2
processor. Lettting xi,j denote the amount of execution accorded to job Ji in interval Ij , the
scheduling table S(I) looks like this:

Ij I1 = [0, 1) I2 = [1, 5) I3 = [5, 6) I4 = [6, 8) I5 = [8, 10) I6 = [10, 13) I7 = [13, 15)
J1 0 0.5 0 0.5 1 0 0
J2 0 0 0.5 0.5 0 0 0
J3 0 0 0 0 0 1 1

In Step 3, we now try to fill in this scheduling table with lo-criticality jobs, interval by
interval.

Interval I1 will be filled with the job J4.
Both J4 and J5 are in Interval I2; J4 has the earlier deadline. As a result, J4 receives 3 time
units and J5 takes the remaining 0.5 unit. Here we check that J4 has received enough execution
and meets its deadline.

LITES



03:14 Implementing Mixed-criticality Systems Upon a Preemptive Varying-speed Processor

Interval I3 has 0.5 units of execution remaining for job J5.
The remaining one time unit capacity in I4 will be used by J5. Until now the scheduling table
for hi-criticality jobs has remained unchanged from the one constructed in Step 2 (and shown
in the above table).
For the Interval I5, there is no active lo-criticality job, and the pre-allocated hi-criticality
amount x1,5 = 1 can not fill this up. In this case, we try to move later-assigned hi-criticality
amounts into this interval. Specifically, we consider the next interval I6, where x36 should be
“promoted” as x35; i. e., the one time unit that originally belongs to Interval [10, 13) will be
executed now. Note that after this step, the scheduling table for hi-criticality jobs is changed
into the following one (with bold numbers highlighting changes).
Interval I6 is now empty and can be fully assigned to job J6. Here we check that J6 has
received enough execution and meets its deadline.
Nothing happens to Interval [13, 15).

At the end of Step 3, the scheduling table for all jobs looks like this:

Ij [0, 1) [1, 5) [5, 6) [6, 8) [8, 10) [10, 13) [13, 15)
J1 0 0.5 0 0.5 1 0 0
J2 0 0 0.5 0.5 0 0 0
J3 0 0 0 0 1 0 1
J4 1 3 0 0 0 0 0
J5 0 0.5 0.5 1 0 0 0
J6 0 0 0 0 0 3 0

J

Computational Complexity. Although an individual job in an EDF schedule for an instance of n
jobs may be preempted as many as (n− 1) times, it is known (see, e. g., [6]) that the total number
of preemptions in any EDF schedule for an n-job instance cannot exceed (n− 1). In each column
of the scheduling table, there should be at least one non-zero element unless all released jobs are
finished beforehand. Each more non-zero element denotes that either a job is preempted, or a job
finishes its execution within the corresponding interval. Since the number total finishing points is
fixed as nhi + nlo, the total preemption number cannot exceed (nhi + nlo − 1), and number of
total intervals is no greater than (2nhi + 2nlo), we know that the total number of non-zero entries
in the table of Step 3 cannot exceed (4nhi + 4nlo − 1), where nhi (nlo, respectively) denotes the
number of hi-criticality (lo-criticality, resp.) jobs in the instance.

We note that standard techniques (see, e. g., [14]) for implementing EDF are known, that allow
an EDF schedule for n jobs to be constructed in O(n logn) time. Consequently, we conclude that
the EDF-schedule of Step 2 can be constructed in O(nhi lognhi) time, and the total scheduler
overhead during run-time is also bounded from above by O(n logn) where n = nhi + nlo denotes
the total number of jobs.

5 Non-preemptive Scheduling

Recall that the scheduling strategy we adopted in Section 3 above is as follows. Given an instance
I, we construct a scheduling table S(I). During run-time scheduling decisions are initially made
according to this table. If at any instant it is detected that the processor has transited to degraded
mode, the scheduling strategy is immediately switched: henceforth, only hi-criticality jobs are
executed, and these are executed according to EDF. Such a scheduling strategy requires that the
job that is executing at the instant of transition can be preempted, and hence is not applicable for



Z. Guo and S. K. Baruah 03:15

non-preemptive systems. In this section, we consider the problem of scheduling non-preemptive
mixed-criticality instances.

Non-preemptivity mandates that each job receive its execution during one contiguous interval
of time. Let us suppose that a lo-criticality job is executing when the processor experiences a
degradation in speed. We can specify two different kinds of non-preemptivity requirements:

1. This lo-criticality job does not need to complete – it may immediately be dropped.
2. This lo-criticality job cannot be preempted and discarded – it must complete execution

despite that fact that the processor has degraded and this job’s completion is not required for
correctness.

Although the first requirement – that the lo-criticality job may be dropped – may at first
glance seem to be the more reasonable one, implementation considerations may favor the second
requirement. For instance, it is possible that the lo-criticality job had been accessing some shared
resource within a critical section, and preempting and discarding it would leave the shared resource
in an unsafe state.

It has long been known [11] that the problem of scheduling a given collection of independent
jobs on a single non-preemptive processor (that does not have a degraded mode) is already
NP-hard in the strong sense [11]4. Since our mixed-criticality problem, under either interpretation
of the non-preemptivity requirements, is easily seen to be a generalization, it is also NP-hard.
In fact, although determining whether an instance of (regular, not MC) jobs that all share a
common release time can be non-preemptively scheduled on a fixed-speed processor is easily solved
in polynomial time by EDF, it turns out that even this restricted problem is NP-hard for MC
scheduling.

I Theorem 8. It is NP-hard to determine whether there is a correct scheduling strategy for
scheduling non-preemptive mixed-criticality instances in which all jobs share a common release
date.

Proof Sketch. We prove this first for the second interpretation of non-preemptivity requirements
(lo-criticality jobs that have begun execution must be executed to completion), and indicate how
to modify the proof for the first interpretation.

This proof consists of a reduction of the partitioning problem [7], which is known to be
NP-complete, to the problem of determining whether a given non-preemptive mixed-criticality
instance I can be scheduled correctly. The partitioning problem is defined as follows. Given a set
S of n positive integers y1, y2, . . . , yn summing to 2B, determine whether there is a subset of S
with elements summing to exactly B.

Given an instance S of the partitioning problem, we construct an instance of the mixed-
criticality scheduling problem I comprised of (n+ 1) jobs J1, J2, . . . , Jn+1. The parameters of the
jobs are

Ji =
{

(0, yi, 5B,hi), 1 ≤ i ≤ n;
(0, B, 2B, lo), i = n+ 1.

The normal processor speed is one; the degraded processor speed s is assigned a value equal to
half: s← 1/2.

We will show that there is a partitioning for instance S if and only if there is a correct
scheduling strategy for I.

4 Indeed, it seems that it is difficult to even obtain approximate solutions to this problem, to our knowledge,
the best polynomial-time algorithm known [1] requires a processor speedup by a factor of 12.

LITES



03:16 Implementing Mixed-criticality Systems Upon a Preemptive Varying-speed Processor

There is a Partitioning for S. Let S′ ⊆ S denote the subset summing to exactly B. We construct
our scheduling table as follows. Jobs corresponding to the elements in S′ are scheduled over the
interval [0, B), after which Jn+1 is scheduled over [B, 2B), followed by the scheduling of the jobs
corresponding to the elements in (S \ S′) over [2B, 3B).

If the processor enters degraded mode prior to time-instant B, then only the hi-criticality jobs
need to complete execution; it may be verified that they will do so by their common deadline.
If the processor enters degraded mode over [B, 2B), then Jn+1 may execute for no more than
the interval [B, 3B). That still leaves adequate capacity for the jobs corresponding to elements
in (S \ S′) to complete execution by their deadline at 5B, on the speed-0.5 processor.
Otherwise, Jn+1 completes by time-instant 2B. That leaves adequate capacity for the jobs
corresponding to elements in (S \S′) to complete execution by their deadline at 5B, regardless
of whether the processor enters degraded mode or not.

There is No Partitioning for S. In this case, consider the time-instant to at which the lo-
criticality job Jn+1 begins execution. We consider three possibilities:

If to > B, the processor remains in normal mode but Jn+1 misses its deadline at time-instant
2B.
If to = B, then the processor must have been idled for some time during [0, B). If the processor
were to now enter degraded mode at this time-instant to, job Jn+1 will execute over [B, 3B),
after which the strictly more than B units of remaining hi-criticality execution would execute –
this cannot complete by the deadline of 5B on the speed-1/2 processor.
Now suppose that that to < B, and the processor enters degraded mode at this time-instant
to. It must be the case that ≤ to units of execution of the hi-criticality jobs has occurred prior
to time-instant to. Job Jn+1 will execute over [to, to + 2B), after which the at least (2B − to)
remaining units of hi-criticality work must complete. But on the speed-1/2 processor this
would not happen prior to the time-instant

≥ to + 2B + 2(2B − to)
= 6B − to
> 5B,

which means that some hi-criticality job misses its deadline.
We have thus shown that there is a correct scheduling strategy for the non-preemptive mixed-
criticality instance I if and only if S can be partitioned into two equal subsets.

The proof above assumed the second interpretation of non-preemptivity requirements, in which
lo-criticality jobs that begin execution need to complete even if the processor degrades. For the
first interpretation of non-preemptivity requirements (lo-criticality jobs that begin execution do
not need to complete if the processor degrades while they are executing), we would modify the
proof by assigning the jobs J1, J2, . . . , Jn a deadline of 4B (rather than 5B as above). It may be
verified that this modified MC instance can be scheduled correctly if and only if the S can be
partitioned into two equal subsets. J

The intractability result of Theorem 8 above implies that in contrast to the preemptive case, we
are unlikely to be able to obtain efficient (polynomial-time) optimal scheduling strategies for non-
preemptive MC scheduling. We are currently working on devising, and evaluating, polynomial-time
approximation algorithms for the non-preemptive scheduling of mixed-criticality systems.



Z. Guo and S. K. Baruah 03:17

6 Recurrent Tasks

In Sections 3-5 above, we have considered mixed-criticality (MC) systems that can be modeled as
finite collections of jobs. However, many real-time systems are better modeled as collections of
recurrent processes that are specified using, e. g., the sporadic tasks model [12, 13]. In this section,
we briefly consider this more difficult problem of scheduling mixed-criticality systems modeled as
collections of sporadic tasks. As with traditional (i. e., non MC) real-time systems, we will model
a MC real-time system τ as being comprised of a finite specified collection of MC recurrent tasks,
each of which will generate a potentially infinite sequence of MC jobs. We restrict our attention
here to dual-criticality systems of implicit-deadline MC sporadic tasks. Each task is characterized
by a 3-tuple of parameters: τi = (Ci, Ti, χi), with the following interpretation. Task τi generates
a potentially infinite sequence of jobs, with successive jobs being released at least Ti time units
apart. Each such job has a criticality χi, a WCET Ci, and a deadline that is Ti time units after
its release. The quantity Ui = Ci/Ti is referred to as the utilization of τi. An implicit-deadline
MC sporadic task system is specified by specifying a finite number τ = {τ1, τ2, . . . , τn} of such
sporadic tasks, and the degraded processor speed s < 1 (as with MC instances of independent
jobs, it is assumed that the normal processor speed is one). Such a MC sporadic task system can
potentially generate infinitely many different MC instances (collections of jobs), each instance
being obtained by taking the union of one sequence of jobs generated by each sporadic task.

If unbounded preemption is permitted, then the scheduling problem for implicit-deadline MC
sporadic task systems on uniprocessors is easily and efficiently solved in an optimal manner. We
first derive (Theorem 9) a necessary condition for the existence of a correct scheduling strategy.
We then present a scheduling strategy, Algorithm preemptive-MC, and prove (Theorem 10) that it
is optimal.

I Theorem 9. A necessary condition for MC sporadic task system (τ, s) to be schedulable by a
non-clarivoyant correct scheduling strategy is that
1. the sum of the utilizations of all the tasks in τ is no larger than 1, and
2. the sum of the utilizations of the hi-criticality tasks in τ is no larger than s.

Proof. It is evident that the first condition is necessary in order that all jobs of all tasks in τ
complete execution by their deadlines upon a normal processor, and that the second condition
is necessary in order that all jobs of all the hi-criticality tasks in τ complete execution by their
deadlines upon a degraded (speed-s) processor. J

In order to derive a correct scheduling strategy, we first observe that using preemption we can
mimic a processor-sharing scheduling strategy, in which several jobs are simultaneously assigned
fractional amounts of execution with the constraint that the sum of the fractional allocations
should not exceed the capacity of the processor. (This is done by partitioning the time-line into
intervals of length ∆ where ∆ is an arbitrarily small positive number, and using preemption within
each such interval to ensure that each job that is assigned a fraction f of the processor capacity
gets executed for a duration f ×∆ within this interval.)

Consider now the following processor-sharing scheduling strategy:

Algorithm Preemptive-MC

1. Initially (i. e., on the normal – non-degradation – processor), assign a share Ui of the processor
to each task τi during each instant that is active.5

5 A task is defined to be active at a time-instant t if it has released a job prior to t and this job has not yet
completed execution by time t.

LITES



03:18 Implementing Mixed-criticality Systems Upon a Preemptive Varying-speed Processor

2. If the processor transits to degraded mode at any instant during run-time, immediately discard
all lo-criticality tasks and execute the hi-criticality tasks according to EDF.

I Theorem 10. Algorithm preemptive-MC is an optimal correct scheduling strategy for the
preemptive uniprocessor scheduling of MC sporadic task systems.

Proof. Let τ denote a MC implicit-deadline sporadic task system satisfying the necessary conditions
for schedulability that have been identified in Theorem 9.

It is evident that Algorithm preemptive-MC meets all deadlines if the processor operates at its
normal speed, since the processor-sharing schedule ensures that each job of each task τi receives
exactly Ci units of execution between its release date and its deadline.

Suppose that the processor degrades at some time-instant to. If we were to immediately
discard all lo-criticality tasks, the second necessary schedulability condition of Theorem 9 ensures
that there is sufficient computing capacity on the degraded processor to continue a processor-
sharing schedule in which each hi-criticality task τi with an active job receives a share Ui of the
processor. The correctness of Algorithm preemptive-MC now follows from the existence of this
processor-sharing schedule, and the optimality property of preemptive uniprocessor EDF. J

If preemption is forbidden, then scheduling of MC sporadic task systems becomes a lot more
challenging. As with the collections of independent jobs (Theorem 8), this problem, too, can be
shown to be highly intractable.

7 Context and Conclusions

Advanced processors may need to be modeled as varying-speed ones: although they are likely to
execute at unit speed (or faster) during run-time, we can only guarantee that they will execute at
lower speeds – the greater the level of assurance at which such a guarantee is sought, the lower
the speed that can be guaranteed. Upon such a processor, the scheduling objective is to ensure
that all jobs complete in a timely manner if the processor executes at its normal speed, while
simultaneously ensuring that more critical jobs complete in a timely manner even if the processor
speed falls to below this normal value.

In this paper, we have presented a formal framework for the scheduling-based analysis of MC
systems that execute upon CPUs which may be modeled as varying-speed processors. We have
defined a very simple model for representing MC systems, and have derived, and proved the
correctness of, an optimal algorithm for the preemptive uniprocessor scheduling of MC systems that
can be represented using our model. For the special case where there are only two criticality levels
(such MC systems have been called dual-criticality systems in the literature), we have provided
a more efficient scheduling algorithm. We have also cataloged the computational complexity of
the problem when preemption is forbidden, and have derived a scheduling strategy for scheduling
recurrent mixed-criticality task systems when unbounded preemption is permitted.

Acknowledgements. The research reported here was supported in part by NSF grants CNS
1016954, CNS 1115284, CNS 1218693, and CNS 1409175; and ARO grant W911NF-09-1-0535.

References
1 Nikhil Bansal, Ho-Leung Chan, Rohit Khandekar,

Kirk Pruhs, Clifford Stein, and Baruch Schieber.
Non-preemptive min-sum scheduling with resource
augmentation. In 48th Annual IEEE Symp. on
Foundations of Computer Science (FOCS’07), Oc-

tober 20–23, 2007, Providence, RI, USA, pages
614–624. IEEE Computer Society, 2007. doi:10.
1109/FOCS.2007.46.

2 Sanjoy Baruah and Zhishan Guo. Mixed-criticality
scheduling upon varying-speed processors. In

http://dx.doi.org/10.1109/FOCS.2007.46
http://dx.doi.org/10.1109/FOCS.2007.46


Z. Guo and S. K. Baruah 03:19

IEEE 34th Real-Time Systems Symp. (RTSS’13),
Vancouver, BC, Canada, December 3–6, 2013,
pages 68–77. IEEE, 2013. doi:10.1109/RTSS.2013.
15.

3 Sanjoy K. Baruah, Vincenzo Bonifaci, Gian-
lorenzo D’Angelo, Haohan Li, Alberto Marchetti-
Spaccamela, Nicole Megow, and Leen Stougie.
Scheduling real-time mixed-criticality jobs. IEEE
Trans. Computers, 61(8):1140–1152, 2012. doi:
10.1109/TC.2011.142.

4 Sanjoy K. Baruah, Vincenzo Bonifaci, Gian-
lorenzo D’Angelo, Haohan Li, Alberto Marchetti-
Spaccamela, Suzanne van der Ster, and Leen
Stougie. The preemptive uniprocessor schedul-
ing of mixed-criticality implicit-deadline sporadic
task systems. In 24th Euromicro Conf. on Real-
Time Systems (ECRTS’12), Pisa, Italy, July 11–
13, 2012, pages 145–154. IEEE Computer Society,
2012. doi:10.1109/ECRTS.2012.42.

5 Alan Burns and Robert Davis. Mixed-criticality
systems: A review. Unpublished manuscript, 4th
edition, July 31, 2014. URL: http://www-users.
cs.york.ac.uk/~burns/review.pdf.

6 Giorgio C. Buttazzo. Hard Real-Time Comput-
ing Systems: Predictable Scheduling Algorithms
and Applications. Springer US, 2nd edition, 2005.
doi:10.1007/978-1-4614-0676-1.

7 M.R. Garey and David S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

8 Zhishan Guo and Sanjoy Baruah. Mixed-criticality
scheduling upon non-monitored varying-speed pro-
cessors. In 8th IEEE Int’l Symp. on Industrial Em-
bedded Systems (SIES’13), Porto, Portugal, June
19–21, 2013, pages 161–167. IEEE, 2013. doi:
10.1109/SIES.2013.6601488.

9 Narendra Karmarkar. A new polynomial-time al-
gorithm for linear programming. Combinatorica,
4(4):373–396, 1984. doi:10.1007/BF02579150.

10 L.G. Khachiyan. A polynomial algorithm in linear
programming. Dokklady Akademiia Nauk SSSR,
244:1093–1096, 1979.

11 Jan Karel Lenstra, Alexander H.G. Rinnooy Kan,
and Peter Brucker. Complexity of machine schedul-
ing problems. Annals of Discrete Mathematics,
1:343–362, 1977. doi:10.1016/S0167-5060(08)
70743-X.

12 C.L. Liu and James W. Layland. Scheduling algo-
rithms for multiprogramming in a hard-real-time
environment. J. ACM, 20(1):46–61, 1973. doi:
10.1145/321738.321743.

13 Aloysius Mok. Fundamental Design Problems
of Distributed Systems for The Hard-Real-
Time Environment. PhD thesis, Laboratory
for Computer Science, Massachusetts Institute
of Technology, 1983. Available as Techni-
cal Report No. MIT/LCS/TR-297. URL:
http://publications.csail.mit.edu/lcs/pubs/
pdf/MIT-LCS-TR-297.pdf.

14 Aloysius Mok. Task management techniques for
enforcing ED scheduling on a periodic task set. In
5th IEEE Workshop on Real-Time Software and
Operating Systems, pages 42–46, Washington D.C.,
May 1988.

15 Steve Vestal. Preemptive scheduling of multi-
criticality systems with varying degrees of execu-
tion time assurance. In 28th IEEE Real-Time Sys-
tems Symp. (RTSS’07), December 3–6, 2007, Tuc-
son, Arizona, USA, pages 239–243. IEEE Com-
puter Society, 2007. doi:10.1109/RTSS.2007.35.

16 Reinhard Wilhelm, Jakob Engblom, Andreas Er-
medahl, Niklas Holsti, Stephan Thesing, David B.
Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter P. Puschner, Jan Staschulat,
and Per Stenström. The worst-case execution-time
problem – overview of methods and survey of tools.
ACM Trans. Embedded Comput. Syst., 7(3), 2008.
doi:10.1145/1347375.1347389.

LITES

http://dx.doi.org/10.1109/RTSS.2013.15
http://dx.doi.org/10.1109/RTSS.2013.15
http://dx.doi.org/10.1109/TC.2011.142
http://dx.doi.org/10.1109/TC.2011.142
http://dx.doi.org/10.1109/ECRTS.2012.42
http://www-users.cs.york.ac.uk/~burns/review.pdf
http://www-users.cs.york.ac.uk/~burns/review.pdf
http://dx.doi.org/10.1007/978-1-4614-0676-1
http://dx.doi.org/10.1109/SIES.2013.6601488
http://dx.doi.org/10.1109/SIES.2013.6601488
http://dx.doi.org/10.1007/BF02579150
http://dx.doi.org/10.1016/S0167-5060(08)70743-X
http://dx.doi.org/10.1016/S0167-5060(08)70743-X
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/321738.321743
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-297.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-297.pdf
http://dx.doi.org/10.1109/RTSS.2007.35
http://dx.doi.org/10.1145/1347375.1347389

	Introduction
	Model
	A Scheduling Algorithm
	The Two-criticality-level Case
	Non-preemptive Scheduling
	Recurrent Tasks
	Context and Conclusions

