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Abstract
This manuscript presents exact approaches to the
general offset assignment problem arising in the
address code generation phase of compilers for
application-specific processors. First, integer pro-
gramming models for architecture-dependent and
theoretically motivated special cases of the problem
are established. Then, these models are extended
to provide the first widely applicable formulations
for the most general problem setting, supporting
processors with several address registers and com-

plex addressing capabilities. Existing heuristics are
similarly extended and practical applicability of the
proposed methods is demonstrated by experimental
evaluation using an established and large bench-
mark set. The experiments allow us to study the
impact of exploiting more complex memory address-
ing capabilities on the address computation costs of
real-world programs. We also show how to integrate
operand reordering techniques for commutative in-
structions into existing solution approaches.
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1 Introduction

We study the offset assignment problem arising in the address code generation phase of compilers
for digital signal and other application-specific processors. To save silicon area, such processor
designs often have narrow instruction widths limiting the number of bits available for memory
addressing. Typically, there is no support for indirect addressing modes that combine a base
address held in a register with an immediate offset to build the effective address of a memory
operand (sometimes called base plus offset addressing). However, specialized Harvard architectures
often provide an address generation unit (AGU) supporting pointer arithmetic to be done in
parallel to the main data path. The additional hardware can help to at least partially compensate
the drawbacks if exploited properly. It supports instructions that permit to manipulate an
address register (AR) in the same clock cycle as another instruction referencing it. Either, the
respective modifications are encoded implicitly (effectively moving the encoding of the offset
into the instruction opcode) or the instructions permit to add (subtract) values within a small
architecture-dependent auto-modify range [−r, r] to (from) the address held in the AR [14]. AR
modifications by absolute values larger than r however cannot be handled like this and need
additional explicit address arithmetic instructions.

With such specialized instructions at hand, one can consider the complexity of indirect
addressing to have been moved from hardware to software, relying on compilers in order to exploit
the processor’s capabilities for fast memory addressing of statically allocated variables. However,

© Sven Mallach;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 2, Issue 1, Article No. 2, pp. 02:1–02:18
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v002-i001-a002
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de


02:2 More General Optimal Offset Assignment

c = a + b;

f = g - c;

c = c - e;

d = c * f;

a
b
c
. . .

. . .

AR0
AR1

0x...9
0x...A
0x...B
0x...C
0x...D

0x...A
0x...C

Figure 1 A sample code fragment and an illustration of ARs referencing memory locations of variables.

optimal exploitation asks for the optimal solution of two interdependent problems, namely to
determine a stack memory layout of the variables accessed and to select an address register
responsible for each of the accesses. Conversely, address computation overhead may result from
two main issues. An inappropriate storage layout may necessitate additional explicit address
arithmetic instructions for ‘jumps’ to addresses that have a distance larger than r. Further, if
the processor provides multiple ARs, a poor choice of the ARs responsible for particular accesses
may result in superfluous immediate AR loads and unnecessary ‘jumps’ as well. Since address
calculations make up a significant part of machine instructions, optimizing these decisions may
considerably reduce the code size and speed up the program at the same time. Indeed, experimental
studies, e.g. [9, 11, 14], show that optimized configurations lead to significant savings in practice.

During compilation, the instruction scheduling phase determines the access sequence to local
stack variables. It can be extracted by simply concatenating the referenced variables of each
three-address-code instruction c = a op b in the order a b c. For example, the program fragment
in the left of Fig. 1 refers to the variables V = {a, b, c, d, e, f, g} that are accessed in the order
S = a b c g c f c e c c f d. Tab. 1 shows pseudo machine code for this program fragment and
three potential stack layouts A, B, and C of V. Layout A complies with the order of first use of
the variables in S. On a processor with only a single AR and with autoin-/decrement capability
(r = 1) only, this layout would require six explicit address arithmetic instructions (ADAR and SBAR).
An optimized layout (B) already reduces the necessary number of such instructions to three by
increasing the use of autoin-/decrement instructions (with *(ARx)+/*(ARx)-). If the memory
layout is optimized for a use of two ARs (C) and an optimal AR assignment is computed as well,
it becomes possible to cover the access sequence even without any explicit address arithmetic at
all. Assuming the cost of an immediate AR load and the cost of an address arithmetic instruction
to be both one, the optimal total cost with one AR is four, with two ARs it is two. Notably,
layout A and B have no register assignment that leads to a total cost smaller than three with two
or more ARs.

2 Related Work and Contribution

The general offset assignment (GOA) problem is defined for processors with k address registers and
an auto-modify range of r. Given an access sequence S = {s1, s2, . . . , sm} of program variables
V = {v1, v2, . . . , vn}, it asks for a stack memory layout of the variables, i.e., a permutation
π : V → {1, . . . , n}, and an assignment γ : S → {1, . . . , k} of accesses to address registers
exploiting the auto-modify range r such that the number of accesses requiring extra address
arithmetic instructions is minimum.

Most of the literature considers special cases of the problem, where either r = 1, k = 1 or
both. For k = 1, the problem is called the simple offset assignment (SOA) problem. It reduces to
the task to find a stack memory layout that allows as many accesses as possible to be performed
by auto-modify instructions on the single available address register. It was first considered by
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Table 1 Pseudo machine codes for the code fragment from Fig. 1 assuming different memory layouts
A, B and C and either one (A and B) or two (C) available address registers.

Instruction AR0
LDAR AR0, &a &a
LOAD *(AR0)+ &b
ADD *(AR0)+ &c
STOR *(AR0)+ &g
LOAD *(AR0)- &c
SUB *(AR0)
ADAR AR0,2 &f
STOR *(AR0)
SBAR AR0,2 &c
LOAD *(AR0)
ADAR AR0,3 &e
SUB *(AR0)
SBAR AR0,3 &c
STOR *(AR0)
ADAR AR0,2 &f
MUL *(AR0)
ADAR AR0,2 &d
STOR *(AR0)

A = a b c g f e d

Instruction AR0
LDAR AR0, &a &a
LOAD *(AR0)+ &b
ADD *(AR0)
ADAR AR0,2 &c
STOR *(AR0)- &g
LOAD *(AR0)+ &c
SUB *(AR0)+ &f
STOR *(AR0)- &c
LOAD *(AR0)
ADAR AR0,3 &e
SUB *(AR0)
SBAR AR0,3 &c
STOR *(AR0)+ &f
MUL *(AR0)+ &d
STOR *(AR0)

B = a b g c f d e

Instruction AR0 AR1
LDAR AR0, &a &a
LOAD *(AR0)+ &b
ADD *(AR0)+ &c
STOR *(AR0)
LDAR AR1, &g &g
LOAD *(AR1)- &e
SUB *(AR0)+ &f
STOR *(AR0)- &c
LOAD *(AR0)
SUB *(AR1)
STOR *(AR0)+ &f
MUL *(AR0)+ &d
STOR *(AR0)

C = a b c f d e g

a b

c

f

1

1

3
d1

g

2
2 e

Figure 2 Access graph for the code fragment from Fig. 1.

Bartley [2] in 1992. Assuming also r = 1, he proposed to model the variable relationships contained
in an access sequence by an access graph G = (V,E). The set of vertices V corresponds to the
variables and there is an edge e = {u, v} ∈ E with weight w(e) if the variables u and v appear
subsequently in the access sequence for w(e) times. Fig. 2 shows the access graph that corresponds
to the sample code fragment from Fig. 1.

Bartley recognized a close relationship of SOA (with r = 1) to the maximum-weight Hamiltonian
path problem and developed a first greedy heuristic to solve it. In subsequent research, Liao [17]
showed that this problem is equivalent to a maximum-weight path cover problem instead and
gave a formal proof of its strong NP-hardness. Based on these results, he proposed a simpler
and faster heuristic producing solutions with the same quality as Bartley’s and also a first exact
Branch-and-Bound procedure. In the sequel, a number of heuristics and as well an exact approach
capable to solve larger instances have been developed and also been subject to experimental
studies [9, 11, 14].

Since 2014, the situation is similar for the general variant with k ≥ 1 and r = 1. Using the
exact approach presented in [18], several GOA heuristics [24, 16, 15] could be evaluated in terms
of quality relative to the optimum for the first time. In practice, GOA is often solved heuristically
by first partitioning the set of program variables w.r.t. the available ARs and then solving a
SOA problem for each of the ARs. This strategy allows to reuse available SOA algorithms but
inherently constrains all accesses to a particular variable to be carried out by the same AR. This
may preclude optimal results as is comprehensively discussed by Huynh et al. [9]. Even more, the
results in [18] suggest not to partition the variables a priori, but to first compute a memory layout
for them and an address register assignment afterwards.

In this paper, we highlight the key ideas and techniques that let the exact GOA approach for
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Figure 3 Minimum cost flow network for S = a d c c a b assuming L = d - a - c - b.

k ≥ 1 and r = 1 presented in [18] be successful in solving a wide range of instances to optimality
in reasonable time. The mentioned article also contains a correction of the only previous exact
approach by Ozturk et al. [20] that was originally designed for arbitrary ranges r. However,
as the experiments in [18] show, the method is not capable to solve larger instances, even for
r = 1. It suffers from a quickly growing number of variables and constraints and does neither
exploit the combinatorial structure nor symmetries inherent to the problem. Here, we develop an
alternative formulation that takes advantages of the techniques presented in [18], yet generalizing to
arbitrary auto-modify ranges and still remaining relatively moderate in size. Using this approach
and by extending existing heuristics, we provide the first experiments for ranges r > 1 on a
larger set of instances and study the effect of exploiting larger auto-modify capabilities on the
total address computation costs. Further, we address a commonly observed criticism associated
with GOA, namely that it is not clear how it relates to operand reordering techniques such as,
e.g, [23, 1, 4], which may also result in reduced address computation overhead. We present a
method to integrate commutativity-based operand reordering into the address register assignment
part of the optimization process. Combined with our optimal approaches for GOA, this allows to
create globally optimal address code.

3 Optimal Address Register Assignment

3.1 A Minimum-Cost Flow Model

Suppose for now that a memory layout L of the program variables V has already been fixed and
we are now asked to compute an optimal address register assignment (ARA) for k address registers
w.r.t. L and the input access sequence S. For r = 1, an exact solution to this problem has been
proposed by Gebotys [7, 8]. It is based on a minimum-cost circulation network that contains a
vertex for each access in S and a directed arc for each pair of accesses u, v such that v succeeds
u in S. In [18], it is shown how the circulation problem can be transformed into an equivalent
minimum cost flow problem. We will now describe the corresponding flow network N = (VN , A).
We denote with VS an ordered set of vertices that is associated with the accesses in sequence S,
i.e., if u < v for u, v ∈ VS , then u is accessed prior to v in S. The vertex set of VN of the network
N is given by VS and artificial source (s) and sink (t) vertices, i.e., VN = VS ∪ {s, t}. The flow arc
set A is composed as the union of the arc sets {(s, v) | v ∈ VS}, {(v, w) | v, w ∈ VS , v < w}, and
{(v, t) | v ∈ VS}. So in essence, each of the access vertices has an entering arc from the source s
and a leaving arc to the sink t. Further, there is an arc (u, v) ∈ A between two access vertices
u, v ∈ VS if and only if u precedes v in the access sequence.

The total flow leaving the source is restricted to be at least one unit and at most k units
because at least one register must be used and at most k ones can be used in order to cover the
accesses. All arcs have capacity one and each sequence vertex is constrained to receive and supply
exactly one unit of flow. Hence, each unit of flow leaving s essentially delivers a path of accesses
before it proceeds to t. The cost of an arc between two accesses is zero if and only if the two
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Figure 4 An optimal solution to the example from Fig. 3.

associated variables are either equal, or adjacent in L. Otherwise the arc has cost coefficient cA
that shall reflect the costs of of an address arithmetic instruction. Finally, the cost associated
to an immediate AR load is installed on every s-leaving arc and the costs of all arcs entering t
are zero. So if the selection of paths through the network is based on a min-cost criterion, then
each of the resulting paths can be interpreted as an optimal series of accesses performed using a
distinct AR.

As a small example, let V = {a, b, c, d}, S = a d c c a b and assume L = d - a - c - b (which is
optimal for k ≥ 2 ARs). The associated minimum cost flow network looks as depicted in Fig. 3.
Zero-cost arcs are drawn solid, access transitions with cost cA are shown as dotted arcs and the
s-leaving arcs with cost cL are illustrated using dashes. An optimal solution (assuming cL = cA,
and k ≥ 2) to this example is depicted in Fig. 4.

Let yu,v be a flow variable for each arc (u, v) ∈ A and cu,v its associated cost. The LP
formulation corresponding to the described min-cost flow problem is then:

min
∑

(u,v)∈A
cu,vyu,v

s.t.
∑

(v,w)∈A
yv,w = 1 for all v ∈ VS (1)∑

(u,v)∈A
yu,v = 1 for all v ∈ VS (2)∑

v∈VS

ys,v ≤ k

yu,v ≥ 0 for all (u, v) ∈ A
yu,v ≤ 1 for all (u, v) ∈ A

The restriction of the in- and out-degrees of all sequence-vertices to one by constraints (1) and
(2) highlights the aforementioned ‘path selection’ property of this model. Actually, they make the
usual flow conservation constraints of network flow problems obsolete; any unit of flow sent from s

to satisfy the equations must finally arrive at t. Further, lower bounds on the flow on out- (in-)
arcs of the source (sink) are not necessary since the former (latter) must be satisfied due to the in-
(out-) degree equation of the first (last) access vertex. Stated as an LP, the model permits all
variables to take values from the interval [0, 1]. However, the constraint matrix that arises from
the described LP formulation is unimodular [7, 13] and, hence, optimal LP solutions will always
be integral. Besides that, combinatorial minimum-cost flow algorithms can be used in order to
obtain integral solutions in polynomial time.

3.2 Taking Commutativity Into Account
Sometimes address computation overhead can also be avoided by simply reordering the accesses
to operands where this is possible due to the commutativity of the respective operations. For
example, assume that variable b was last accessed and c = a + b is the next instruction. Then it
is typically beneficial to access b first if a and b are not within range r in the stack layout.

LITES
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Figure 5 An optimal solution to the example from Fig. 3 exploiting commutativity.

Commutativity-based reordering opportunities can be incorporated into the original approach
by Gebotys and as well into the just described flow model. If u and v are the two respective
operands belonging to a commutative instruction, one can replace the corresponding flow arc
(u, v) ∈ A by a flow edge {u, v} that is undirected and can hence be used in both directions. Since
we may reasonably assume to have three-address-code instructions only, the model guarantees
that each vertex of the network has at most one neighbor that is adjacent by an edge rather than
by an arc. At these particular vertex pairs, the flow in the network is then permitted to also move
‘backward’ while the constraints that each vertex must have exactly one incoming and outgoing
unit of flow will preserve the overall feasibility of the problem and correctness of the solutions.

Suppose the access sequence S = a d c c a b from the previous subsection is stemming from
the computations c = a * d; b = c * a. Then both operations are commutative and the arcs
(a1, d) and (c2, a2) in the flow network become edges in the proposed methodology. Indeed, sending
flow ‘backward’ along these edges allows for a better solution with cost only one as is depicted in
Fig. 5.

4 Optimal General Offset Assignment

To solve GOA to global optimality, we need to solve the two interdependent problems in an
integrated fashion, i.e., we need to find a memory layout that will allow us to create the best
possible address register assignment.

A key observation is that the objective function is the only point where the memory layout
influences the concrete ARA network problem to be solved. The cost of an access transition (u, v)
in the network described in Sect. 3 is zero if and only if the variables associated with u and v are
equal or neighbors in the memory layout. Otherwise, a positive cost cA reflecting the overhead
of an additional address arithmetic instruction is assigned. Moreover, there is no reason to not
redefine this rule for r > 1, i.e., to assign arcs (u, v) ∈ A the cost zero if u and v are no more than
r positions apart from each other and cost cA otherwise.

However, in terms of modeling the feasible solutions of GOA problems, it makes a considerable
difference whether r is equal to one or may be larger. We will now first discuss the approach for
r = 1 from [18] and then proceed to the more general case.

4.1 GOA with r = 1
If r = 1, then an access transition can only be realized without extra address arithmetic if the two
successively referenced variables are either identical or neighbors in the memory layout.

Clearly, a memory layout is basically a permutation of the variables. As already indicated in
Sect. 2, possible permutations of the variables V can, e.g., be modeled by the Hamiltonian paths
of a complete undirected graph G with vertex set V . From an integer programming point of view,
it is however more suitable to model and compute Hamiltonian cycles instead of paths [11, 18].
So we construct a complete graph G′ = (V,E) with V = V ∪ {z} where z is an artificial vertex. It
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Figure 6 Extracting a Hamiltonian path from a Hamiltonian cycle.

serves as a cutting point in order to obtain a (up to reversion) unique Hamiltonian path from
each Hamiltonian cycle in G′ as is truly intended (cf. Fig. 6).

To model GOA completely, we will now always consider two graphs. Firstly, a complete graph
G = (V,E) where V = V ∪ {z} as just described. Secondly, we have a network N = (VN , A) with
VN = VS ∪{s, t} where VS is a vertex set related to the accesses contained in the input sequence S,
just like in Sect. 3. Let AS = {(v, w) | v, w ∈ VS , v < w} and A = AS ∪ {(s, v) | v ∈ VS} ∪ {(v, t) |
v ∈ VS}. Since all access vertices in VS reflect instances of the program variables represented by
the vertices V, we may define a corresponding unique mapping σ : VS → V . For ease of reference,
we further split the set AS into A 6=S = {(u, v) ∈ AS , σ(u) 6= σ(v)}, i.e., the set of arcs between
accesses that do not refer to the same associated program variable and, analogously, the set A=

S .
In addition to the flow arc variables yu,v for each arc (u, v) ∈ A, we associate edge decision

variables xu,v ∈ {0, 1} with the edges {u, v} ∈ E that have no associated costs. The variable
xu,v is equal to one if the edge {u, v} is part of the computed Hamiltonian cycle (u and v are
neighbors in the memory layout), and zero otherwise. Since G is undirected, the variables xu,v
are only defined for u < v. Slightly disregarding mathematical precision, we write xσ(u),σ(v) when
referring to the associated edge decision variable of yu,v, (u, v) ∈ A 6=S , irrespective of whether
σ(u) < σ(v) or σ(u) > σ(v). Exploiting these variable relationships, we can express the cost of an
access transition yu,v with (u, v) ∈ A 6=S by (1− xσ(u),σ(v))cA while the cost of each variable yu,v
for (u, v) ∈ A=

S is zero. This leads to a first quadratic integer programming formulation.

4.1.1 Quadratic Formulation

min
∑

(u,v)∈A 6=
S

(1− xσ(u),σ(v))cAyu,v +
∑
v∈VS

cLys,v

s.t.
∑

{u,v}∈E
xu,v = 2 for all v ∈ V (3)

x(E(W )) ≤ |W | − 1 for allW ( V, |W | ≥ 2 (4)∑
(u,v)∈A

yu,v = 1 for all u ∈ VS∑
(u,v)∈A

yu,v = 1 for all v ∈ VS∑
v∈VS

ys,v ≤ k

xu,v ∈ {0, 1} for all (u, v) ∈ E
yu,v ∈ {0, 1} for all (u, v) ∈ A

This integer program is essentially the min-cost flow formulation from Sect. 3 appended by
inequalities enforcing the x-variables to correspond to a Hamiltonian cycle of G and with a new
objective function linking the two subproblems. The objective function simply sums up the terms
(1− xσ(u),σ(v))cA for all arcs (u, v) ∈ A 6=S and all costs

∑
v∈VS

cLys,v for initial address register loads.

LITES
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The set of feasible Hamiltonian cycles of G can be expressed using the standard formulation
of the traveling salesman problem (TSP): The equations (3) force any vertex to be adjacent to
exactly two other vertices. Inequalities (4) are called subtour elimination constraints [5]. Here,
E(W ) = {{u, v} ∈ E | u, v ∈ W} for any W ⊆ V such that the inequalities exclude solutions
containing any cycle w.r.t. the vertex sets W and V \W from the feasible set.

The above integer program is quadratic in its objective function only. We may linearize it
using a standard linearization approach [19]. However, first we simplify. The term

min
∑

(u,v)∈A6=
S

(1− xσ(u),σ(v))cAyu,v

can also be written as
min

(∑
(u,v)∈A6=

S

yu,v −
∑

(u,v)∈A6=
S

xσ(u),σ(v)yu,v
)
cA.

We then need |A 6=S | new variables zu,v to model the products xσ(u),σ(v)yu,v and three lineariza-
tion constraints for each of the new variables:

zu,v ≤ xσ(u),σ(v)
zu,v ≤ yu,v
zu,v ≥ xσ(u),σ(v) + yu,v − 1

After this transformation, the objective function becomes:

min
∑

(u,v)∈A 6=
S

cAyu,v −
∑

(u,v)∈A 6=
S

cAzu,v +
∑
v∈VS

cLys,v

Clearly, the number of product variables to be introduced, |A 6=S |, must be strictly smaller than
the total number of flow arc variables which is (|S|+ 2) · (|S|+ 1)/2. Hence, in total the linearized
version of the above formulation has strictly less than |V| · (|V|− 1)/2 + ((|S|+ 2) · (|S|+ 1)/2), i.e.,
O(|V|2 + |S|2) variables. The number of subtour elimination constraints is exponential in |V| such
that it is preferable to not consider all of them in the solution process from the beginning, but to
separate them instead as we will describe more detailed in Sect. 5.1. The number of remaining
nontrivial constraints is strictly less than 1 + |V| + 2(|S| + 2) + 3((|S| + 2) · (|S| + 1)/2), i.e.,
O(|V|+ |S|2). Remarkably, all these numbers are independent from the number k of ARs available.
The more access pairs in S refer to the same variable, the less product variables and associated
constraints are needed.

4.1.2 Linear Formulation
By further inspection and by exploiting the fact that there are only two cases for each arc
(u, v) ∈ A 6=S , namely that it either has the assigned cost cA or assigned cost zero, an inherently
linear formulation of the problem can be established. The main idea is to replace every variable
(arc) between two accesses yu,v, (u, v) ∈ A 6=S , by two new variables (arcs) y0

u,v (for the zero-cost
case) and ycu,v (for the arc with cost cA) as is depicted in Fig. 7. The set A 6=S is therefore further
split into the corresponding new arc sets A0

S and AcS . For every arc (u, v) ∈ A=
S , we keep the

former variable yu,v with zero cost as before. We also skip the superscript when referring to flow
variables disregarding their costs or if only one instance exists.

The new network N has now the arc set A = A0
S∪AcS∪A=

S ∪{(s, v) | v ∈ VS}∪{(v, t) | v ∈ VS}
and the new objective is to minimize the selected arcs with positive costs assigned. With the
new variables, this is a linear expression. However, we now have to restrict the use of zero-cost
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u v
(1− xσ(u),σ(v))cA

u v
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⇒

Figure 7 Replacing arcs with dynamic costs by two arcs with static costs.

arcs. As before in the quadratic model, it should only be possible to use them if the respective
corresponding variables are neighbors in the access sequence. With the newly introduced variables
this can easily be enforced using the following constraints:

y0
u,v ≤ xσ(u)σ(v) for all (u, v) ∈ A0

S

Further, the following constraint is valid for the model:

ycu,v ≤ 1− xσ(u)σ(v) for all (u, v) ∈ AcS

However, since zero-cost arcs are preferred by the objective function, there will never be a
variable ycu,v = 1 in an optimum solution where also xσ(u)σ(v) = 1, even if these constraints are
not present. Therefore, they will also have only marginal impact on the solution process and can
be omitted. A complete linear IP formulation for GOA with r = 1 is then:

min
∑

(u,v)∈Ac
S

cAy
c
u,v +

∑
v∈VS

cLys,v

s.t.
∑

{u,v}∈E
xu,v = 2 for all v ∈ V

x(E(W )) ≤ |W | − 1 for allW ( V, |W | ≥ 2∑
(u,v)∈A

yu,v = 1 for all u ∈ VS∑
(u,v)∈A

yu,v = 1 for all v ∈ VS∑
v∈VS

ys,v ≤ k

y0
u,v ≤ xσ(u)σ(v) for all (u, v) ∈ A0

S

xu,v ∈ {0, 1} for all (u, v) ∈ E
yu,v ∈ {0, 1} for all (u, v) ∈ A

The number of variables is the same as in the quadratic formulation since essentially, for each
(u, v) ∈ A 6=S , the product variable zu,v is replaced by a second flow arc variable ycu,v. However,
2|A 6=S | less constraints are needed.

4.2 GOA with r ≥ 1
If the processor supports offset ranges r strictly larger than one, the mathematical modeling of the
associated optimization problem becomes much more complicated. Simple vertex adjacencies are
not anymore sufficient in order to decide on the costs of access transitions. Rather, the auto-modify
instructions can be applied as soon as there is a path from u to v of length smaller or equal to
r in a memory layout. This cannot be modeled by linear expressions in the x-variables of the
preceding subsection. Also, to assign weights to paths instead of edges and to then select paths
based on these weights is not a promising strategy, especially since the possible number of paths
to consider may be exponential in the number of variables.

LITES
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The only straightforward way to model the problem correctly appears to be via using variables
that encode the position of the program variables explicitly. This can be done based on the famous
assignment problem [3], in a similar way as it was also proposed by Wess and Gotschlich [25] for
SOA, i.e., k = 1. The GOA model by Ozturk et al. [20] has also an assignment-based character.
However, as discussed in [18], their formulation was flawed and is not applicable to a wider range
of instances. We will now develop a different formulation that has considerably less variables and
constraints while preserving the advantages of our model for r = 1.

In the assignment problem, we have variables xi,p that take value one if item i is placed at
position p and zero otherwise. To model the stack memory layout for n = |V| variables, we need
exactly n2 variables, since any variable may be placed at any position p ∈ P, P = {1, . . . , n}.
Clearly, every variable v ∈ V must be assigned exactly one position p ∈ P and each position
p ∈ P must be assigned exactly one variable v ∈ V. Hence, the corresponding constraints of the
assignment problem are: ∑

p∈P
xv,p = 1 for all v ∈ V∑

v∈V
xv,p = 1 for all p ∈ P

Let xu,a = 1 and xv,b = 1 with u 6= v and a 6= b. Then, an access transition u→ v has cost
zero if and only if |b− a| ≤ r. For the following discussion, we introduce auxiliary variables ru,v
for each pair of different variables u, v ∈ V, expressing whether u and v are placed within range
r (ru,v = 1) or not (ru,v = 0). We will however not need these variables for the subsequently
developed integer program. With the auxiliary variables at hand, we may express the following
constraints:

ru,v ≥ xu,b + xv,a − 1 for all u < v ∈ V and a < b s.t. b− a ≤ r
ru,v ≥ xu,a + xv,b − 1 for all u < v ∈ V and a < b s.t. b− a ≤ r

The constraints force ru,v to become one as soon as the assignment of positions to u and v is
such that their distance is at most r. Further, they never enforce ru,v to be greater than one. We
may also directly combine the constraints as follows:

ru,v ≥ xu,b + xu,a︸ ︷︷ ︸
≤1

+xv,a + xv,b︸ ︷︷ ︸
≤1

−1 for all u < v ∈ V and a < b s.t. b− a ≤ r (5)

On the other hand, we must make sure that ru,v is never assigned value one if the two variables
are not placed within range r using the following constraints:

ru,v ≤ 2− xu,b − xu,a − xv,a − xv,b for all u < v ∈ V and a < b s.t. b− a > r (6)

In total, this would already amount to O(n4) constraints, having not yet formulated constraints
that restrict the use of the zero-cost flow arc variables. However, we can still improve on that.
First of all, for the same reason as in Sect. 4.1.2, we do not need to care about the positive cases
that permit to use a flow arc variable y0

u,v but only forbid those cases where the use of y0
u,v is

prohibited. Hence, we can completely omit the constraints (5). Now, we take a closer look on
constraints (6) again, keeping in mind that each variable v ∈ V can be assigned at most one
position from any strict subset Q of P , i.e.,

∑
p∈Q

xv,p ≤ 1 for all v ∈ V and Q ⊂ P . Say variable u

is fixed at position a, then all the positions of v that make the transition u→ v have non-zero
cost are the positions p ∈ [1, a− r − 1] and p ∈ [a+ r + 1, n]. Hence, by fixing one position, we
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can reformulate (6) by:

ru,v ≤ 2− xu,a −
a−r−1∑
p=1

xv,p −
n∑

p=a+r+1
xv,p︸ ︷︷ ︸

≤1

for all u < v ∈ V and a ∈ P

We now exactly characterized under which conditions two variables u and v are not within
range r, so we can again exploit this to apply the correct restriction on the use of each zero-cost
flow arc variable y0

u,v.

y0
u,v ≤ 2− xu,a −

a−r−1∑
p=1

xv,p −
n∑

p=a+r+1
xv,p for all (u, v) ∈ A0

S and a ∈ P (7)

Since, for any of the at most
(|S|

2
)
variables y0

u,v, there are at most |V| positions where u can
be fixed at, we obtain only O(|S|2 · |V|) constraints (7) in total. The full IP formulation is then:

min
∑

(u,v)∈Ac
S

cAy
c
u,v +

∑
v∈VS

cLys,v

s.t.
∑
p∈P

xv,p = 1 for all v ∈ V∑
v∈V

xv,p = 1 for all p ∈ P∑
(u,v)∈A

yu,v = 1 for all u ∈ VS∑
(u,v)∈A

yu,v = 1 for all v ∈ VS∑
v∈VS

ys,v ≤ k

y0
u,v ≤ 2− xu,a −

a−r−1∑
p=1

xv,p −
n∑

p=a+r+1
xv,p for all (u, v) ∈ A0

S and a ∈ P

xv,p ∈ {0, 1} for all v ∈ V and p ∈ P
yu,v ∈ {0, 1} for all (u, v) ∈ A

Being more precise, the model has |V|2 + ((|S| + 2) · (|S| + 1)/2), i.e., again O(|V|2 + |S|2)
variables. The number of nontrivial constraints is bounded from above by 1 + 2|V|+ 2(|S|+ 2) +
((|S|+ 2) · (|S|+ 1)/2) · |V|, i.e., O(|V| · |S|2). In contrast to that, the formulation by Ozturk et al.
has O(k · |V| · |S|+ |V|2) variables and O(|V|3 + k · |S| · |V|2) constraints (with larger constants).

5 Algorithms

5.1 Exact Branch-and-Cut Algorithms
Branch-and-Cut algorithms are similar to conventional LP-based Branch-and-Bound methods
with the main difference that, at each Branch-and-Bound node, several LPs may be solved before
a branching step is carried out. After solving an LP, it is tested whether the LP solution violates
previously neglected or additional valid inequalities. If this is the case, these inequalities are added
to the LP as so-called ‘cutting planes’ and it is solved again. They ‘separate’ or ‘cut off’ the
respective LP solution - it will not be a feasible solution of the LP solved next. As a consequence,
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the addition of inequalities may also improve the lower bounds on the objective function value
provided by the LP solutions which is essential, e.g., for proving optimality of a known solution.
Either if no further violated inequality can be found or after some predefined number of iterations,
a branching step takes place if the LP solution is still non-integral.

Cutting plane approaches are suitable especially if the number of constraints of an integer
program is too large to consider all of them from the beginning but a test for violation of these
constraints can be done efficiently. This is the case for the problem formulations presented. The
model for r = 1 from Sect. 4.1 contains the subtour elimination constraints (SECs) whose number
is exponential in the number of program variables V . However, the associated separation problem
can be solved in polynomial time using minimum cut algorithms [21]. This is exploited in our
implementation which we will refer to as GOA-IP. It has an additional exact and polynomial-time
separation procedure for two-matching-inequalities [22]. Violation of these is tested whenever a
fractional LP solution did not violate any SEC. We also decided to separate inequalities (7) from
Sect. 4.2 in the assignment-based solver implementation, subsequently named GOA-AIP. Although
their number is polynomial in the size of the input data, they quickly become a limitation for
larger instances due to increased LP solution times. Moreover, typically only a fraction of them
is in fact required (i.e., ever violated) during the solution process. We implemented GOA-IP and
GOA-AIP using CPLEX 12.6 [10]. Internal presolving techniques that are not compatible with the
application of cutting planes were disabled but we adopted all other default parameters. The
optimization starts by relaxing integrality and the respective classes of inequalities that shall
be separated as just described. In addition to the omitted inequalities, CPLEX may decide to
separate further general cutting planes for integer programs and also the selection of the variables
to branch on is left to CPLEX.

The LP solutions obtained during the optimization process will typically not be integral. Here,
primal heuristics play an important role. Their purpose is to construct good feasible solutions by
exploiting the current LP solution. The implemented primal heuristics follow the general idea that
variables with an LP value close to one are likely to be part of a good or even optimal solution. In
particular, we greedily construct a memory layout as is indicated by the subsequent pseudocode.
In case of GOA-IP, this means to greedily construct a Hamiltonian cycle. We do this by selecting
feasible edges {u, v} ∈ E in non-increasing order of the LP values of their corresponding variables
xu,v. These edges are collected in the array select. A not yet selected edge {u, v} is feasible if the
degrees of u and v are both less than two and either the number of selected edges is |V |− 1 ({u, v}
will close the Hamiltonian cycle) or there is yet no path from u to v using edges from select
({u, v} will not create a cycle of length smaller than |V |). The latter property is maintained using
a common disjoint set data structure where initially each vertex is the representative of its own
set, the operation Union joins the sets of the (representatives of) two yet disjoint sets and the
operation Find returns the representative of each set. In GOA-AIP, we assign each program variable
v ∈ V the position that is mostly preferred by its assignment variables xv,p, p ∈ {1, . . . , n}. After
constructing a memory layout like this, the arc costs of the network flow problem from Sect. 3.1
are set accordingly and the problem is solved to find an optimal ARA.
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1: function primalHeuristic(x, N = (VN , A))
2: OA← ComputeOffsetAssignment(x)
3: SetCosts(N , OA) # Set arc costs based on distances in OA.
4: ARA← MinCostFlow(N)

1: function computeOffsetAssignment(x) # GOA-IP version.
2: G = (V, E)← Complete graph from the GOA-IP model
3: Sort(E, x) # Sort edges non-increasingly w.r.t. their LP values.
4: InitializeUnionFind(V ) # Set up a disjoint-set data structure for V .
5: n← |V |, m← |E|
6: select← ∅, count← 0
7: for i = 1→ n do
8: deg(i)← 0 # Initialize degrees to zero.
9: for i = 1→ m do
10: e = {u, v} ← E[i]
11: if deg(u) < 2, deg(v) < 2, and (Find(u) 6= Find(v) or count = n− 1) then
12: select← select ∪ {e}, count← count + 1
13: deg(u)← deg(u) + 1, deg(v)← deg(v) + 1
14: Union(u, v) # Join the sets that contain u and v.
15: OA← ExtractOA(select) # Remove artificial vertex z, map path positions to offsets.
16: return OA

1: function computeOffsetAssignment(x) # GOA-AIP version.
2: n← |V|
3: for p = 1→ n do
4: pos[p]← free # Initialize all positions p ∈ P = {1, . . . , n} to be unassigned.
5: Xmax ← Array of LP-values max{xv,p | p ∈ {1, . . . , n}} for each v ∈ V
6: Sort(V, Xmax) # Sort variables V non-increasingly w.r.t. Xmax.
7: for i = 1→ n do
8: v ← V[i]
9: Xv ← Array of LP-values xv,p for each p ∈ {1, . . . , n}.
10: Sort(P, Xv) # Sort positions P non-increasingly w.r.t Xv.
11: for j = 1→ n do
12: p← P [j]
13: if pos[p] is free then
14: pos[p] = v

15: OA[v] = p

16: return OA

5.2 Heuristics
For r = 1, the predominant heuristic strategy to solve GOA is to first partition the set of variables
w.r.t. the available ARs, and to call a SOA algorithm to compute memory sublayouts for each
of the partitions afterwards. Computational experiments [18] reveal that it is typically more
suggestive to first set up a full memory layout and to compute then an optimal ARA based on
that layout. For r > 1, this appears to be even more advisable since most of the existing SOA
algorithms used as subroutines are designed for r = 1 (they iteratively select edges [14, 11]) and it
is not trivial to generalize them. In contrast to that, Gebotys’ network model is easy to adapt for
arbitrary auto-modify ranges as discussed in Sect. 4 and also exploited by our primal heuristics.

Like in [18], we combine the optimal ARA approach (the min-cost flow (MCF) problem from
Sect. 3.1) with two simple strategies to compute memory layouts. The first one constructs a naive
memory layout that corresponds to the order of first use (OFU) of the program variables. The
algorithm will be referred to as GOA-OFU-MCF. The second algorithm uses the most successful SOA
heuristic from [14, 11] to create a memory layout. In these articles, it is called SOA-INC-TB since it is
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an incremental algorithm that iteratively selects edges {u, v} ∈ E from an access graph G = (V,E)
and it is combined with a tie-break function for equally weighted edges. The combination of this
algorithm with the min-cost-flow based ARA computation is called GOA-ITB-MCF.

5.3 Min-Cost Flow Implementation
For all minimum cost flow computations (by the primal heuristics used in the exact solvers as well
as by GOA-OFU-MCF and GOA-ITB-MCF), we called the network simplex algorithm provided by the
LEMON C++ library [6] in version 1.3. The asymptotic running time of the network simplex
algorithm strongly depends on the used pivoting rule. We relied on the default block search rule
of the library [12] that has a worst-case time bound of O(nm2C) with n = |VN |, m = |A|, and C
being the largest assigned cost coefficient (if cA = cL, setting C = 1 is reasonable), but typically
performs much better in practice.

6 Experimental Evaluation

6.1 Setup and Test System
For our experimental evaluation, we use the OffsetStone benchmark set that has been extracted
from 31 real-world application codes written in ANSI C. Among them are computationally
intensive programs (e.g., audio, video and image compression, Fourier transformation) as well as
control-dominated applications (e.g., gzip). It has been frequently used in publications dealing
with offset assignment and therefore allows for meaningful comparisons. For details on how the
instances were extracted, we refer to the original paper [14].

Being able to compute optimal solutions for various combinations of available address registers
k and auto-modify ranges r on a larger set of instances for the first time, we evaluate the effect
of varying k, r or both on the total offset assignment costs as well as on the quality of heuristic
solutions. We assume the costs for address arithmetic instructions cA and immediate AR loads cR
to be both equal to one and perform the experiments once for one, two, four and eight ARs and
auto-modify ranges one, three and seven. We considered all instances that consist of at least three
program variables, these are 2, 785 in total.

Our experiments were run single-threaded with an Intel Core i7-3770T processor (2.5 GHz) on
a Debian Linux system with 8 GB RAM, g++ 4.7.2, and optimization level -O2. We measure the
address computation overhead and average solution CPU times of five runs.

6.2 Results
Since extensive evaluation w.r.t. the quality of heuristics for r = 1 has been presented already
in [18], we only briefly discuss the results for this case. The performance of GOA-IP only marginally
differs from the mentioned reference since we used a more recent version of CPLEX. The number
(and percentage) of instances that timed out after ten seconds is shown in the left of Tab. 2. The
timeouts for k = 1 are only shown for the sake of completeness. Since this is the SOA case, the
min-cost flow part is not needed and the problem can be solved instead by assigning static cost
coefficients to the variables of the Hamiltonian cycle part of the problem. Even though only a few
instances are not solved within the time limit, it would therefore be more suggestive to use the
exact algorithm from [11] that is even more effective. GOA-IP however also routinely solves most
of the instances when increasing k.

In Tab. 2, we also see that GOA-AIP is not at all competitive to GOA-IP, especially for r = 1.
This was expectable; the primal heuristics work well, but for many instances the basic constraints
of the assignment problem part do not suffice in order to obtain lower bounds that prove optimality
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Table 2 Number of instances timed out by the exact solvers after ten seconds.

GOA-IP r = 1
k = 1 11 (0.40%)
k = 2 33 (1.19%)
k = 4 56 (2.01%)
k = 8 54 (1.94%)

GOA-AIP r = 1 r = 3 r = 7
k = 1 1, 253 (44.99%) 924 (33.18%) 472 (16.95%)
k = 2 1, 245 (44.70%) 880 (31.60%) 471 (16.91%)
k = 4 1, 246 (44.74%) 888 (31.89%) 477 (17.13%)
k = 8 1, 252 (44.96%) 881 (31.63%) 477 (17.13%)

of known solutions. However, with increasing auto-modify ranges, this effect more and more
diminishes which can be similarly explained. With increasing r, the concrete memory layout
becomes less important for an optimal address register assignment since more arcs in the min-cost
flow network can be used without cost in any case. This effect is even stronger if the access
sequence lengths are rather small which is often the case in OffsetStone as we will further discuss
below. Hence, the lower bounds obtained from the LP and the upper bounds obtained by solutions
found by the primal heuristics are much closer to each other and optimality of the latter can be
proven more often.

Another expected result is that the property of GOA-IP to be relatively insensitive to the number
k of ARs is inherited by GOA-AIP, especially since their numbers of variables and constraints are
independent from k. Even for r = 1, GOA-AIP solves already 10− 20% more instances than the
implementation of the fixed approach by Ozturk et al. in [18] and there is only a single instance
where it failed to complete due to memory limitations which was frequently the case for the latter.
This particular instance has a single very large access sequence leading to a flow network with
more than

(3,442
2
)
arc variables.

We identified 1, 480 instances with up to 200 program variables that GOA-AIP could solve to
optimality for all tested choices of k and r within the time limit of ten seconds. If an exact solver
for arbitrary r is desired for practical application, GOA-AIP could be improved by several means,
e.g., by adding additional cutting planes that are valid for (quadratic) assignment problems. In
general, the quadratic nature of the problem and its interdependent structure of two subproblems
suggests a reformulation as a semidefinite program or the application of Bender’s decomposition
approach. The latter is even more suggestive due to the fact that the min-cost-flow subproblem is
polynomial-time solvable. In this sense, GOA-AIP is to be seen as a ‘proof of concept’ to produce
first results for r > 1 that allow to evaluate heuristics and the effect of exploitation of larger
auto-modify ranges on the quality of address code generation.

Investing more computation time, we derived optimal solutions for 1, 918 of the 2, 785 instances
for all mentioned combinations of r and k. The OffsetStone instances are such that there are
usually multiple access sequences associated with one program variable set. Hence, multiple
min-cost flow problems need to be solved per instance, all referring to the same memory layout.
Further, sequences may refer to disjoint subsets of the program variables such that the instances
can be decomposed. The left image of Fig. 8 shows cumulated access lengths for the 1, 918
instances. The right one gives a fine-grain distribution of single access sequence lengths after
decomposition. Unfortunately, the number of longer access sequences is rather small which is one
of the already addressed reasons why the instances become ‘easier’ or faster to solve for GOA-AIP
with increasing r.

Fig. 9 shows the results of our experiments for the 1, 918 optimally solved instances. The left
image shows the impact of the various configurations for r and k on the total offset assignment cost,
accumulated over all of the instances. The central observation is that the amount of address code
can be considerably reduced when exploiting larger auto-modify ranges. At least for the evaluated
instances, it appears that the reduction potential by increasing r is much higher than by increasing
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Figure 9 Offset assignment costs for all tested configurations and running times of the heuristics.

k since the offset assignment costs do not further decrease significantly for k > 2. However, this is
partially also due to the just discussed character of the instances. The results approve the already
in [18] observed impression, that the performance loss when using the proposed heuristics is rather
small - as well for increasing auto-modify ranges. The GOA-ITB-MCF-layout is clearly a better basis
for the ARA part than an order-of-first-use layout. However, since it just considers adjacencies of
program variables, there is even further potential in achieving near-optimal solutions by taking the
larger auto-modify ranges into account already when generating the memory layouts. Using an
optimum address register assignment is worthwhile and computationally not too intensive so that
it can be performed in production compilers. As can be seen in the right image, the heuristics are
fast and sum up to less than half of a second in total although many small min-cost flow problems
need to be solved.

7 Conclusion

We have described integer programming formulations for the general offset assignment problem.
In particular, an already computationally successful model for the case where a processor supports
only autoin-/decrement instructions could be extended to deal with more general auto-modify
capabilities. Our experimental results show that Branch-and-Cut algorithms that use the proposed
models as a basis are able to solve a wide range of real-world instances from the commonly used
OffsetStone benchmark set. While, for the autoin-/decrement case, nearly all instances can be
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solved in less than ten seconds of CPU time, the more general approach is, depending on the
range of allowed auto-modify instructions, less applicable especially for larger instances. However,
it can solve more instances than previously proposed models and has the useful property that its
size (in terms of variables and constraints) is independent from the number of address registers.
This allowed for new experiments that reveal two new important insights concerning the problem
setting in general. At first, the exploitation of larger auto-modify ranges can help to significantly
reduce the address computation overhead in real-world programs. Further, computing an optimal
address register assignment based on a good (or optimal) memory layout is a good strategy and
computationally feasible in practice, also for auto-modify ranges beyond one. Since we could also
show how to incorporate operand reordering techniques into an existing optimal address register
assignment algorithm, this approach is even more attractive.
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