
Real-Time Scheduling on Uni- and Multiprocessors
Based on Priority Promotions∗

Risat Mahmud Pathan

Chalmers University of Technology
412 96, Göteborg, Sweden
http://orcid.org/0000-0002-9902-7558
risat@chalmers.se

Abstract
This paper addresses the problem of real-time
scheduling of a set of sporadic tasks on uni- and mul-
tiprocessor platform based on priority promotion. A
new preemptive scheduling algorithm, called Fixed-
Priority with Priority Promotion (FPP), is proposed.
In FPP scheduling, tasks are executed similar to
traditional fixed-priority (FP) scheduling but the
priority of some tasks are promoted at fixed time
interval (called, promotion point) relative to the
release time of each job. A policy called Increase
Priority at Deadline Difference (IPDD) to compute
the promotion points and promoted priorities for
each task is proposed. FPP scheduling prioritizes
jobs according to Earliest-Deadline-First (EDF) pri-
ority when all tasks’ priorities follow IPDD policy.

It is known that managing (i.e., inserting and
removing) jobs in the ready queue of traditional
EDF scheduler is more complex than that of FP sched-

uler. To avoid such problem in FPP scheduling, a
simple data structure and efficient operations to
manage jobs in the ready queue are proposed. In
addition, techniques for implementing priority pro-
motions with and without the use of a hardware
timer are proposed.

Finally, an effective scheme to reduce the av-
erage number of priority promotions is proposed:
if a task set is not schedulable using traditional
FP scheduling, then promotion points are assigned
only to those tasks that need them to meet the
deadlines; otherwise, tasks are assigned traditional
fixed priorities without any priority promotion. Em-
pirical investigation shows the effectiveness of the
proposed scheme in reducing overhead on uniproces-
sor and in accepting larger number of task sets in
comparison to that of using state-of-the-art global
schedulability tests for multiprocessors.

2012 ACM Subject Classification Real-time systems, Process management, Scheduling, Embedded and
cyber-physical systems
Keywords and phrases Real-Time Systems, Priority Promotion, Schedulability Analysis, Schedulability
Condition
Digital Object Identifier 10.4230/LITES-v003-i001-a002
Received 2015-08-20 Accepted 2016-04-05 Published 2016-06-10

1 Introduction

The thirst to utilize increasingly more processing capacity of underlying hardware platform while
meeting the deadlines of hard real-time sporadic tasks has resulted in the design of numerous
scheduling algorithms. The preemptive dynamic-priority-based EDF scheduling is an optimal
algorithm for uniprocessor: if there is an algorithm that can schedule a task set such that all the
deadlines are met, then the task set is also schedulable using EDF scheduling [17]. In contrast, fixed-
priority scheduling does not provide such a guarantee, even under the (optimal for uniprocessor)
Deadline-Monotonic (DM) priority assignment [22].

∗ This research has been funded by the MECCA project under the ERC grant ERC-2013-AdG 340328-MECCA
and by the ARTEMIS Joint Undertaking under grant agreement no. 621429 for EMC2 project. This article is
based on our earlier work in [24].

© Risat Mahmud Pathan;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 3, Issue 1, Article No. 2, pp. 02:1–02:29
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://orcid.org/0000-0002-9902-7558
mailto:risat@chalmers.se
http://dx.doi.org/10.4230/LITES-v003-i001-a002
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

02:2 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

For uniprocessor, although EDF can better utilize the processing capacity, many practical
systems implement FP scheduling due to its efficient run-time support and low overhead in
managing the ready queue. For multiprocessors, there is no evidence whether global fixed-priority
(G-FP) scheduling dominates or is dominated by the global earliest-deadline first (G-EDF) scheduling:
some task set may only be deemed schedulable using the state-of-the-art G-EDF test while others
only using G-FP test [15]. The question this paper addresses is: Can we combine the schedulability
and implementation benefits of both FP and EDF?

In many real-time systems, e.g., avionics, spacecraft and automotive, it is important to
efficiently use the processing resources due to size, weight and power constraints. Reducing
overhead of task scheduling in such systems can cut cost for mass production of, for example,
cars, trucks or aircraft. A theoretically “good” scheduling algorithm may not be used in practice
if the overhead of implementation (e.g., managing tasks in the ready queue) is large. This paper
proposes an unifying approach to integrate the schedulability and implementation benefits of both
FP and EDF scheduling.

A new preemptive scheduling algorithm, called Fixed Priority with Priority Promotion (FPP),
is proposed in this paper. Under FPP scheduling, each task has a fixed priority that may undergo
priority promotion at fixed time intervals (called, promotion points) relative to the release time
of each job. For example, consider task τi that has (initial) fixed priority p with two promotion
points δ1 and δ2 at which the priority of the task is promoted to priority levels p1 and p2 such that
δ1 < δ2 and p2 < p1 < p (lower priority value implies higher fixed priority). If a job of task τi is
released at time ri, the priority of this job is p at time ri and promoted to priority levels p1 and p2
at time (ri+ δ1) and (ri+ δ2), respectively. After a task’s priority is promoted, its priority remains
at this promoted priority until either (i) the task completes execution, or (ii) another promotion
point is reached at which the task’s priority is again promoted. As will be evident later, two or
more jobs may have the same fixed priorities due to priority promotion. The FPP scheduler has a
special tie-breaking policy in such case: a newly released job cannot preempt a currently-executing
job if both of these jobs have the same priority. Other than priority promotion, FPP scheduling is
same as traditional FP scheduling on uniprocessor and multiprocessors1 platform while applicable
to implicit-, constrained- or arbitrary-deadline sporadic tasks.

The FPP scheduler consists of a dispatcher and a ready-queue manager. The dispatcher at each
time instant dispatches the highest-priority ready job if a processor is idle. If all the processors are
busy, then a newly released job with higher priority can preempt a currently-executing relatively
lower priority job. Active jobs that cannot be executed wait in the ready queue. The ready-queue
manager inserts and removes jobs to and from the ready queue. The ready-queue manager also
takes care of priority promotion of the jobs that are currently awaiting execution in the ready
queue.

The effectiveness of FPP scheduling in meeting the deadlines of the tasks depends on the
promotion points and promoted priorities of each task. A simple policy called Increase Priority at
Deadline Difference (IPDD) to compute (offline) the promotion points and promoted priorities for
each task is proposed. When all the tasks are assigned priorities based on IPDD policy, it will be
shown that the FPP scheduling essentially prioritizes jobs of the tasks according to EDF priority.
Recall that a job with shorter absolute deadline has smaller priority in EDF scheduling. We say
that job Ja has higher EDF priority than job Jb if the absolute deadline of Ja is shorter than that of
job Jb. Executing jobs of the tasks in EDF order but using priority-promotion-based FPP scheduler
is one of the major contributions in this paper.

1 In this paper, the term “FPP scheduling” in general applies to scheduling on uniprocessor and multiprocessors.
For multiprocessors, FPP scheduling means global FP scheduling with priority promotion.

R.M. Pathan 02:3

Since jobs can be prioritized in EDF order, the management of jobs in the ready queue of
FPP scheduler would suffer from the same overhead problems (as discussed by Buttazzo [12]) if it
is implemented similar to that of traditional EDF scheduler. On the other hand, the ready queue
management and run-time support for traditional FP scheduling is much simpler, which is the
main reason for its popularity in many commercial real-time kernels. This paper proposes a simple
data structure and constant-time, i.e., O(1) operations for implementing the ready queue. The
ready queue management using the proposed scheme has similar benefits as that of traditional
FP scheduler, which is another major contribution of this paper.

The only source of additional overhead for managing the jobs in the ready queue of FPP scheduler
in comparison to that of FP scheduler is the cost of priority promotion. To reduce such overhead
due to priority promotion, a joint priority assignment and schedulability test, called FPP_Test, is
proposed for FPP scheduling. The FPP_Test assigns traditional fixed priorities (with no promotion
point) to some tasks while assigns priorities to other tasks (with promotion points) using IPDD policy.
Such priority assignment is effective for task set that is neither schedulable using pure FP scheduling
nor using pure EDF scheduling. This result is very important for scheduling on multiprocessors
since neither FP nor EDF scheduling is optimal for multiprocessor scheduling which is in contrast to
scheduling on uniprocessor for which EDF is the optimal algorithm. The FPP_Test thus combines
the schedulability benefits of both fixed and dynamic (i.e., IPDD) priorities in addition to having
the similar implementation benefits of traditional FP scheduler.

To measure the effectiveness of FPP scheduling in terms of reducing overhead for managing jobs
in the ready queue in comparison to that of EDF scheduling, the execution of randomly generated
task sets is simulated using both FPP and EDF scheduling. The ready queues are simulated using
the proposed data structure (presented in Subsection 4.2.1) for FPP scheduler and using a priority
queue implemented as a binary min-heap (as is used in [10]) for EDF scheduler. The simulation
result shows that ready queue management of FPP scheduler suffers significantly less overhead in
comparison to that of EDF scheduler.

The FPP_Test is applicable to both uniprocessor and multiprocessor platform. On uniprocessor
platform, any task set schedulable using the optimal preemptive EDF scheduling is also schedulable
using FPP scheduling. Thus, FPP is also optimal for uniprocessor. On multiprocessor platform,
it will be shown that the FPP_Test dominates both the state-of-the-art G-FP and G-EDF tests.
Simulation result shows the effectiveness of FPP scheduling in determining higher percentage of
schedulable task sets and in reducing the number of preemptions and migrations.

Finally, techniques to implement priority promotion with and without using hardware timer
are proposed. We tackle the challenge of using one hardware timer to implement multiple
priority promotions that are due at some later time. In addition, we also address the problem of
implementing priority promotions without using a timer (i.e., based on pure software approach).
In such software-based approach, a technique called delayed promotion is used: some jobs’ priority
promotions are delayed until it is necessary to ensure specific property of the underlying schedule.

Related Work. The FPP algorithm is similar to the well-known dual-priority scheduling which
was first proposed by Burns and Wellings [11] in 1993, and analyzed by Davis and Wellings [13, 16]
considering shared resources, release jitter and for scheduling soft real-time tasks. In dual-priority
scheduling, each task undergoes priority promotion only once. In contrast, a task in FPP scheduling
may have more than one promotion point. The reason for having more than one promotion point
is to have the power to prioritize jobs in EDF order to meet deadlines.

Gonzalez Harbour et al. [18] considered scheduling FP scheduling of periodic tasks where
each task is divided into a collection of precedence-constrained subtasks such that each subtask
has its own priority. It is shown using an example by Burns and Wellings [11] that a task set

LITES

02:4 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

may be schedulable in dual-priority scheduling and may not be schedulable using the approach
proposed by Gonzalez Harbour et al. [18]. After around one-and-half decade, Burns [9] presented
an open problem at the RTSOPS seminar in ECRTS 2010: Is the utilization bound of dual-priority
scheduling of implicit-deadline tasks on uniprocessor 100%? While Burns [9] solved this problem
for task set having n = 2 tasks, the answer to this question for n > 2 is still unknown for
dual-priority scheduling. This paper will show that the utilization bound of FPP scheduling of
implicit-deadline tasks on uniprocessor is 100% for any n.

Organization. The rest of the paper is organized as follows. Section 2 presents the task model.
The IPDD policy and important lemmas of this policy are presented in Section 3. The dispatcher
and ready queue manager of FPP scheduler are presented in Section 4. Technique to reduce
the total number of promotion points, particularly, the FPP_Test is proposed in Section 5. The
FPP_Test is applied to both uni- and multiprocessors considering constrained-deadline tasks
and experimental results are presented in Section 6 and Section 7, respectively. Techniques to
implement priority promotions for FPP scheduling are proposed in Section 8. Finally, Section 9
concludes this paper.

2 Task Model

This paper considers scheduling a collection of n sporadic tasks in set Γ = {τ1, . . . τn}. Each
task τi is characterized by a triple (Ci, Di, Ti), where Ci represents the worst-case execution
time (WCET), Di is the relative deadline, and Ti is the minimum inter-arrival time of the jobs or
instances of task τi. Successive arrivals of the instances (called jobs) of task τi are separated by at
least Ti time units. Each job of task τi after its release requires at most Ci units of execution
time before its relative deadline. The release time and absolute deadline of job Ja of task τi are
respectively denoted by ra and da such that da = ra +Di.

A job is called active if it is released but has not completed its execution. An active job may
be in execution or awaiting execution in the ready queue at any time instant. The FPP scheduling
is applicable to implicit-, constrained- and arbitrary-deadline tasks. This paper assumes that
lower priority value implies higher priority levels; i.e., 1 and n are the highest and lowest priority
levels, respectively.

3 Priority Promotion Policy: IPDD

The effectiveness of FPP scheduling depends on the promotion points and promoted priorities for
each task. In this section, the IPDD priority-promotion policy that can prioritize jobs of the tasks
in EDF order while executing using priority-promotion-based FPP scheduling is presented.

The IPDD priority-promotion policy requires n distinct fixed-priority levels to determine the
promotion points and promoted priorities of n tasks. Tasks are indexed in deadline-monotonic
order, i.e., if j < i for any two tasks τj and τi, then Dj ≤ Di. Therefore, there are (i−1) tasks (i.e.,
τ1, τ2, . . . τi−1) that have their relative deadlines no larger than that of task τi. The IPDD policy
computes the promotion points and promoted priorities for each task τi ∈ Γ as follows:

Task τi has i different priority levels: starting from priority level i to the highest priority level
1. Task τi’s initial priority i is promoted (i− 1) times. At each of the (i− 1) promotion points,
the priority is promoted by one priority level. Figure 1 depicts IPDD priority-promotion policy
for task τi.
Each job of task τi when released has (initial) priority level i, which is promoted to priority
level (i− 1) at the first promotion point; then promoted to priority level (i− 2) at the second

R.M. Pathan 02:5

Figure 1 IPDD priority-promotion policy for task τi. Consider that an arbitrary job of task τi is released
at time ri and has deadline at di = ri + Di. The dotted vertical lines are the promotion points. The
κth promotion points is (Di −Di−κ) time units later than time ri for κ = 1, 2 . . . (i − 1). Between two
consecutive promotion points ta and tb, the priority of the job remains at the priority level set at the
earlier promotion point ta.

promotion point; and continuing in this manner, finally, promoted to the (highest) priority
level 1 at the last, i.e., (i− 1)th promotion point.
The promotion points apply to each job of task τi. Each promotion point of a job is a fixed
time interval from the release time of the job. The κth promotion point is equal to the (relative)
deadline difference of tasks τi and τi−κ, which is equal to (Di −Di−κ). The priority of each
job of τi is promoted to priority level (i− κ) at the κth promotion point which is (Di −Di−κ)
time units later than its release time, for κ = 1, 2, . . . (i− 1). Since Di ≥ Di−1 . . . ≥ D1,
we have (Di −Di−1) ≤ (Di −Di−2) . . . ≤ (Di −D1), which implies that priority of task τi is
non-decreasing.
If any two tasks τi and τj , where i < j, have the same relative deadline, then task τj ’s initial
priority is i (not j) since Dj −Di = 0 and the promotion points of τj are computed the same
way that are computed for τi.

Each task τi has i priority levels i, (i− 1), . . . 1 with total (i− 1) promotion points. And, each
task τj has j priority levels j, (j − 1), . . . i, (i− 1), . . . 1 with total (j − 1) promotion points where
i < j. In other words, according to IPDD policy, i priority levels are common (shared) for any
two tasks τi and τj whenever i < j. Due to sharing of priority levels, the number of distinct
fixed-priority levels required to assign priorities to all the n tasks is at most n. As will be evident
later, if two or more newly released jobs have the same initial priority, the FPP scheduler breaks
the tie arbitrarily. If a newly released job has the same priority as that of a currently-executing
job, the new job does not preempt the executing job in FPP scheduling. Example 1 demonstrates
the IPDD policy using an example of three tasks.

I Example 1. Consider (Ci, Di, Ti) for three tasks τ1 ≡ (1, 2, 4), τ2 ≡ (4, 7, 8) and τ3 ≡ (3, 10, 16).
In IPDD policy, each job of task τ1 starts with priority level 1 which is never promoted since there
is no other task with smaller relative deadline than D1. If a job of task τ1 is released at time r1,
then the priority of this job remains at priority level 1 during [r1, r1 +D1).

Since there is one other task (i.e., τ1) with smaller relative deadline thanD2, each job of τ2 starts
with priority level 2, which is promoted exactly once at time r2 +(D2−D1) = r2 +(7−2) = r2 +5,
where r2 is the release time of an arbitrary job of τ2. The priority of the job remains at priority
level 2 and 1 respectively during [r2, r2 + 5) and [r2 + 5, r2 +D2) = [r2 + 5, r2 + 7).

Since there are two other tasks (i.e., τ1 and τ2) with smaller relative deadlines than D3, each
job of τ3 starts with priority level 3, which is promoted twice – first at time r3 + (D3 −D2) =

LITES

02:6 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

Figure 2 FPP schedule of three tasks in Example 1 where each task is assigned priorities using IPDD policy.
Note that task τ3’s priority is promoted to priority level 1 at time t = 8 and is not preempted by the
third job of task τ1 that is released at time t = 8 although both jobs have the same priority. This is
because a newly released job cannot preempt a currently executing job if both have the same priority in
FPP scheduling.

r3 + (10 − 7) = r3 + 3 and second at time r3 + (D3 − D1) = r3 + (10 − 2) = r3 + 8, where r3
is the release time of an arbitrary job of τ3. The priority of the job is at priority level 3, 2 and
1 respectively during [r3, r3 + 3), [r3 + 3, r3 + 8) and [r3 + 8, r3 + D3) = [r3 + 8, r3 + 10). The
FPP schedule of this task set (assuming strictly periodic release for all tasks staring from time 0)
is given in Figure 2 (the scheduler is formally presented in Subsection 4.1).

The remainder of this section presents important Lemmas regarding the properties of IPDD pol-
icy and will be used to show that FPP scheduling generates EDF schedule.

I Lemma 2. If the priority of job Ja is promoted to priority level ` at time ta, then (da− ta) = D`.

Proof. Assume that job Ja is a job of task τi. Therefore, da = ra +Di. According to IPDD policy,
ta = ra + (Di −D`). Consequently, (da − ta) = D`. J

I Lemma 3. If job Ja has higher priority than another job Jb at time t according to IPDD policy,
then
1. the deadline da is smaller than the deadline db, and
2. Ja’s priority never becomes smaller than that of Jb.

Proof. Consider that Ja and Jb have priorities ν and ` at time t where ν < `. We will show that
(1) da < db, and (2) Ja’s priority is never becomes smaller than that of Jb.

R.M. Pathan 02:7

Since Jb’s priority is ` at time t, its priority will ultimately be promoted to (higher) priority
level ν according to IPDD policy. Let Jb’s priority will be promoted to priority ν at time tb where
t < tb. On the other hand, Ja’s priority is already at priority ν at time t. Let Ja’s priority be
set to priority ν at time ta where ta ≤ t. Therefore, ta < tb. From Lemma 2, it follows that
(da − ta) = Dν and (db − tb) = Dν . Since ta < tb, it follows that da < db (part (1) is proved).

It follows from IPDD policy that the priorities of Ja and Jb are set to priority level κ, for
κ = ν, (ν − 1), . . . 1, respectively at time (ta +Dν −Dκ) and (tb +Dν −Dκ). Since ta < tb, we
have (ta +Dν −Dκ) < (tb +Dν −Dκ) for κ = ν, . . . 1. Therefore, priority of Ja is promoted to
higher priority level earlier than that of Jb. Any job having priority κ remains at priority level κ
for duration of (Dκ −Dκ−1) time units in IPDD policy. Therefore, Ja’s priority is never smaller
than that of Jb (part (2) is proved). J

I Lemma 4. Consider that job Ja has priority ` at time t according to IPDD promotion policy. If
a new job Jb of task τ` is released at time t, then the da ≤ db.

Proof. According to IPDD policy, job Jb of task τ` has priority ` at time t since it is released at
time t. Since Jb is released at time t, we have (db − t) = D`.

Job Ja’s priority is already at priority ` at time t. Let Ja’s priority be set to priority level ` at
time ta where ta ≤ t. From Lemma 2, we have (da− ta) = D`. Since ta ≤ t, we have (da− t) ≤ D`.
From (db − t) = D` and (da − t) ≤ D`, its follows that da ≤ db. J

I Lemma 5. Consider set J of active jobs. If all the jobs in J have same priority ` at some
time instant, then the job with the earliest deadline is promoted to priority level ν no later than
that of any other job in J , where ν < `.

Proof. Consider any two jobs Ja and Jb in J . Without loss of generality assume that da ≤ db.
Let Ja and Jb are promoted to higher-priority level ν at time ta and tb, respectively. We will
show that ta ≤ tb, which implies that Ja with deadline no later than that of Jb is promoted to
priority level ν no later than that of job Jb. It follows from Lemma 2 that (da − ta) = Dν and
(db − tb) = Dν . Since da ≤ db, we have ta ≤ tb. J

It will be shown based on Lemmas 2–5 that the FPP scheduling generates the EDF schedule
of the tasks when priorities to all the tasks are given using IPDD policy. The dispatcher and
the ready queue manager of FPP scheduler are presented in Section 4. Then Section 5 presents
techniques to reduce the number of promotion points by not assigning priorities to all the tasks
using IPDD policy (i.e., some tasks have no promotion point).

4 Dispatcher and Ready Queue Manager

The dispatcher of the FPP scheduler determines which active job to execute while the ready-queue
manager is responsible for managing the ready jobs in the ready queue.

4.1 The Dispatcher

The dispatcher of FPP scheduler considering global multiprocessor scheduling on m identical
processors is presented below. When m = 1, this dispatcher applies to uniprocessor. In addition,
some important events related to the operations performed by the ready-queue manager are also
highlighted below. The FPP dispatcher at each time t works as follows:

LITES

02:8 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

At most m highest-priority jobs at time t are dispatched for execution. If t is the promotion
point for a currently-executing job, then its priority is promoted2 at time t.
If all the m processors are busy and a new job Jnew with priority higher than that of the
currently-executing lowest-priority job Jexe_low is released at time t, then Jnew starts execution
by preempting Jexe_low. The preempted job Jexe_low is inserted in the ready queue. This
(insertion) event managed by the ready-queue manager is called the “rel_prmt” event.
If all the m processors are busy and a new job Jnew with priority not higher than that of
the currently-executing lowest-priority job Jexe_low is released at time t, then Jnew does not
preempt Jexe_low. And, Jnew is inserted in the ready queue. This (insertion) event managed by
the ready-queue manager is called the “rel_no_prmt” event. Note that if Jnew has the same
priority as that of Jexe_low (ties in priority ordering), then Jnew does not preempt Jexe_low.
If some processor becomes idle while the ready queue is not empty, then the job having
the highest priority from the ready queue is removed and dispatched for execution on the
idle processor. The ready-queue manager performs this removal and this event is called the
“idle_remv” event.

In summary, the FPP dispatcher works similar to traditional global FP scheduler with one
additional feature: jobs may undergo priority promotion. If the total number of active jobs is
not more than m, then all active jobs are in execution and the ready queue is empty. If the total
number of active jobs is more than m, then all the processors are busy and some active jobs are
in the ready queue. Example 1 presents the FPP schedule for three tasks. Theorem 6 proves that
FPP scheduling executes jobs in EDF order if all tasks have priorities based on IPDD.

I Theorem 6. If tasks are given priorities based on the IPDD policy, then the jobs of the tasks are
executed in EDF order by the FPP scheduler at each time instant t.

Proof. If the number of active jobs is no more than m, then each active job is executing at time t
on separate processor. The claim of this theorem holds trivially. Now consider the case when the
number of active jobs is exactly m at time t. If a new job Jnew arrives at time t (i.e., number
of active job becomes larger than m) such that the priority of Jnew is not higher than that of
the currently-executing lowest-priority job Jexe_low, then Jnew is inserted in the ready queue. If
Jnew’s priority is smaller than that of Jexe_low, then from Lemma 3 it follows that the absolute
deadline of job Jnew is larger than that of job Jexe_low. If Jnew’s priority is equal to Jexe_low, then
it follows from Lemma 4 that the deadline of job Jnew is not smaller than that of job Jexe_low.
Similarly, since Jexe_low is the currently-executing lowest-priority job, its deadline is not smaller
than any other currently-executing job. Therefore, job Jnew with EDF priority not higher than any
of the currently-executing job is inserted in the ready queue.

On the other hand, if Jnew has higher priority than that of job Jexe_low, then Jnew preempts
the execution of Jexe_low and Jexe_low is inserted in the ready queue. According to Lemma 3, job
Jnew has earlier deadline than that of job Jexe_low. Therefore, job Jexe_low having a relatively
lower EDF priority is inserted in the ready queue.

2 For example, to perform the promotion, a special task can be designed whose only job is to promote the
priority of the application tasks, as pointed by Burns [11] for dual-priority scheduling. In addition, all the
priority promotions of a currently-executing job may be postponed until a new job is released. This is because
the execution of a currently-executing job may be interfered only if a new job is released. When a new job
is released at time t, the priority of the currently-executing job is determined considering the last priority
promotion at or immediately before t. This can avoid unnecessary overhead due to priority promotion of
the executing tasks. Section 8 will present different hardware and software-based techniques to implement
priority promotion.

R.M. Pathan 02:9

According to Lemma 3, if job Ja is prioritized by the dispatcher over another job Jb, then job
Jb will never have higher priority (even if its priority might be promoted) than job Ja at another
(future) time instant. Consequently, if job Jb is inserted in the ready queue because it cannot be
prioritized by the dispatcher over another job Ja, then job Jb from the ready queue (even if its
priority might be promoted) cannot preempt the execution of job Ja at some other (later) time.
Therefore, no job that is inserted in the ready queue can preempt the jobs that are in execution.

Whenever some processor becomes idle at time t while the ready queue is not empty, the
highest-priority job from the ready queue is removed and dispatched for execution. However, due
to priority promotion, there may be multiple jobs waiting at the highest priority level in the ready
queue. It will be shown in Subsection 4.2 that the ready-queue manager (when handling the
idle_remv event) removes the job with shortest deadline (i.e., highest-priority EDF job) from the
ready queue. Therefore, jobs are executed in EDF priority order in FPP scheduling in all cases. J

Now we concentrate on the ready queue manager, in particular, the events it has to manage. In
addition to the rel_prmt, rel_no_prmt and idle_remv events, the ready queue manager needs to
handle another event. If some job’s priority is to be promoted while that job is awaiting execution
in the ready queue, the ready-queue manager needs to manage this promotion. This event managed
by the ready-queue manager is called “pri_prom” event. Therefore, the ready-queue manager
needs to handle four different events: rel_prmt, rel_no_prmt, idle_remv and pri_prom. If
multiple events occur at the same time, they are managed by the ready-queue manager in any
order.

A Note on Ready-Queue Manager for FP Scheduler. The ready-queue manager of traditional
FP scheduling also needs to manage the rel_prmt, rel_no_prmt and idle_remv events. The
ready-queue for FP scheduler can be implemented as an array of length n where task control blocks
(TCBs) of the ready tasks are stored. The κth position of the array stores the TCB of the ready
task that has current priority κ for κ = 1, . . . n.

If rel_prmt or rel_no_prmt event occurs, then a job (particularly, Jexe_low or Jnew) is inserted
in the ready queue. If a job of task τκ is to be inserted in the ready-queue, then the priority of
τκ is used to index the ready-queue array position at which the TCB of τκ is stored. Therefore,
insertion is done in constant time.

If an idle_remv event occurs, then the highest-priority job from the ready queue is removed
and dispatched for execution. Finding the highest-priority job from the ready-queue can be
performed in constant time as follows. A bitmap array B[n . . . 1] of the ready-queue array is
maintained. Initially, all the elements in bitmap B are zero to specify that there is no job awaiting
execution at any priority level in the ready-queue array. When a job with priority κ is inserted in
to the ready-queue array, the κth bit of the bitmap is set (i.e., B[κ] = 1) to specify that there is a
job awaiting execution in the ready queue at priority level κ. Determining the highest-priority job
from the ready queue is to find the position of the least set bit in the bitmap B[n . . . 1], which
can be performed in constant time using, for example, deBruijn sequence [21], if not supported
as a machine-level instruction [27]. Once the position is known, the TCB of the job is removed
and corresponding job is dispatched and we set B[κ] = 0. An interesting discussion how the
highest-priority task from the ready queue can be removed efficiently for FP scheduling can be
found in [27].

In FP scheduling at most one element (i.e., job) is stored at each priority level in the ready
queue. If the number of supported priority levels is smaller than the number of fixed-priority
tasks, then the ready queue may be split into n different priority levels as is discussed by Buttazzo
in [12]. In such case, the a FIFO queue is maintained at each priority level.

LITES

02:10 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

A Note on Ready-Queue Manager for EDF Scheduler. Implementing EDF requires to keep track
of all absolute deadlines and perform a dynamic mapping between absolute deadlines and priorities.
If the number of possible absolute deadlines for all the active tasks is larger than the the total
number of distinct priority levels, managing the ready tasks is complex in EDF scheduling. If the
number of active tasks is smaller than the number of different priority levels, updating the ready
queue has higher overhead in comparison to that of FP scheduling, as is discussed by Buttazzo [12].

In the worst case, all the ready jobs may need to be remapped to new priority levels, which
increases the overhead of ready queue management. The complexity and overhead in managing
ready queue of EDF scheduler make it less popular in commercial kernel although EDF always
performs better in terms of schedulability on uniprocessor when overheads are not considered.

Theorem 6 shows that the FPP scheduling executes jobs similar to EDF when tasks are given
priorities using IPDD policy. However, managing jobs in the ready queue of FPP scheduler,
if implemented similar to that of known for EDF, will have the same overhead problems that
EDF suffers. In this paper, a new ready-queue management scheme for FPP scheduler is proposed.
In particular, a data structure for the ready queue and constant-time operations to manage each
of the rel_prmt, rel_no_prmt, idle_remv and pri_prom events is proposed.

In FPP scheduling, if the priority of a currently-executing job is promoted, then such promotion
does not remap any job in the ready queue. However, if the priority of a job residing in the ready
queue is promoted, then such promotion (as will be evident shortly) remaps that job to a new
position in the ready queue data structure and thus incurs overhead.

Inspired by the discussion of Buttazzo [12], the overhead model this paper considers is the sum
of total number of times each of the jobs in the ready queue is remapped to some other position.
It will be empirically shown, based on this overhead model, that FPP scheduler has significantly
lower overhead than that of EDF. Such low overhead of FPP scheduler shall make it popular in
practice.

4.2 The Ready Queue Manager
This subsection presents the data structure of the ready queue and operations to handle the events
rel_prmt, rel_no_prmt, idle_remv and pri_prom.

4.2.1 Data-Structure for the Ready Queue
Due to priority promotion and sharing of priority levels in FPP scheduling, multiple active jobs
may have the same priority at the same time instant. This is because two jobs of two different
tasks τi and τj shares i priority levels where i < j. Therefore, the ready queue may need to store
more than one job at the same priority level. An array of total n linked lists are used to implement
the ready queue of the FPP scheduler. The κth linked list at any time instant stores all the TCBs
of the ready jobs that have priority level κ at that time instant.

The κth linked list has two pointers: head[κ] and tail[κ] that respectively point the first
and last TCB in the κth linked list. This ready queue data structure along with the bitmap is
depicted in Figure 3. The purpose of the bitmap B[n . . . 1] is to perform efficient searching to find
the highest priority job from the ready queue.

4.2.2 Operations by the Ready Queue Manager
The ready-queue manager updates the ready queue whenever rel_prmt, rel_no_prmt, idle_remv
and pri_prom event occurs. The jobs stored in the ready queue at any time instant will satisfy
the following two properties:

R.M. Pathan 02:11

Figure 3 Proposed data structure of the ready queue for FPP scheduling.

P1: All jobs stored in the νth linked list of the ready queue have higher EDF priorities than
any other job stored in the `th linked list where ν < `.
P2: All jobs in the `th linked list are stored in order of non-increasing EDF priority, i.e., the
head[`] and tail[`] respectively points the highest and lowest priority EDF job in the `th

linked list for ` = 1, . . . n.

Assume that these two properties hold at time t0 (such t0 exists at least for the case when the
system starts, i.e., when there is no job in the ready queue). Consider that some event (rel_prmt,
rel_no_prmt, idle_remv or pri_prom) occurs at time t such that there is no other event after t0
and before t. We will show that how properties P1 and P2 continue to hold after ready queue is
updated to handle the event that occurs at time t. Maintaining properties P1 and P2 are very
important to ensure that operations on the ready queue can be done in constant time. Given the
structure of the ready-queue in Subsection 4.2.1, operations on the ready queue for managing
events rel_prmt, rel_no_prmt, idle_remv and pri_prom are presented below.

Event rel_prmt. This event occurs if a newly released job Jnew starts executing by preempting
currently-executing lowest-priority job Jexe_low. The TCB of job Jexe_low is inserted in the ready
queue. If priority of job Jexe_low is ` when preempted by Jnew, then the TCB of job Jexe_low is
inserted at the front of the `th linked list of the ready queue. The insertion at the front is done in
constant time using the head[`] pointer. We set B[`] = 1 to specify that there is a TCB awaiting
execution at priority level `.

Since job Jexe_low has priority ` at time t and was in execution, the 1st, 2nd, . . . (`− 1)th linked
lists of the ready queue at time t are empty. It follows from the proof of Theorem 6 that any
job in the ready queue at time t neither has higher priority nor has earlier deadline than the
currently-executing lowest-priority job Jexe_low. Therefore, inserting job Jexe_low at the front of
the `th linked list at time t guarantees that P1 and P2 continues to hold.

Event rel_no_prmt. This event occurs if a newly released job Jnew cannot preempt currently-
executing lowest-priority job Jexe_low and Jnew is inserted in the ready queue. If priority of Jnew

LITES

02:12 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

is ` at time t, then the TCB of Jnew is inserted at the end of the `th linked list. The insertion at
the end is done in constant time using the tail[`] pointer. We set B[`] = 1 to specify that there
is a TCB awaiting execution at priority level `.

Since P1 holds at time t0 and job Jnew has priority ` at time t, it follows that all the jobs
in the κth linked list at time t have higher and lower EDF priorities than that of job Jnew where
κ < ` and κ > `, respectively. According to Lemma 4, all the jobs in the `th linked list at time t
have their absolute deadlines no later than that of job Jnew since job Jnew is released at time t.
Therefore, inserting Jnew at the end of the `th linked list at time t guarantees that P1 and P2
continues to hold.

Event idle_remv. This event occurs when some processor becomes idle while the ready-queue is
not empty. In such case, the highest-priority job from the ready queue is removed and dispatched
for execution. The highest-priority job is in the lowest-indexed non-empty linked list. The lowest-
indexed non-empty linked list (i.e., non-empty linked-list at the highest priority level) is found in
constant time using bitmap B based on the same technique used to find the highest-priority ready
task in traditional FP scheduling, for example, using deBruijn sequence [21].

Assume that the `th linked list of the ready queue is the lowest-indexed non-empty linked list.
Note that there may be multiple jobs awaiting execution in the `th linked list. The job from the
front of the `th linked list is removed and dispatched for execution. The removal from the front
is done in constant time using head[`] pointer. If head[`] becomes NULL after this removal
(i.e., the `th linked list becomes empty), then we set the B[`] = 0 to specify that there is no TCB
awaiting execution at priority level `.

Since property P2 holds at time t0, the job from the front of the lowest-indexed non-empty
linked list has the highest EDF priority at time t. And, after the removal of this job the remaining
jobs in the ready queue also satisfy P1 and P2 since removal a job cannot violate P1 or P2.

Event pri_prom. This event occurs at time t when the priority of some job in the ready queue
is to be promoted. If the priority of a job from the `th linked list is to be promoted to priority
level ν, then this job is removed from the `th linked list and inserted to the νth linked list.

Since P2 holds at time t0, the job at the front of the `th linked list has deadline no later than
any other jobs in `th linked list. According to Lemma 5, given a set of jobs having the same
priority ` at time t0, the priority of the job with earliest deadline will be promoted to priority
level ν no later than any other job in that set. Consequently, the priority of the job at the front
of the `th linked list is to be promoted to priority level ν. Let job Ja is the job at the front of the
`th linked list.

The TCB of job Ja is removed from the front of the `th linked list and inserted at the end of
the ν linked list. The removal and insertion can be done in constant time using the head[`] and
tail[ν] pointers, respectively. Finally, if the `th linked list becomes empty after this removal,
then we set the B[`] = 0. We set B[ν] = 1 to specify that the νth linked list is now not empty.

Since the promoted priority of job Ja is ν at time t, all jobs in the κth linked list, where κ > ν,
have absolute deadline larger than that of job Ja at time t according to Lemma 3. Since P1 holds
at time t0 and job Ja is in the `th linked list at time t0, it follows that all the jobs in the νth linked
list have smaller absolute deadlines than that of job Ja. Therefore, inserting Ja at the end of the
νth linked list ensures that P1 and P2 continues to hold.

In summary, when all the tasks are given priorities based on IPDD policy, the FPP scheduler
executes jobs in EDF priority order. Therefore, existing EDF schedulability tests for uniprocessor
and multiprocessors (i.e., G-EDF test) can be used to determine whether FPP scheduling can
guarantee the schedulability of the tasks that are given priorities using IPDD policy.

R.M. Pathan 02:13

If a currently-executing job’s priority is promoted, then such promotion does not need to
reorder the jobs in the ready queue (i.e., no ready queue management overhead is incurred). In
contrast, if the priority of a job residing in the ready queue is promoted, then such promotion
repositions the job to a higher-priority position in the ready queue data structure and thus incurs
overhead. While the ready queue management of FPP scheduler has similar implementation
benefits of FP scheduler (i.e., each event can be handled in constant time), the only source of
additional overhead in comparison to FP scheduler is the cost of priority promotion. However,
the number of promotion points can be reduced by assigning some tasks of a task set traditional
fixed priorities with no promotion point. To this end, a technique to reduce the total number of
promotion points and a new schedulability test called FPP_Test for FPP scheduling are proposed
in next section.

5 FPP_Test to Reduce Number of Promotions

In this section, a schedulability test called FPP_Test to determine whether a task set is schedulable
in FPP scheduling is proposed. The FPP_Test also determines the priorities of the tasks where a
subset of the tasks is assigned traditional fixed priorities (without any priority promotion) while
other tasks are assigned priorities (with priority promotion) based on the IPDD policy.

To determine which tasks can be assigned fixed priorities with no promotion point, an
important feature of the state-of-the-art FP schedulability test is exploited. For uniprocessor and
multiprocessor (global) FP scheduling, the corresponding state-of-the-art schedulability tests are of
iterative nature: the schedulability of each task τi is tested separately. For example, the well-known
response time analysis (RTA) for FP scheduling on uniprocessor [2] and multiprocessors [26] is of
iterative nature: the response time Ri of each task τi is computed. The crucial observation is that
when determining the schedulability of τi using an iterative FP schedulability test for uniprocessor
[2] or for multiprocessors [25], the worst-case interference computation due to the higher-priority
tasks in set hp(i) does not assume that the jobs of the tasks in hp(i) are also scheduled using
FP scheduling; rather, it only assumes that jobs of the tasks in hp(i) have higher priorities and
cause maximum interference on τi. Consequently, Corollary 7 holds.

I Corollary 7. If task τi is deemed to be schedulable at priority level ` using an iterative test where
hp(i) is assumed to be the set of higher priority tasks, then the schedulability of τi is preserved
when it is assigned traditional fixed-priority level ` regardless whether the jobs of the tasks in hp(i)
are scheduled using dynamic or fixed priority.

It follows from Corollary 1 that if some task τi is deemed schedulable using an iterative test at
fixed-priority level `, then task τi does not need to have any promotion point and the tasks in
hp(i) may be assigned fixed or IPDD (i.e., essentially dynamic) priorities in FPP scheduling. The
FPP_Test is designed based on this observation.

The FPP_Test (presented in Figure 4) requires two schedulability tests to determine the
schedulability of a task set in FPP scheduling. These two tests, denoted by Tfp and Tedf in Figure 4,
are not “real” schedulability tests. Depending on the task model (e.g., implicit-, constrained- or
arbitrary-deadline) and processor platform (uniprocessor or multiprocessors), we will plug in the
state-of-the-art iterative FP test and EDF test respectively in place of Tfp and Tedf . In Sections 6–7,
the actual tests used in place of Tfp and Tedf are presented respectively for uniprocessor and
multiprocessor platform.

The FPP_Test in Figure 4 takes as input a task set Γ and returns “true” if the task set is
deemed to be FPP schedulable; otherwise, it returns “false”. The FPP_Test also determines the
tasks that are given fixed priorities and the tasks that are given priorities based on IPDD policy.

LITES

02:14 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

Algorithm: FPP_Test (Task Set Γ)

1. For priority level k = n to k = 1
2. For each priority-unassigned task τi ∈ Γ
3. If τi is schedulable at priority level k using
4. test Tfp with all other priority-unassigned
5. tasks assumed to have higher priorities
6. Then
7. assign τi to priority k
8. break (continue outer loop)
9. End If
10. End For
11. If all the priority-unassigned tasks pass Tedf , Then
12. Compute promotion points only for the
13 priority-unassigned tasks using IPDD policy

//Comment: IPDD policy uses (higher) priority levels
// k, (k − 1) . . . 1 for these priority-unassigned tasks

14. Return True
15. Else
16. Return False
17. End If
18. End For
19. Return True

Figure 4 Improved priority promotion policy for FPP scheduling.

Initially, all the tasks in set Γ are “priority-unassigned” in Figure 4, i.e., no task has any
priority. Based on Audsley’s OPA algorithm [1], the FPP_Test starts assigning traditional fixed
priorities to the tasks starting from the lowest priority level. For each priority level k in line 1, some
priority-unassigned task is searched using the inner loop in line 2-10 to assign it the fixed-priority
level k. Whether or not a (priority-unassigned) task, say task τi, can be assigned priority level
k is determined in line 3–5 by applying the iterative FP test Tfp and assuming higher priorities
for all other (priority-unassigned) tasks. If such a task τi is found in line 3–5, then task τi is
assigned the traditional fixed-priority level k in line 7 and the priority assignment for next (higher)
priority level starts by jumping from line 8 to line 1. If the outer loop in line 1–18 terminates
after assigning fixed priorities to all the tasks in Γ in line 7, then the algorithm returns “true” in
line 19. And, FPP schedules all tasks similar to FP scheduling without any priority promotion.

If no task can be assigned the current priority level k (i.e., the test in line 3–5 is false for all
the priority-unassigned tasks), then the inner loop in line 2–10 terminates. In such case, there
exist some priority-unassigned tasks. The schedulability of all these priority-unassigned tasks
are tested in line 11 by applying test Tedf . If these priority-unassigned tasks pass Tedf , then the
promotion points only for these priority-unassigned tasks are computed in line 12-13 based on the
IPDD policy and the algorithm returns “true” in line 14. Otherwise, the algorithm returns “false”
in line 16. Note that the tasks assigned priorities using the IPDD policy in line 12-13 have higher
priorities than any task that is given traditional fixed priority in line 7.

The FPP_Test guarantees schedulability of Γ using FPP scheduling if it returns “true”. Assume
that when the algorithm returns true, there are q tasks that are assigned traditional fixed priorities
in line 7 and the remaining (n− q) tasks are given priorities based on IPDD policy in line 12-13
for some q, 0 ≤ q ≤ n. Each of the q tasks that is given traditional fixed priority in line 7 is
schedulable in FPP scheduling based on Corollary 1. The schedulability of the (n− q) tasks that
are given IPDD priorities is not affected by the q tasks because these q tasks are given lower

R.M. Pathan 02:15

(traditional) fixed priorities. Since the (n− q) tasks, having priorities based on IPDD policy, are
essentially scheduled in EDF order by the FPP scheduler (proved in Section 4), satisfying the Tedf
test in line 11 guarantees that these (n − q) tasks are also schedulable in FPP scheduling. If a
task set is schedulable using traditional FP scheduling, then no promotion point is assigned to
any task using the FPP_Test and all tasks are executed similar to traditional FP scheduling using
FPP scheduler.

The ready queue management scheme of Subsection 4.2.2 still applies when priorities are
assigned using FPP_Test. This is because the ready jobs of the q tasks having traditional fixed
priorities are (i) stored in the linked lists corresponding to the q lower (i.e., (n−q+1), . . . n) priority
levels, (ii) never promoted to a higher priority level since they have no promotion point, and (iii)
dispatched for execution only after all the jobs that are given the (n− q) higher (i.e., (n− q), . . . 1)
priority levels are dispatched for execution. Properties P1 and P2 (defined in Section 4.2.2) do
not necessarily need to hold for the tasks that are assigned traditional fixed priorities but always
hold for the tasks assigned priorities using IPDD policy.

6 FPP_Test for Uniprocessor

In this section, the FPP_Test in Figure 4 is applied for determining schedulability of constrained-
deadline tasks on uniprocessor. The response-time test for uniprocessor FP scheduling proposed
by Audsley et al. [2] is considered in place of Tfp in Figure 4 to determine whether a (priority-
unassigned) task τi can be assigned fixed priority level k. Note that this response-time test
(which is an exact test) combined with Audsley’s OPA algorithm in Figure 4 guarantees optimal
fixed-priority assignment. And, the quick processor demand analysis (QPA), which is an exact
EDF test, proposed by Zhang and Burns [30], is considered in place of Tedf in line 11 to determine
whether all the priority-unassigned tasks are schedulable using EDF. The QPA test is an efficient
implementation of the processor demand analysis proposed by Baruah et al. [4].

If a task set is EDF schedulable, then the QPA test in line 11 will also be satisfied when not all
the tasks are assigned fixed priorities in line 7. Consequently, any task set that is schedulable
using optimal EDF scheduling on uniprocessor also satisfies the FPP_Test. Since preemptive EDF is
optimal [17], the FPP scheduling where priorities are assigned using the FPP_Test is also an optimal
scheduling algorithm for constrained-deadline tasks on uniprocessor. For implicit-deadline task
sets, the utilization bound of FPP algorithm is thus 100% because the utilization bound of EDF for
such task system is 100% [23].

While the performance of FPP scheduling in terms optimality is same as EDF scheduling, it
is not straightforward to see whether the overhead for managing jobs in the ready queue of
FPP scheduler is lower or higher than that of EDF scheduler. Simulation using randomly generated
task sets is conducted to measure such overhead.

Task Set Generation for Uni- and Multiprocessors. Each of the experiments is characterized
by a pair (m,n) where m is the number of processors and n is the cardinality of a task set. For
experiments on uniprocessor, we use m = 1. The UUnifast-Discard algorithm [14] is used to
generate n utilization values of a task set. This algorithm takes as input the number of tasks n and
total utilization U of the n tasks. And, it generates n utilizations {u1, u2, . . . un} of the n tasks
such that the total utilization of these n tasks is U . Once a set of n utilizations {u1, u2, . . . un}
of a task set is generated, the other parameters of each task τi in the task set are generated as
follows:

The minimum inter-arrival time Ti of each task τi is generated from the uniform random
distribution within the range [10ms, 1000ms].

LITES

02:16 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

 0

 50

 100

 150

 200

 250

 300

 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 ta

sk
 s

et
s

Utilization

n=5, 10, 20, 40, 60 (constrained-deadline)

n=5
n=10
n=20
n=40
n=60

Figure 5 Number of task sets (out of 1000 task
sets) that are schedulable using FPP/EDF scheduling
but not schedulable using FP scheduling.

-100 %
-80 %
-60 %
-40 %
-20 %

0 %
20 %
40 %
60 %
80 %

100 %

 0.4 0.5 0.6 0.7 0.8 0.9 1

Im
pr

ov
em

en
t

Utilization

n=5, 10, 20, 40, 60 (constrained-deadline)

n=60
n=40
n=20
n=10
n=5

Figure 6 Improvement of FPP over EDF schedul-
ing.

The WCET of task τi is set to Ci = ui · Ti.
The relative deadline Di of task τi is generated from the uniform random distribution within
the range [Ci, Ti] for constrained deadline tasks; otherwise Di is set to Ti for implicit-deadline
tasks.

Task sets are randomly generated at 40 different utilization levels {0.025m, 0.05m, . . . 0.975m,m}
for each experiment (m,n). A total of 1000 task sets at each of the 40 utilization levels are
generated. Each of the 1000 task sets generated at a particular utilization level, say U , has
cardinality n and total utilization equal to U .

Sources of Overhead. Insertion/removal of jobs to/from the ready queue of FPP scheduler (as
discussed in Subsection 4.2.2) can be done in constant time. However, jobs that are in the
FPP ready queue may need to change their position (i.e., upgraded to higher-priority linked list)
due to pri_prom events. On the other hand, if the ready queue of EDF scheduler is implemented as
binary min-heap [10] or binomial min-heap [8], then each insertion/removal of a job to/from the
ready queue of EDF scheduler may need to reorder the remaining jobs in the ready queue in order
to satisfy the min-heap property. Our objective is to compare such overhead in terms of total
number of times different jobs in the ready queue change their position to handle pri_prom event
(in FPP scheduling) and to maintain min-heap property (in EDF scheduling). The EDF ready queue
is simulated using a binary min-heap where the ready job with the shortest absolute deadline is
stored in the root. And, the FPP ready queue is simulated using the proposed data structure in
Figure 3.

Experiments (Uniprocessor). The randomly-generated task sets that are (exclusively) schedula-
ble using FPP/EDF (i.e., satisfy FPP_Test) and not schedulable using traditional FP scheduling are
considered to compare overheads between FPP and EDF. Figure 5 presents the number of such
task sets for each utilization level for different n.

For each such task set, the execution is simulated using both FPP and EDF scheduling. The
ready jobs that need to await execution are stored in the corresponding ready queue and reordered
when necessary. Since it is not computationally feasible to consider all possible release offsets
and inter-arrival separations of sporadic tasks exhaustively in simulation, all release offsets are
set to zero and all tasks are released periodically. The simulation is run for L time units where
L = min{lcm(T1, T2, . . . Tn), 108} to avoid simulation for very large hyperperiod.

R.M. Pathan 02:17

Overhead Metric. For each utilization level, the sum of total number of times each of the jobs of
a task set change their position in the ready queue is computed and then the average over all task
sets is determined for both FPP and EDF scheduling. EDFav and FPPav denote the average number
of times the jobs of a task set change their positions in EDF and FPP ready queue, respectively. The
improvement of managing jobs in the ready queue of FPP scheduler in comparison to EDF scheduler
at each utilization level is:

Improvement = EDFav − FPPav
max{EDFav, FPPav}

× 100% .

The value of Improvement ranges in [−100%,+100%]. For example, Improvement = −50%
implies that the ready queue of EDF scheduler on average can reduce 50% overhead of managing
jobs in the ready queue of FPP scheduler. And, Improvement = +60% implies that ready queue
of FPP scheduler on average can reduce 60% overhead of managing jobs in the ready queue of
EDF scheduler.

Empirical Results (Uniprocessor). The results of a series of simulations for different n ∈
{5, 10, 20, 40, 60} are presented in Figure 6 where the x-axis is the utilization level U and the
y-axis represents Improvement. The Improvement is non-negative in almost all the utilization
levels3. The improvement of FPP scheduler over EDF scheduler is significant in most cases, i.e.,
FPP incurs noticeably less overhead (in terms of number of times jobs in the ready queue are
remapped to new positions) than that of EDF.

The “positive” improvement of FPP is due to two main reasons. First, the proposed data
structure for FPP ready queue enables a job to be inserted/removed to/from the ready queue in
constant time without causing other existing jobs in the ready queue to change their position. In
contrast, each insertion/deletion to/from the ready queue of EDF scheduler may cause multiple
(i.e., O(logn)) jobs to change their positions to maintain the min-heap property. Second, the
FPP_Test test is effective in reducing the number of promotion points. This is verified by observing
(the outcome of FPP_Test on random task sets) that it is almost always the case where some tasks
for the majority of the task sets are given traditional fixed priorities with no promotion point.

The reduction in promotion point at each higher utilization level for task set with larger
cardinality is much higher than that of task set with smaller cardinality. For example, the average
reduction in promotion points at U = 0.8 is around 80% and 40% for task sets with cardinality
n = 40 and n = 10, respectively. This is because, when the number of tasks in a task set for a given
utilization level is fewer, the utilization of individual task is relatively larger and the execution
time of individual task tends to be larger. As execution time a individual task increases, jobs in
the ready queue stay longer and may undergo a relatively larger number of priority promotions.
And, more priority promotions cause higher number of times the jobs in the ready queue change
their positions.

Observing the significant reduction in overhead, it is expected that if the ready queue of
EDF scheduler is implemented using some other data structure, the benefit of proposed ready-queue
management scheme for FPP scheduler will still be realized. To verify this, experiment using other
data structure is needed and is left as a future work.

3 The value of Improvement at relatively lower utilization levels (e.g., when U < 0.4) is caused by very few task
sets (Figure 5 presents the number of such task sets) and such outliers can be ignored.

LITES

02:18 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization/m

m=2, n=10 (constrained-deadline)

FPP-Test
G-EDF

G-FP

Figure 7 Acceptance ratio of FPP_Test,
G-FP [26] and G-EDF [6].

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization/m

m=4, n=20 (constrained-deadline)

FPP-Test
G-FP

G-EDF

Figure 8 Acceptance ratio of FPP_Test,
G-FP [26] and G-EDF [6].

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization/m

m=4, n=20 (implicit-deadline)

FPP-Test
G-EDF

G-FP

Figure 9 Acceptance ratio of FPP_Test,
G-FP [26] and G-EDF [6].

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization/m

m=8, n=40 (implicit-deadline)

FPP-Test
G-EDF

G-FP

Figure 10 Acceptance ratio of FPP_Test,
G-FP [26] and G-EDF [6].

7 FPP_Test for Multiprocessors

In this section, the FPP_Test in Figure 4 is applied to determine schedulability of constrained-
deadline tasks scheduled on multiprocessors. For G-FP scheduling, Pathan and Jonsson [26]
recently proposed an iterative G-FP test that is shown to perform better than any other iterative
test proposed earlier. This G-FP test [26] is used in place of Tfp in Figure 4 to determine if a
priority-unassigned task τi can be assigned fixed priority level k. For G-EDF scheduling, Bertogna
and Baruah [6] proposed a step-by-step approach to apply different G-EDF schedulability tests
proposed by other researchers. This G-EDF test in [6] is used in place of Tedf in line 11 of
Figure 4 to determine if all the priority-unassigned tasks are schedulable on m processors using
G-EDF scheduling.

There is no evidence regarding whether the G-FP test in [26] dominates or is dominated by
the G-EDF test in [6]. It is not difficult to see that if a task set is deemed to be schedulable using
G-FP test [26] or G-EDF test [6], then that task set also passes the FPP_Test for multiprocessors. In
other words, the FPP_Test dominates the state-of-the-art G-FP and G-EDF tests. To measure the
improvement of FPP_Test over G-FP test and G-EDF test, experiments using randomly generated
task sets are conducted.

Empirical Results. For each experiment (m,n), random task sets are generated using the
approach presented earlier.

R.M. Pathan 02:19

The schedulability of each of the 1000 task sets generated at each utilization level is determined
based on FPP_Test, G-FP test [26] and G-EDF test [6]. The acceptance ratio for each test at each
utilization level is computed. The acceptance ratio of a schedulability test is the percentage of
task sets deemed schedulable at a given utilization level.

A series of experiments for different (m,n), where m ∈ {2, 4, 8} and n ∈ {3m, 5m, 10m}, are
conducted. The result of two experiments with parameters (m = 2, n = 10) and (m = 4, n = 20)
are presented in Figure 7 and Figure 8. The x-axis represents the system utilization U/m for
utilization level U and the y-axis represents the acceptance ratio.

The performance of G-EDF test is better than G-FP test when m = 2 and n = 10 in Figure 7.
This behavior is reversed in Figure 8. This shows neither G-FP nor G-EDF test empirically performs
better than the other. The FPP_Test does not only theoretically dominate but also empirically
performs better than both G-FP and G-EDF tests. The performance of FPP_Test test using
implicit-deadline tasks is significantly better (see Figure 9 and Figure 10).

The difference in acceptance ratios among the tests are more pronounced at higher utilization
level since task sets with large total utilization are difficult to schedule. The FPP_Test has the
ability to accept higher percentage of task sets in comparison to that of G-FP and G-EDF tests by
exploiting the benefits of both fixed and dynamic priority.

7.1 Preemptions and Migrations
To investigate whether FPP scheduling incurs higher or lower number of preemptions and migrations
in comparison to G-EDF, simulations are conducted. Execution of randomly-generated task sets
that are not G-FP schedulable but schedulable using both FPP and G-EDF are simulated for FPP and
G-EDF scheduling. For each utilization level U ∈ {0.025m, 0.05m, . . .m}, the average number of
preemptions and migrations that a task set suffers is computed for both FPP and G-EDF scheduling.

GEDFavpr and FPPavpr denote the average number of preemptions that a task set suffers in
G-EDF and FPP scheduling, respectively. Similarly, GEDFavmg and FPPavmg denote the average
number of migrations that a task set suffers in G-EDF and FPP scheduling, respectively. The
improvement by FPP in reducing preemptions and migrations in comparison to G-EDF at each
utilization level is:

Improvement(prmt) = GEDFavpr − FPPavpr
max{GEDFavpr , FPPavpr}

× 100%

Improvement(migr) = GEDFavmg − FPPavmg
max{GEDFavmg, FPPavmg}

× 100%

The value of improvement ranges in [−100%,+100%]. For example, Improvement(prmt) = +50%
implies that FPP on average can reduce 50% preemptions that occur in G-EDF scheduling. The
results of simulations for different n ∈ {10, 20} and m ∈ {2, 4} are presented in Figure 11 and Fig-
ure 12, where the x-axis is the system utilization U/m and y-axis represents Improvement(prmt)
and Improvement(migr), respectively.

The value of Improvement for both preemptions and migrations is non-negative in almost all
the utilization levels. FPP scheduling can significantly reduce the number of preemptions and
migrations that are incurred in G-EDF scheduling. Since it is more difficult to schedule task sets at
higher utilization levels, the improvement decreases as utilization level increases in Figure 11 and
Figure 12.

7.2 Other Implementation Issues
Brandenburg and Anderson identified six different major sources of overhead in implementing
G-EDF algorithm using a Linux extension, called LITMUSRT, that allows different multiprocessors

LITES

02:20 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

-20 %

0 %

20 %

40 %

60 %

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Im
pr

ov
em

en
t(

pr
m

t)

Utilization/m

Average reduction in number of preemptions

(m=2,n=10)
(m=2, n=20)
(m=4, n=10)
(m=4, n=20)

Figure 11 Improvement(prmt) of FPP over
G-EDF scheduling.

-20 %

0 %

20 %

40 %

60 %

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Im
pr

ov
em

en
t(

m
ig

r)

Utilization/m

Average reduction in number of migrations

(m=2,n=10)
(m=2, n=20)
(m=4, n=10)
(m=4, n=20)

Figure 12 Improvement(migr) of FPP over
G-EDF scheduling.

algorithm to be implemented as plugin components [7]. By conducting similar experiments for
FPP scheduling, the execution time of each task can be inflated to account such overhead in the
corresponding schedulability analysis. Although this paper does not implement FPP scheduling
algorithm in an RTOS, two important implementation issues of FPP scheduler warrant further
discussion: sharing the ready queue and managing timers for multiple pri_prom events.

If scheduling decisions are handled on multiple processors, for example, arrival of different
jobs are handled concurrently on different processors (similar to [7]), then the ready queue of
FPP scheduler is a shared resource. This ready queue needs to be protected against concurrent
updates using synchronization primitives. As a result, the operations on the ready queue of
FPP scheduler can be done in constant time (as discussed in Section 4.2) plus any additional
delay incurred by such synchronization primitives. Note that race condition in handling multiple
events in FPP scheduling will not occur. This is because when multiple rel_prmt, rel_no_prmt,
idle_remv and/or pri_prom events occur very close in time, then these events can be handled in
any order and properties P1 and P2 (defined in Section 4.2.2) continue to hold regardless of the
order these (nearly concurrent) events are processed.

Another issue to implement FPP scheduling is the mechanism used to implement priority
promotion. One way to implement such priority promotion is by using hardware timers to handle
pri_prom events: when a programmed timer expires, the handler can promote the priority and
repositions the ready job to the appropriate higher-priority linked list of the ready queue. If the
number of hardware timers is not sufficient to implement all the pri_prom events, then a queue of
timers needs to be managed. In next section, different techniques to implement priority promotions
are proposed. Given the effectiveness of FPP scheduling in reducing (i) the number of re-mappings
of jobs in the ready queue, and (ii) the number of preemptions and migrations, I expect that
FPP scheduling when implemented on real platform would show benefits over EDF scheduling.

Applicability of FPP_Test to Arbitrary-Deadline Tasks. The FPP_Test in Figure 4 can also
be applied arbitrary-deadline tasks as follows. For uniprocessor platform, the iterative FP test
proposed by Lehoczky [20] can be used as the Tfp test and the QPA test [30], which also applies to
arbitrary-deadline tasks, can be used as the Tedf test. For multiprocessor platform, the iterative
OPA-incompatible global FP test proposed for arbitrary-deadline tasks by Guan et al. [28] can be
made OPA-compatible using approach used by Davis and Burns for the DA-LC test in [14]. This
new test then can be used as the Tfp test in Figure 4. And, the G-EDF test proposed by Baruah
and Baker [3] can be used as the Tedf test for arbitrary-deadline tasks.

R.M. Pathan 02:21

8 Techniques to Implement Priority Promotion

This section presents different techniques to implement priority promotion, i.e., how event
pri_prom is implemented and is handled. First, four different hardware timer-based approaches
are presented to implement priority promotion (Subsection 8.1) along with a discussion about
advantage and disadvantage of each alternative. Second, a software-based approach that does not
rely on any support of hardware timer is presented (Subsection 8.1). A detailed implementation
of priority promotion using each of the suggested approaches is left as a future work.

In FPP scheduling, the priorities of the currently-executing jobs need to be promoted so that
preemption decision can be taken when a (new) job is released while all the cores are busy. In
addition, priorities of the jobs stored in the ready queue need to be promoted to ensure that
properties P1 and P2 (also restated below for better readability of this section) always hold.

P1: All jobs stored in the νth linked list of the ready queue have higher EDF priorities than
any other job stored in the `th linked list where ν < `.
P2: All jobs in the `th linked list are stored in order of non-increasing EDF priority, i.e., the
head[`] and tail[`] respectively points the highest and lowest priority EDF job in the `th

linked list for ` = 1, . . . n.

Based on the operations on the ready queue (please see Subsection 4.2.2) an important
observation for job Jk of task τk is presented below:

I Observation 8. The TCB of job Jk is never stored in the (lower-priority) `th link lists where ` =
(k+1), (k+2), . . . n. This is because the priority of the job is k or higher (i.e., (k−1), (k−2), . . . 1).
When the TCB of job Jk is in the `th linked list of the ready queue at time t where 1 ≤ ` ≤ k, its
absolute deadline is not larger than D` relative to t.

Maintaining both P1 and P2 at each time instant is the key to efficiently (in constant-
time) perform the insertion and removal operations to and from the ready queue, which is
same as FP scheduler in terms of time complexity (please see Subsection 4.2.2). However, unlike
FP scheduling, priority promotions cause repositioning of jobs in the ready queue. Overhead related
to such repositioning depends on how priority promotion (i.e., event pri_prom) is implemented
and handled. In this section, we present techniques to implement priority promotions (i) based on
hardware-based approach using timers (Subsection 8.1), and (ii) software-based approach with
no timer (Subsection 8.2). In the remainder of this section, we consider that all the tasks are
assigned priorities based on IPDD policy and need priority promotion.

According to IPDD priority-promotion policy, the initial priority of a job of task τi is i. This
initial priority i is promoted to priority levels (i− 1), (i− 2), . . . 1 at offsets (Di −Di−1), (Di −
Di−2), . . . (Di −D1) relative to the release time of the job. The difference in time between the
(κ− 1)th and κth promotion times is denoted as θiκ and is given as follows for κ = 1, 2, . . . (i− 1):

θiκ = Di−(κ−1) −Di−κ (1)

If a job of task τi is released at time ri, the first promotion point is at (ri + θi1) which is θi1
time units later than its release time. The second priority-promotion point is θi2 time units later
than the 1st priority promotion point. In general, the κth priority-promotion point is θiκ time
units later than the (κ− 1)th priority-promotion point.

8.1 Hardware Timer-Based Priority Promotion
Most computer platforms have a clock that increments a counter and can be programmed to
generate an interrupt when the counter reaches a certain expiration count called the expiration

LITES

02:22 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

time. The combination of a clock and an expiration time is called a timer. In this subsection, we
present different alternatives to implement priority promotion based on such hardware timers.

Alternative 1. Consider a platform where the number of hardware timers is sufficient such that
one timer can be used for each active job. For such a platform, a one-shot timer can be programmed
at each promotion time of an active job such that the timer expires at next priority-promotion
time. Based on this principle, when a job of task τi is released at time ri, a hardware timer is
programmed to expire after θi1 time units. Remember that the initial priority i has to be promoted
to priority level (i− 1) at time (ri + θi1).

If a job completes its execution before the timer is expired, then the timer is disabled to avoid
unnecessary interrupt at expiration. Otherwise, when the timer generates an interrupt at time
(ri + θi1), the priority of the job is promoted to priority level (i− 1) and the timer is programmed
again to expire after θi2 time units at which priority is promoted to (i− 2) and so on. Following
this approach, the timer is programmed to expire after θiκ time units whenever priority of the
job is set to priority level (i− (κ− 1)) for κ = 1, 2, . . . (i− 1). After the priority of the job is set
to (highest) priority level 1, the timer is no more programmed since there is no more priority
promotion of this job according to IPDD policy.

While this approach is simple, it may not work for platform where the number of active jobs
is larger than the number of available hardware timer. In such case, a queue of (future) timed
events related to (future) priority promotions needs to be implemented using, for example, a single
hardware timer. In the remainder of this subsection, different alternatives to manage a queue of
(priority-promotion related) timed events using a single hardware timer are presented.

Alternative 2. A queue of (future) timed events can be maintained based on a timing wheel
which is a sequential array of records [29]. Inspired from the discussion of Baruah et al. in [5], we
assumed that time is represented using non-negative integers. The required number of records of
the timing wheel depends on the maximum time difference between any two consecutive priority
promotions. Based on Eq. (1), the maximum length between two consecutive priority promotions
of a job of τi is

i−1max
κ=1
{θiκ}. Consequently, the maximum length of any two consecutive priority

promotions for any task in set {τ1, τ2, . . . τn} is
nmax
i=1
{ i−1max
κ=1
{θiκ}}. For implementing a queue of

priority-promotion related timed events, the required number of records of the timing wheel,
denoted by L, is given as follows in Eq. (2):

L = 1+ nmax
i=1

{
i−1max
κ=1
{θiκ}

}
(2)

At each position of the timing wheel, a linked list of pointers to jobs’ TCBs is stored. A
variable to track current time, called CT, is initially set to 0. This variable is incremented (mod L)
at every system tick. In other words, CT is set to 1 after the first tick, set to 2 after the second
tick, set to back to 1 after L ticks, and so on. Such a timing wheel is shown in Figure 13 and
Figure 14.

When a job of task τi is released, its next promotion time is θi1 time units later relative to
current time. A pointer to the TCB of this job is stored in the linked list of the timing wheel at
position (CT + θi1) mod L. When CT points to a location of the timing wheel at which the linked
list is non-empty, the priorities of the jobs pointed by the elements of this linked list are promoted.
After the priority of a job of task τi at time CT is promoted to priority level (i− (κ− 1)) for some
κ such that 1 ≤ κ ≤ (i− 1), a pointer to the TCB of this job is again stored in the linked list at
position (CT + θiκ) mod L of the timing wheel for next (i.e., κth) priority promotion of this job.

R.M. Pathan 02:23

Figure 13 A timing wheel. CT points to the
second record. At every system tick, CT is incre-
mented by 1 (mod L).

�,

1

CT
-- 2

3

4

5

•

•

•

L-2

L-1

L

Reference to a linked list that
stores pointers to the TCBs of the
jobs whose priorities need to be
promoted when CT is
equal to 4, i.e., after 2 time units
relative to current CT

Figure 14 The linked list at position 4 stores
pointers to the TCBs of those jobs who need priority
promotion when CT will point location 4. The CT is
now at location 2 will point location 4 after 2 ticks.

According to Eq. (2), the value of L is one larger than the maximum difference between any
two consecutive promotion points. Therefore, (CT+θiκ) mod L is never equal to CT. In other words,
to distinguish between two (future) priority promotions separated by exactly nmax

i=1
{ i−1max
κ=1
{θiκ}}

time units, the number of records (as is shown in Eq. (2)) of the timing wheel is one larger than
the maximum difference between any two consecutive priority promotions.

Alternative 2 to manage multiple priority promotions requires the variable CT to be incremented
at every timer’s tick which may have high overhead. Next we propose Alternative 3 based on
timing wheel but with the exception that variable CT is not incremented at every system’s tick.

Alternative 3. Similar to Alternative 2, multiple (future) timed events related to priority promo-
tions are stored in the linked lists of a timing wheel but without requiring to increment variable
CT at every system’s tick. A bitmap, denoted by S[1, 2 . . . L], of length L corresponding to the
timing wheel is maintained. If the linked list of the ath position of the timing wheel is empty, then
S[a] = 0; otherwise, S[a] = 1. When all the linked lists of the timing wheel are empty, we set CT
to 0. The main idea is to program a one-shot timer that expires after a duration equal to the
earliest time of occurrence of any (future) timed event stored in the timing wheel. The approach
is described as follows:

(How an element is inserted in an empty timing wheel?) Consider that there is no element
in the timing wheel, i.e., CT = 0 and ∀`;S[`] = 0 at time t. Now consider that a new (future)
timed event appears at time t such that this event needs to occur after a time units relative to
time t. In other words, there is a future timed event that occurs after a time units relative to
CT. To implement priority promotion related to this event, a pointer to the TCB of the job is
inserted in the ath linked list of the timing wheel. A one-shot timer is set to expire after a
time units. To remember the total duration for which this timer is programmed, we set Initial
Value of the Timer as IVT = a. We also set S[a] = 1 to specify that the ath linked list of the
timing wheel is non-empty.
(How an element is inserted in a non-empty timing wheel?) Now consider that a new
(future) timed event appears at time t′ such that this event needs to occur after c time units
relative to time t′ and the timing wheel is non-empty at time t′. Since the timing wheel is
non-empty, the timer (that was last programmed) is running (not yet expired) at time t′.

LITES

02:24 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

Assume that at time t′ the remaining time to expire the timer is b. The total time elapsed
between the time instant when the timer was last programmed and time t′ is (IVT− b) since
IVT stores the total duration for which the time was last programmed. At time t′ the value of
CT is updated by setting it equal to the old value of CT plus elapsed time from the time CT
was last set, i.e, CT = CT + (IVT− b). In addition, IVT is set to IVT = b to reflect the fact that
the timer expires after b time units relative to the (updated) current time CT. After updating
CT and IVT, we consider where the new event that appears at time t′ is to be inserted in the
timing wheel.
If c < b, then the new event has an earlier time of occurrence than that of any event stored in
any linked list of the timing wheel. Remember that the one-shot timer was programmed to
expire at time when the earliest event in the timing wheel will occur. Since c < b, the one-shot
timer is reprogrammed at time t′ to expire after c time units and we set IVT = c. On the other
hand, if c > b, then the new event does not have an earlier occurrence time and the one-shot
timer is not reprogrammed. After CT and IVT are updated at time t′, a pointer to the TCB of
the job corresponding to the new event is inserted to the (CT + c)th linked list of the timing
wheel. Note that the value (CT + c) essentially means (CT + c) mod L. If (CT + c)th linked list
was empty before this insertion, we set S[q] = 1 where q = (CT + c) mod L.

(How to deal with timer’s expiration?) The timer expires when no new event with earlier time
of occurrence appears after IVT was last set. When the one-shot timer expires after IVT time
units and generates an interrupt, the value of CT is updated by setting CT = (CT + IVT) mod L.
And, the priorities of the jobs pointed by the TCB pointers stored in the CTth linked list of the
timing wheel are promoted. If the next promotion time for such a job is a time units later,
then the pointer to the TCB of that job is again inserted in the (CT + a)th linked list and we
set S[CT + a] = 1. After processing each element of the CTth linked list in the timing wheel, all
the TCB pointers are removed from the CTth linked list and we set S[CT] = 0.
If the timing wheel is not empty after handling a timer’s expiration, then we have to program
the timer for the next promotion event that will occur the earliest. To program the timer for
the next earliest promotion time, the position of the first set bit of bitmap S starting from
position CT is determined. This can be done based on techniques similar to finding the highest
priority tasks from the ready queue of FP scheduler. Let this position is (CT + k) mod L, i.e.,
this position points to the kth linked list relative to the index of CTth linked list. If k is not a
valid index, then there is no element in the timing wheel and we set CT = 0. For a valid k, the
jobs corresponding to the TCB pointers stored in the (CT + k)th linked list have the earliest
promotion time. The timer is programmed to expire after k time units and we set IVT = k.

Note that in the approach described above, variable CT is not updated at every system’s tick.
It is updated either when a new event is to be stored in the timing wheel and/or when the timer
expires. One of the limitations with this approach is that if L is too large, then a hierarchical
bitmap needs to be maintained (as is suggested in [27]).

Alternative 4. This alternative to manage a queue of (future) timed events is based on the
RELTEQ approach proposed in [19]. The main idea of RELTEQ is that events are stored in an
ordered list based on the time of occurrences of the events relative to each other. The advantage
of this approach is that no bitmap needs to be maintained. But the disadvantage is that linear
search is needed to find the appropriate position for each new event. Please see details of RELTEQ
in [19].

R.M. Pathan 02:25

8.2 Software-Based Approach to Priority Promotion
In this subsection, we present software-based approach to show how priority promotion can be
implemented without using a hardware timer. Under this scheme, the the priorities of the jobs
that are in execution are never promoted. The priority of a job is promoted only if the job is in
the ready queue. For such a job in the ready queue, priority promotions that are due at a time
instant are delayed as long as properties P1 and P2 of the ready queue of FPP scheduler hold.

The jobs whose promotions are delayed are called colluding jobs. When any of the rel_prmt or
rel_no_prmt event occurs (i.e., a new TCB has to be inserted in the ready queue due to the
release of new job), we check if insertion of this new TCB in the ready queue according to the
approach presented in Subsection 4.2.2 could violate property P1 or P2. Note that such violation
may happen since priorities of the colluding jobs were not promoted when their promotions were
due and the corresponding TCBs of colluding jobs were not repositioned in the right place in the
ready queue. If we detect that such violation would occur, we fix the collusion by promoting some
or all colluding jobs so that property P1 and P2 continue to hold after insertion of the new TCB.

A job Ji of task τi is promoted according to IPDD priority-promotion policy in order to
determine whether a newly released job Jk of task τk needs to preempt the execution of Ji or
not. In contrast, the priorities of the currently-executing jobs are never promoted in delayed
preemption strategy. Whether a newly released job Jk preempts Ji or not can be determined by
comparing their absolute deadlines since we want to execute jobs in EDF order. Therefore, we
compare (ri +Di) and (rk +Dk). If (ri +Di) > (rk +Dk), then Jk preempts Ji; otherwise, Jk
does not preempt Ji. In the remainder of this section, we present how the new TCB is inserted
in the ready queue such that property P1 and P2 of the ready queue continue to hold after this
insertion.

Assume that property P1 and P2 hold at time t. Consider an earliest time instant t′ at which
a new job Jk of task τk is released and all the cores are busy such that t < t′. A new TCB (i.e.,
TCB of Jk or TCB of the preempted job Ji) is to be inserted in the ready queue at time t′. Since
t′ is the earliest time at which a new TCB is to be inserted in the ready queue, property P1 and
P2 continue to hold during the entire interval [t, t′) even if all promotions of the jobs in the ready
queue during this interval are delayed. In delayed promotion strategy, the promotions of the jobs
are delayed until a new job is released. Due to such delayed promotions, colluding jobs in the
ready queue are not promoted (i.e., repositioned) to higher-priority linked lists of the ready queue.
Consequently, property P1 and P2 may not hold at time t′ if the new TCB is inserted without
fixing the collusion. The challenge is to propose mechanism to ensure that after inserting the new
job, property P1 and P2 continue to hold also at time t′. There are two cases to consider:

Case (i) – Job Jk preempts Ji.
Case (ii) – Job Jk does not preempt Ji.

Case (i) – Jk preempts Ji: In such case, a newly released job Jk preempts the currently-
executing lowest EDF priority job Ji at time t′. Since Ji was in execution just before Jk was
released and because property P1 and P2 hold during [t, t′) during which no new job is released,
the EDF priority of job Ji is larger than the EDF priority of any other job in the ready queue.

Job Ji is inserted at the front of the highest-priority non-empty linked list if the index of the
highest-priority non-empty linked list of the ready queue is smaller than or equal to i; otherwise,
it is inserted as the first element in the ith linked list of the ready queue. Such insertion can be
done in constant time and ensures that Observation 8 still holds. It is easy to see that property
P1 and P2 continue to hold at time t′ after inserting the new TCB of Ji in the ready queue even
though all due promotions during [t, t′] are delayed. In such case, the delayed promotions in [t, t′]
are delayed further.

LITES

02:26 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

Algorithm: Fix_Collusion(Job Jk)

// This algorithm is executed when a new job Jk cannot
// preempt any job and needs to be inserted in
// the ready queue (i.e., when rel_no_prmt event occurs)

1. NextList = k + 1
2. s = Position of the first set bit of bitmap B[NextList . . . n]
3. If s is a valid position of bitmap B
4. While (the absolute deadline of the first element of the sth

5. linked list is smaller than the absolute deadline of Jk)
6. J = remove the first element from the sth linked-list
7. Insert J at the end of the kth linked list
8. If the sth linked list is empty
9. NextList = s+ 1
10. Go to Step 2
11. End If
12. End While
13. End If
14. Insert Jk at the end of the kth linked list

Figure 15 Coalescing Priority Promotion to handle rel_no_prmt event.

Case (ii) – Jk does not preempt Ji: In such case, a newly released job Jk does not preempt the
currently-executing lowest EDF priority job Ji at time t′. The TCB of job Jk is to be inserted in
the ready queue. Based on the operations proposed in Subsection 4.2.2, this new TCB is inserted
at the end of the kth linked list since the priority of job Jk at time t′ is k. However, property
P1 and P2 may not hold at time t′ because promotions of the colluding jobs during [t, t′) are
delayed and not placed in the right position in the ready queue before inserting this new TCB.
The strategy to fix the collusion before inserting job Jk is as follows.

The absolute deadline of job Jk is Dk time units later than time t′ because job Jk is released
at time t′. Since jobs in the `th linked list of the ready queue at time t′ have their absolute
deadlines no later than D` time units relative to t′ for ` = 1, 2, . . . k, the EDF priorities of the
jobs in these linked lists are higher than that of job of Jk (follows from Observation 8). If job
Jk is inserted at the end of kth linked list, property P1 and P2 continue to hold at time t′ for
the 1st, 2nd, . . . , (k − 1)th, kth linked lists even if priority of the jobs in these linked lists are not
promoted during [t, t′].

On the other hand, since priority promotions of the jobs in (k+1)th, (k+2)th, . . . , (n−1)th, nth

linked lists are also delayed during [t, t′], the actual EDF priority of some of the colluding jobs in
these linked lists may be higher than that of job Jk at time t′. Such colluding jobs need to be
promoted (i.e., need to be repositioned) to fix the collusion so that property P1 and P2 continue
to hold after job Jk is inserted at the end of the kth linked list. Although there may be many
colluding jobs, we only need to promote the priority (i.e., reposition in the ready queue) of those
colluding jobs from the (k + 1)th, (k + 2)th, . . . , (n − 1)th, nth linked lists whose EDF priority is
larger than the EDF priority of Jk at time t′ to fix the collusion.

Notice that property P1 and P2 hold for the jobs in the (k + 1)th, (k + 2)th, . . . , (n− 1)th, nth

linked lists before inserting the new TCB at time t′. Before inserting job Jk at the end of the kth

linked list, the higher EDF priority jobs from the (k + 1)th, (k + 2)th, . . . , (n− 1)th, nth linked lists
are inserted (in decreasing EDF order) at the end of the kth linked list. Finally, job Jk is inserted
at the end of the kth linked list. The following algorithm in Figure 15, called Fix_Collusion,
implements this insertion.

R.M. Pathan 02:27

Algorithm Fix_Collusion in Figure 15 selects those jobs from the (k+ 1)th, (k+ 2)th, . . . , (n−
1)th, nth linked lists whose EDF priorities are higher than that of job Jk. These selected jobs are
inserted in decreasing EDF order at the end of the kth linked list, and finally, job Jk is inserted
at the end of the kth linked list. We will show that property P1 and P2 continues to hold after
algorithm Fix_Collusion is executed at time t′.

Line 1 initializes a variable NextList to (k + 1) in order to start the search from the (k + 1)th

linked list. However, the (k + 1)th linked list may be empty. The index of the first non-empty
linked list among the (k+ 1)th, (k+ 2)th, . . . , (n− 1)th, nth linked lists is determined in line 2 based
on the bitmap B[NextList, . . . n]. The index of the first set bit of the bitmap B[NextList, . . . n]
is stored in variable s in line 2.

If all of the (n − k) lower priority linked lists are empty, then s has an invalid index. The
condition in line 3 checks whether all of the (n− k) lower priority linked lists are empty or not. If
the condition in line 3 is false (i.e., there is no non-empty linked lists among the (n− k) lower
priority linked lists), then there is no TCB in the (k + 1)th, (k + 2)th, . . . , (n− 1)th, nth linked lists
and the TCB of job Jk is inserted at the end of the kth linked list in line 14. Since P1 and P2 hold
for k higher priority linked lists before inserting Jk (i.e., jobs in these linked lists have deadline no
larger than Dk relative to time t′) and since the deadline of Jk is Dk at time t′, P1 and P2 hold
after job Jk is inserted.

If condition in line 3 is true, then s is the index of the highest-priority non-empty linked lists
among the (k + 1)th, (k + 2)th, . . . , (n − 1)th, nth linked lists. In such case, all the TCBs of the
jobs having higher EDF priority than Jk (based on the condition of the while loop in line 4–5) are
removed from the sth linked list one-by-one in line 6 and inserted in non-increasing EDF priority
order at the end of the kth linked list in line 7.

Since the first job is removed from the sth linked list each time condition in line 4–5 is true
and because property P2 is satisfied (jobs in each list are in non-increasing EDF priority order),
inserting the removed job J at the end of the kth linked list ensures that jobs in the kth linked list
are in non-increasing EDF order.

We exit from the while loop in two cases: (i) some job’s EDF priority in the sth linked list is
lower than the EDF priority of Jk (i.e., condition in the while loop is false), or (ii) all the jobs from
the sth linked list are removed (i.e., condition in line 8 is true). In the first case, the algorithm
exit from the loop and executes line 14. This is because there is no other jobs in the (n− k) lower
priority linked list having higher EDF priority. In the second case (when the condition in line 8 is
true), the sth list is empty and the NextList is set to (s+ 1) to select other higher EDF priority
jobs from the remaining (n − s) linked lists. In such case, the algorithm jumps to line 2 from
line 10 and continues as described above. It is easy to see that number of times the while loop
executes is no more than the number of delayed promotions in [t, t′]. When the algorithm stops,
property P1 and P2 hold at time t′. Note that we need no timer to implement priority promotions
based on software-based delayed promotion mechanism. Evaluating all these priority promotion
schemes and the implementation of FPP scheduling on real platform is left as a future work.

9 Conclusion

The proposed FPP scheduling algorithm shows how jobs can be executed in EDF order based on
priority promotion. For uniprocessor, the FPP scheduling is also optimal as EDF scheduling. For
multiprocessors, it dominates the state-of-the-art G-FP and G-EDF tests for constrained-deadline
tasks. A technique to reduce the number of promotion points is proposed so that overhead
is low. The proposed data structure and operations for managing jobs in the ready queue of
FPP scheduler have benefits similar to that of traditional FP scheduler. Techniques to implement

LITES

02:28 Real-Time Scheduling on Uni- and Multiprocessors based on Priority Promotions

priority promotions based on hardware timers or purely in software are proposed. Simulation
results show that the overhead for managing jobs in the FPP ready queue is reduced significantly
in comparison to that of an EDF scheduler.

References
1 Neil C. Audsley. On priority assignment in fixed

priority scheduling. Inf. Process. Lett., 79(1):39–
44, 2001. doi:10.1016/S0020-0190(00)00165-4.

2 Neil C. Audsley, Alan Burns, Mike M. Richard-
son, Ken Tindell, and Andy J. Wellings.
Applying new scheduling theory to static
priority pre-emptive scheduling. Software
Engineering Journal, 8(5):284–292, 1993.
URL: http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=238595.

3 Sanjoy K. Baruah and Theodore P. Baker. Global
EDF schedulability analysis of arbitrary sporadic
task systems. In 20th Euromicro Conference on
Real-Time Systems, ECRTS 2008, 2-4 July 2008,
Prague, Czech Republic, Proceedings, pages 3–
12. IEEE Computer Society, 2008. doi:10.1109/
ECRTS.2008.27.

4 Sanjoy K. Baruah, Aloysius K. Mok, and Louis E.
Rosier. Preemptively scheduling hard-real-time
sporadic tasks on one processor. In Proceedings of
the Real-Time Systems Symposium – 1990, Lake
Buena Vista, Florida, USA, December 1990, pages
182–190. IEEE Computer Society, 1990. doi:10.
1109/REAL.1990.128746.

5 Sanjoy K. Baruah, Louis E. Rosier, and Rodney R.
Howell. Algorithms and complexity concerning the
preemptive scheduling of periodic, real-time tasks
on one processor. Real-Time Systems, 2(4):301–
324, 1990. doi:10.1007/BF01995675.

6 Marko Bertogna and Sanjoy K. Baruah. Tests
for global EDF schedulability analysis. Journal of
Systems Architecture – Embedded Systems Design,
57(5):487–497, 2011. doi:10.1016/j.sysarc.2010.
09.004.

7 Björn B. Brandenburg and James H. Anderson.
On the implementation of global real-time sched-
ulers. In Theodore P. Baker, editor, Proceedings
of the 30th IEEE Real-Time Systems Symposium,
RTSS 2009, Washington, DC, USA, 1-4 Decem-
ber 2009, pages 214–224. IEEE Computer Society,
2009. doi:10.1109/RTSS.2009.23.

8 Björn B. Brandenburg, John M. Calandrino, and
James H. Anderson. On the scalability of real-time
scheduling algorithms on multicore platforms: A
case study. In Proceedings of the 29th IEEE Real-
Time Systems Symposium, RTSS 2008, Barcelona,
Spain, 30 November to 3 December 2008, pages
157–169. IEEE Computer Society, 2008. doi:10.
1109/RTSS.2008.23.

9 Alan Burns. Dual Priority Scheduling: Is the Pro-
cessor Utilisation bound 100%? In Proc. of the 1st
International Real-Time Scheduling Open Prob-
lems Seminar (RTSOPS), in conjunction with the
ECRTS, 2010. URL: https://www.cs.york.ac.uk/
ftpdir/papers/rtspapers/R:Burns:2010b.pdf.

10 Alan Burns, Marina Gutierrez, Mario Aldea Ri-
vas, and Michael González Harbour. A deadline-
floor inheritance protocol for EDF scheduled em-

bedded real-time systems with resource sharing.
IEEE Trans. Computers, 64(5):1241–1253, 2015.
doi:10.1109/TC.2014.2322619.

11 Alan Burns and Andrew J. Wellings. Dual prior-
ity assignment: A practical method for increasing
processor utilisation. In Fifth Euromicro Work-
shop on Real-Time Systems, RTS 1993, Oulu, Fin-
land, June 22-24, 1993. Proceedings., pages 48–53.
IEEE, 1993. doi:10.1109/EMWRT.1993.639052.

12 Giorgio C. Buttazzo. Rate monotonic vs. EDF:
judgment day. Real-Time Systems, 29(1):5–26,
2005. doi:10.1023/B:TIME.0000048932.30002.d9.

13 Robert I. Davis. Dual priority scheduling: A
means of providing flexibility in hard real-time
systems. Technical Report YCS 230, Dept
of Computer Science, University of York, UK,
1994. URL: https://www.cs.york.ac.uk/ftpdir/
reports/94/YCS/230/YCS-94-230.ps.Z.

14 Robert I. Davis and Alan Burns. Improved
priority assignment for global fixed priority pre-
emptive scheduling in multiprocessor real-time sys-
tems. Real-Time Systems, 47(1):1–40, 2011. doi:
10.1007/s11241-010-9106-5.

15 Robert I. Davis and Alan Burns. A survey of
hard real-time scheduling for multiprocessor sys-
tems. ACM Comput. Surv., 43(4):35, 2011. doi:
10.1145/1978802.1978814.

16 Robert I. Davis and Andy J. Wellings. Dual pri-
ority scheduling. In 16th IEEE Real-Time Sys-
tems Symposium, Palazzo dei Congressi, Via Mat-
teotti, 1, Pisa, Italy, December 4-7, 1995, Proceed-
ings, pages 100–109. IEEE Computer Society, 1995.
doi:10.1109/REAL.1995.495200.

17 Michael L. Dertouzos. Control robotics: The pro-
cedural control of physical processes. In IFIP
Congress, pages 807–813, 1974.

18 Michael González Harbour, Mark H. Klein, and
John P. Lehoczky. Fixed priority scheduling peri-
odic tasks with varying execution priority. In Pro-
ceedings of the Real-Time Systems Symposium –
1991, San Antonio, Texas, USA, December 1991,
pages 116–128. IEEE Computer Society, 1991. doi:
10.1109/REAL.1991.160365.

19 Mike Holenderski, Wim Cools, Reinder J. Bril, and
Johan J. Lukkien. Multiplexing real-time timed
events. In Proceedings of 12th IEEE International
Conference on Emerging Technologies and Factory
Automation, ETFA 2009, September 22-25, 2008,
Palma de Mallorca, Spain, pages 1–4. IEEE, 2009.
doi:10.1109/ETFA.2009.5347183.

20 John P. Lehoczky. Fixed priority scheduling of pe-
riodic task sets with arbitrary deadlines. In Pro-
ceedings of the Real-Time Systems Symposium –
1990, Lake Buena Vista, Florida, USA, Decem-
ber 1990, pages 201–209. IEEE Computer Society,
1990. doi:10.1109/REAL.1990.128748.

21 Charles E. Leiserson, Harald Prokop, and Keith H.
Randall. Using de bruijn sequences to index a 1 in

http://dx.doi.org/10.1016/S0020-0190(00)00165-4
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=238595
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=238595
http://dx.doi.org/10.1109/ECRTS.2008.27
http://dx.doi.org/10.1109/ECRTS.2008.27
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1007/BF01995675
http://dx.doi.org/10.1016/j.sysarc.2010.09.004
http://dx.doi.org/10.1016/j.sysarc.2010.09.004
http://dx.doi.org/10.1109/RTSS.2009.23
http://dx.doi.org/10.1109/RTSS.2008.23
http://dx.doi.org/10.1109/RTSS.2008.23
https://www.cs.york.ac.uk/ftpdir/papers/rtspapers/R:Burns:2010b.pdf
https://www.cs.york.ac.uk/ftpdir/papers/rtspapers/R:Burns:2010b.pdf
http://dx.doi.org/10.1109/TC.2014.2322619
http://dx.doi.org/10.1109/EMWRT.1993.639052
http://dx.doi.org/10.1023/B:TIME.0000048932.30002.d9
https://www.cs.york.ac.uk/ftpdir/reports/94/YCS/230/YCS-94-230.ps.Z
https://www.cs.york.ac.uk/ftpdir/reports/94/YCS/230/YCS-94-230.ps.Z
http://dx.doi.org/10.1007/s11241-010-9106-5
http://dx.doi.org/10.1007/s11241-010-9106-5
http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1109/REAL.1995.495200
http://dx.doi.org/10.1109/REAL.1991.160365
http://dx.doi.org/10.1109/REAL.1991.160365
http://dx.doi.org/10.1109/ETFA.2009.5347183
http://dx.doi.org/10.1109/REAL.1990.128748

R.M. Pathan 02:29

a computer word. MIT Technical Report, 1998.
URL: http://supertech.csail.mit.edu/papers/
debruijn.pdf.

22 Joseph Y.-T. Leung and Jennifer Whitehead. On
the complexity of fixed-priority scheduling of peri-
odic, real-time tasks. Perform. Eval., 2(4):237–250,
1982. doi:10.1016/0166-5316(82)90024-4.

23 C. L. Liu and James W. Layland. Scheduling
algorithms for multiprogramming in a hard-real-
time environment. J. ACM, 20(1):46–61, 1973.
doi:10.1145/321738.321743.

24 Risat Mahmud Pathan. Unifying fixed- and
dynamic-priority scheduling based on priority pro-
motion and an improved ready queue management
technique. In 21st IEEE Real-Time and Embedded
Technology and Applications Symposium, Seattle,
WA, USA, April 13-16, 2015, pages 209–220. IEEE
Computer Society, 2015. doi:10.1109/RTAS.2015.
7108444.

25 Risat Mahmud Pathan and Jan Jonsson. Im-
proved schedulability tests for global fixed-priority
scheduling. In Karl-Erik Årzén, editor, 23rd
Euromicro Conference on Real-Time Systems,
ECRTS 2011, Porto, Portugal, 5-8 July, 2011,
pages 136–147. IEEE Computer Society, 2011. doi:
10.1109/ECRTS.2011.21.

26 Risat Mahmud Pathan and Jan Jon-
sson. Interference-aware fixed-priority
schedulability analysis on multiprocessors.

Real-Time Systems, 50(4):411–455, 2014.
doi:10.1007/s11241-013-9198-9.

27 Michael Short. Improved task management tech-
niques for enforcing EDF scheduling on recurring
tasks. In Marco Caccamo, editor, 16th IEEE
Real-Time and Embedded Technology and Applica-
tions Symposium, RTAS 2010, Stockholm, Sweden,
April 12-15, 2010, pages 56–65. IEEE Computer
Society, 2010. doi:10.1109/RTAS.2010.22.

28 Youcheng Sun, Giuseppe Lipari, Nan Guan, and
Wang Yi. Improving the response time analy-
sis of global fixed-priority multiprocessor schedul-
ing. In 2014 IEEE 20th International Conference
on Embedded and Real-Time Computing Systems
and Applications, Chongqing, China, August 20-
22, 2014, pages 1–9. IEEE Computer Society, 2014.
doi:10.1109/RTCSA.2014.6910543.

29 George Varghese and Anthony Lauck. Hashed
and hierarchical timing wheels: Data structures
for the efficient implementation of a timer facility.
In Les Belady, editor, Proceedings of the Eleventh
ACM Symposium on Operating System Principles,
SOSP 1987, Stouffer Austin Hotel, Austin, Texas,
USA, November 8-11, 1987, pages 25–38. ACM,
1987. doi:10.1145/41457.37504.

30 Fengxiang Zhang and Alan Burns. Schedulability
analysis for real-time systems with EDF schedul-
ing. IEEE Trans. Computers, 58(9):1250–1258,
2009. doi:10.1109/TC.2009.58.

LITES

http://supertech.csail.mit.edu/papers/debruijn.pdf
http://supertech.csail.mit.edu/papers/debruijn.pdf
http://dx.doi.org/10.1016/0166-5316(82)90024-4
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1109/RTAS.2015.7108444
http://dx.doi.org/10.1109/RTAS.2015.7108444
http://dx.doi.org/10.1109/ECRTS.2011.21
http://dx.doi.org/10.1109/ECRTS.2011.21
http://dx.doi.org/10.1007/s11241-013-9198-9
http://dx.doi.org/10.1109/RTAS.2010.22
http://dx.doi.org/10.1109/RTCSA.2014.6910543
http://dx.doi.org/10.1145/41457.37504
http://dx.doi.org/10.1109/TC.2009.58

	Introduction
	Task Model
	Priority Promotion Policy: IPDD
	Dispatcher and Ready Queue Manager
	The Dispatcher
	The Ready Queue Manager
	Data-Structure for the Ready Queue
	Operations by the Ready Queue Manager

	FPP_Test to Reduce Number of Promotions
	FPP_Test for Uniprocessor
	FPP_Test for Multiprocessors
	Preemptions and Migrations
	Other Implementation Issues

	Techniques to Implement Priority Promotion
	Hardware Timer-Based Priority Promotion
	Software-Based Approach to Priority Promotion

	Conclusion

