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Abstract
The kinetic battery model is a popular model of
the dynamic behaviour of a conventional battery,
useful to predict or optimize the time until battery
depletion. The model however lacks certain obvi-
ous aspects of batteries in-the-wild, especially with
respect to the effects of random influences and the
behaviour when charging up to capacity limits.

This paper considers the kinetic battery model
with limited capacity in the context of piecewise

constant yet random charging and discharging. We
provide exact representations of the battery beha-
viour wherever possible, and otherwise develop safe
approximations that bound the probability distri-
bution of the battery state from above and below.
The resulting model enables the time-dependent
evaluation of the risk of battery depletion. This is
demonstrated in an extensive dependability study
of a nano satellite currently orbiting the earth.
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1 Introduction

A rechargeable battery is a physical object storing energy. Charging and discharging induces
or is the result of chemical reactions inside the battery. Lithium chemistry is the technology of
choice and has made rechargeable batteries become the backbone of our modern digital life. Yet,
batteries are safety-critical. Wrong usage may imply injuries due to overheating, gas formation or
spontaneous combustion. In addition, batteries are an obvious bottleneck for device operation,
restricting performance and longevity of wireless operations, as well as journeys of electric vehicles.
To understand and manage battery-run operations requires an adequate model of battery state
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reality
electro-chemical model (>50 parameters) [13]

diffusion model (3 parameters) [31]
kinetic model (3 parameters) [28, 33]
Peukert model (3 parameters) [30]
linear model (1 parameter)
observables (voltage, temperature)

p

b(t)
1−c a(t)

c

I

1 − c c

b(t) a(t)

Figure 1 Battery model overview (left) and visualisation of the kinetic battery model (right).

and battery behaviour. Different modelling approaches for predicting battery performance have
been proposed [32, 6] based on a model landscape summarised on the left of Figure 1, where each
model is known to be an abstraction of its upper neighbour [25, 23].

Detailed explanations of the various models will be given in Section 2. Intuitively, the linear
model corresponds to a simple well holding liquid, the charge. This is is the view typically
displayed to smart phones users, in the form of a percentage value. The diffusion model treats the
distribution of electrical charge between cathode and anode as a continuum, while its first-order
approximation, the kinetic battery model, KiBaM, separates the charge in two parts, available
charge and bound charge. The latter can be visualised as two wells interconnected by a pipe, as
depicted on the right of Figure 1, where only the available charge may be consumed instantaneously,
while bound charge is converted into available charge as time passes. Given a constant load, the
KiBaM represents the battery state-of-charge (SoC) by two coupled differential equations, one for
each well. Unlike the linear model (and the Peukert model), the KiBaM can capture two important
real phenomena; the rate capacity effect and the recovery effect. The former effect describes the
fact that if continuously discharged, a high discharge rate will cause the battery to provide less
energy before depletion than a lower discharge rate. Thus a battery’s effective capacity depends on
the rate at which it is discharged. The latter effect stands for the battery recovers to some extent
during periods of no or little discharge. Both effects are decisive operational phenomena known
across electro-chemical batteries, rooted in their physical layout where the chemical reactions
related to charging and discharging span between cathode and anode, and are dis-equilibrating
the chemical substrate balance. Indeed, empirical evaluations show that this model provides a
good approximation of the battery SoC across various battery types [25, 23].

Our contribution. The original KiBaM does not take capacity limits into consideration, it can
thus be interpreted as assuming infinite capacity. Reality is unfortunately different. When studying
the KiBaM operating with capacity limits, it becomes apparent that charging and discharging are
not dual to each other, simply because a full battery keeps operating, in contrast to an empty one.
However, opposite to the discharging process, the charging process near capacity limits has not
received dedicated attention in the literature. That problem is attacked in the present paper.

Although directly expressible as a function of time, the behaviour at capacity limits cannot be
computed exactly. For this scenario we therefore resort to under- and over-approximating state of
charge (SoC) evolutions, that serve as upper and lower bounds of the exact SoC evolution.

Furthermore, statistical results obtained by experimenting with real of-the-shelf batteries
suggest considerable variances in actual performance [7], likely rooted in manufacturing and wear
differences. This observation asks for a stochastic re-interpretation of the classical KiBaM to take
the statistically observed SoC spread into account on the model level, and this is what the present
paper develops – in a setting with capacity limits, charging and discharging. It views the KiBaM
as a transformer of the continuous probability distribution describing the SoC at any real time
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point, thereby also supporting uncertainty and noise in the load process.
The stochastic re-interpretation and the extension by capacity limits in combination, allow us

to derive SoC distributions that bound the actual distribution of the SoC from above and below
in a safe way. These bounding distributions can be used to determine an interval enclosing the
cumulative risk of battery depletion for any given time point.

We apply this approach to an in-depth case study of the Danish nano satellite GomX–1
currently orbiting the earth in low orbit [20]. From the satellite’s hardware specification and
extensive in-flight telemetry logs provided by its manufacturer GomSpace, a probabilistic workload
model is derived and superposed with a periodic deterministic charging load, representing the infeed
from on-board solar panels. Our technique then enables us to perform an effective quantitative
analysis of the satellite’s power budget, with a particular focus on the battery depletion risk
over large mission times. The interplay of the resulting battery model and the imposed load can
be viewed as a particular stochastic hybrid system [1, 3, 4, 8, 12, 37], developed here without
discretising time. We have found that general purpose tools for this problem domain [36, 17, 43]
are at present not capable to provide such answers, as we will explain.

The genuine contributions of the paper are:
(i) The interpretation of the KiBaM as a transformer of SoC distributions,
(ii) developed without discretising time,
(iii) considering both charging and discharging in the context of capacity limits,
(iv) using under- and over-approximations where needed to get correctness guarantees,
(v) applied in the power budget analysis of a low-earth orbiting nano satellite.

Related work. Haverkort and Jongerden [23] review broad research on various battery models of
different natures, ranging from electro-chemical models, electrical circuit models, stochastic models
to analytical models. The conclusion is very plain: The most accurate models are the electro-
chemical ones, although their usage requires expert knowledge about batteries. For integration
with a workload model to carry out performance analysis, analytical models are best suited as they
allow for analytical expressions of the battery lifetimes under a load process, while still capturing
the most important non-linear effects of real batteries.

They particularly discuss stochastic battery models [33, 10] which view the KiBaM for a given
load as a stochastic process, unlike our (more accurate) view as a deterministic transformer of the
randomized initial conditions of the battery. Furthermore, in this survey, the problem of charging
up to capacity limits does not get dedicated attention.

Battery capacity has been addressed only by Boker et al. [5]. They considered a discretized,
unbounded KiBaM together with a possibly non-deterministic and cyclic load process, synthesizing
initial capacity requirements to power the process safely. Hence, capacity is here understood as an
over-dimensioned initial condition and not as a truly limiting charging bound.

Random loads on a battery, generated by a continuous-time Markov chain, have been previously
studied by Cloth et al. [10]. Their setting cannot be easily extended by charging since they view the
available and bound charge levels as two types of accumulated reward in a reward-inhomogeneous
continuous time Markov chain.

An extension of the KiBaM to scheduling has been considered by Jongerden et al. [24]. They
compute optimal schedules for multiple batteries in a discretized setting with only discharging.
This has been taken up and improved using techniques from the planning domain [14].

Organisation of the paper. Section 2 introduces the original (deterministic, unlimited) kinetic
battery model. In Section 3 we view this unlimited KiBaM as a transformer of probability density
functions, resulting in a stochastic, unlimited model. Section 4 considers lower and upper capacity
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limits for the deterministic model. This development is lifted to the stochastic interpretation
in Section 5, arriving at a stochastic and limited model. Section 6 introduces a probabilistic
workload model together with algorithms to compute the SoC of a stochastic limited KiBaM
under such a workload. In Section 7 we present a discretisation algorithm that allows for efficient
and tight approximations of a SoC distribution after being subject to a workload for a certain
amount of time. Finally, in Section 8, we demonstrate the efficiency and relevance of our findings
by analysing the power budget of a Danish nano satellite currently orbiting the planet.

This paper is a substantially enhanced and extended version of paper [22]. Apart from a
more extensive exposition, the enhancements comprise all developments and results concerning
over-approximations, a connection to synchronous data flow models, as well as a thorough and
detailed description of the nano satellite case.

2 The Kinetic Battery Model

As discussed in Section 1, batteries in-the-wild exhibit two non-linear effects widely considered to
be the most important ones to capture: the rate capacity effect and the recovery effect. In the
sequel we introduce the kinetic battery model KiBaM as the simplest model capturing these effects,
and place it in the context of other candidates to model a battery, summarized in Figure 1.

The linear model. Also called the ideal battery, this model views a battery as one well of capacity
cap that is decreased proportionally to a load I that is imposed on the battery. Thus, the
lifetime of a full battery under load I can naturally be expressed by cap/I. While easy to
handle, the linear battery model neither captures the recovery of batteries nor the rate capacity
effect.

Peukert model. An extension of the ideal battery is provided by Peukert’s law. In this, parameters
a and b characterise the lifetime of a full battery under load I as a/Ib. For a = cap and b = 1,
this corresponds to an ideal battery, although parameters fitted through experiments generally
result in a being a bit smaller than cap and b being slightly larger than 1. Peukert’s law
captures the rate capacity effect, but neglects the recovery effect.

The electrochemical-model. Together with its accompanying simulation tool Dualfoil [29], the
highly parametrisable electro-chemical battery model is, in its own right, widely considered as
the reference “reality” to check the faithfulness and accuracy of other models.

The diffusion model. The diffusion model of Rakhmatov and Vrudhula [25] describes the ion
concentration along the width of a battery as a continuous quantity. A full battery exhibits
equal concentration along the battery, while a discharge causes a decrease of the concentration
near the discharging electrode. This, in turn, causes a gradient that makes the ions diffuse
towards the electrode. Thus during periods of rest the ion concentration tends to equalise over
the width of a battery, inducing a recovery. During periods of high discharge, the diffusion
cannot keep up causing premature depletion; the rate capacity effect. The model allows
for analytical expressions for the battery lifetime as well and exhibits a very high degree of
precision against the electro-chemical model.

The kinetic battery model. The kinetic battery model (KiBaM) can be viewed as a discretised
diffusion model by dividing the stored charge into two parts, the available charge and the
bound charge and can actually be proven to be a first-order approximation of the diffusion
model. When the battery is strained only the available charge is consumed instantly, while
the bound charge is slowly converted to available charge by diffusion. This diffusion between
available and bound charge can take place in either direction depending on the amount of both
types of energy stored in the battery. Both non-linear effects are captured for the exact same
reason as for the diffusion model: the relatively slow conversion of bound charge into available
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charge or vice versa. Due to its simplicity and accuracy relative to the more complex diffusion
model [23] and therefore also relative to the Dualfoil electro-chemical model simulator, we
focus on the kinetic battery model in this paper.

I Example 1. We illustrate the evolution of the state of charge of the KiBaM as time passes
under the assumption of symmetry of charging and discharging below.

10 40 551500

5000

9000

a(t)
b(t)
I

−600

0
400

The initially available charge decreases heavily due to the load 400 but the restricted diffusion
makes the bound charge decrease only slowly up to time 10; after that the battery undergoes a
mild recharge, and so on. At all times the bound charge approaches the available charge by a
speed proportional to the difference of the two values.

Coupled differential equations. The KiBaM can be visualized as two wells holding liquid,
interconnected by a pipe that represents the diffusion of the two types of charge, as depicted on
the right of Figure 1. The available charge well is exposed directly to the load I and connected to
the bound charge well by a pipe of width p. Formally, the KiBaM is characterized by two coupled
differential equations

ȧ(t) = −I + p

(
b(t)

1− c −
a(t)
c

)
, ḃ(t) = p

(
a(t)
c
− b(t)

1− c

)
. (1)

Here, the functions a(t) and b(t) describe the available and bound charge at time t respectively,
ȧ(t) and ḃ(t) their time derivatives, I is a load on the battery. We refer to the parameter p as
the diffusion rate between both wells, while parameter c ∈ [0, 1] corresponds to the width of the
available charge well, and 1 − c is the width of the bound charge well. Intuitively, a(t)/c and
b(t)/(1− c) are the level of the fluid stored in the available charge well and the bound charge well,
respectively. In the following, we take a closer look at the properties of this concrete form of a
dynamical system. In the end, this allows us to obtain tailor-made efficient analysis algorithms.

It is possible to derive a solution of the ODEs at time t when applying load I, for instance by
using Laplace transforms. We can express it as a vector valued linear mapping Kt,I taking the
initial available and bound charge a0 and b0 as argument:

Kt,I
[
a0
b0

]
=
[
qa ra sa
qb rb sb

]
·

a0
b0
I

 where
qa = (1− c)e−kt + c,

ra = − c e−kt + c,

sa = (1− c)(e−kt − 1)
k

− t · c
and qb = 1− qa, rb = 1− ra, sb = −t− sa and finally k = p/c(1− c). The coefficients sa and sb of
I do not sum to 1, because the non-zero load I makes the total power in the battery change. The
above definition of Kt,I is a vector valued reformulation of equations found in [28].

As all vectors appearing in this paper are column vectors, we also denote them by semicolon
notation [a; b]. Furthermore, whenever we compare two vectors, e.g., [a; b] ≤ [a′; b′], we interpret
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the order component-wise. When [a0; b0] and I are clear from context, we denote the SoC
Kt,I [a0; b0] at time t also simply by [at; bt].

I Example 2. We can use the function K to obtain the final SoC for our example (for k = 1/100,
c = 1/2, and ◦ denoting function composition) by

K45,−35 ◦K15,−600 ◦K30,−100 ◦K10,400[5000; 5000] ≈ K45,−35[10732; 7268],

and with the last step in more details (denoting e− 44
100 by E),

=
[

1
2E + 1

2 − 1
2E + 1

2 50E − 50− 44
2

− 1
2E + 1

2
1
2E + 1

2 50− 50E − 44
2

]
·

10732
7268
−35

 =
[−18E + 6480

18E + 8020

]
≈
[
9881
9659

]
.

The first summands on the last line (with E) stand for the spread of the values before the recovery
effect converges (as E → 0 for t→∞). The second summands are different due to non-zero load
I causing bt − at to converge to I/k (for c = 1/2).

Powering a task. A standard problem in battery modelling and evaluation is to find out whether
a task can be performed with a given positive state of charge without depleting the battery, where
positive is to be understood componentwise. A task is a pair (T, I) with T being the task execution
time, and I representing the load, imposed for duration T .

I Definition 3 (K-powering a task). For an execution time T and a load I, we say that a battery
with a positive SoC [a0; b0] K-powers a task (T, I) iff ∀ 0 < t ≤ T : at > 0.

Let us stress that the SoC of the battery evolves in negative numbers in the same way as in
positive numbers because the differential equations do not have any explicit bounds. Furthermore,
it is not monotonic with respect to time in the conventional sense.

I Example 4. In our example, the bound charge is not monotonic on the interval [10, 40], the
available charge is not monotonic on [55, 100]. However, for instance, on [40, 55], available charge
is the first to get above the value 9000 (and never crosses the boundary back down again).

We observe that the KiBaM is monotonic with respect to crossing a boundary κ when both wells
start beyond this boundary.

I Lemma 5. For any I ∈ R, κ ∈ R, B ∈ {<,>}, [a0; b0] B [cκ; (1− c)κ] and for t ∈ R>0 such
that at = cκ we have

bt B (1− c)κ (available charge is always the first to cross a boundary);
aT 7 cκ for all T > t (available charge never crosses back for a given load).

Intuitively speaking, the first property states that the available charge is always the first to
cross a boundary, the second property states that when the available charge crosses a boundary it
never returns back (for a given load).

As a direct consequence of Lemma 5, we can easily find out whether the battery K-powers a
task (T, I) by just observing the SoC at time point T .

I Lemma 6. A battery with a positive SoC [a0; b0] K-powers a task (T, I) iff [aT ; bT ] > [0; 0].
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3 Random KiBaM

In order to consider the KiBaM as a stochastic object, it appears natural to consider the vector
[a0; b0; I] as being random. This reflects the perturbations of the load and of the initial SoC of
the batteries. The latter is a real phenomenon, rooted in wear and manufacturing variances [9].
We thus assume the initial SoC to be random variables A0, B0 jointly distributed according to a
density function f0, while the load on the battery is a random variable I independent of the SoC,
endowed with a probability density function g.

I Example 7. Instead of a single (Dirac) SoC, we now consider that the joint density f0 of the
charge is, say, uniform over the area [4, 6.5]× [4, 6.5] as depicted below.
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Here the values of the two-dimensional density are expressed using colours. Using similar plots,
we shall illustrate how the SoC distribution evolves as the time passes on this particular example.

Evolution over time. We are interested in the random vector expressing the SoC after some
time T for a constant (but random) load I. This is given by

[AT ;BT ] := KT,I [A0;B0]. (2)

The core tool for studying the joint density of [AT ;BT ] is the transformation law for random
variables, which enables the construction of unknown density functions from known ones if given
the relation between the corresponding random variables. Formally, for every d-dimensional
random vector X and every injective and continuously differentiable function g : Rd → Rd, we can
express the density function of Y := g(X) at value y in the range of g as

fY(y) = fX
(
g−1(y)

)
·
∣∣det

(
Jg−1(y)

)∣∣ (3)

where Jg−1(y) denotes the Jacobian of g−1 evaluated at y. However, the mapping (2) is not
invertible, thus we cannot directly apply the transformation law. Instead, we express the joint
density conditioned by the random load I attaining some arbitrary but fixed value i. For this
fixed i, we can exploit the specific structure of the KiBaM to express the transformation using an
invertible linear mapping

KT,i
[
A0
B0

]
=
[
qa ra
qb rb

]
·
[
A0
B0

]
+
[
sa
sb

]
· i.

A straightforward inversion of the mapping results in

K−1
T,i

[
a

b

]
= ekT

[
rb −ra rasb − rbsa
−qb qa qbsa − qasb

]
·

ab
i

 .
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Applying (3) we arrive at the joint density of [AT ;BT ] conditioned by I = i

fT (a, b | i) = f0

(
K−1
T,i[a; b]

)
·
∣∣ekT ∣∣

where ekT is the determinant of the Jacobian of K−1
T,i. Interestingly, it is constant in a, b and

i, it only depends on T . It is also non-negative for T ≥ 0 as k > 0. Finally we get rid of the
conditional I = i by marginalizing the variable [AT ;BT ]. Intuitively, this averages the conditional
densities over the distribution g of I, obtaining thus the following.

I Lemma 8. Let T be execution time and g be load density. For an initial SoC f0 over [A0;B0]
and task (T, g), the joint distribution of [AT ;BT ] is absolutely continuous with density fT given by

fT (a, b) = ekT
∫
R

f0

(
K−1
T,i[a; b]

)
· g(i) di.

I Example 9. We return to our example assuming the density g of the load being uniform between
[−0.1, 0.1]. We can compute the SoC of the battery after task (20, g), displayed on the left, and
(60, g), displayed on the right. Here, we arbitrarily chose the parameters c = 0.5 and p = 0.002.
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Probability of powering a task. We are now in the position to transfer the problem of powering
a task to the stochastic setting. We say that a density f0 is positive if it supports only positive
SoCs, i.e. for any a, b such that either a ≤ 0 or b ≤ 0 we have f0(a, b) = 0.

I Definition 10 (Probability of K-powering a task). For an execution time T > 0 and a load density
g, we say that the battery (with positive initial SoC f0) K-powers a task (T, g) with probability
(at least) p > 0 if

Pr[∀ 0 ≤ t ≤ T : At > 0] ≥ p.

Due to the monotonicity of KiBaM in the sense of Lemma 5, this is equivalent to observing
the probability of depletion only at time T . From Lemma 8 we obtain the following.

I Lemma 11. A battery with SoC f0 K-powers with probability p > 0 a task (T, g) if and only if∫∫
R2

>0

fT (a, b) da db ≥ p.

I Example 12. Thanks to the lemma, it suffices to perform the integration on the densities
displayed in the previous plots in this running example. The probability to power the tasks (20, g)
is 1, for the task (60, g) it is just ≈ 0.968.
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4 Deterministic Limited KiBaM With Recharging

Both charging and discharging are well supported by the theory developed so far, as charging
has occurred in our examples in the form of negative loads. What is not treated in the theory
yet is a capacity limit. This however is an obvious real constraint in applications employing
rechargeable batteries. To the best of our knowledge, charging in KiBaM while respecting its
capacity restrictions has not been addressed even in the deterministic case. Thus, we dedicate
this section to developing the deterministic setting first. In the next section, we extend the theory
to the randomized setting.

We assume that the battery has capacity cap divided into capacity amax = c · cap of the
available charge well and capacity bmax = (1− c) · cap of the bound charge well. Charging and
discharging are not fully symmetric: A battery with empty available charge can no longer power
its task, contrary to a battery with full available charge that continues to operate. We thus need
to consider its further charging behaviour.

When the available charge is at its capacity amax = c · cap and is still further charged by a
sufficiently high charging current, its value stays constant and only the bound charge increases
due to diffusion. Hence, for any t ≥ 0 we have a(t) = c · cap and thus ȧ(t) = 0. The equation for
the bound charge from (1) is modified to an ODE

ḃ(t) = p

(
cap− b(t)

1− c

)
. (1̄)

Staying at the upper limit. The differential equation above describes the behaviour of the
battery at time t only if the incoming current to available charge well is sufficient to compensate
the diffusion, i.e. −I ≥ ḃ(t). Since I is constant and the diffusion is decreasing over time, the
charging current is sufficient at all times if and only if it is sufficient at time 0, i.e. −I ≥ ḃ(0).

For an initial bound charge b0 we define the condition whether the charging current is sufficient
by

I ≤ Ī(b0) := p

(
b0

1− c − cap
)

(4)

which requires the initial bound charge to be close enough to its capacity so that the charging
current overcomes the diffusion.

By solving the ODE (1̄) and using Inequation (4), we obtain the following result.

I Lemma 13. Let T > 0 and b0 such that I ≤ Ī(b0). A battery with a SoC [amax; b0] reaches after
the task (T, I) the state of charge

[
amax; b̄T (b0)

]
where

b̄T (b0) = e−ckT b0 +
(
1− e−ckT

)
· bmax (5)

and k again stands for p/ (c · (1− c)).

We notice that the resulting bound charge evolution b̄T (b0) does not further depend on I,
i.e. one cannot make the battery charge faster by increasing the charging current. Furthermore,
for a fixed b0, the curve of t 7→ b̄t(b0) is a negative exponential starting from the point b0 with
the full capacity bmax of the bound charge being its limit. Thus, Lemma 13 also reveals that
the bound charge in finite time never reaches its capacity and there is no need to describe
this situation separately. Finally, we denote analogously by K̄T [a0; b0] =

[
a0; b̄T (b0)

]
the linear

mapping describing the behaviour at the upper limit.

LITES
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Hitting the upper limit. When charging with a given constant load I, we have two modes of
behaviour of the battery:
(i) before the available charge hits amax and
(ii) after it hits (and stays at) amax.
The remaining question is when it hits that capacity limit. For a given initial state [a0; b0] <
[amax; bmax] and a load I, this amounts to finding t̄ ∈ R>0 such that at̄ = amax. This induces that
the following equation can be derived from Kt̄,I [a0; b0],

u · e−kt̄ + v · t̄+ w = amax

where u = a0 (1− c)− b0c+ (c+ 1) · I/k, v = −Ic, and w = amax − a0c− b0c− (1− c) · I/k. In
this equation, t̄ appears in an exponential as well as in a linear term. This is characteristic for a
non-elementary function W called product logarithm which can express the solution as

t̄ = −W
(u
v
· e−w

v

)
− w

v
. (6)

The product log function can approximated by numerical methods [11].

Integrating the two modes of behaviour. All the previous building blocks allow us to express
easily the SoC of a deterministic KiBaM after powering a given task (T, I) when considering
capacity limits. We define it as

K�T,I [a0; b0] :=


KT,I [a0; b0] if a0 > 0 ∧ 0 < aT ≤ amax,
K̄t ◦Kt̄,I [a0; b0] if a0 > 0 ∧ aT > amax,
[0; 0] if a0 = 0 ∨ 0 ≥ aT

where t̄ is the largest solution of (6) and t = T − t̄.
The first two cases in K�T,I match the behaviour explained earlier thanks to Lemma 5. Whenever

the upper limit is hit, it will never be crossed back with the given I and thus also I is sufficient
according to (4).

I Example 14. If we put a limit of 9000 to the previous scenario, the battery ends up with a
slightly smaller charge at time 100. The computation of the final SoC changes only in the interval
[40, 55]. Here, instead of K15,−600, we apply Kt̄,−600 for the first t̄ ≈ 7.8 time units, followed by
K̄15−t̄.

10 40 551500

5000

9000

a(t)
b(t)
I

−600

0
400

Similarly to Section 2, we establish the notion of K�-powering a task.

I Definition 15 (K�-Powering a task). A battery with a positive SoC [a0; b0] K�-powers a task
(T, I) if ∀ 0 < t ≤ T : at > 0 where each [at; bt] denotes K�t,I [a0; b0].

I Lemma 16. A battery with a positive SoC [a0; b0] K�-powers a task (T, I) if and only if
K�T,I [a0; b0] > [0; 0].
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Computing K� efficiently. The problematic part in computing K� is the case at > amax when
the upper limit is reached at time t̄ < t; we cannot express such time t̄ exactly. This case also
disallows exact closed-form expressions in the next section where we address the limited KiBaM
with randomness. For these reasons we introduce under- and over-approximations of the SoC
using simple closed-form expressions. These approximations are employed in Sections 5 to 7 to
obtain elegant expressions and also efficient algorithms.

Over-approximation: We circumvent the computation of the time point t̄ by moving it to time 0,
i.e. to the beginning of the time interval. We assume that the available charge attains amax
during the whole time interval and the bound charge evolves all the time as captured by K̄t.

Under-approximation: Dually, we move the time point t̄ to time T , i.e. to the end of the time
interval. We assume that the charging current has such value I� (which is a weaker charging
current than I) that causes the available charge to reach amax exactly at the end of the interval.
The battery thus evolves all the time as captured by Kt,I� . Expressing I� is discussed below.

I Example 17. Let us illustrate both approximations on the same situation as in Example 14.
For the under-approximation (on the left), in the interval [40, 55], we apply I� ≈ −432.5 instead
of I = −600 so that the available charge reaches 9000 exactly at t = 55. From here on, the SoC is
in both components lower than the SoC from the previous figure.

10 40 551500

5000

9000

a(t)
b(t)
I

−432.5
0.0

400.0
10 40 551500

5000

9000

a(t)
b(t)
I

−432.5
0.0

400.0

For the over-approximation (on the right), in the interval [40, 55], we intuitively apply a load
I → −∞ so that the available charge reaches 9000 exactly at t = 40. Since the diffusion is finite,
the available charge stays at its limit until t = 55 while the bound charge evolves according to K̄.
From this point on, the SoC is in both components higher than the SoC from the previous figure.

Finally, we need a closed-form solution to the following problem: From an initial SoC [a; b], we
want to reach using K a certain target level of available charge ā exactly at time T ; which current
I achieves this? (For the under-approximation above, we instantiate the problem with ā = amax.)

Formally, we need to find I such that the first component of KT,I [a; b] equals ā. The resulting
current will be denoted by I�

ā [a; b]. Later, we also need the solution of the same problem for K’s
inverse operator K−1. In this case the question is: From an initial available charge level ā, which
current I is necessary to exactly reach a SoC [a; b] at time T ? More precisely, find I such that the
first component of K−1

T,I [a; b] equals ā. We denote the current that solves this problem by I�
ā [a; b].

From the above equalities we can derive that these currents are indeed unique, and given by

I�
ā [a; b] =− qa

sa
· a− ra

sa
· b+ ā

sa
,

I�
ā [a; b] =−rb · a+ ra · b+ (qarb − raqb) · ā

rasb − sarb
.

The bound charge attained under KT,I�
ā
and K−1

T,I�
ā
is denoted by B�

ā [a; b] and B�
ā [a; b], respectively.

In the operators I�
ā , I�

ā , B�
ā , B�

ā , we omit the initial SoC [a; b], if clear from context.

LITES
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It is now straight-forward to provide operators K�t,i and K�t,i that formally characterize the
under- and over-approximations from above.

K�t,i[a0; b0] :=


Kt,i[a0; b0] if a0, at > 0 ∧ at ≤ amax,
Kt,I�

amax
[a0; b0] if a0, at > 0 ∧ at > amax,

[0; 0] if a0 ≤ 0 ∨ at ≤ 0.

K�t,i[a0; b0] :=


Kt,i[a0; b0] if a0, at > 0 ∧ at ≤ amax,
K̄t[amax; b0] if a0, at > 0 ∧ at > amax,
[0; 0] if a0 ≤ 0 ∨ at ≤ 0.

K�t,i and K�t,i are indeed under- and over-approximation of the exact SoC evolution K� in the
following sense.

I Lemma 18. For any SoCs [a; b] and T > 0 and I > 0, we have

K�T,I [a; b] ≤ K�T,I [a; b] ≤ K�T,I [a; b].

5 Random Limited KiBaM With Recharging

We now return our attention to the challenge of random KiBaM, enriched by capacity limits. We
thus assume that the random variables At and Bt evolve according to K�t,I developed in Section 4.
By overloading notation we change (2) to

[At;Bt] := K�t,I [A0;B0]. (7)

We first observe that the joint distribution of [AT ;BT ] may not be absolutely continuous, because
positive probability may accumulate in the point [0; 0] where the battery is empty and on the line
{[amax; b] | 0 < b < bmax} where the available charge is full. We need a more complex representation
of the distribution.

I Definition 19. A SoC distribution is a triple
〈
f, f̄, z

〉
where

f is a joint density over ]0, amax[× ]0, bmax[, (the distribution in the “inner” area)
f̄ is a density over {amax} × ]0, bmax[, (bound charge distribution along the capacity limit)
z ∈ [0, 1]. (the cumulative probability of depletion)

We say that a SoC distribution
〈
ft, f̄t, zt

〉
represents random variables [At;Bt] if for any

measurable X ⊆ R× R we have

Pr
[
[At;Bt] ∈ X

]
=
∫∫

[a;b]∈X

ft(a, b) da db +
∫

[amax;b]∈X

f̄t(b) db + zt 1[0;0]∈X

where 1ϕ denotes the indicator function of a condition ϕ.
Similarly to Section 3, we assume random load I described by a probability density function g.

For random initial SoC [A0;B0] represented by a SoC distribution
〈
f0, f̄0, z0

〉
and a given task

(T, g) we aim at expressing the resulting SoC [AT ;BT ] using a SoC distribution
〈
fT , f̄T , zT

〉
.

To be able to express the distribution as integrals over simple closed-form expressions, we resort
to under- and over-approximations of the SoC. We will work with bdc and dde as notations for
upper, respectively lower bounding SoC distributions, where d abbreviates the three components
of the triple

〈
fT , f̄T , zT

〉
(i.e.

⌊
fT , f̄T , zT

⌋
and

⌈
fT , f̄T , zT

⌉
). To arrive there, we define

[AT ;BT ] := K�T,I [A0;B0] and
[
AT ;BT

]
:= K�T,I [A0;B0]

respectively, that under-approximate and over-approximate [AT ;BT ] in the following sense.
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I Definition 20. We say that [AT ;BT ] under-approximates [AT ;BT ] at the upper limit if

Pr
[
[AT ;BT ] ≥ [a; b]

]
= Pr

[
[AT ;BT ] ≥ [a; b]

]
for any [a; b] < [amax; bmax],

Pr
[
[AT ;BT ] ≥ [amax; b]

]
≥ Pr

[
[AT ;BT ] ≥ [amax; b]

]
for any 0 ≤ b ≤ bmax.

Analogously,
[
AT ;BT

]
over-approximates [AT ;BT ] at the upper limit if

Pr
[
[AT ;BT ] ≥ [a; b]

]
= Pr

[[
AT ;BT

]
≥ [a; b]

]
for any [a; b] < [amax; bmax],

Pr
[
[AT ;BT ] ≥ [amax; b]

]
≤ Pr

[[
AT ;BT

]
≥ [amax; b]

]
for any 0 ≤ b ≤ bmax.

This approach, detailed in the rest of this section, provides upper and lower bounds on the
risk of battery depletion due to the monotonicity established in Lemma 28.

Behaviour below the upper limit (defining fT and zT ). We first define a joint density f
T
over

]−∞, amax[× ]−∞, bmax[ that exactly describes the behaviour below the upper limit while ignoring
the lower limit. This allows us to define

fT (a, b) := f
T

(a, b), and zT :=
∫∫
R2
60

f
T

(a, b) dadb. (8)

Note that for this case both, under- and over-approximation, behave equally, as indicated in
Definition 20.

The intricate part in expressing f
T
is to describe how the SoC evolves away from the upper

limit to the area below the upper limit when the level of available charge is decreasing. For each
SoC [a′; b′] below the upper limit we need to find out what SoC of the form [amax; b] under what
load i (such that i > Ī(b)) would evolve in time T exactly into [a′; b′], i.e K−1

T,i[a′; b′] = [amax; b].
By definition, this is the case when using load I�

amax
[a′; b′] which results in a bound charge

b = B�
amax

[a′; b′]. The Jacobian determinant of the map [a; b] 7→
[
B�
amax

; I�
amax

]
is easily derived to

be 1/(rasb − sarb) and is constant in the SoC and the load.
Finally, we can express the joint density f

T
for any a < amax and b < bmax as

f
T

(a, b) = f̄0
(
B�
amax

)
· 1
|rasb − sarb|

· g
(
I�
amax

)
+ ekT

I�
amax∫
−∞

f0

(
K−1
T,i[a; b]

)
· g(i) di. (9)

The second summand in (9) comes from the density f0 of the inner area by the standard
unlimited KiBaM. Ranging over all loads i, it integrates the density f0 of such points [ai; bi] that
satisfy KT,i[ai; bi] = [a; b], i.e. [ai; bi] = K−1

T,i[a; b]. Lemma 5 again guarantees that no limits are
crossed in the meantime. The first summand comes from f̄0, due to discharging the battery down
from the capacity limit as discussed above.

Behaviour on the upper limit (defining f̄T ). As indicated in Definition 20, we resort for the
upper limit to approximations of the charge.

Under-approximation: We define the under-approximation of the density for 0 ≤ b ≤ bmax by

f̄T (b) = f̄0
(
b̄−1) ·G(Ī(b̄−1)) · eckT (10)

+ f̄0
(
B�
amax

)
·
[
G
(
I�
amax

)
−G

(
Ī
(
B�
amax

))]
·
∣∣∣∣ −sa
rasb − sarb

∣∣∣∣ (11)

+
∞∫
−∞

f0(a,B�
a ) ·G(I�

a ) da ·
∣∣∣∣ −sa
rasb − sarb

∣∣∣∣ (12)
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Let us go through this expression line by line.

In the first summand (10), b̄−1 is such that K̄T
[
amax; b̄−1] = [amax; b]. Thus b̄−1 := b̄−1

T (b) =
eckT · b− (eckT + 1) · bmax where the function b̄T is defined in Definition 5. This summand is
taken into account only for charging currents that cover the diffusion (i.e. i ≤ Ī

(
b̄−1)) so that

the battery evolves along the capacity limit as expressed by Lemma 13. The integration over
this range of loads can be directly expressed using the cumulative density function (cdf) G of
the load. Technically, we again apply the transformation law for random variables.
By the second summand (11), we address the case where the diffusion in the state [amax; b] is
stronger than the charging current. The available charge thus leaves its limit in the beginning.
Let us assume that before time T it again hits the upper capacity in some state [amax; b′]. We
are not able to express b using a closed-form expression over b′ as discussed in Section 4. As
a result, we cannot “move” the density from b to b′. We thus under-approximate the bound
charge by assuming that the available charge hits its upper limit again exactly at time T by
charging the battery with I�

amax
instead, just as shown in Example 17. Let us shortly outline

the derivation. The mapping for the transformation law is b 7→ B�
amax

[amax; b]. Its inverse is
simply b 7→ B�

amax
[amax; b] with Jacobian determinant −sa/(rasb − sarb). The transformation

law yields a density at time T of

f̄0
(
B�
amax

[amax; b]
)
· |−sa/(rasb − sarb)|.

Then we integrate over all charging currents i that are powerful enough to reach the limit
(i ≤ I�

amax
[amax; b]) yet not too powerful to leave the upper limit in the meantime, i.e. i >

Ī
(
B�
amax

[amax; b]
)
. The integral over the resulting range equals G

(
I�
amax

)
−G

(
Ī
(
B�
amax

))
.

The third summand (12) comes from the density f0 of the inner area and under-approximates
the bound charge similarly to the second summand. If the available charge of the battery
reaches its capacity limit before time T , we assume that it reaches it exactly at time T by
underestimating the charging current with I�

amax
. For the derivation, we define a map KT :

[a; b; i] 7→
[
a;B�

amax
[a; b]; i

]
(it is an identity in the first and the third component to be injective)

and apply the transformation law of random variables. The inverse K−1
T and its Jacobian

determinant is

K−1
T : [a; b; i] 7→ [a;B�

a [amax; b]; i] and detJK−1
T

= −sa/(rasb − sarb).

The density hT over the co-domain of KT is obtained by the transformation law as

hT [a; b; i] = h0
(
K−1
T [a; b; i]

)
·
∣∣∣∣ −sa
rasb − sarb

∣∣∣∣ = f0(a,B�
a [amax; b]) · g(i) ·

∣∣∣∣ −sa
rasb − sarb

∣∣∣∣
where the density h0 equals a product of the densities f0 and g because of independence of
SoC [a; b] and load i. Marginalizing away a and i (using G(I�

a ) to integrate over all currents
necessary to reach the upper limit) gives us the subdensity from the third summand.

Over-approximation: The over-approximation bases on similar building blocks and equals:

f̄T (b) = f̄0
(
b̄−1) ·G(I�

amax

)
· eckT +

∞∫
−∞

f0
(
a, b̄−1) ·G(I�

amax

)
da · eckT (13)

The first summand in (13) treats the contribution of the density f̄0 from the point b̄−1 as
defined above. We assume the density evolves as indicated by K̄ whenever K would result in
aT ≥ amax (i.e. if the current is stronger than I�

amax

[
amax; b̄−1]). This is an over-approximation

for the charging currents such that Ī
(
b̄−1) < i < I�

amax

[
amax; b̄−1], i.e. for charging currents

that are not strong enough to stay at amax for the whole time but that are stronger than what
is needed for K to return to amax at time T .
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The second summand in (13) comes from the density f0 of the inner area. Again, whenever K
would result in aT > amax (i.e. when the charging current is stronger than I�

amax

[
a; b̄−1]), we

assume that the upper limit is reached immediately and further evolves by K̄, thus justifying
the argument I�

amax
to appear in the integral. This results in an over-approximation for any

such SoC.
The derivation of both summands in principle uses the mapping [a; b; i] 7→

[
a; b̄T (b); i

]
(for the

first summand, think of a being the constant amax). The transformation law and marginalizing
away a (for the second summand) and i (integration over the corresponding range is again
expressed using the cdf G) as in the derivations for the under-approximation provide the result.

We finally obtain the following result.

I Lemma 21. Let (T, g) be a task,
〈
f0, f̄0, z0

〉
represent [A0;B0] and the induced SoC distri-

butions
⌊
fT , f̄T , zT

⌋
and

⌈
fT , f̄T , zT

⌉
represent [AT ;BT ] and

[
AT ;BT

]
. Then [AT ;BT ] under-

approximates [AT ;BT ] and
[
AT ;BT

]
over-approximates [AT ;BT ] at the upper limit.

I Example 22. Based on Lemma 21, we can under-approximate the SoC of the random battery
from our second running example for battery limits [0, 10]. We consider the same tasks, (20, g) on
the left and (60, g) on the right.

0.0622

0.0308
0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

The bounded area of the joint density fT is depicted by the largest box. In the small box above
we display the density f̄T at the capacity limit amax. The numbers above and below are the
probabilities of available charge being full and empty, respectively (the color below corresponds to
the probability).

I Lemma 23 (Probability of K�-powering a task). A battery with SoC distribution
〈
f0, f̄0, z0

〉
K�-powers with probability p > 0 a task (T, g) if and only if zT < p.

6 Markov Task Process

So far, we have only discussed execution of one task with fixed duration and random load. In
this section, we give a discrete-time Markov model that randomly generates tasks that we call a
Markov task process (MTP). The formalism is closely inspired by stochastic task graph models [34]
or data-flow formalisms such as SDF [26] or SADF [38]. In SDF, task durations are deterministic,
and thus directly supported in our framework. In SADF, durations are in general governed by
discrete probability distributions, which can be translated into our framework at the price of a
larger state space. We will briefly explain informally how to translate timed versions of SDF as
well as SADF to MTPs, after formally introducing the latter.

I Definition 24. A Markov task process (MTP) is a tupleM = (S, P, π,∆,g) where S is a finite
set of tasks, P : S × S → [0, 1] is a transition probability matrix, π is an initial probability
distribution over S, ∆ : S → Nr {0} assigns to each task an positive integer time duration, and g
assigns to each task a probability density function of the load.

LITES
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Figure 2 An MTP model on the left (with ∆ depicted next to states) and its induced graph for T = 100
on the right.

An example of an MTP is depicted in Figure 2. Intuitively, a Markov task processM together
with an initial distribution of the SoC given by

〈
f0, f̄0, z0

〉
behaves as follows. First, an initial SoC

[a0; b0] of the battery and an initial task s0 ∈ S are chosen independently at random according
to
〈
f0, f̄0, z0

〉
, and π, respectively. Then, the load i0 in task s0 is picked randomly according to

g(s0). After the battery is strained by the load i0 for ∆(s0) time units, the process moves into a
random successor task s1 (where any s1 is chosen with probability P (s0, s1)). Here, the load i1 is
randomly chosen and so on.

Formally, M and
〈
f0, f̄0, z0

〉
induce a probability measure Pr over samples of the form

ω =
[
[a0; b0]; (sk, ik)∞k=0

]
where the first component is the initial SoC of the battery and the

second component describes an infinite execution of M. Here, each sj is the j-th task and ij
is the load that is put on the battery for ∆(sj) time units while performing sj . For a given
T ∈ R>0, the SoC of the battery at time T is expressed by random variables AT , BT that are for
any ω =

[
[a0; b0]; (sk, ik)∞k=0

]
defined as[

AT (ω)
BT (ω)

]
:= K�∆′,in ◦K�∆n−1,in−1

◦ · · · ◦K�∆0,i0

[
a0
b0

]
where each ∆j stands for ∆(sj), and n is the minimal number such that the n-th task is not
finished before T , i.e. ∆n > ∆′ where ∆′ := T −∑n−1

j=0 ∆j .

I Definition 25. We say that a battery with a SoC
〈
f0, f̄0, z0

〉
powers with probability p > 0 a

systemM for time T if

Pr[AT > 0] ≥ p.

In order to under-approximate the probability thatM is powered for a given time, we need to
symbolically express the distribution of[

AT (ω)
BT (ω)

]
:= K�∆′,in ◦K�∆n−1,in−1

◦ · · · ◦K�∆0,i0

[
A0
B0

]
where we just replace K� with K�. Analogously, for an over-approximation we use K� instead.[

AT (ω)
BT (ω)

]
:= K�∆′,in ◦K�∆n−1,in−1

· · · ◦K�∆0,i0

[
A0
B0

]
.

We present an algorithm that builds upon the previous results.



H. Hermanns, J. Krčál, and G. Nies 04:17

Expressing the distribution of [AT ; BT ] and
[
AT ; BT

]
. Let us fix an input MTP M =

(S, P, π,∆,g), SoC distribution
〈
f0, f̄0, z0

〉
that represents [A0;B0], and time T > 0. We consider

the joint distribution of under- / over-approximation of the SoC and the MTP. Intuitively, we
split the SoC distribution into under- and over-approximating subdistributions and move them
along the paths ofM according to the probabilistic branching of the MTP. We notice that we
do not need to explore all exponentially many paths; when two paths visit the same state at the
same moment, we can again merge the two subdistributions. This process is formalized by the
following graph and a procedure how to propagate the distribution through the graph.

For a given MTPM we define a directed acyclic graph (V,E) over V = S × {0, 1, . . . , bT c, T}
such that there is an edge from a vertex (s, t) to a vertex (s′, t′) if P (s, s′) > 0, t < t′, and
t′ = min{t+ ∆(s), T}. Further, let (V ′, E′) be the graph obtained from (V,E) by removing
vertices that are not reachable from any (s, 0) with π(s) > 0 (see Figure 2).
1. We label each vertex of the form (s, 0) where π(s) > 0 by the pair of equal initial subdistributions⌊

f, f̄, z
⌋

:=
〈
f0, f̄0, z0

〉
· π(s) and

⌈
f, f̄, z

⌉
:=
〈
f0, f̄0, z0

〉
· π(s)

where the multiplication is to be understood componentwise.
2. We repeat the following steps as long as possible.

a. For each vertex (s, t) labeled by
⌊
f, f̄, z

⌋
and

⌈
f, f̄, z

⌉
, we obtain

⌊
f∆, f̄∆, z∆

⌋
and

⌈
f∆, f̄∆, z∆

⌉
by Lemma 21 for a task (∆,g(s)) where ∆ := min{∆(s), T − t}. Then we label i-th outgoing
edge of (s, t) leading to some (s′, t′) by⌊

f i, f̄ i, zi
⌋

:=
⌊
f∆, f̄∆, z∆

⌋
·P (s, s′) and

⌈
f i, f̄ i, zi

⌉
:=
⌈
f∆, f̄∆, z∆

⌉
·P (s, s′).

b. For each vertex (s, t) such that its k ingoing edges are labelled by
⌊
f i, f̄ i, zi

⌋
and

⌈
f i, f̄ i, zi

⌉
for i = 1, . . . , k, we label (s, t) by

⌊
f, f̄, z

⌋
:=

k∑
i=1

⌊
f i, f̄ i, zi

⌋
and

⌈
f, f̄, z

⌉
:=

k∑
i=1

⌈
f i, f̄ i, zi

⌉
where the summation is again to be interpreted componentwise.

Finally, let i-th of all n vertices of the form (s, T ) ∈ V ′ be labelled by
⌊
f, f̄, z

⌋
i
and

⌈
f, f̄, z

⌉
i
. The

output distributions that represent [AT ;BT ] and
[
AT ;BT

]
respectively are

⌊
fT , f̄T , zT

⌋
:=

n∑
i=1

⌊
f, f̄, z

⌋
i

and
⌈
fT , f̄T , zT

⌉
:=

n∑
i=1

⌈
f, f̄, z

⌉
i
.

We naturally arrive at the following theorem.

I Theorem 26. A battery with SoC distribution
〈
f0, f̄0, z0

〉
K�-powers a systemM for time T

with probability at least 1− zT and at most 1− zT , where zT and zT are the depletion probabilities
of the densities representing [AT ;BT ] and

[
AT ;BT

]
, respectively.

This theorem relies on the simple observation that an underapproximation of the SoC is an
overapproximation of the depletion probability.
I Remark (on complexity). As indicated in the beginning of this section, we do not need to track
all exponentially many paths through the MTP up to time T . In fact, in the algorithm above, once
we have computed the subdistributions on the left hand side, we can discard the subdistribution
on the right hand side of the assignments. Since the task durations ∆ are natural numbers, the
amount of subdistributions we need to track simultaneously is bounded by |S| ·D where D is the
smallest common multiple of all the task durations. D always exists since all task durations are
strictly positive.
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Translating timed SDF graphs to equivalent MTPs. As mentioned above, some well known
formalisms can be translated to MTPs, among them the timed version of Synchronuous Data
Flow (SDF) [26] and some Scenario-Aware Data Flow (SADF) [38] flavors. We will demonstrate
informally how to translate a timed SDF graph (SDFG) to an equivalent MTP.

SDF is a widely used formalism for modelling and analysing networks of deterministic sequential
processes along with their resource budget. Processes, called actors communicate via consuming
and producing tokens (data elements) from their incoming and to their outgoing unbounded
channels. Whenever an actor is activated it spawns a new active instance. The number of tokens
an instance consumes and eventually produces is fixed a priori. The timed version additionally
annotates each actor a with a constant execution time e(a) ∈ Nr{0} , representing how much time
passes between consumption and production of tokens. We furthermore associate a distribution
L(a) over loads with each actor a to reason about energy consumption.

The semantics of an SDFG execution is a finite Labelled Transition System (LTS) over its
configurations, which can be extended to an MTP on the same state space of configurations with
Dirac transitions and additional annotations concerning load and sojourn times.

An SDF configuration records
(i) a vector v representing the number of tokens in each channel,
(ii) a set A collecting active actor instances ai of any actor a and
(iii) the residual execution time of each running instance as a map r.
Transitions between states are of three natures:
start a: A new instance ai of actor a with r(ai) = e(a) is added to A, provided the input channels

contain enough tokens, which are thereby consumed;
end a: An actor instance ai is removed from A when its residual execution time r(ai) is 0. Thereby

output tokens are produced according to a’s output channels;
time t: Under the precondition that no start or end transitions are possible, an amount of time t

passes corresponding to the minimum of the residual times, thereby decreasing the residual
execution times of every active actor instance accordingly.

The precondition of time-type transitions implies that the LTS is free of nondeterminism
between time and start/end transitions. The nondeterminism among start/end transitions is
irrelevant thanks to the diamond property. This means that for each state s there is a unique final
state s′ such that each maximal sequence of start/end transitions from s ends up in s′. On each
such diamond (set of states reachable from s) no time passes, thus it has no effect on the battery.
As the first step in defining the MTP, we transform the LTS by collapsing each diamond into its
final state. As a result, the LTS becomes deterministic with only time transitions remaining. If
the starting state was part of a diamond collapsed to a state s′, this state becomes the initial state
of the transformed LTS.
The reachable part of the LTS induces an MTPM = (S, P, π,∆,g) as follows:

The state space S is defined as the reachable states of the LTS,
The initial probability distribution π is Dirac in the initial state of the SDFG,
∆(s) for s ∈ S is the residual time according to the transition of type time leaving s.
g(s) for s = (v,A, r) ∈ S is the convolution of the L(a) for each ai ∈ A.
P (s, s′) is 1 if there is a time transition from s to s′, and 0, otherwise.

SADF extends SDF to discrete execution time distributions and scenarios (with subscenarios
probabilistically chosen through discrete-time Markov Chains). An extension of the above is
relatively intuitive, but technically involved. However, since the semantics of such SADF graphs
under self-timed executions are Timed Probabilistic Systems (TPS) with the diamond property for
actions [39], an analogous approach to the above can be formulated.
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7 Approximating Random Limited KiBaM With Recharging

After approaching the problems from the theoretical side, we take the practical view in this section.
We want to be able to compute the probability to power a systemM for a given time T in practice.
As this is only possible approximatively, we want to obtain provably correct lower and upper
bounds on this probability.

The crucial step in the symbolic algorithm from Section 6 is the following: for a fixed initial
SoC distribution

〈
f0, f̄0, z0

〉
, compute the SoC distribution

〈
fT , f̄T , zT

〉
after powering a task

(T, g). First, we implemented the symbolic continuous solution developed in Sections 3 and 5 in a
high-level computational language Octave. This way, we performed numerical integration only
over the resulting complete expression describing the SoC distribution at time T . This showed up
to be practical only up to sequences of a handful of tasks. Thus, we targeted discretisation of the
SoC space and of the load distributions. In contrast to general approaches [35], we are able to
give much tighter (a posteriori) error bounds.

The discretisation algorithm. We need to assume that each load distribution g is supported
only on a bounded interval. This is no real restriction due to the obvious physical limits of battery
load.

The idea is simple. We approximate each SoC distribution over [0, amax]× [0, bmax] by a discrete
distribution µ over a regular grid [0, δ, 2δ, . . . , amax]× [0, δ, 2δ, . . . , bmax], for any fixed δ > 0 that
divides the maximum capacities amax and bmax into K := amax/δ and L := bmax/δ steps.1

For a fixed initial SoC distribution µ and task (T, g), we define an under-approximated target
distribution µ and an over-approximated target distribution µ for each point [kδ; lδ] as follows.
We first over-approximate and under-approximate the density g by discrete distributions g and g
supported on multiples of δg > 0.2 Then we set

µ[kδ; lδ] :=
∑
i

g(iδg) ·
∑{

µ[k′δ; l′δ]
∣∣∣K�t,i[k′δ; l′δ] ∈ [kδ, (k + 1)δ[× [lδ, (l + 1)δ[

}
,

µ[kδ; lδ] :=
∑
i

g(iδg) ·
∑{

µ[k′δ; l′δ]
∣∣∣K�t,i[k′δ; l′δ] ∈ ](k − 1)δ, kδ]× ](l − 1)δ, lδ]

}
.

Intuitively, in the definition above we apply the deterministic KiBaM operator K� to each
possible load and round the result to the closest multiples of δ. The results are weighted by
the approximation of the load distribution. The direction of the approximation determines the
direction of the approximation of g, the direction of approximation of the function K�t,i, and the
direction of rounding the result.

Correctness of the approximations. When plugging the under- and over-approximation of each
step for given δ to the algorithm in Section 6, we obtain the overall algorithm to compute under-
and over-approximations µ

T
and µT of the SoC distribution after powering a given systemM

for a given time horizon T > 0. Let
[
AδT ;BδT

]
and

[
AδT ;BδT

]
denote random variables distributed

according to µ
T
and µT .

1 Here we assume that c is rational thus allowing to find arbitrarily small such δ > 0. This is assumed purely
for presentation purposes, as for the under-approximation the capacity limits can be arbitrarily decreased; for
the over-approximation analogously increased.

2 The over-approximation of the load assigns the integral of g over [k · δg, (k + 1) · δg] to the point k, the
under-approximation to the point k + 1.
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I Theorem 27. Let [A0;B0] be the initial SoC, represented by
〈
f0, f̄0, z0

〉
, δ > 0,M be an MTP

and T > 0 be a time horizon. For any SoC [a; b] on the grid (i.e. equal to some [kδ; `δ]) we have

Pr
[[
AδT ;BδT

]
≥ [a; b]

]
≤ Pr

[
[AT ;BT ] ≥ [a; b]

]
≤ Pr

[[
AδT ;BδT

]
≥ [a; b]

]
.

The theorem relies on Lemma 18 and one additional observation. The KiBaM evolution has
one fundamental property: for any fixed time and load, it is monotonic with respect to starting
SoC.

I Lemma 28. For any two SoCs [a; b], [a′; b′] as well as T > 0 and I > 0, we have

[a; b] ≤ [a′; b′] =⇒ K�T,I [a; b] ≤ K�T,I [a′; b′].

This property is crucial for correctness and not found in general systems studied in [35]. It
implies that a sequence of under-approximations is still an under-approximation, and dually for
over-approximations.

8 The Random KiBaM In Practice

In this section, we apply the results established in the previous sections in a concrete scenario.
The problem is inspired by experiments currently being carried out with an earth orbiting nano
satellite, the GomX–1 [20].

Satellite. GomX–1 [20] is a Danish two-unit CubeSat mission launched in November 2013 to
perform research and experimentation in space related to Software Defined Radio (SDR) with
emphasis on receiving ADS-B signals from commercial aircraft over oceanic areas. As a secondary
payload the satellite flies a NanoCam C1U color camera for earth observation experimentation.
Five sides are covered with NanoPower P110 solar panels, and the power system NanoPower P31u
holds a 7.4V Li-Ion battery of capacity 5000 mAh. GomX–1 uses a radio amateur frequency
for transmitting telemetry data, making it possible to receive the satellite data with low-cost
infrastructure anywhere on earth. The mission is developed in collaboration between GomSpace
ApS, DSE Airport Solutions and Aalborg University, financially supported by the Danish National
Advanced Technology Foundation. The empirical studies carried out with GomX–1 serve as a
source for parameter values and motivate the scenario described in the remainder of the paper.
We use the following data collected from extensive in-flight telemetry logs.

One orbit takes 99 minutes and is nearly polar;
The battery capacity is cap = 5000 mAh;
During 4 to 7 out of on average 15 orbits per day, communication with the base station
takes place. The load induced by communication is roughly 400 mA. The length of the
communication depends on the distance of the pass of the satellite to the base station and
varies between 5 and 15 minutes;
In each communication, the satellite can receive instructions on what activities to perform next.
This influences the subsequent background load. Three levels of background load dominate the
logs, with average loads at 250 mA, 190 mA, and 90 mA. These background loads subsume the
power needed for operating the respective activities, together with basic tasks such as sending
beacons every 10 seconds;
Charging happens periodically, and spans around 2/3rd of the orbiting time. Average charge
power is 400 mA.

The above empirical observations determine the base line of our modelling efforts, which interprets
the statistical data as being of stochastic nature. We make the following assumptions:
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Figure 3 Markov task process of the load on the satellite. All load distributions are normal with mean
depicted next to the states and with standard deviation 5. This load is superposed with a strictly periodic
load modelling charge by solar power infeed.

We assume constant battery temperature. The factual temperature of the orbiting battery
oscillates between −8 and 25 degree Celsius on its outside. There is the (currently unused)
on-board option to heat the battery to nearly constant temperature. Using an on-off controller,
this would lead to another likely nearly periodic load on the battery, well in the scope of what
our model supports.
A constant charge from the solar panels is assumed when exposed to the sun. The factual
observed charge slowly decays. This is likely caused by the fact that solar panels operate better
at lower temperature (opposite to batteries), but heat up quickly when coming out of eclipse.
We assume a strictly periodic charging behavior. The factual charging follows a more com-
plicated pattern determined by the relative position of sun, earth and satellite. There is no
fundamental obstacle to calculate and incorporate that pattern.
We assume a uniform initial charge between 70% and 90% of full capacity with identical bound
and available charge. Since the satellite needs to be switched off for transportation into space,
assuming an equilibrated battery is valid. Being a single experiment, the GomX–1 had a
particular initial charge (though unknown). The charge of the orbiting battery can only be
observed indirectly, by the voltage sustained.
We assume that the relative distance to a base station is a random quantity, and thus
interpret several of the above statistics probabilistically. In reality, the position of the base
station for GomX–1 is at a particular fixed location (Aalborg, Denmark). Our approach can
either be viewed as a kind of probabilistic abstraction of the relative satellite position and
uncertainty of signal transmission, or it can be seen as reflecting that base stations are scattered
around the planet. This especially would be a realistic in scenarios where satellite-to-satellite
communication is used.
We assume that the satellite has no protection against battery depletion. In reality, the
satellite has 2 levels of software protection, activated at voltage levels 7.2 and 6.5, respectively,
backed up by a hardware protection activated at 6 V. In these protection modes, various
non-mission-critical functionality is switched-off. Despite omitting such power-saving modes,
we still obtain conservative guarantees on the probability that the battery powers the satellite.

Satellite model. According to the above discussion, the load on the satellite is the superposition
of two piecewise constant loads.

A probabilistic load reflecting the different operation modes, modeled by a Markov task process
M as depicted in Figure 3.
A strictly periodic charge load alternating between 66 minutes at −400 mA, and the remaining
33 minutes at 0 mA.
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One can easily express the charging load as another independent Markov task process (where
all probabilities are 1) and consider the sum load generated by these two processes in parallel
(methods in Section 6 adapt straightforwardly to this setting).

The KiBaM in our model has following parameters:
The ratio of the available charge c = 1/2 (artificially chosen value as parameters fitted by
experiments on similar batteries strongly vary [42, 25]);
The diffusion rate p = 0.0006 per minute (we decreased the value reported by experiments [25]
by a factor of 4 because of the low average temperature in orbit, 3.5◦C, and the influence of
the Arrhenius equation [27]).

Implementation aspects. Our implementation is done in C++. We used K = 1200, 600, 300
and 150 for the experiments with the batteries of capacity 5000 mAh, 2500 mAh, 1250 mAh
and 625 mAh, respectively to guarantee equal relative precision. All the experiments have been
performed on a machine equipped with an Intel Core i5-2520M CPU @ 2.50GHz and 4GB RAM.
All values occuring are represented and calculated with standard IEEE 754 double-precision
binary floating-point format except for the values related to the battery being depleted where
we use arbitrary precision arithmetic (as this number keeps accumulating grid values that are
of much lower order of magnitude). The number of subdistributions that must be kept track of
simultaneously, turned out to be no larger than 54.

Model evaluation. We performed various experiments with this model, to explore the random
KiBaM technology. We here report on five distinct evaluations, demonstrating that valuable
insight into the model can be obtained.

1. The 5000 mAh battery in the real satellite is known to be over-dimensioned. Our aim was to
find out how much. Hence, we performed a sequence of experiments, decreasing the size of
the battery exponentially. The results (of the safe under-approximation) are displayed and
explained in Figure 4. We found out that 1/4 of the capacity still provides sufficient guarantees
(since the depletion risk calculated is in the order of 10−10) to power the satellite for 1 year
while 1/8 of the capacity, 625 mAh, does not. The following table compares the under- and
over-approximations.

capacity (mAh) 5000 2500 1250 625

under-approximation of Pr[depletion] 9.61 · 10−96 4.69 · 10−43 1.01 · 10−15 0.00122
over-approximation of Pr[depletion] 1.66 · 10−63 6.58 · 10−31 1.73 · 10−10 0.03653

The approximations thus compute the real probability of depletion up to very small absolute
errors ranging from 10−63 for the 5000 mAh battery to 0.03531 for the 625 mAh battery.

2. We compared our results with a simple linear battery model of the same capacity.3 This linear
model is not uncommon in the satellite domain, it has for instance been used in the Envisat
and CryoSat missions [18]. We obtain the following probabilities for battery depletion:

linear battery model KiBaM
capacity (mAh) 5000 625 5000 625

under-approximation of Pr[depletion] 1.76 · 10−144 8.53 · 10−16 9.61 · 10−96 0.00122
over-approximation of Pr[depletion] 1.86 · 10−84 2.94 · 10−8 1.7 · 10−63 0.03653

3 The linear model can be emulated using a KiBaM with diffusion rate p→∞. This has the effect that available
and bound charge wells behave equally and thus deplete at the same time. To compute the numbers we used
the same algorithm and discretisation constants δ, δg as for the corresponding KiBaM of the same size.
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Figure 4 SoC under-approximation for different sizes of the satellite’s battery after 1 yeara. The
leftmost SoC is with the original battery capacity, 5000 mAh. In each further plot, the battery capacity
is halved, i.e. 2500 mAh, 1250 mAh, and 625 mAh. Note that all the densities are depicted on the
logarithmic scale (ticks in the colorbar stand for the order of magnitude). We observe that only the
smallest battery does not give sufficient guarantees. Its probability of depletion after 1 year is 0.0365;
the probability decreases to 1.7 · 10−10 already for the 1250 mAh battery. The smaller the battery, the
more crucial is the distinction of available and bound charge as a larger area of the plots is filled with
non-trivial density.
a Actually it is after 364 days, as this is in the middle of the charging phase. After 365 days the satellite is in

eclipse and no density is exhibited along the upper limit.
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Figure 5 Load noise. SoC under-approximation of the 1 year run using the 1250 mAh battery with
Dirac loads (left) and with noisy loads (right). We used Gaussian noise with standard deviation 5.
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Figure 6 Number of solar panels. Top: The over-approximation of the full 5000 mAh battery with
9,8,7 and 6 solar panels. Bottom: The respective under-approximations on the same colorscale. Again,
the ticks of the colorscale represent the order of magnitude of the densities.
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The linear model turns out to be surprisingly (and likely unjustifiably) optimistic, especially
for the 625 mAh battery.

3. We (computationally) simplified the two experiments above by assuming Dirac loads. To
analyze the effect of the white noise, we compared the Dirac loads with the noisy loads,
explained earlier, on the 625 mAh battery. As expected, the noise (a) smoothes out the
distribution a little and (b) pushes a bit more of the distribution to full and empty states, see
Figure 5.

4. Our reference satellite is a two-unit satellite, i.e. is built from two cubes, each 10 cm per side.
In the current design, 9 of the 10 external sides are covered by solar panels, the remaining one
is used for both radio antenna and camera. We thus conducted a robustness analysis with
respect to solar infeed, by assuming that 1,2 and 3 solar panels break down. Figure 6 displays
that the satellite can easily deal with 1 defective solar panel. If additional panels fail, the
system runs out of energy rapidly with high probability.

5. The random KiBaM does not incorporate battery aging. In general, the degradation of a
battery over time depends on many factors, most prominently how the battery was stored,
which loads it was subjected to, how deeply it was discharged and at which temperatures it
was used. We are not aware of a consensus method of how to model degradation of a Li-ion
battery which is influenced by all of these factors. A measurable quantity related to battery
age for our case study is the voltage drop when in eclipse. In-orbit measurements show that
this voltage drop has worsened by 3% after one year of operation. For comparison purposes,
we thus pessimistically assumed a battery with a capacity of only 4850 mAh (97% of 5000
mAh) from the beginning. Compared to the 5000 mAh battery the depletion probabilities are
only slightly higher:

capacity (mAh) 5000 4850

under-approximation of Pr[depletion] 9.61 · 10−96 1.73 · 10−92

over-approximation of Pr[depletion] 1.66 · 10−63 5.58 · 10−61

9 Alternative Approaches

The results reported above are obtained from a discretized abstraction of the stochastic process
induced by the MTP and the battery, solved numerically and with high-precision arithmetic where
needed.

One could instead consider estimating the probability zt of the battery depletion using ordinary
simulation techniques [19]. Considering a battery of capacity 5000 mAh, this would mean that
about 1063 simulations traces are needed on average to observe the rare event of a depleted battery
at least once. This seems prohibitive, also if resorting to massively parallel simulation, which may
reduce the exponent by a small constant at most. A possible way out of this might lie in the use
of rare event simulation techniques to speed up simulation [40].

The behaviour of KiBaM with capacity limits can be expressed as a relatively simple hybrid
automaton model [21]. Similarly, the random KiBaM with capacity limits can be regarded as an
instance of a stochastic hybrid system (SHS) [1, 3, 4, 8, 12, 37]. This observation opens some
further evaluation avenues, since there are multiple tools available publicly for checking reachability
properties of SHS. In particular, Faust2 [36], SiSat [17] and ProHVer [43, 16] appear adequate
at first sight. However the random KiBaM system cannot be evaluated with Faust2, basically due
to a model mismatch: The tool thus far assumes stochasticity in all dimensions, because it operates
on stochastic kernels, while our model is non-stochastic in the bound charge dimension. The
existing general theory about computing reach-avoid probabilities of so called partially degenerate
stochastic processes [35] is not yet built into Faust2. The guarantees provided using these methods
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are computed a priori on the basis of Lipschitz constants and do not scale well to the small absolute
errors and large time horizons that are required for the satellite model. In our approach they are
computed a posteriori (as the difference between under- and over-approximation). SiSat provides
principal support for encoding all model aspects needed, yet the time horizon and precision needed
seem unsurmountable [15]. Our ProHVer experiments failed for a similar reason, namely the
sheer size of the problem. An extension of the stochastic network calculus to deal with energy [41]
can in principle be employed to calculate depletion risks, by modelling the cumulative energy
supply and energy demand as the arrival and service process of a queue, so as to capture the
Fraction of Time Energy Not-Served (FTNS). Different from ours, that work assumes a linear
battery behaviour and discretised time. Using a linear battery model causes underestimation of
the depletion risk, as discussed in Section 8. All the above tools have not been optimized for
dealing with very low probabilities as they appear in high dependability scenarios like the satellite
case. The orders of magnitude difference between the smallest time step (5 minutes) and the time
horizon (1 year) appear as another serious obstacle, but not for our approach.

10 Conclusion

Inspired by the needs of an earth-orbiting satellite mission, we extended in this paper the theory
of kinetic battery models in two independent dimensions. First, we addressed battery charging
up to full capacity. Second, we extended the theory of the KiBaM differential equations to a
stochastic setting. We provided a symbolic solution for random initial SoC and a sequence of
piecewise-constant random loads.

These sequences can be generated by a stochastic process representing an abstract and averaged
behavioural model of a nano satellite operating in earth orbit, superposed with a deterministic
representation of the solar infeed in orbit. We illustrated the approach by several experiments
performed on the model, especially varying the size of the battery, but also the number of solar
panels.

ESA is running a large educational program [2] for launching missions akin to GomX–1. The
satellites are designed by student teams, have the form of standardized 1 unit cube with maximum
mass of 1 kg, and target mission times of up to four years. The random KiBaM presented here is
of obvious high relevance for any participating team. It can help quantify the risk of premature
depletion for the various battery dimensions at hand, and thereby enable an optimal use of the
available weight and space budget. Our experiments show that using the simpler linear battery
model instead is far too optimistic in this respect.

For a fixed setup, one can also use the technology offered by us for optimal task scheduling:
In the same way as we can follow a single SoC distribution, we can also branch into several
distributions and determine which of them is best according to some metric. Taking inspiration
from [42], this can be combined with statistical model checking so as to find the optimal task
schedule of a given set of tasks.

Several extensions can and should be integrated in the model. Among them, temperature
dependencies are of particular interest. A temperature change has namely opposing physical effects
in solar panels and in the battery, having intriguing consequences such as piecewise exponential
decay in the charging process. An extension that is particularly important for long lasting missions,
is incorporating a model of battery wearout. So far we assume the battery capacity to be constant
along the mission time. Notably, our contribution is the first to consider capacity limits in
operation at all, as far as we are aware. As of now, our battery model is itself considered lossless,
while in reality one never gets out as much energy as one has put in before. We are so far putting
this phenomenon as a burden on the modeller side, namely to scale down the real charging current
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to an effective charging current, that factors in the loss only while charging the battery. We are
looking into ways to instead make these losses a genuine part of the KiBaM model.
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