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Abstract
As data centers attempt to cope with the expo-
nential growth of data, new techniques for intel-
ligent, software-defined data centers (SDDC) are
being developed to confront the scale and pace
of changing resources and requirements. For cost-
constrained environments, like those increasingly
present in scientific research labs, SDDCs also may
provide better reliability and performability with
no additional hardware through the use of dynamic
syndrome allocation. To do so, the middleware
layers of SDDCs must be able to calculate and
account for complex dependence relationships to
determine an optimal data layout. This challenge

is exacerbated by the growth of constraints on the
dependence problem when available resources are
both large (due to a higher number of syndromes
that can be stored) and small (due to the lack
of available space for syndrome allocation). We
present a quantitative method for characterizing
these challenges using an analysis of attack domains
for high-dimension variants of the n-queens prob-
lem that enables performable solutions via the SMT
solver Z3. We demonstrate correctness of our tech-
nique, and provide experimental evidence of its
efficacy; our implementation is publicly available.
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1 Notation

R number of ranks (rows) of a Latin squares n-queens board; number of RAID
groups in storage system under test

F number of files (columns) of a Latin squares n-queens board; number of storage
disks per RAID group
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L number of levels (height) of a Latin squares n-queens board; L = R · F with
level li representing the problem associated with disk r ·R+ f , or (r, f)

xl,r,f ∈ X index of a variable at level l, rank r, and file f of a Latin squares n-queens
board X

X a board; a set of L · R · F variables each representing a the state of a single
square, each with a single variable label

XC ⊂ X a set of variables labeling column C where r = a, and f = b, for some a ∈ R
and some b ∈ F

Q = {∆,Λ,Γ} a finite set of symbols representing queens of three types
∆ degenerate queens
Λ linear queens
Γ indirect queens
N number of indirect queens on a board
A a finite set of symbols representing squares under attack by each type of queen
ε designator for an empty square

V = Q ∪A ∪ ε set of variables that label squares
Sl,r,f attack set (set of squares a queen attacks) such that ∀si ∈ Sl,r,f , si = λ iff

xl,r,f = Λ, and si = γ iff xl,r,f = Γ
Dl,r,f = Sl,r,f ∪ xl,r,f attack domain of a queen; set of squares a queen attacks or occupies

rsi rank of square si
fsi file of square si
φ a disk file

Bφ = {bφ0 , bφ1 , . . .} set of (typically fixed-size) blocks of file φ
R binary dependence relationship

R(φ) dependence relation between blocks that are part of the same file such that for
some bi, bj , biR(φ)bj if there exists some φ composed of Bφ where bi ∈ Bφ and
bj ∈ Bφ

σ a reliability syndrome
R(σ) reliability syndrome dependence; there exists some σ such that σ = bi⊕ bj ⊕ . . .

then biR(σ)bj
P set of R · F constants in the population constraint board designating available

free-space per physical disk such that ∀pr,f ∈ P, pr,f ∈ N
pr,f ∈ N the population limit of column with rank r and file f

W (constant) protection requirement for each level

2 Introduction

One of the largest challenges facing the storage industry is the continued exponential growth
of Big Data. The growth of data in the modern world is exceeding the ability of designers and
researchers to build appropriate platforms [33, 12] but presents a special challenge to scientific
labs and non-profit organizations whose budgets have not grown (and often have been cut) as
their data needs steeply rise. The NASA Center for Climate Simulation revealed that while their
computing needs had increased 300 fold in the last ten years, storage needs had increased 2,000
fold, and called storage infrastructure one of the largest challenges facing climate scientists [10].
This trend has been driving reliance on commercial off the shelf (COTS) solutions to drive down
the cost of data ownership. Despite its importance, the goal of affordable data curation comes at
a cost in terms of reliability, creating a difficult-to-solve system-design-constraints problem.

To cope with the increase in cost, deduplication techniques are commonly used in many storage
systems. Deduplication is a storage efficiency improvement technique that removes the duplicate
substrings in a storage system and replaces them with references to the single location storing the
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duplicate data. While this achieves a higher storage efficiency in terms of reducing the cost of
ownership of a system, it can negatively impact the reliability of the underlying storage system
since loss of a block with a high number of references means a critical number of files being lost
unrecoverably [30].

Data reliability was previously improved using enterprise-class storage devices that typically
suffer faults as much as two orders of magnitude less often than COTS storage devices. In the
face of the exponential growth of the digital universe [36] the cost of this solution has become
prohibitively expensive, inspiring a switch to near-line components, thus lessening storage reliability
guarantees. While reliability could be improved through the addition of new hardware, today the
scale of growth of inexpensive storage is being exceeded by the growth of Big Data.

In most storage systems reliability improvements are achieved through the allocation of
additional disks in Redundant Arrays of Independent Disks (RAID) [25]. RAID arrays achieve
reliability through the allocation of coding syndromes [26] that create dependence relationships in
the storage system to allow recovery of files after failures. While RAID systems are incredibly
effective at the task of improving reliability, they add to the cost of the storage systems in which
they are deployed.

Methods used to increase reliability also increase the cost of maintaining the storage system,
and the same is true for the methods that reduce the cost; they also reduce reliability. In order to
meet these cost and reliability constraints, and find a way to break the proportional relationship
in between, previously we conducted a study where we have documented that systems are often
over-provisioned, and this over-provisioning level is highly predictable using intelligent systems
algorithms [31]. Using these models, we proposed that dynamically allocated reliability syndromes
could be created and stored in this excess capacity to improve reliability without the addition of
new hardware [3]. Based on this result, it is now possible to modify traditional RAID schemes to
dynamically allocate new syndromes for reliability in over-provisioned space through the risk-averse
prediction of available storage over the next epoch of operation of a storage system. Furthermore
this can be done while maintaining quality of service (QoS) and availability of the storage system,
while simultaneously providing maximum additional reliability. The only assumption is that the
additional syndromes can be placed in a way that respects data dependence constraints. The
ability to predict the expected level of over-provisioning allows us to create software-defined data
centers that can allocate virtual disks made up of free space compiled from across the data center
to hold additional reliability syndromes. An unsolved challenge that stands in the way of this
technique, however, is the development of algorithms that account for complex data dependencies
such as existing reliability syndromes and deduplication, providing a strategy for syndrome storage
and new RAID relationships in a performable way that maximizes the additional number of
reliability syndromes that can be allocated without violating the dependence constraints on those
syndromes.

2.1 n-Queens
In order to solve these dependence constraints, we cast our problem into a unique variant of
the n-queens problem. We chose n-queens for several reasons. First and foremost, when fully
constructed, our board resembles the classic 3-dimensional Latin board configuration [21, 16],
and we recognized that the independence requirements for new reliability syndromes could be
represented as a metaphor of the squares in this Latin board that represent legal captures. To
place another syndrome into such a square would violate independence, and as n-queens concerns
itself with a placement of new queens (syndromes) on a board (disk array) such that none attack
each other (independence is preserved) the formulation seemed a natural choice. We map a RAID
array into a mathematical representation of a chess board with a set number of ranks (defining the
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y-axis) and files (defining the x-axis). We propose a quantitative solution for virtual disk allocation
in software-defined data centers, respecting all dependence constraints within the data center, or,
when no such configuration exists, identifying the unsatisfiability of the problem. This method
allows us to take advantage of the over-provisioned space without constraining our problem to
traditional RAID geometries. We propose solving this problem quantitatively by mapping it to
an innovative variation of the n-queens problem that utilizes a 3D Latin board configuration
[21, 16], nontraditional queen types and attack domains, and population limits on the number
of indirect queens placed within certain bounds. While this formulation differs from traditional
n-queens in several ways, we make the argument that it is a difference in degree, and not in kind.
Utilizing n-queens lets us not only utilize common and well-explored metaphors, but it also allows
us to leverage generalized solvers and packages built for n-queens, and allows others to modify
our solution to fit their needs should other attack patterns be required to represent dependence
relations we do not concern ourselves with, such as meta-data relationships. By formulating our
problem as a variant of n-queens our solver can be used in other domains, or by other variants of
the disk layout problem we are solving simply by modification of the attack domains exhibited by
the queens in our problem.

The challenge of defining dynamic syndromes is inherently characterized by a well-defined set of
constraints: total number of disks, current disk utilization, distribution of unutilized space, existing
dependence relationships due to RAID reliability syndromes, and deduplication relationships. By
creating a mapping to n-queens under these constraints, we can intuitively represent the problem
in a way that facilitates validation and harness the power of the Satisfiability Modulo Theories
(SMT) solver Z3 to return a constraint-satisfying solution, or determine that a solution cannot
exist. Z3 [8] is a very efficient and freely-available solver for SMT, which is a decision problem
for logical first-order formulas with respect to combinations of background theories including
the uninterpreted functions integral to our solution. The n-queens problem is a classic way to
represent such a constraint satisfaction problem [22, 32] and a common benchmark for such a
solver [17]. Classification as a constraint satisfaction problem that can be solved by Z3 has proven
to be successful in other design domains, such as automating design of encryption and signature
schemes [1].

2.2 Previous Work

In our previous work [4] we formulated a variant of the n-queens problem using a basic set of
constraints, and showed informally and empirically that our method could sometimes generate
satisfying solutions. We empirically characterized the difficulty of finding a solution in terms of the
number of queens, and the population coverage ratio. We also demonstrated that deduplication
has the general effect of making the problem less likely to be satisfiable. We extended this work
in [28] by formally casting our constraints into subsets requiring global and local scoping with
respect to changing level protection requirements. This, in essence, gave us the ability to utilize
partial solutions to the global constraints problem to reduce the total time necessary to evaluate
cascading solutions to progressively harder variants of a given problem. Since finding a satisfying
disk layout for some level of protection W may not be possible, but one for W − i for some i may
exist, this allowed us to adopt a solution method of solving easier variants, and using them to
speed up the solution of progressively better-protected systems within a finite time bound. We
additionally showed, empirically, that when we examine large samples of random disk layouts, that
satisfiability of the problem is probabilistic, and has a regular structure examined as a function of
available disk space, and the entropy of that space.
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2.3 Application to Embedded Systems
A particular challenge for the realm of embedded systems is the performance requirement induced
by the fact that embedded systems are often subject to both real-time constraints, and additionally
that they lack considerable processing power. One of the primary targets of our technologies are
for systems for which extremely high reliability, beyond that demanded by consumer systems, is
required. These systems are often difficult, if not impossible, to repair and include embedded
storage systems for satellites, remote probes and rovers used by NASA, and planned spacecraft
(both manned and unmanned) for long mission profiles like the Autonomy Architecture Habitat.
In addition, it would be advantageous for our technology to run on small embedded systems,
even when part of a larger more capable storage system, so that it can be implemented as a
plug-and-play technology that sits between user- and system-level requests, and the storage
architecture translating file requests, when needed to account for additional reads and/or writes
to enable the higher level of reliability transparently.

Given these goals, one of the primary focuses of this paper is the derivation of a system that is
not only correct, but that can be employed with acceptable overhead, and cascading solutions
allowing for real-time constraints to be accounted for. The ideal system would be one in which
successively harder problems are solved one after another (or in parallel if possible) until the
deadline is reached. At that point the best solution computed to date is used for system layout.
We present such a system here.

2.4 Novel Contributions
Our contributions in this paper include a new quantitative solution for the problem of dynamic
allocation of new reliability syndromes while respecting dependence constraints to improve the
reliability of software-defined data centers without the addition of new hardware. We extend
our previous work by giving a formal definition of our problem with accompanying proofs of
correctness for a mapping of this problem to a variation of the classic n-queens problem, thus
enabling efficient analysis via powerful SMT solvers like Z3. We provide an implementation in Z3
for python and include a case study demonstrating the effectiveness of our technique. This new
solution will serve as the core for a dynamic allocation system to be used in software-defined data
centers that will be deployed at the laboratories of partner organizations.

This paper is organized as follows: Section 3 provides background on dependence relationships
in storage systems, and related work in novel RAID geometries. Section 4 introduces an encoding
for this problem in a variant of n-queens, mapping the problem of data layout strategies that
respect all data dependence constraints while maximizing additional syndrome coverage for any
given dataset, to the problem of placing novel queen types on a Latin chess board. We formalize
these definitions and the resulting constraints in Section 5, and give formal mappings to Z3 for
implementation in Section 6. We provide experimental results demonstrating the efficacy and
efficiency of our approach in Section 7. Finally, Section 8 concludes and points to future work.

3 Characterizing File System Dependence

As we have shown in our previous work [31, 3], it is possible to predict the future storage resource
needs of the users in a system. In recent work [3], we have modeled user behaviors using the
training data we obtained from a real system to create and train Markov models, and predicted
the future disk usage needs of the users in an on-line fashion, and compared the results with
the test data we also obtained from the same system to measure the prediction performance.
We have observed that with a good clustering method and fine parameter tuning, it is possible

LITES
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{
(a) Example of a virtual disk being constructed out
of overprovisioned space.

(b) Example of independent syndrome calculation
as the XOR parity of diagonals.

Figure 1 Example allocations of virtual disks from over-provisioned space.

Table 2 Annual rates of block loss (ABL) per system type with varying numbers of additional syndromes
(nsynd) allocated.

RAID5 configuration ABL (no syndromes) ABL (nsynd = 2) ABL (nsynd = 3)
5+1 1.79x105 1.31x10−7 1.92x10−15

8+1 4.60x105 1.02x10−6 5.06x10−14

10+1 8.06x105 2.76x10−6 1.79x10−13

to predict user behaviors and resource requirements. We have used this method for predicting
over-provisioning, and allowing for dynamic improvement of reliability through the allocation of
additional syndromes by creating new virtual disks using any over-provisioned storage that are
found to be independent of the current RAID grouping as shown in Figure 1a. Our experiments on
real storage system data have shown that even when being incredibly risk adverse, we can allocate
between three and four additional syndromes more than 50% of the time, and on average allocate
two additional syndromes for all of the data, and three additional syndromes for more than 90% of
the data, dramatically improving the reliability of the system [3]. We analyzed these improvements
on systems with one petabyte of primary storage with initial RAID5 configurations of 5+1, 8+1,
and 10+1 over which we introduce two and three additional syndromes after predictions. Changes
in reliability are measured using the rate of annual block loss (ABL), when taking into account
whole disk failures and latent sector errors. Table 2 illustrates the calculated ABLs for three
RAID5-configured primary storage systems, each provisioned for a maximum capacity of one
petabyte. The steep increase in the reliability represented by decreases in ABL rates as the number
of allocated syndromes increases shows the promise of such predictive analysis and dynamic
allocation.

3.1 Reliability Syndromes
The typical way of addressing reliability concerns in large-scale storage systems has been through
the generation of syndromes that can be used to detect faults, prevent those faults from manifesting
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as failures, and repair those failures when new resources are available. The most basic type of
syndrome that can be allocated is that of XOR parity [6]. Consider a set of disks that contain
an array of blocks, the atomic unit of reading and writing in a file system. We can treat each of
these blocks as a vector of bytes and generate a syndrome by performing some calculation on each
byte in the vector. In order to tolerate the loss of a single disk in some set of n disks we need
to compute a syndrome P , which allows for the recovery of any lost block. One of the simplest
methods for doing so is XOR parity:

P = D0 ⊕D1 ⊕D2 ⊕ . . .⊕Dn−1 .

We can then write P to a new disk, independent from those containing blocks used in its
computation, creating an array of n + 1 disks. The loss of any one disk, including the one
containing P , will not result in the loss of data. If some disk Dj fails and cannot be read or
written normally, we can perform equivalent operations on the remaining disks to account for this
degraded state. A read to Dj can be performed by reading the working n− 1 disks and the disk
containing P and generating Dj from the result as

Dj = D0 ⊕D1 ⊕D2 ⊕ . . .⊕Dj−1 ⊕Dj+1 ⊕ . . .⊕Dn−1 ⊕ P

(where 2 < j < n− 1 for this example, but without loss of generality for other cases). When new
hardware is acquired (or allocated from hot spares available in the storage system), the entire
disk containing all blocks associated with the failed disk that contained Dj can be recovered in a
similar manner.

In order to tolerate the loss of any two disks two independent syndromes must be calculated,
here referred to as P and Q. Without providing additional disks, in order to construct a new
independent syndrome we utilize the algebra of a Galois field GF(28) [2]. The representation of
this algebra is cyclic utilizing group or ring theory. We utilize elements g called generators of
the Galois field such that gn doesn’t repeat until it has exhausted all elements of the field except
{00}, where any numeral in {} is a hexadecimally-represented Galois field element. We defer a full
discussion of Galois field algebra to the literature [14]. For n disks where n ≤ 255 we compute:

P = D0 ⊕D1 ⊕D2 ⊕ . . .⊕Dn−1 , (1)
Q = g0 ·D0 ⊕ g1 ·D1 ⊕ g2 ·D2 ⊕ . . .⊕ gn−1 ·Dn−1 . (2)

The loss of a single data drive can be recovered using the normal XOR parity method described
previously. The loss of P or Q can be recovered simply by recomputing using the above formulas.
The loss of any single data drive, and the loss of Q can be recovered by first recovering the data
drive using XOR parity, and then recomputing Q. Recovering P , or the loss of two data drives is
somewhat more involved, and the discussion of the method is left to the literature [2].

3.2 Allocation of New Syndromes
Allocation of new syndromes in order to increase the reliability through the deployment of RAID5
XOR parity syndromes [25] or RAID6 Galois-field based syndromes [2, 7] becomes somewhat
trickier due to the requirement of independence. Additional syndromes can, in theory, be allocated
using techniques such as erasure coding, which would generate still new independent syndromes.
These methods, however, generally have a severe impact on performance, and as a result, lower
the QoS of the system [20]. As such, we focus on alternative RAID geometries to make use of
additional XOR parity and Galois-field based syndromes. To do so we must overcome the problem
of our requirement of independence.

LITES
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In this paper, we propose an efficient method for allocation of additional syndromes. Additional
coverage can be provided using non-traditional RAID geometries as shown in Figure 1b. While
the idea of using non-traditional RAID geometries itself is not new, and has been explored in
previous studies [34, 24, 23], prior work in this field has always maintained the assumption that the
layout of the RAID arrays is pre-defined. Instead, we propose the creation of dynamic per-stripe
geometries using over-provisioned space in an existing data center.

When creating non-traditional RAID geometries, care must be taken to respect data dependence
relationships [29] to ensure that the new RAID strategy improves reliability. We consider two
types of data dependence relationships, one resulting from pre-existing RAID groups, and the
other from data deduplication [30].

A typical method for reliability syndrome generation is XOR parity. In a situation such as
that shown in Fig. 1a, data may be made more reliable by creating a new dependence between
currently independent data. So given blocks a, b, c, and d stored on separate physical hardware, a
new block z = a⊕ b⊕ c⊕ d can ensure that if any block is lost, for example c, it can be easily
recreated as c = a⊕ b⊕d⊕z, adding to the reliability of the underlying file system [25]. Reliability
can be further extended through the use of Galois fields [6], and in theory with erasure codes [9],
however codes patent encumbrance has effectively removed performable erasure code algorithms
from use [13]. In practice this means for any set of initially dependent data, reliability can be
increased (given sufficient space) via creation of two independent syndromes.

Additional reliability syndromes can be allocated using additional blocks not already linked
through a syndrome-related dependence, such as a, f, k, and p in Fig. 1. The difficulty inherent in
allocating these new syndromes is ensuring independent sets of blocks can be identified, along
with independent free space in the storage system. As the storage system becomes fuller over time,
the difficulty of this problem increases exponentially, necessitating efficient solution techniques.

We consider three types of data dependence relationships in our analysis. The first are file
dependence relationships. We consider data in our file systems to be divided into blocks (typically
of fixed size) with each file φ being composed of a set of blocks Bφ = {bφ0 , bφ1 , . . .}. Blocks that
are part of the same file have a file dependence relation represented by R(φ) such that for some
bi, bj , biR(φ)bj if there exists some φ composed of Bφ where bi ∈ Bφ and bj ∈ Bφ. Secondly, we
consider reliability dependence. Such a dependence, represented by R(s), exists between blocks
bi, bj if both bi and bj participate in reliability syndrome s. Thus if there exists some s such that
s = bi ⊕ bj ⊕ . . . then biR(s)bj . Lastly, we consider deduplication dependence relationships. These
relationships are much like those found in file dependence relationships, and can be defined in
the same way, differing only in that for a deduplicated block bi, it can participate with multiple
files in dependence relationships, so bi ∈ Bk does not preclude that some Bl also exists such
that bi ∈ Bl, l 6= k. For convenience, we will also use the notation R without a subscript to
indicate the presence of any dependence relationship, regardless of the type. These relationships
become important when defining a new syndrome s′ to protect some block bp. When defining
s′ as a set of blocks S′ = {bp, b0, b1, . . .} such that s′ = bp ⊕ b0 ⊕ b1 ⊕ . . . it is important to pick
blocks such that for bi ∈ S′ \ bp, biRbp is false; otherwise the new syndrome will not provide the
expected improvements to reliability as independence is a fundamental assumption for syndrome
construction.

4 n-Queens with Dynamic Domains of Attack

In order to solve our problem and find a data layout that allows us to build virtual disks that are
independent of the data they are protecting, we provide a mapping of our problem into a variant
on the classical n-queens [35] constraint satisfaction problem with few alterations.
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File

Rank

Level

Column

Figure 2 Example Space with dimensions 3x8x8.

First, we adopt a Latin board, allowing us to examine our problem in a three-dimensional
space [21, 16]. We define this space according to three axes, the level, rank, and file, as shown in
Figure 2. We further define a column on this Latin board as the set of squares defined by a fixed
rank and file across all levels of the board. Each column in our Latin board corresponds to a disk
within our data center, with each rank consisting of a traditional RAID group. Levels represent
independent sub-problems solving for data independence for each disk in turn. Thus, in practice,
given a problem with R ranks and F files, we construct our board with L = R · F levels.

We represent the state of dependence relationships in a file system by placing queens on our
boards, using their attack domains to represent file dependence relationships. For any level l on
our board, this level is used to solve a sub-problem for the lth disk in our data center (numbered in
rank-major order, such that if the disk is in rank r and file f , the level that solves its independence
constraints is l = r ∗ F + f). The full attack domain of all queens on level l represents those disks
on which the lth disk depends. We call this lth disk for level l the principle disk for that level. To
represent these dependence relationships, however, we specify the attack domain definitions for
each queen to match the dependence relationships we must represent. We introduce three new
queen types each with a unique attack domain.

Degenerate Queens – a degenerate queen is so-named because it attacks only a single square,
that which it is occupying. Degenerate queens are used to represent the disk being protected,
and disks containing deduplicated blocks upon which files on that disk depend. Degenerate
queens are used to exclude a square on a level from the solution space of new dynamic RAID
groupings. The attack domain of a degenerate queen is illustrated in Figure 3.
Linear Queens – a linear queen’s attack domain is defined to include both its own square and
F − 2 squares on the board extending in a line from the queen, potentially wrapping around
the board as if it were a toroidal-board as discussed originally in the class of modular n-queens
problems [11]. Linear queens can be used to represent existing RAID groups, or new dynamic
RAID groups with more traditional geometries. Two example attack domains for linear queens
are illustrated in Figure 4.1

1 While we allow linear queens to attack in any direction as a matter of completeness of our variant n-queens
definition, we note that our method only makes use of linear queens that attack along ranks towards squares
in higher-numbered files, wrapping toroidally.

LITES
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Figure 3 Example attack domain of a single degenerate queen.

Figure 4 Example attack domains of two linear queens.
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Figure 5 Example attack domain of a single indirect queen.

Indirect Queens – the final type of queen we introduce is an indirect queen, whose attack
domain consists of its own square, and F − 2 other squares on the board, each within a rank
unique to the queen’s attack domain. The attack domain of an indirect queen is illustrated
in Figure 5. An indirect queen can attack with almost any imaginable pattern, so long as it
attacks F − 2 squares and those squares are on unique ranks. This allows for the formulation
of arbitrary RAID geometries that still respect dependence relationships arising from standard
RAID protections. The indirect queen itself is used by our problem to represent the disk on
which a new syndrome will be stored, and the F − 2 squares in its attack domain represents
those other disks participating in the syndrome calculation.

In order to solve the problem of independent syndrome placement, and the creation of new dynamic
RAID groupings, we begin with a pre-defined board, based on the state of the data center, that
contains a number of degenerate and linear queens representing this system state, such as the
example shown in Figure 6a. We then proceed to place new indirect queens on the board with
each indirect queen representing the storage location of a new pair of XOR and Galois field parity
syndromes, and the attack domain of that queen representing the independent disks to use to
form a new dynamic RAID group associated with those syndromes.

5 Formal Problem Representation

In this section we provide a formal representation of our problem accompanied by some helpful
proofs, define our representation, and provide constraints for use in SMT solving that allow the
production of strategies for reliability improvement, if any such strategy exists. Our solution
is intuitive and easy to validate as the n-queens problem is a classic way to represent such a
constraint satisfaction problem [22, 32]; n-queens variations are common benchmarks for SMT
solvers [17], so it is easy to choose a good solver. We represent our problem in the domain of a Latin-

LITES
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Block to be protected

RAID Group {
Deduplicated Blocks

(a) Example of initial constraints when protecting
a block on disk 0 of RAID group 2 that has ref-
erences to deduplicated blocks on six other disks.
Degenerate queens are used to include the disks
containing the initial and deduplicated blocks in
the attack domain, and a linear queen is used to
include the RAID group in the attack domain

(b) An example solution with two additional syn-
dromes. Indirect queens occupy the spaces corres-
ponding to the disks where the new syndromes will
be stored; their attack domains include all disks
protected by the new syndrome.

Figure 6 Representation of a single level of an 8x8x64 board.

squares [21, 16] variant of the n-queens problem, using multiple levels of the Latin-squaresboard
to represent separate, yet dependent, subproblems, using novel variant queen types with unique
attack domains, and population constraints. In our representation, the board represents the
physical disk media with each column in the Latin-squares board representing a separate physical
disk.

I Definition 1 (Square). A square represents a discrete part of the n-queens problem that has a
state that can either represent its occupancy by a queen (including the type of the queen), that it
is part of the attack domain of a queen (i.e., some queen could capture a piece were it on that
square), or that it is empty. This state is encoded for any given square as a variable drawn from a
finite set V = Q ∪A ∪ {ε} where Q is a finite set of symbols representing queens of three types, A
is a finite set of symbols representing squares under attack by each type of queen, and ε is an
empty square.

We allow each square to contain only one queen, or be part of an attack domain as part of the
implicit requirement of n-queens where a valid placement results in no queen attacking another.

I Definition 2 (Board). For ease of representation, we utilize a three-dimensional matrix: a
Latin-squares variant of n-queens with the dimensions L levels, R ranks, and F files, as shown in
Fig. 2. A board is a set of L · R · F variables indexed xl,r,f ∈ X. Each variable represents the
state of a square and has an assignment from a finite set V = Q∪A∪{ε} that represents its state,
where Q is a finite set of symbols representing queens of three types, A is a finite set of symbols
representing squares under attack by each type of queen, and ε is an empty square.
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We use the term column to indicate a set of variables XC ⊂ X where r = a, and f = b, for
some a ∈ R and some b ∈ F .

Given an array of R · F disks arranged into traditional RAID groupings of F disks per group,
each level of the board represents a separate constraint satisfaction problem for a separate set of
data associated with a given physical disk. Specifically, L = R · F with level li representing the
problem associated with disk r · R + f , or (r, f). For each set of data on a given physical disk
we construct the initial data dependencies by assigning queens and their attack domains to the
variables representing a given level.

Queens, and the squares they attack, are used to represent dependence relationships between
data on the physical disks represented by the board. We characterize the squares that a queen is
said to attack as the attack domain of the queen, and the combination of squares that a queen
occupies and attacks as the attack set.

I Definition 3 (Queen). A queen is a symbol from the set Q = {∆,Λ,Γ}, that can be assigned to
any free variable. The three queen symbols differ in their allowed attack domains and are called
degenerate queens (∆), linear queens (Λ), and indirect queens (Γ).

Initial conditions for our data dependence constraints are constructed using two special types
of queens, degenerate queens and linear queens that differ from the standard queens of the classical
problem in terms of their attack domains.

I Definition 4 (Attack Domain). The attack domain of a queen at position xl,r,f is defined by its
position, and a set of additional squares called it’s attack set given by the set Sl,r,f . This attack
domain, Dl,r,f = Sl,r,f ∪ {xl,r,f}, represents every square a queen attacks or occupies.

I Definition 5 (Attack Set). An attack set is a set of variables Sl,r,f assigned labels from the
set {λ, γ} to designate they are attacked by a queen such that ∀si ∈ Sl,r,f , si = λ iff xl,r,f = Λ,
and si = γ iff xl,r,f = Γ. Note that there is no attack set associated with a degenerate queen
(xl,r,f = ∆) because the attack domain of a degenerate queen contains only the square containing
the degenerate queen itself.

I Definition 6 (Degenerate Queen). A degenerate queen is represented by ∆ and has no corres-
ponding attack symbol in A. This is because the attack domain of a degenerate queen contains
only the square containing the degenerate queen itself, i.e. Dl,r,f = ∅ ∪ {xl,r,f}.

I Definition 7 (Linear Queen). A linear queen is represented by Λ and has the corresponding
attack symbol λ. The size2 of a linear queen’s attack set is always equal to N − 2 and must satisfy
Constraint 1.

I Constraint 1 (Linear Queen Attack Set). The attack set of a linear queen assigned to variable
xl,r,f must be such that the size3 of a linear queen’s attack set is always equal to F − 2 and either
Constraint 1.1, 1.2, or 1.3 is satisfied. All elements of a linear queen’s attack set must reside on
the same level.

I Constraint 1.1 (Constant File). The attack set S of a linear queen at xl,r,f satisfies the Constant
File constraint iff ∀si ∈ S the file of si is equal to f .

2 We assume that any additional protection provided uses precisely the same RAID configuration as disks in
default RAID groupings. This is assumed both for simplicity and performance reasons, but can be relaxed
without loss of generality.

3 Both for simplicity and performance reasons, we assume that any additional protection provided uses the
same RAID configuration as the default RAID groupings. This assumption can be relaxed without loss of
generality.
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I Constraint 1.2 (Constant Rank). The attack set S of a linear queen at xl,r,f satisfies the
Constant Rank constraint iff ∀si ∈ S the rank of si is equal to r.

I Constraint 1.3 (Unique Rank and File). The attack set S of a linear queen at xl,r,f satisfies
the Unique Rank and File constraint iff ∀si, sj ∈ S the file of si(fsi

) and sj(fsj
) are such that

fsi
6= f, fsj

6= f, and fsi
6= fsj

, and the rank of si(rsi
) and sj(rsj

) are such that rsi
6= r, rsj

6= r,

rsi
6= rsj

, and si 6= sj .

I Definition 8 (Initial Board). An initial board is a set of initial conditions for a file system coded
as a set of fixed values for a subset of X. These values represent the initial system and consist of
a placement of degenerate queens from Definition 6 and linear queens from Definition 7.

We then try and find a solution that satisfies all of our constraints, and that allows us to place
W or more indirect queens on our board, where each indirect queen represents a new syndrome to
be allocated for reliability, and its attack domain represents the new data dependencies associated
with that syndrome.

I Definition 9 (Indirect Queen). An indirect queen is represented by Γ and has the corresponding
attack symbol γ. The size4 of an indirect queen’s attack set is always equal to F − 2 and must
satisfy Constraint 2.

I Constraint 2 (Indirect Queen Attack Set). The attack set S of an indirect queen assigned to
variable xl,r,f must be such that ∀si, sj ∈ S the rank of si(rsi

) and sj(rsj
) are such that rsi

6= r,
rsj 6= r, rsi 6= rsj , and si 6= sj . All elements of an indirect queen’s attack set must reside on the
same level.

Each indirect queen is able to provide both XOR parity, and Galois field parity for its attack
domain, provided the disk has available space. This space constraint holds for an entire column
as well, as each column represents a single physical disk. This necessitates the representation of
column-wise population constraints in the form of a population constraint board.

I Definition 10 (Population Constraint Board). In addition to the defined set of L ·R ·F variables
that make up the board, we add a set P of R · F such that ∀pr,f ∈ P, pr,f ∈ N. We call this set of
constants the population constraint board.

The population constraint board tracks the available free-space per physical device, and
constrains the total placement of indirect queens within a column.

I Constraint 3 (Column Indirect Queen Population Limit). Each column may be assigned a
population limit pr,f ∈ N. The total number of all indirect queens within that column must not
exceed this limit. We generate R · F new constraints for each combination of unique r and f such
that r ∈ [0, R− 1] and f ∈ [0, F − 1] ∑

l∈[0,(R·F )−1]

(xl,r,f = Γ)

 ≤ pr,f .
We further constrain our problem from the traditional variants of n-queens by requiring not

only that no queen placed on the board attack another queen, but also by requiring that no two

4 Both for simplicity and performance reasons, we assume that any additional protection provided uses the
same RAID configuration as the default RAID groupings. This assumption can be relaxed without loss of
generality.
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queens attack the same square. This requirement that attack domains not intersect is necessary to
ensure the independence of calculated syndromes. Recall that each level of our board represents
the protection problem for a given block. Informally, if two queens were both to attack the same
square, it would mean the syndromes they represent are both calculated from a block on the
same disk. Those two syndromes would then no longer be independent, as if the disk failed from
that they were both calculated, they would suffer a correlated failure. We represent this with
Constraint 4.

I Constraint 4 (Non-intersection of Attack Domains). In addition to the constraint that no queen
falls within the attack domain of another queen, we further constrain the problem by specifying
that no attack domain may intersect the attack domain of another queen.

We add a level protection requirement as a constraint to specify that all disks are protected by
at least P additional syndromes per block on the disk that contains data.

I Constraint 5 (Level Protection Requirement). For a given level l, the sum of the number of all
indirect queens on that level must be greater than or equal to the protection requirement W . We
generate L new constraints for each l ∈ [0, (F ∗R)− 1] of the form∑

r∈[0,R−1],f∈[0,F−1]

(xl,r,f = Γ) ≥W .

This protection requirement W is level-independent and applies to all levels of a board, i.e. all
blocks are required to have the same number of additional syndromes allocated.5

I Definition 11 (Satisfying Assignment of Variables in X). We define a satisfying assignment to
be an assignment of each variable in X to exactly one value from V = Q ∪A ∪ ε such that this
assignment satisfies Constraints 1, 2, 3, 4, and 5.

I Theorem 12. Constraint 4 holds for any solution: the attack domains of any two queens never
intersect.

Proof. The proof follows from our construction and problem representation. From Definition 2,
a board is defined by a set of variables, X, where each variable has a single assignment from
V = Q ∪A ∪ {ε}, the set of variable assignments representing queens, attack domains, or empty
squares not under attack. From Definition 11, all variables must have exactly one assignment from
V , thus two queens of different types may not both attack the same square as doing so would
require that variable to have a non-unique assignment and instead take on the value of the tuple,
{λ, γ}. Thus the only case where the attack domains of two queens might overlap is when those
queens are of the same type. From Definitions 6, 7, and 9 and Constraints 1 and 2 we know that
a valid assignment for a board must contain F − 2 squares in the attack set of any queen (except
a degenerate one) [4]. So if there are N non-degenerate queens of a given type on a board there
must be N(F − 2) squares assigned to their attack domains. If two queens of the same type had
overlapping attack domains, fewer than N(F −2) squares would be assigned to the attack domains
of those queens, violating Definitions 7 and 9, as well as violating Constraints 1 and 2. J

I Theorem 13. The set of Constraints 1, 2, 3, 4, and 5 are both necessary and sufficient to ensure
that any satisfying assignment to X represents a potential layout for a set of new independent
reliability syndromes. If no such satisfying assignment is found, no such layout exists.

5 This level-independence can be relaxes, but is not recommended as it opens the question of block importance,
for which there currently exists no domain-inspecific metric, and no metric at all for some domains.
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Proof. For a satisfying assignment to represent a data layout that improves the reliability of the
underlying data storage system it must provide:
Condition 1. A new, and empty, block that may be used to store the new independent reliability

syndromes.
Condition 2. A set of blocks that can be used to calculate the new independent reliability

syndromes.
Condition 3. W such sets per block to establish the required additional level of protection.

Constraint 3 is sufficient for Condition 1, as each indirect queen itself represents the storage
location of a new syndrome and the population board is created by identifying empty blocks in the
storage system by Definition 10. Constraint 5 is sufficient for Condition 3, by definition. These
are both trivially sufficient for their respective conditions as well, by definition.

Condition 2, that of independence, relies on a given block being used once, and only once,
for each independent form of syndrome calculation. Thus the same block may be involved in
both a Galois field operation [2] and XOR parity calculation [6] but may not appear twice for
in the equation for a given block. Two types of parity calculations are relevant for our proof.
The first are those in the pre-existing storage system. The second are those needed for newly
computed syndromes. From Definition 8 we know that the initial board consists of all pre-existing
syndromes represented by linear queens from Definition 7. Constraint 1 requires that for a given
queen it’s attack domain must take on the form of a straight line having either constant rank
but independent file from Constraint 1.2, constant file but independent rank from Constraint 1.1,
or independent rank and independent file from Constraint 1.3 ensuring independence. Newly
computed syndromes are represented by indirect queens, given by Definition 9, placed by the
SMT solver. These indirect queens have their attack sets constrained by Constraint 2 that also
ensures independence. Taken together Constraints 1 and 2 ensure any syndrome computed or
pre-existing is independent of every other block in its computation. Constraint 4 ensures any
syndrome computed or pre-existing is independent of every other syndrome computation used for
the same block. Thus we prove overall sufficiency as Constraints 1, 2, 3, 4, and 5 are sufficient for
Conditions 1, 2, and 3.

If Constraint 3 is violated, not enough free space is available and Condition 1 does not hold. If
Constraints 1, 2, or 4 are violated, independence does not hold, and Condition 2 is violated. If
Constraint 5 is violated not all blocks are protected by the requisite number of syndromes, and
Condition 3 is violated. Thus Constraints 1, 2, 3, 4, and 5 are necessary. J

5.1 Improving Tractability Through Variable Domain Reduction
In order to improve tractability of our solution we attempt to reduce the possible solution space
by reducing the cardinality of the domain of variables in X given by V = Q∪A∪{ε}. We propose
that our problem representation can be simplified without loss of generality through the collapse
of the variable domain.

I Definition 14 (Variable Domain Collapse). We define our variable domain collapse as a process
by that our domain V is collapsed from V = {{∆,Λ,Γ} ∪ {λ, γ} ∪ ε} to V = {∆,Γ, γ, ε} via the
following reduction semantics:

x ∈ X|x = Λ → x = Γ (3)
x ∈ X|x = λ → x = γ (4)

I Theorem 15. Let X ′ be a satisfying assignment of X where each element x ∈ X is assigned
exactly one value from V = Q ∪A ∪ ε such that this assignment satisfies Constraints 1, 2, 3, 4,
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and 5. For each x in X such that x = Λ we assign x = Γ. For each x in X such that x = λ we
assign x = γ. The resulting new assignment X ′′ is one where each element x ∈ X is assigned
exactly one value from V = {∆,Γ, γ, ε} such that this assignment satisfies Constraints 1, 2, 3, 4,
and 5. Given that X ′ is a satisfying assignment, X ′′ is also a satsifying assignment.

Proof. Application of the reduction semantics given by Definition 14 results in treating as
equivalent the pairs of symbols (Λ,Γ) and (λ, γ). This has the potential to alter the correctness of
Theorem 12 that relies on Definition 11, to prove all variables must have exactly one assignment
from V to prove two queens of different types may not both attack the same square. If such were
the case Theorem 12 shows doing so would require that square to have a non-unique assignment
and instead take on the value of the tuple, {λ, γ}. Definition 14, however, no longer requires a
variable to take on a non-unique assignment, as λ and γ are now treated as equivalent. We can
prove the result is still correct by noting Constraints 1 and 2 both require attack sets of F − 2
squares for each unique queen. As such the attack domains of linear and indirect queens must
not intersect or either Constraint 1 or Constraint 2 would be violated resulting in a solution that
does not meet the requirements set out by Definition 11. Thus any solution that is satisfying
without Definition 14 is also satisfying under Definition 14 as any satisfying placement of a linear
queen is also a satisfying placement of an indirect queen. While the converse is not true, linear
queens are placed only as part of the initial board given by Definition 8. So long as this initial
placement satisfies 1 under the equivalence given by Definition 14, then any satisfying solution
under Definition 11 is still a satisfying assignment. J

I Definition 16 (Reduction relations on variable assignments). We define a reduction relation over
variable assignments.

xl,r,f → ∆ if xl,r,f ∈ A = {λ,∆,Λ} .

Definition 16 allows us to reduce the total set of possible values a variable can be assigned
by recognizing that the importance of linear and degenerate queens, and their attack domains,
can be reduced to a single value representing a square that a new indirect queen, or it’s attack
domain, cannot occupy due to Constraint 4

5.2 Computational Complexity
While the less restrictive attack domains of our three new queen types would seem to make the
problem less difficult than traditional n-queens, and more equivalent to the trivial n-Rooks problem
[5, 37], the population constraints board serves to complicate the problem of queen placement,
especially as the number of levels we must solve for grows polynomially. The population constraints
board has the effect of creating attack domains in the z-axis when enough queens are placed in a
column. Figure 7 shows the relative difficulty of solving this new variant n-queens problem vs.
traditional n-queens, and highlights the additional complexity despite the more easily satisfied
attack domains of our variant queens. While this graph suggests that scalability is an issue, we
will address scalability concerns in Section 7 through a proposed compositional approach.

6 Solving with Z3

In order to determine if a given data center state and desired protection level is satisfiable, we
utilized Z3 and encoded our problem in the form of variables and uninterpreted functions forming
an SMT problem.

We encode these constraints into Z3 using the assertions shown in Figure 8. Assertion 5
sets the domain of the variables representing the board and ensures satisfaction of Constraint 4.
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Figure 7 Comparison of solution times for Z3 given the placement of Y queens on a Y × Y traditional
n-queens board and a Y 2 × Y × Y variant n-queens board from our problem.

∀l ∈ L,∀r ∈ R,∀f ∈ F (xl,r,f ∈ {λ,∆,Λ, ε}) (5)
∀l ∈ L,∀r ∈ R,∀f ∈ F ((r = bl/F c)→ (xl,r,f = ∆)) (6)
∀l ∈ L,∀r ∈ R,∀f ∈ F ((∃b|bRl)→ (x[l, r, f ] = ∆)) (7)

∀r ∈ R,∀f ∈ F (pr,f ≥
∑
l

(xl,r,f = Γ)) (8)

∀l ∈ L(
∑
∀r,∀f

(xl,r,f = λ) ≥W · |F |) (9)

∀l ∈ L(
∑
∀r,∀f

(xl,r,f = Λ) ≥W ) (10)

Figure 8 Equations which characterize the n-queens constraints for our variant problem as Z3 assertions.

Assertion 6 removes the entire rank containing the block we are protecting on a given level from
the solution space of indirect queen placement due to preexisting dependence relationships, and
ensures that Constraint 1 is satisfied. Assertion 7 removes any disk containing a block deduplicated
with a block on the disk we are trying to protect due to a preexisting dependence relationship.
Population limits are maintained by assertion 8. Assertion 9 satisfies a weaker form of Constraint 2
when coupled with Constraint 3 as it allows for an indirect queen to potentially have a larger
than necessary attack set. Since this relaxation of Constraint 2 would result in a more reliable
system, we utilize it to make the problem easier for Z3. Finally Assertion 10 ensures satisfaction
of Constraint 5.

6.1 Cascading Solver
We utilized a cascading approach to our solver as discussed in our previous work [28]. This
cascading solver addresses the possibilities of real-time constraints by first generating a further
constrained model based on the Z3 assertions that are global with respect to the choice of level
protection requirements, i.e. Assertions 5, 6, 7, and 8. Our cascading solver takes advantage of
Z3’s capability to manage constraints in the form of a stack containing assertions. This stack
of assertions may contain nested scopes that can be created and destroyed. We examine a set
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of pre-computed tables that characterize the likelihood of a satisfying solution for our problem
for various protection levels as a function of the Population Constraint Board. Specifically we
examine both the number of resources available, and the entropy of those available resources. The
entropy of resource allocation can be interpreted as a diversity metric. High entropy systems
are those with more uniform resource distribution. Low entropy systems tend to have resources
concentrated on a few disks.

We then solve for the global scope using Z3’s SimpleSolver to establish the initial model of
our problem, and use this initial model for our cascading solution for the subsequent problems for
q ∈ [qp, qs]. The problem corresponding to qs is known to be satisfiable due to the classification
of our current system based on its resources and entropy, and we can prove that some qs exists
experimentally due to the fact that for q = 1 all possible systems are satisfiable. This solution
for qs guarantees that we will find some (possibly non-optimal) solution, providing additional
reliability. We then solve the problems for the remaining q ∈ [qp, qs − 1] in ascending order
(corresponding to higher probability of satisfiability) until we find an unsatisfiable result.

It is important to note that this solution technique does not result in the addition of a single
additional syndrome at a time, as this would result in a non-optimal solution, and potentially lead
us to believe no satisfying solution exists, when in fact one does due to accidentally overconstraining
our problem through false assumptions. Instead it a successive solution of harder problems based
on nested scoping in Z3, attempting to utilize the available time before our deadline is reached to
find a solution, and then improve on that solution if time remains.

7 Experimental Results and Validation

In order to validate our results we conducted experiments with random initial system states for
both population constraints boards, and data deduplication constraints. All experiments were run
using a single EC2 c4.large instance with 2 virtual CPUs and 3.75 GiB of RAM. We implemented
our solver to print out the resulting boards in a human readable format and hand checked the
results, also collecting performance statistics for the Z3 solutions. The simulated systems were
characterized by their total storage capacity in terms of terabytes with the assumption that each
system consisted of a set of 1TB disks in an 8+2 configuration. Thus a 160TB system would
consist of 160 disks in 16 ranks of 10 files each.

Figure 9 along with Figure 7 provide a summary of the results of our experiments. We found
a sharp satisfiability cliff accompanying the population constraints board that correspond to the
probability of a rank having no available space. This suggests an important observation to account
for when moving forward with a full implementation of software-defined data centers, namely that
balancing of over-provisioned space can be critical when such space becomes rare and the data
center approaches capacity if the excess space is to be used to improve reliability. This limit is
approached even more swiftly for large systems in which many levels are competing for the same
population constraints within a rank.

We found the problem to be less sensitive to deduplication. While we eventually found a
region of unsatisfiable problems at higher deduplication ratios, the more random placement of
deduplicated references ameliorated their constraints on the solution space. It should also be
noted that such constraints only became an issue at very high levels of deduplication, suggesting
that deduplication based dependences are not as difficult to account for as might be expected.

The exponential growth in runtimes is somewhat concerning, as it seems to limit this solution
technique to smaller storage systems, which presents a problem when confronted with the expo-
nential growth of Big Data. Large-scale systems could potentially take infeasible amounts of time
to solve if solved directly. As a consequence of this result we propose that larger systems be solved
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Figure 9 Partial summary of experimental results.

compositionally. For instance, while a 160TB system takes 74 seconds to solve, if the system is
blocked into two 80TB systems by decomposing individual ranks a satisfying solution for each
system can be found within 2.5 seconds each, and can be solved in parallel. The exponential im-
provements found through compositional solution, coupled with the embarrassingly parallel nature
of the SMT sub-problems created by partitioning the system by rank provides a very scalable
alternative to attacking the entire problem at once. This method has the advantage of respecting
dependence relationships, as when decomposed into separate sub-problems all relationships can be
accounted for between sub-models in a trivial fashion since their proposed solutions will include
only those ranks within a given sub-problem.

Since the population constraint board is known as part of the system state, we can choose to
sort each rank into one of S subproblems based on the rank of the population constraint board
associated with the rank of the Latin board. The satisfiability of the subproblems, depending
primarily on these population constraints, can be maximized by sorting the ranks on the basis of
the population constraints associated with their columns. Using such a solution we are able to
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Figure 10 Example of row-wise decomposition.

scale linearly with the size of our data center. We note the potential to further improve solution
by partitioning the initial system on a row-wise basis, as shown in Figure 10. By sorting rows
based on available resources for additional syndromes, and the distribution of those resources, we
may be able to optimize our compositional solution.

In Figure 11 we show the results of experiments we conducted for various board configurations
of varying resource levels, and the entropy of those resources, giving the proportion of observed
boards that were satisfiable, or unsatisfiable. We observe clear trends with respect to available
resources (more resources indicates a higher probability of satisfiability), and the Shannon entropy
of the distributions of those resources (higher entropy distributions are more satisfiable). Thus, for
a given board, we can characterize the satisfiability of the sub-boards resulting from a row-wise
decomposition, allowing us to optimize the sub-boards generated to maximize the probability the
resulting system will be satisfiable for a chosen W .

The run times of the resulting boards were likewise highly regular with respect to resources
and their entropy, as shown in Figure 12. Again we note faster run times for higher numbers of
available resources, and higher entropy distributions of those resources.

7.1 Application to Embedded and Resource Constrained Systems
The results of the experiments shown in Figures 11 and 12 describe a highly regular space can be
generated when our problem is characterized in terms of available resources and entropy. This
space is learnable for problems of a given size via estimation through a random sampling of the
feature space to ensure coverage of various resource allocation levels, and entropies. We utilized
the Kumaraswamy distribution [19] due to it’s beta-like properties for creating distributions with
varying skewness and kurtosis, and due to the closed-form nature of it’s inverted distribution
function [15] to generate a thorough exploration of the space of possible distributions for disk
resources within a pre-existing RAID stripe. By controlling skewness and kurtosis we were able to
produce a number of different resource entropies easily, to ensure even coverage of the underlying
space.
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1.000 1.000 1.000 1.000
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1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000

No data
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SAT
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(a) Satisfiability of rows based on available resources,
and the entropy of resource distribution for W = 1.
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Available blocks per stripe

"../results/matrix_q_2_sat_unsat.txt" u 1:($2*0.25):3 matrix

0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000

0.124 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.214 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.119 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.304 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.184 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.108 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.331 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.000 0.317 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.211 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.346 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.371 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.000 0.351 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.336 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.354 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.386 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.000 0.384 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.360 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.418 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.406 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.417 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.441 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.000 0.431 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.421 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.484 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.448 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.528 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.000 0.000 0.482 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.521 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.503 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.583 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.444 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0.600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000

No data
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(b) Satisfiability of rows based on available resources,
and the entropy of resource distribution for W = 2.
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Available blocks per stripe

"../results/matrix_q_3_sat_unsat.txt" u 1:($2*0.25):3 matrix

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000
0.049 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.013 0.200 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.309 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.198 0.361 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.154 0.293 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.376 0.302 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.240 0.397 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.296 0.328 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.232 0.330 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.228 0.330 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.210 0.363 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.216 0.497 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.281 0.503 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.290 0.586 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.341 0.631 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.353 0.650 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.295 0.687 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.282 0.797 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.325 0.825 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.311 0.801 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.326 0.796 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.338 0.830 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.316 0.828 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.300 0.815 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.296 0.876 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.300 0.878 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.289 0.914 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.249 0.910 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.238 0.933 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.243 0.938 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.246 0.966 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.236 0.970 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.226 0.983 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.213 0.996 1.000 1.000 1.000

0.000 0.000 0.000 0.000 0.241 0.999 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.000 0.200 1.000 1.000 1.000 1.000

0.000 0.000 0.000 0.225 1.000 1.000 1.000 1.000
0.000 0.000 0.000 0.000 0.164 1.000 1.000 1.000 1.000

0.000 1.000 1.000 1.000 1.000

No data
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(c) Satisfiability of rows based on available resources,
and the entropy of resource distribution for W = 3.
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Available blocks per stripe

"../results/matrix_q_4_sat_unsat.txt" u 1:($2*0.25):3 matrix

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.000 1.000

No data
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(d) Satisfiability of rows based on available resources,
and the entropy of resource distribution for W = 4.

Figure 11 Probability of a satisfiable solution for W ∈ [1, 4] based on available resources, and the
entropy of resource distribution.

We make the observation from Figure 11 that a given resource level and entropy level of those
resources can be used to characterize the underlying system as either unsatisfiable for a given
protection level W , satisfiable for a given protection level W , or probabilistically satisfiable
for a given protection level W . In the case that our problem is probabilistically satisfiable, we
note that the probability of satisfiability generally increases with increased entropy of resource
distribution. We explain this finding intuitively by observing that higher diversity of positions
(corresponding with a higher entropy) more often results in the possibility of a satisfiable solution
as it eliminates competition between queens for independent resources within a given rank.

By generating this table in advance we can apply our technique selectively by first choosing
some protection level that our tables indicate is solvable for a system with the currently observed
resource levels and resource entropy, and solving that problem first. If time remains before our
deadline is reached we can these use Figure 12 in conjunction with Figure 11 to estimate if it is
reasonable to attempt a new, higher protection, solution. In this way even though not all disk
layouts are satisfiable for all protection levels we can maximize the likelihood of finding a satisfying
solution, and the probability of achieving a problem of high protection levels.
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Available blocks per stripe

"../results/matrix_q_1_sat_max_time.txt" u 1:($2*0.25):3 matrix

2.059 1.915 1.579 1.870 1.562 1.809 1.640 1.811 1.501 1.529 1.208 1.107 1.868
1.538 1.282 1.214 1.798

1.527 1.794 1.581 1.820 1.499 1.438 0.778 0.811 1.830
1.493 1.873 1.279 1.722 1.463 1.822 1.164 1.258 1.013 0.928 1.765

1.885 1.752 1.512 1.594 1.852 1.513 1.494 1.113 0.937 1.806
1.453 1.847 1.460 1.817 1.295 1.301 1.155 1.001 1.692

1.479 1.889 1.473 1.733 1.546 1.875 1.438 1.366 1.023 1.061 1.915
1.560 1.815 1.193 1.922 1.618 1.858 1.433 1.549 1.001 0.909 1.870

2.004 1.767 1.445 1.876 1.606 1.921 1.287 1.361 1.269 1.225 1.930
1.912 1.530 1.779 1.651 1.978 1.366 1.253 0.975 1.130 1.970

1.550 1.833 1.355 1.886 1.625 1.973 1.428 1.452 1.197 1.198 1.929
1.635 1.864 1.508 1.798 1.636 1.991 1.392 1.367 1.073 1.216 1.820

2.116 1.534 1.988 1.371 1.873 1.627 1.966 1.550 1.316 0.998 1.457 2.060
1.663 1.977 1.409 2.022 1.653 1.908 1.483 1.438 1.106 1.253 2.048
1.713 1.914 1.525 1.883 1.670 1.994 1.286 1.383 1.270 1.304 1.812

2.006 1.547 2.054 1.692 1.968 1.492 1.606 1.217 1.061 1.948
2.219 1.722 2.128 1.618 2.021 1.678 1.972 1.599 1.446 1.248 1.163 1.842

1.736 2.065 1.547 2.005 1.702 2.017 1.371 1.405 1.321 1.412 2.025
1.736 2.129 1.653 2.070 1.727 2.060 1.461 1.542 1.405 1.270 1.956
1.606 2.108 1.652 2.068 1.834 2.155 1.464 1.472 1.588 1.202 2.029

2.230 1.838 2.090 1.679 2.045 1.777 2.120 1.585 1.595 1.342 1.323 1.899
1.810 2.236 1.698 1.830 1.785 2.183 1.666 1.621 1.371 1.224 2.173
1.800 2.301 1.712 2.146 1.811 2.245 1.686 1.736 1.349 1.393 2.281
1.879 2.246 1.751 2.216 1.827 2.237 1.598 1.880 1.716 1.442 2.274

2.383 1.845 2.208 1.901 2.339 1.767 1.605 1.419 1.578 2.481
1.708 2.261 1.778 2.269 1.915 2.267 1.835 1.877 1.630 1.389 2.411
1.970 2.346 1.859 2.255 1.938 2.370 1.706 1.944 1.488 1.458 2.392

2.477 1.815 2.262 2.011 2.368 1.844 1.835 1.676 1.449 2.371
2.497 1.830 2.552 2.054 2.443 1.811 1.881 1.851 1.604 2.634

1.941 2.490 1.968 2.400 1.978 2.499 1.914 1.694 1.437 1.474 2.564
2.436 2.075 2.341 1.996 2.510 1.938 1.833 1.393 1.599 2.465

1.736 2.440 1.996 1.765 2.081 2.427 1.844 1.940 1.628 1.514 2.450
2.549 1.902 2.418 2.053 2.476 1.974 1.808 1.815 1.564 2.450
2.340 2.020 2.505 2.029 2.470 2.016 2.068 1.532 1.674 2.490
2.586 1.939 2.503 2.098 2.505 1.935 2.075 1.697 1.704 2.537

2.050 2.440 2.163 2.551 1.986 2.160 1.638 1.803 2.545
2.479 1.904 2.581 2.198 2.597 2.006 2.058 1.801 1.738 2.695

2.561 2.085 2.716 2.089 1.985 1.936 1.596 2.595
1.221 2.431 2.078 2.590 2.066 2.018 1.611 1.574 2.629

1.447 1.458 1.371 1.091 2.452

No data
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(a) Maximum observed solution time of Z3 based
on available resources, and the entropy of re-
source distribution for W = 1.
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Available blocks per stripe

"../results/matrix_q_1_sat_mean_time.txt" u 1:($2*0.25):3 matrix

1.438 1.452 1.002 1.455 0.985 1.378 1.139 1.370 0.981 0.983 0.745 0.743 1.411
0.953 0.747 0.731 1.418

0.948 1.401 1.097 1.421 0.978 0.898 0.698 0.713 1.409
0.959 1.436 0.864 1.397 1.058 1.379 0.852 0.885 0.719 0.705 1.360

1.354 1.281 1.406 1.081 1.402 0.890 0.860 0.713 0.698 1.338
0.915 1.412 1.057 1.392 0.898 0.876 0.721 0.709 1.286

1.006 1.359 0.857 1.269 1.072 1.398 0.899 0.875 0.729 0.718 1.349
0.917 1.252 0.806 1.363 1.090 1.356 0.902 0.898 0.719 0.713 1.384

1.407 1.231 0.878 1.261 1.089 1.349 0.886 0.890 0.739 0.724 1.347
1.267 0.847 1.171 1.093 1.323 0.884 0.861 0.731 0.744 1.374

0.950 1.219 0.803 1.308 1.053 1.279 0.886 0.868 0.748 0.749 1.349
0.936 1.177 0.868 1.418 1.077 1.224 0.842 0.829 0.745 0.743 1.297

1.477 1.006 1.329 0.846 1.217 1.044 1.231 0.812 0.851 0.743 0.748 1.270
0.993 1.266 0.852 1.205 0.999 1.189 0.805 0.826 0.754 0.739 1.137
0.989 1.193 0.879 1.204 1.015 1.150 0.790 0.799 0.762 0.741 1.101

1.408 0.896 1.211 1.020 1.159 0.818 0.799 0.762 0.749 1.053
1.556 1.050 1.359 0.895 1.223 1.013 1.194 0.809 0.807 0.762 0.750 1.055

1.039 1.321 0.924 1.248 0.994 1.208 0.842 0.819 0.760 0.757 1.056
1.038 1.465 0.931 1.282 1.007 1.232 0.864 0.869 0.769 0.763 1.125
1.044 1.459 0.939 1.261 1.025 1.212 0.880 0.896 0.762 0.766 1.126

1.644 1.073 1.465 0.966 1.274 1.027 1.261 0.912 0.915 0.768 0.774 1.086
1.081 1.569 0.982 1.409 1.029 1.291 0.929 0.939 0.782 0.780 1.100
1.134 1.574 0.999 1.439 1.056 1.343 0.939 0.944 0.787 0.799 1.143
1.132 1.630 1.009 1.447 1.090 1.418 0.958 0.970 0.806 0.812 1.214

1.683 1.030 1.488 1.112 1.471 0.971 0.973 0.824 0.829 1.269
1.130 1.683 1.054 1.530 1.116 1.539 0.980 0.992 0.843 0.840 1.378
1.183 1.736 1.077 1.589 1.117 1.566 0.999 1.017 0.849 0.853 1.488

1.775 1.078 1.608 1.147 1.570 1.023 1.032 0.857 0.865 1.568
1.808 1.115 1.673 1.167 1.627 1.039 1.039 0.868 0.876 1.633

1.213 1.864 1.122 1.720 1.196 1.641 1.040 1.053 0.874 0.886 1.694
1.874 1.176 1.759 1.208 1.690 1.060 1.062 0.894 0.893 1.687

1.320 1.931 1.192 1.360 1.247 1.718 1.083 1.069 0.906 0.906 1.649
1.960 1.198 1.856 1.264 1.772 1.102 1.100 0.924 0.916 1.637
1.987 1.215 1.875 1.256 1.808 1.139 1.148 0.933 0.940 1.657
2.009 1.299 1.915 1.310 1.870 1.172 1.176 0.953 0.946 1.709

1.323 1.968 1.334 1.947 1.200 1.203 0.964 0.965 1.787
2.195 1.377 2.022 1.393 1.982 1.266 1.250 0.982 0.982 1.851

2.081 1.381 2.045 1.324 1.265 1.002 0.998 1.904
1.198 2.217 1.447 2.118 1.346 1.306 1.023 0.986 1.917

1.188 1.282 0.997 1.013 1.980

No data

0s

1s

3s

5s

UNSAT

E
x
e
cu

ti
o
n
 T

im
e

(b) Mean solution time of Z3 based on available
resources, and the entropy of resource distribu-
tion for W = 1.
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Available blocks per stripe

"../results/matrix_q_2_sat_max_time.txt" u 1:($2*0.25):3 matrix

6.000 6.000 6.000 6.000 6.000 1.823 1.524 1.759 1.309 1.306 1.108 0.906 1.737
1.263 0.806 0.804 1.560

1.316 1.902 1.530 1.839 1.468 1.076 0.788 0.706 1.570
6.000 6.000 6.000 1.587 1.318 1.689 1.367 1.406 1.100 0.866 1.573

6.000 6.000 1.544 1.588 1.771 1.293 1.256 1.004 0.922 1.735
1.389 1.880 1.488 1.773 1.277 1.238 0.978 1.170 1.579

6.000 6.000 1.436 1.810 1.563 1.909 1.609 1.387 1.027 0.871 1.889
6.000 6.000 6.000 1.946 1.601 1.893 1.537 1.582 1.093 1.061 1.860

6.000 6.000 1.247 2.058 1.587 1.930 1.422 1.529 1.046 0.977 1.940
6.000 1.240 1.812 1.644 1.863 1.459 1.540 0.979 1.065 1.989

6.000 6.000 1.010 1.924 1.686 1.965 1.608 1.702 1.090 1.272 1.985
6.000 6.000 1.301 1.560 1.633 1.856 1.630 1.567 1.066 1.171 1.996

6.000 6.000 6.000 1.282 1.958 1.776 1.894 1.558 1.567 1.235 1.136 2.015
6.000 6.000 1.451 1.973 1.717 1.903 1.623 1.627 1.104 1.170 2.009
6.000 6.000 1.600 1.995 1.691 2.075 1.636 1.766 1.247 1.427 2.064

6.000 1.583 2.082 1.732 1.998 1.618 1.676 1.487 1.035 2.064
6.000 6.000 6.000 1.739 2.099 1.773 2.083 1.608 1.566 0.992 1.081 1.944

6.000 6.000 1.660 2.202 1.807 2.143 1.689 1.538 1.418 1.329 2.048
6.000 6.000 1.748 2.340 1.793 2.079 1.788 1.687 1.463 1.511 1.961
6.000 6.000 1.662 2.201 1.861 2.166 1.769 1.779 1.159 1.327 2.149

6.000 6.000 6.000 1.827 2.299 1.879 2.286 1.747 1.706 1.225 1.420 2.146
6.000 6.000 1.822 1.570 2.017 2.342 1.781 1.881 1.346 1.393 2.192
6.000 6.000 1.723 2.347 2.022 2.214 1.742 1.840 1.220 1.295 2.281
6.000 6.000 1.990 2.530 1.950 2.352 1.849 1.868 1.528 1.371 2.315

6.000 1.877 2.494 2.029 2.424 1.886 1.786 1.514 1.564 2.248
6.000 6.000 1.872 2.797 2.162 2.401 1.865 1.857 1.377 1.400 2.382
6.000 6.000 1.916 2.615 2.166 2.521 2.140 1.956 1.488 1.417 2.454

6.000 1.941 2.727 2.227 2.441 1.880 1.980 1.590 1.695 2.428
6.000 2.283 2.985 2.178 2.516 2.022 2.031 1.531 1.660 2.406

6.000 6.000 2.003 2.951 2.222 2.653 1.986 2.070 1.536 1.661 2.475
6.000 2.139 2.942 2.310 2.619 2.009 2.179 1.617 1.621 2.440

6.000 6.000 2.462 1.573 2.451 2.679 2.079 2.040 1.653 1.751 2.568
6.000 2.103 3.161 2.410 2.729 2.071 1.993 1.640 1.595 2.533
6.000 2.148 3.025 2.535 2.943 2.272 2.078 1.692 1.853 2.437
6.000 2.392 3.079 2.357 3.208 2.100 2.048 1.558 1.675 2.496
6.000 2.018 3.131 2.838 3.211 2.281 2.128 1.663 1.569 2.508
6.000 2.222 3.218 2.543 3.208 2.217 2.222 1.540 1.764 2.578

3.124 2.414 2.887 2.302 2.056 1.562 1.728 2.671
6.000 2.220 3.444 2.513 2.766 2.065 1.830 1.454 1.668 2.429

2.092 1.055 1.035 0.991 2.180
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(c) Maximum observed solution time of Z3 based
on available resources, and the entropy of re-
source distribution for W = 2.
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Available blocks per stripe

"../results/matrix_q_2_sat_mean_time.txt" u 1:($2*0.25):3 matrix

6.000 6.000 6.000 6.000 6.000 1.344 1.065 1.315 0.849 0.842 0.624 0.626 1.319
0.886 0.638 0.639 1.331

0.889 1.336 1.059 1.323 0.842 0.857 0.638 0.625 1.323
6.000 6.000 6.000 1.251 1.048 1.317 0.883 0.914 0.665 0.656 1.191

6.000 6.000 1.264 1.058 1.348 0.882 0.895 0.668 0.659 1.260
0.980 1.374 0.996 1.369 0.867 0.898 0.667 0.675 1.276

6.000 6.000 1.006 1.285 1.015 1.355 0.914 0.964 0.681 0.689 1.342
6.000 6.000 6.000 1.360 1.069 1.360 0.915 0.968 0.696 0.706 1.363

6.000 6.000 0.919 1.223 1.036 1.314 0.893 0.974 0.706 0.703 1.417
6.000 0.859 1.162 1.015 1.270 0.913 0.954 0.727 0.733 1.396

6.000 6.000 0.836 1.250 1.014 1.229 0.897 0.970 0.730 0.739 1.412
6.000 6.000 0.936 1.331 0.985 1.137 0.914 0.945 0.728 0.763 1.441

6.000 6.000 6.000 0.873 1.191 0.950 1.179 0.862 0.899 0.754 0.748 1.212
6.000 6.000 0.907 1.186 0.981 1.081 0.865 0.901 0.733 0.750 1.187
6.000 6.000 0.955 1.207 0.930 1.100 0.868 0.866 0.749 0.766 1.063

6.000 0.937 1.227 0.975 1.138 0.885 0.861 0.760 0.752 1.049
6.000 6.000 6.000 0.931 1.296 0.962 1.205 0.880 0.868 0.747 0.758 1.049

6.000 6.000 0.986 1.317 0.997 1.216 0.887 0.874 0.772 0.767 1.098
6.000 6.000 1.007 1.394 1.028 1.285 0.898 0.865 0.775 0.773 1.143
6.000 6.000 0.996 1.440 1.029 1.309 0.897 0.894 0.773 0.782 1.206

6.000 6.000 6.000 1.043 1.479 1.076 1.381 0.906 0.899 0.783 0.788 1.285
6.000 6.000 1.048 1.323 1.077 1.440 0.957 0.926 0.790 0.803 1.298
6.000 6.000 1.078 1.562 1.132 1.440 0.960 0.953 0.806 0.808 1.352
6.000 6.000 1.096 1.617 1.137 1.488 1.012 0.972 0.824 0.825 1.367

6.000 1.135 1.677 1.178 1.539 1.025 1.011 0.850 0.842 1.360
6.000 6.000 1.138 1.696 1.202 1.621 1.038 1.045 0.860 0.864 1.408
6.000 6.000 1.167 1.754 1.211 1.654 1.040 1.054 0.878 0.876 1.498

6.000 1.182 1.764 1.271 1.694 1.049 1.046 0.876 0.883 1.539
6.000 1.248 1.799 1.270 1.688 1.075 1.053 0.886 0.889 1.603

6.000 6.000 1.262 1.847 1.334 1.721 1.088 1.103 0.895 0.899 1.637
6.000 1.326 1.931 1.369 1.722 1.117 1.105 0.912 0.901 1.631

6.000 6.000 1.312 1.191 1.416 1.789 1.176 1.137 0.925 0.915 1.579
6.000 1.339 2.046 1.461 1.865 1.199 1.185 0.933 0.921 1.571
6.000 1.362 2.113 1.477 1.918 1.251 1.210 0.944 0.939 1.565
6.000 1.406 2.140 1.501 1.979 1.282 1.230 0.953 0.937 1.608
6.000 1.389 2.228 1.566 2.092 1.324 1.260 0.969 0.946 1.667
6.000 1.509 2.279 1.597 2.159 1.348 1.299 0.977 0.965 1.768

2.500 1.685 2.206 1.388 1.302 0.984 0.981 1.824
6.000 1.878 2.611 1.751 2.364 1.458 1.332 0.984 0.980 1.851

2.092 1.055 1.035 0.908 1.832
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(d) Mean solution time of Z3 based on available
resources, and the entropy of resource distribu-
tion for W = 2
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Available blocks per stripe

"../results/matrix_q_3_sat_max_time.txt" u 1:($2*0.25):3 matrix

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.088 0.942 1.263
0.737 0.883 0.865 1.312

6.000 6.000 6.000 6.000 1.087 0.767 0.887 0.627 1.318
6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.019 0.980 1.005 1.231

6.000 6.000 6.000 6.000 6.000 1.145 1.060 0.940 1.231 1.319
6.000 6.000 6.000 6.000 1.077 1.113 1.077 0.985 1.549

6.000 6.000 6.000 6.000 6.000 6.000 1.319 0.947 1.290 1.005 1.485
6.000 6.000 6.000 6.000 6.000 6.000 1.202 1.196 1.253 0.976 1.527

6.000 6.000 6.000 6.000 6.000 6.000 1.275 1.152 1.142 0.942 1.605
6.000 6.000 6.000 6.000 6.000 1.389 1.296 1.121 1.133 1.605

6.000 6.000 6.000 6.000 6.000 6.000 1.470 1.149 1.245 1.350 1.597
6.000 6.000 6.000 6.000 6.000 6.000 1.370 1.022 1.333 1.237 1.631

6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.402 1.423 1.244 1.282 1.679
6.000 6.000 6.000 6.000 6.000 6.000 1.538 1.642 1.425 1.106 1.672
6.000 6.000 6.000 6.000 6.000 6.000 1.668 1.582 1.184 1.270 1.670

6.000 6.000 6.000 6.000 6.000 1.612 1.400 1.099 1.084 1.706
6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.712 1.637 1.043 1.335 1.618

6.000 6.000 6.000 6.000 6.000 6.000 1.698 1.746 1.229 1.441 1.621
6.000 6.000 6.000 6.000 6.000 6.000 1.699 1.703 1.370 1.129 1.567
6.000 6.000 6.000 6.000 6.000 6.000 1.831 1.890 1.346 1.482 1.603

6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.782 1.903 1.502 1.827 1.712
6.000 6.000 6.000 6.000 6.000 6.000 1.787 2.021 1.402 1.471 1.909
6.000 6.000 6.000 6.000 6.000 6.000 1.966 2.003 1.699 1.454 1.860
6.000 6.000 6.000 6.000 6.000 6.000 2.093 2.118 1.359 1.656 2.016

6.000 6.000 6.000 6.000 6.000 2.308 2.362 1.686 1.538 2.022
6.000 6.000 6.000 6.000 6.000 6.000 2.374 2.235 1.572 1.638 2.169
6.000 6.000 6.000 6.000 6.000 6.000 2.256 2.434 1.559 1.660 2.191

6.000 6.000 6.000 6.000 6.000 2.492 2.380 1.793 1.665 2.143
6.000 6.000 6.000 6.000 6.000 2.287 2.615 1.620 1.723 2.247

6.000 6.000 6.000 6.000 6.000 6.000 2.509 2.585 1.995 1.740 2.141
6.000 6.000 6.000 6.000 6.000 2.459 2.602 2.040 1.812 2.163

6.000 6.000 6.000 6.000 6.000 6.000 2.724 2.572 1.853 1.800 2.330
6.000 6.000 6.000 6.000 6.000 2.575 2.657 1.859 1.908 2.261
6.000 6.000 6.000 6.000 6.000 2.628 2.850 1.955 1.764 2.244
6.000 6.000 6.000 6.000 6.000 2.870 2.828 1.983 1.840 2.249

6.000 6.000 6.000 6.000 2.729 3.010 1.952 1.843 2.306
6.000 6.000 6.000 6.000 6.000 2.986 3.018 1.833 1.994 2.228

6.000 6.000 6.000 2.829 2.904 2.189 1.904 2.332
6.000 6.000 6.000 6.000 2.616 2.706 1.653 1.729 2.279

6.000 1.696 1.614 1.545 1.937
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(e) Maximum observed solution time of Z3 based
on available resources, and the entropy of re-
source distribution for W = 3.
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Available blocks per stripe

"../results/matrix_q_3_sat_mean_time.txt" u 1:($2*0.25):3 matrix

6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.642 0.609 0.886
0.655 0.651 0.620 0.911

6.000 6.000 6.000 6.000 0.999 0.703 0.660 0.593 0.901
6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.722 0.669 0.644 0.978

6.000 6.000 6.000 6.000 6.000 0.896 0.739 0.659 0.644 0.967
6.000 6.000 6.000 6.000 0.917 0.781 0.681 0.659 1.033

6.000 6.000 6.000 6.000 6.000 6.000 0.927 0.758 0.705 0.684 0.964
6.000 6.000 6.000 6.000 6.000 6.000 0.913 0.850 0.712 0.691 1.019

6.000 6.000 6.000 6.000 6.000 6.000 0.944 0.774 0.741 0.702 1.078
6.000 6.000 6.000 6.000 6.000 0.991 0.827 0.768 0.754 1.068

6.000 6.000 6.000 6.000 6.000 6.000 0.941 0.802 0.790 0.785 1.095
6.000 6.000 6.000 6.000 6.000 6.000 0.906 0.765 0.769 0.762 1.038

6.000 6.000 6.000 6.000 6.000 6.000 6.000 0.893 0.797 0.794 0.776 0.963
6.000 6.000 6.000 6.000 6.000 6.000 0.949 0.781 0.797 0.768 0.937
6.000 6.000 6.000 6.000 6.000 6.000 0.999 0.798 0.801 0.757 0.868

6.000 6.000 6.000 6.000 6.000 0.946 0.824 0.803 0.769 0.873
6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.010 0.858 0.808 0.792 0.850

6.000 6.000 6.000 6.000 6.000 6.000 1.076 0.901 0.823 0.805 0.861
6.000 6.000 6.000 6.000 6.000 6.000 1.116 0.971 0.852 0.815 0.916
6.000 6.000 6.000 6.000 6.000 6.000 1.130 1.046 0.849 0.826 0.921

6.000 6.000 6.000 6.000 6.000 6.000 6.000 1.183 1.098 0.865 0.855 0.945
6.000 6.000 6.000 6.000 6.000 6.000 1.232 1.148 0.877 0.872 0.935
6.000 6.000 6.000 6.000 6.000 6.000 1.247 1.150 0.922 0.895 0.955
6.000 6.000 6.000 6.000 6.000 6.000 1.327 1.193 0.943 0.935 1.000

6.000 6.000 6.000 6.000 6.000 1.316 1.201 0.966 0.947 1.042
6.000 6.000 6.000 6.000 6.000 6.000 1.363 1.234 0.994 0.966 1.087
6.000 6.000 6.000 6.000 6.000 6.000 1.343 1.287 1.019 0.988 1.164

6.000 6.000 6.000 6.000 6.000 1.406 1.336 1.044 1.005 1.211
6.000 6.000 6.000 6.000 6.000 1.438 1.362 1.057 1.023 1.272

6.000 6.000 6.000 6.000 6.000 6.000 1.430 1.404 1.069 1.039 1.276
6.000 6.000 6.000 6.000 6.000 1.470 1.398 1.091 1.050 1.287

6.000 6.000 6.000 6.000 6.000 6.000 1.472 1.423 1.117 1.078 1.287
6.000 6.000 6.000 6.000 6.000 1.544 1.437 1.139 1.092 1.262
6.000 6.000 6.000 6.000 6.000 1.588 1.498 1.159 1.111 1.260
6.000 6.000 6.000 6.000 6.000 1.668 1.600 1.179 1.126 1.280

6.000 6.000 6.000 6.000 1.718 1.654 1.213 1.146 1.334
6.000 6.000 6.000 6.000 6.000 1.832 1.772 1.231 1.169 1.359

6.000 6.000 6.000 1.997 1.803 1.258 1.192 1.407
6.000 6.000 6.000 6.000 1.832 1.849 1.250 1.186 1.398

6.000 1.526 1.353 1.246 1.426

No data

0s

1s

3s

5s

UNSAT

E
x
e
cu

ti
o
n
 T

im
e

(f) Mean solution time of Z3 based on available
resources, and the entropy of resource distribu-
tion for W = 3
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(h) Mean solution time of Z3 based on available
resources, and the entropy of resource distribu-
tion for W = 4

Figure 12 Maximum and mean time to solution for W ∈ [1, 4] based on available resources, and the
entropy of resource distribution.

LITES



05:24 Characterizing Data Dependence Constraints for Dynamic Reliability

8 Conclusions

In this paper we have presented a novel formulation of the n-queens problem using a modular
Latin board, non-traditional queen variants, and column-based population constraints. This
formulation serves as a translation of data dependence constraints and the problem of virtual
syndrome creation for software-defined data structures into SMT allowing for efficient solution that
allows for improved reliability with no additional hardware in over-provisioned systems. While
our problem grows exponentially more difficult for larger storage systems, we provide a scalable
way to achieve similar levels of protection through rank-wise decomposition of the problem space
using population-constraint sorting into embarrassingly parallel subproblems.

The overhead of this method is minimized by several factors, the first being the ability of the
cascading solution to learn the feasibility of the solution space to avoid searching for solutions to
protection levels for which the likelihood of finding a satisfying solution is low, and second due to
the low probability of the need to rebuild from these more complex syndromes. Our system can
function as if it is protected only by RAID 5 or RAID 6 protections, ignoring the extra allocated
blocks according to the schemes discussed in [31, 3]. This new method will form the basis for
a performable dynamic RAID allocation system for use in large-scale storage systems serving
cost-constrained organizations, providing an intelligent software stack that will help to combat
the exponential growth of Big Data.

8.1 Future Work
Now that we have an efficient, scalable method for determining whether there exists a dynamic
reliability syndrome that satisfies its data dependence constraints, we can move onto looking
at other interesting optimizations. Currently we either generate a single strategy for additional
syndrome allocation, or prove that no such allocation exists. However, the option is now open
for us to harness more of the power of Z3 to query the solution space to optimize for secondary
considerations, such as geometries that we find more attractive. For example, we may search for
solutions with such features using the solution enumeration capabilities of Z3 [18].

We plan to implement our solution technique in a hardware-based middleware controller that
monitors back-end data systems, and reshapes incoming file traffic to build the proposed dynamic
allocations of RAID groups in response to predictions for overprovisioning. We can also envision
an extension enabling data storage system designers to query Z3 regarding hypothetical disk
configurations and data dependence constraints as they design a new storage system, thus enabling
them to optimize their designs with respect to the robustness/cost tradeoff before purchasing any
hardware.

Availability

We have made our implementation, all associated source code, and data available under the
terms of the University of Illinois/NCSA Open Source License6 at our laboratory website
http://trust.dataengineering.org/research/nqueens/.
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