
Risk-Aware Scheduling of Dual Criticality Job
Systems Using Demand Distributions
Bader Naim Alahmad
The University of British Columbia
2366 Main Mall, Vancouver, BC, Canada V6T 1Z4
bader@ece.ubc.ca

https://orcid.org/0000-0002-6409-1277

Sathish Gopalakrishnan
The University of British Columbia
2332 Main Mall, Vancouver, BC, Canada V6T 1Z4
sathish@ece.ubc.ca

Abstract
We pose the problem of scheduling Mixed Critic-
ality (MC) job systems when there are only two
criticality levels, Lo and Hi—referred to as Dual
Criticality job systems—on a single processing plat-
form, when job demands are probabilistic and their
distributions are known. The current MC mod-
els require that the scheduling policy allocate as
little execution time as possible to Lo-criticality
jobs if the scenario of execution is of Hi critical-
ity, and drop Lo-criticality jobs entirely as soon
as the execution scenario’s criticality level can be
inferred and is Hi. The work incurred by “incor-
rectly” scheduling Lo-criticality jobs in cases of
Hi realized scenarios might affect the feasibility
of Hi criticality jobs; we quantify this work and
call it Work Threatening Feasibility (WTF). Our
objective is to construct online scheduling policies
that minimize the expected WTF for the given in-
stance, and under which the instance is feasible
in a probabilistic sense that is consistent with the
traditional deterministic definition of MC feasibil-
ity. We develop a probabilistic framework for MC

scheduling, where feasibility is defined in terms of
(chance) constraints on the probabilities that Lo
and Hi jobs meet their deadlines. The probabilit-
ies are computed over the set of sample paths, or
trajectories, induced by executing the policy, and
those paths are dependent upon the set of execution
scenarios and the given demand distributions. Our
goal is to exploit the information provided by job
distributions to compute the minimum expected
WTF below which the given instance is not feas-
ible in probability, and to compute a (randomized)
“efficiently implementable” scheduling policy that
realizes the latter quantity. We model the problem
as a Constrained Markov Decision Process (CMDP)
over a suitable state space and a finite planning
horizon, and show that an optimal (non-stationary)
Markov randomized scheduling policy exists. We de-
rive an optimal policy by solving a Linear Program
(LP). We also carry out quantitative evaluations on
select probabilistic MC instances to demonstrate
that our approach potentially outperforms current
MC scheduling policies.

2012 ACM Subject Classification Mathematics of computing → Markov processes, Software and its
engineering → Real-time systems software, Software and its engineering → Real-time schedulability
Keywords and Phrases Real-time scheduling; Mixed-criticality; Probability distribution; Chance-
constrained Markov decision process; Linear programming
Digital Object Identifier 10.4230/LITES-v005-i001-a001
Received 2016-02-04 Accepted 2018-01-07 Published 2018-05-30

1 Introduction

We consider a system comprised of a finite set of jobs executing upon a shared platform (processor),
and a scheduling policy that allocates processor time to jobs. A Mixed-Criticality (MC) real-time
job system is one that carries out multiple jobs, with each job being of a specific criticality. For
example, in an avionics/UAV system, some jobs relate to the flight stability or safety of the aircraft,

© Bader Naim Alahmad and Sathish Gopalakrishnan;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 5, Issue 1, Article No. 1, pp. 01:1–01:30
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bader@ece.ubc.ca
https://orcid.org/0000-0002-6409-1277
mailto:sathish@ece.ubc.ca
http://dx.doi.org/10.4230/LITES-v005-i001-a001
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

01:2 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

and these jobs have the highest criticality. Other jobs may relate to the mission of the aircraft
(gather visual information of a particular region) and these jobs may be of a lower criticality. In
the special and important case—that we consider in this article—where every job assumes one of
exactly two criticality levels, Lo or Hi, we will refer to the MC system as Dual-Criticality.

From a job scheduling perspective, one would like to schedule jobs so that they meet their
timing constraints or deadlines. To do so, one needs to know the execution time requirements of
these jobs. Using worst-case execution time (WCET) estimates for execution time would lead to
infeasibility of low criticality jobs (because the worst-case utilization could saturate the system
capabilities) but, since worst-case execution times are rarely realized, one could use the same
platform for jobs of all criticality levels provided the scheduler makes suitable choices when the
execution duration of a job approaches the worst case or when it exceeds certain thresholds.

Vestal [38] was the first to offer an abstraction for scheduling MC job systems. In Vestal’s
model, there are L ≥ 2 distinct criticality levels, and n jobs J1, . . . , Jn. For notational convenience,
we denote as [n] the set {1, . . . , n} for integers n ≥ 1. Job Ji is characterized by the parameters
(χi, ci, di), where

χi ∈ [L] is job Ji’s criticality;
ci =

(
ci(1), . . . , ci(L)

)
∈ (0,∞)L is the vector of WCET estimates at all criticality levels;

di > 0 is job Ji’s deadline.
For example, consider a triple-criticality MC job system consisting of three jobs J1, J2, and J3 with
criticalities χ1 = 1, χ2 = 3, and χ3 = 2, respectively, and with the following WCET estimates:

J1 : c1 =
(
c1(1) = 90, c1(2) = 90, c1(3) = 90

)
J2 : c2 =

(
c2(1) = 10, c2(2) = 12, c1(3) = 20

)
J3 : c3 =

(
c3(1) = 1, c3(2) = 500, c3(3) = 500

)
.

We shall make the following common monotonicity assumption: ci(1) ≤ · · · ≤ ci(L) for every
i ∈ [n]. Moreover, we will assume that ci(`) = ci(χi) for all ` ≥ χi, so that it is sufficient to
specify job Ji’s WCET estimates by giving ci(1), . . . , ci(χi), i ∈ [n]. An execution scenario, or
behavior, is a particular realization of job demands in a particular run of the system; i.e., it is
a vector b = (b1, . . . , bn) in

∏n
i=1(0, ci(χi)]. In our example, (10, 11, 450) is a possible execution

scenario. In any particular run of the system, the scenario remains unknown until all jobs finish
execution. The criticality level of behavior b is defined as

critDemand(b) = min
{
` ∈ [L] : bi ≤ ci(`) ∀i ∈ [n]

}
.

For instance, critDemand
(
(10, 11, 450)

)
= 2. During a schedule, at time t, say, job Ji is said to

be operating at criticality level ` ∈ [L] if it has been given at least ci(`− 1) but less than ci(`)
units of execution, and has not finished execution at time t. We call this time-dependent quantity
the job’s operational criticality level at t. With the monotonicity assumption, the range of
execution times that job Ji might demand when operating at criticality level ` is the open interval
(ci(`− 1), ci(`)], with the convention that ci(0) = 0. In our example, if we take a snapshot of a
certain schedule at, say time 63, and observe that jobs J1, J2 and J3 have executed for 50, 10 and
3 time units, respectively, but J2 has not yet finished execution, then J2’s operational criticality
level at time 63 is 2. However, if J2 finishes execution at time 63 with 10 time units of execution,
then its operational criticality level for all t ≤ 63 is 1. The operational criticality level remains the
same from time t until Ji either signals that it has finished execution, or it executes for ci(`) time
unit at some t′ > t and does not signal completion, at which point its operational criticality level
jumps to `+ 1. As such, a job’s operational criticality level is an increasing piecewise-constant
function of time, demand, and the scheduling policy, with a (random) set of jump points.

B.N. Alahmad and S. Gopalakrishnan 01:3

At time t, the maximum of all job operational criticality levels is the system operational
criticality level at time t. We note that the system operational criticality level of an observed
allocation snapshot, say b, at some time, is not the same as critDemand(b); the system operational
criticality level depends on additional information not encoded in b, namely whether or not jobs
finished execution, whereas critDemand(b) assumes that all jobs finished execution. Since the
system operational criticality level is defined in terms of the job operational criticality levels, the
former is also an increasing piecewise-constant function. In our example, the system operational
criticality level at time 63 with the same execution snapshot (50, 10, 3) is 1 if J2 finishes execution
at or before time 63, and is 2 otherwise. If the scheduler selects J2 to execute from time 63 to
time 67, then at time 65, the system operational critical level makes a jump from 2 to 3 (since
then J2 has executed for 12 = c2(2) time units and has not finished execution), and remains 3
until the end of the schedule.

Once a job signals that it has finished execution, its demand is realized. A demand realization
is a scenario of execution. Every job demand realization maps naturally to a unique job criticality
level realization, and the maximum of which across all jobs is the system criticality level
realization. Different runs, or executions, of the input job system might yield different criticality
level realizations, since, generally, a job might demand anything in (0, ci(χi)], and job demand
realizations might differ across different executions.

The Job Dropping Model: Literature and Optimality
In addition to Vestal [38], there has been a substantial body of work that analyzes scheduling
policies for deterministic MC systems, wherein low(er) criticality jobs are dropped when a high(er)
criticality job demands more execution time. One such approach was studied by Baruah et al. [8, 10].
In this approach, low criticality jobs are dropped when it is deemed necessary to allocate more
time to a high criticality job. This decision is based on deterministic thresholds and is conservative
in the sense that worst-case assumptions are made about the execution time requirements of the
low criticality jobs and other high criticality jobs. As a consequence, low criticality jobs may
miss deadlines even when it may be possible to meet the deadlines for high and low criticality
jobs. Feasibility of a given Dual-Criticality instance in this model is defined as follows: For every
scenario of execution, if the scenario’s criticality level is Lo, all jobs should be given enough
execution time to complete entirely and should meet their deadlines, but if the scenario’s criticality
level is Hi, only Hi-criticality jobs need to be given execution budget and must complete before
their deadlines. In the latter case, giving any execution time to Lo-criticality jobs is considered as
an erroneous allocation, and doing so negatively affects the achievable processor utilization.

A non-clairvoyant, or online, scheduling policy does not know the scenario of execution in
advance, and only an omniscient clairvoyant policy knows the realized scenario at time 0, and
is therefore able to decide whether or not to drop Lo-criticality jobs at the beginning of system
operation and thus achieve the maximum processor utilization. An instance I = (J1, . . . , Jn;L) is
said to be correctly MC-schedulable by scheduling policy π if for every scenario (behavior)
b ∈

∏n
i=1(0, ci(χi)], if b has criticality level `, then every Ji with χi ≥ ` can be given bi units of

execution during [0, di] under π. An instance I is said to be MC-feasible if there is an online
scheduling policy under which I is correctly MC-schedulable.

Baruah et al. [10] showed that checking MC-feasibility can be reduced to checking its defining
condition only for the scenarios that assume the WCET estimates; i.e., for b ∈

{(
c1(`1), . . . , cn(`n)

)
:

`i ∈ [χi]
}
. The MC-feasibility problem was shown to NP-Hard in the strong sense [7]; however, it

is not yet clear whether or not MC-feasibility belongs to the class NP.
If an instance I is not MC-feasible, then there is no online scheduling policy under which it

is correctly MC-schedulable. Conversely, if instance I is MC-feasible, then an online scheduling
policy that correctly MC-schedules I may or may not exist.

LITES

01:4 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

A widely used measure of the performance of non-clairvoyant MC-scheduling policies is the
processor speed-up factor (Baruah et al. [8], Kalyanasundaram and Pruhs [30]). It is defined as
follows: If π is a non-clairvoyant scheduling policy, then its speed-up factor is the smallest real
number s > 1 such that, for every MC instance I, if I is MC-feasible on a unit-speed processor,
then policy π will correctly MC-schedule I on an s (or more)-speed processor. An optimal policy
is one that minimizes s.

In the MC context, a non-unit speed-up factor arises because of the following: A non-clairvoyant
algorithm has only WCET estimates available, and it does not know the scenario of execution in
advance, so in high criticality scenarios, the algorithm might allocate execution time to jobs whose
criticality is less than the realized system criticality level. Thus the earlier the time at which the
scenario’s criticality level is inferred under the scheduling policy while preserving feasibility (in
the MC sense), the less the “processor time waste” the policy incurs for that scenario. Since the
scheduler can drop all Lo-criticality jobs as soon as the scenario’s criticality is inferred as Hi,
predicting the earliest such time plays a central role in the MC-scheduling problem. Given an MC
job instance, a scenario of execution and a non-clairvoyant scheduling policy, we call the earliest
time instant at which the execution scenario’s criticality level is inferred with certainty the Time
of Criticality Inference (TCI) associated with the scheduling policy for the given scenario.
Giving any execution time to Lo-criticality jobs early on in the schedule will only delay the TCI,
and thus delay the time instant at which we can decide whether or not to drop Lo-criticality
jobs. However, to preserve the schedulability of Lo-criticality jobs in case the scenario is of Lo
criticality, the policy must judiciously give execution time to Lo-criticality jobs early on in the
schedule. Thus, we are facing conflicting objectives, and the optimal scheduling policy must strike
the right allocation balance.

Here is an example to illustrate the situation.

I Example 1. Consider a dual-criticality MC job system consisting of two jobs J1 and J2 with
the following parameters:

J1 : c1 =
(
c1(Lo) = 200, c1(Hi) = 300

)
, χ1 = Hi, d1 = 450

J2 : c2 =
(
c2(Lo) = 250

)
, χ2 = Lo, d2 = 300.

First let us examine how the clairvoyant algorithm would MC-schedule this job instance. If the
scenario is of Hi criticality, then the clairvoyant policy knows this at time 0 and drops J2 entirely
and schedules J1, which would then meet its deadline of 450. If the scenario is of Lo criticality,
then the clairvoyant policy schedules both J1 and J2 using the Earliest Deadline First (EDF)
policy, and they both meet their deadlines: The worst-case Lo-criticality scenario is (200, 250),
and under EDF, J2 is scheduled first and finishes at time 250 < d2 = 300, and then J1 occupies
the processor till time 450 (= d1). Now we consider two non-clairvoyant scheduling policies (see
Figure 1):

EDF. Suppose that the scenario of execution is (270, 250), which has Hi criticality. EDF first
schedules J2 up to time 250, and then selects J1 to occupy the processor until time 520. At
time 450, however, J1 misses its deadline.
Criticality Monotonic (CM), which is a fixed-priority scheduling policy that at each instant
schedules, among the jobs that have not finished execution, the job with the highest criticality.
Suppose that the scenario of execution is the Lo-criticality (150, 200). J1 occupies the processor
from time 0 to time 150, then J2 executes until time 350. J2, however, misses its deadline at
time 300.

The problem with EDF is that it does not consider criticalities, and consequently, in our
example, it scheduled J2 when it should have dropped it altogether. The work done by J2 affected

B.N. Alahmad and S. Gopalakrishnan 01:5

J1 : c1 =
(

c1(Lo) = 200; c1(Hi) = 300
)

; χ1 = Hi; d1 = 450

J2 J1

0 250

EDF

J2

0 270

Clairvoyant

J1

0 350

CM

J2

0

Clairvoyant

350

300150

200

J1

J2

300

300 450 520 450

scenario = (270; 250); crit

(

(270; 250)
)

= Hi scenario = (150; 200); crit

(

(150; 200)
)

= Lo

d2 d1d2 d1
| {z }

WTF

TCI

TCI

200

J2 : c2 =
(

c2(Lo) = 250
)

; χ2 = Lo; d2 = 300

× ×

Figure 1 Optimal clairvoyant vs. non-clairvoyant EDF (left) and clairvoyant vs. CM (right) schedules
for the job set of Example 1. EDF incurs WTF of 250, causing J1 to miss its deadline at 450. CM does
not allocate the Lo-criticality J2 enough execution time earlier in the schedule so as to guarantee its
feasibility if the realized scenario is Lo, which is the case in this example. This causes J2 to miss its
deadline at time 300.

the feasibility of J1 (which is the only job whose feasibility matters given that the scenario is of Hi
criticality). We call this processor time waste—caused by lack of knowledge of the scenario—Work
Threatening Feasibility (WTF). In the example, EDF incurred WTF of 250 for the given
scenario, caused by scheduling J2. The speed-up factor of a given scheduling policy measures
its worst case (maximum) incurred WTF across all MC instances that are MC-feasible (on a
unit-speed processor). We note that WTF is only incurred for scenarios that have Hi criticality
and, in this case, by giving execution time to Lo-criticality jobs; it is zero for Lo-criticality
behaviors. The problem with CM, on the other hand, is that it does not care about the feasibility
of Lo-criticality jobs in light of a Lo behavior, although it causes the system criticality level to
be realized the soonest possible.

Our example suggests that to both minimize the WTF and guarantee feasibility, the scheduling
policy must strive to achieve a balance between the following conflicting objectives:

O1. It should allocate Lo-criticality jobs sufficiently enough execution times early on; in particular,
prior to the TCI, so as to guarantee their schedulability in the case where the realized behavior
is of Lo criticality, and

O2. It should minimize any WTF, by

a. driving the revelation of the system criticality level sufficiently quickly by scheduling
Hi-criticality jobs, so as to decide whether to drop Lo-criticality jobs as soon as possible,
and

b. minimizing the allocation in O1 if the scenario is Hi-criticality (it is here where the
objectives are conflicting).

Probabilistic MC-Model: Justification

The MC model we consider in this article is a probabilistic variant of the MC model thus described.
But why use a probabilistic MC model? First, the current MC standards and accreditations express
the required performance guarantees of MC software components as failure probabilities. For

LITES

01:6 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

Table 1 DO-178B Criticality Specifications (AdaCore [1]).

Level Failure Condition Failure Rate Limit (failures/hour) Example

A Catastrophic 10−9 Fly-by-wire
B Hazardous 10−7 Fuel management
C Major 10−5 Pilot/ATC communication
D Minor 10−3 Flight data recorder
E No effect n/a Entertainment system

instance, the DO-178B avionics standard1 lists 5 levels of criticality, and specifies for each criticality
level an upper bound on the failure rate of software components having that criticality (Table 1).
From the scheduling perspective, job failures are deadline misses. Then given how MC systems
are specified in practice, we believe that a probabilistic framework is the natural setting in which
MC systems ought to be framed and reasoned about.

Note. Failure rate estimation is a research problem in its own right, but is outside the scope of
this article. We refer the reader to Shooman [36] for an in-depth account of failure rate estimation
in avionics software systems, along with feasibility studies and the associated analysis.

Second, without any additional information about job demands other than WCET estimates,
the scheduler is oblivious to job demand realizations prior to job completion, until the realizations
present themselves online at one of the system operational criticality level jump instants. As a
consequence, working with WCET estimates solely will lead to underutilization of the processor
when the WCETs are not realized.

Contribution
Whereas the contribution in this specific article relates to a specific restriction of the MC job
model, the overall thrust of our work is to develop a framework for reasoning about workload of
different criticality levels and providing probabilistic guarantees about the successful execution of
jobs. The one-shot job model that we consider—as opposed to the more complex recurrent task
model—was, as we shall see below, studied extensively in the context of MC scheduling, and it
remains highly relevant due to the complexity of MC scheduling problems. We have chosen this
particular model as a first step towards reasoning about recurring tasks. One can interpret our
work as providing the boundaries for synthesizing feasible policies.

This article is an attempt to reconcile the widely used job-dropping model and the mixed-
criticality specifications as institued by the current standards and the industry requirements.
Baruah’s work and ours have following in common: We both regard allocating execution times to
Lo-criticality jobs in cases of Hi-criticality execution scenarios as undesirable behavior that the
scheduling algorithm should avoid. In our model, however, feasibility is defined more generally,
and our definition includes Baruah’s definition as a special case: We are given upper bounds on
the probabilities that jobs at each criticality level miss their deadlines, and one of our goals is
to determine a policy under which the probabilities of deadline misses respect the user-supplied
failure tolerance parameters. Toward this goal, we introduce the notion of probably feasible
MC instances in the job dropping model (for the precise definitions, see Definition 4).

1 Titled Software Considerations in Airborne Systems and Equipment Certification, and developed jointly by
RTCA SC-167 and EUROCAE WG-12.

B.N. Alahmad and S. Gopalakrishnan 01:7

We propose an approach for Dual-Criticality job systems that is not deterministic, and uses
the probability distribution of job execution times. Our contribution is a model of MC job
systems as a chance-Constrained Markov Decision Process (CMDP) that then allows
us to provide guarantees around jobs meeting their timing constraints with high probability.
The chance constraints are sample path constraints on the trajectories of the MDP induced by
executing a policy, and they represent the risk of missing deadlines at the various criticality levels.
We show how to derive a randomized non-stationary Markov scheduling policy that is expected
WTF-optimal, by solving a linear program.

This approach can be computationally expensive, but we envisage this as a first step in enabling
such probabilistic analysis. Nevertheless, the problem is amenable to approximation, and we briefly
outline one method that can be used to obtain approximately optimal and approximately feasible
scheduling policies.

More Literature
Before concluding this section, we mention some prior work related to MC-scheduling and to
probabilistic analysis of real-time systems.

Baruah and Vestal [11] showed that for recurrent MC task systems, Earliest Deadline First
(EDF) does not dominate Rate-Monotonic (RM), and neither are optimal for scheduling MC
tasks in the job dropping model. The Own Criticality-Based Priority (OCBP) algorithm was
among the first algorithms designed specifically for the scheduling of (deterministic) MC job
systems within the job dropping model [10]. OCBP is a fixed-priority scheduling policy, and
it utilizes Audsley’s priority assignment scheme [6]. OCBP was shown to be optimal in the
class of fixed-priority MC-scheduling algorithms in the speed-up factor, with a speed-up factor of
(
√

5 + 1)/2 for dual-criticality job system. It was shown that if an instance I is OCBP-schedulable,
then it is MC-feasible; thus, correct schedulability by OCBP is sufficient for MC-feasibility, and
the correct MC-scheduling policy is given by the OCBP priorities. Conversely, if I is MC-feasible,
then OCBP might or might not correctly MC-schedule I; however, if I is MC-feasible, then OCBP
can correctly MC-schedule I on a speed (

√
5 + 1)/2 processor, or, in other words, OCBP is capable

of correctly MC-scheduling the (smaller) instance where every given WCET is divided by the
speed-up factor (

√
5 + 1)/2. This quantifies how inexact OCBP is.

The MC-EDF algorithm [37] was shown to dominate OCBP, in the sense that there are
(deterministic) MC-feasible instances that are deemed MC-schedulable by MC-EDF but not by
OCBP.

Guo and Baruah [22] studied the scheduling of MC jobs (with job dropping) on a single
processor with varying speeds. The authors of the latter extended their work to the sporadic task
model with implicit deadlines [9]. Chen et al. [15] devised a deadline-tightening technique for
scheduling MC sporadic task systems on a unit-speed single processor, wherein virtual deadlines
that are shorter than the actual deadlines are assigned to the higher criticality jobs. Again, low(er)
criticality tasks may be rejected in order to satisfy the demands of high(er) criticality tasks. We
refer the reader to the manuscript by Burns and Davis [14] for the most current and comprehensive
overview of MC systems and related problems.

The probabilistic analysis of (non-MC) real-time systems is not new. Díaz et al. [16] analyzed
the behavior of fixed-priority (e.g., RM) and dynamic-priority (e.g., EDF) scheduling algorithms for
recurrent, stochastically independent tasks when execution times are random variables. The goal
of their work is to compute the probability of deadline miss as well as the (random) response-time
of every task. See also [17, 18, 19, 31]. Maxim and Cucu-Grosjean [33] extended the probabilistic
analysis framework of Díaz et al. [16] for fixed-priority scheduling schemes to task systems where
also the minimum inter-arrival times between job invocations as well as task deadlines may be

LITES

01:8 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

random variables. Their focus was to efficiently compute the response time of each task under
the assumption that tasks are stochastically independent. They do so by using convolution of
probability distributions as the key underlying mathematical operation.

To the best of our knowledge, there is no work that aims at identifying feasible scheduling
policies for MC job systems where job execution times are random. Alahmad et al. [2] were the
first to propose the consideration of probabilistic execution times for MC systems. Guo et al. [23]
carried out schedulability analysis of EDF applied to recurrent MC task systems, wherein lower
priority tasks are given guarantees against failure. The latter is the closest work we are aware of
to our efforts in this article. However, our problem is substantially harder, because it is concerned
with synthesizing MC scheduling policies, as opposed to analyzing existing (fixed) scheduling
policies.

2 System Model

We will adopt Vestal’s model described above, but we will frame it in a probabilistic setting. The
system we consider is that of n jobs executing upon a single processor, and all jobs are ready to
execute at time 0. We will make use of the sets N = {1, 2, . . . } ⊂ {0, 1, 2, . . . } = Z+. For ease of
reference, we give in Table 2 a listing of most of the notation used in this article.
Note: The purpose of this section is to present as general a probabilistic framework for MC
systems. As such, the exposition to follow will be in terms of general probability spaces, arbitrary
number of criticality levels, with no assumptions about the random demands except boundedness.
This setting is, however, much more general than the actual problem that we consider, which is a
specialization of the framework to be presented to two criticality levels and discrete demands.

In addition to the parameters (χi, ci, di) described earlier, the execution demand of job Ji is
described by a random variable

ζi : Ωi → (0, ci(1)] ∪ · · · ∪ (ci(χi − 1), ci(χi)] = (0, ci(χi)]

on a probability space (Ωi,Mi,Pi), where Ωi is the scenario space associated with job Ji consisting
of all possible execution scenarios, Mi is the set of possible (observable, measurable) events, and
Pi is a probability measure on Ωi.

We will assume that the jobs are independent; that is, the demand random variables ζ1, . . . , ζn
are independent. The distribution of ζi is the probability measure Pζi

≡ Pi ◦ ζ−1
i on (0, ci(χi)],

and Pζi is known. Accordingly, job Ji is characterized by the tuple
(
(Ωi,Mi,Pi), ζi, χi, ci, di

)
,

i ∈ [n]. The actual execution time that a job consumes at run-time (upon completion) is a job
demand realization. The demand realization of a job is not known prior to its completion. A
job completes execution when it announces, or signals, that it has finished execution; i.e., when
the demand realization has presented itself. The latter happens when the job has been allocated
enough execution time to produce its output entirely.

To this end, let

Ω =
n∏
i=1

Ωi, M =
n⊗
i=1

Mi,

where
⊗n

i=1 Mi is the product σ-algebra; that is, the σ-algebra with respect to which all the
projection (coordinate) maps proji : Ω→ Ωi are measurable. Let P be the product measure on
(Ω,M); i.e., P is such that for every rectangle A ∈M, where A = A1 × · · · ×An and Ai ∈Mi,

P(A) = P(A1 × · · · ×An) =
n∏
i=1

Pi(Ai). (1)

B.N. Alahmad and S. Gopalakrishnan 01:9

Table 2 Notation

Notation Meaning

Z+ : {0, 1, 2, . . . }
N : {1, 2, . . . }
[m], where m ∈ N : {1, . . . ,m}
R : The real numbers
n ∈ N : Number of input jobs
ci(`) > 0 : WCET estimate of job Ji at criticality level `
χi : Criticality level of job Ji
di > 0 : Deadline of job Ji
Ωi : Scenario space of job Ji
Mi : Set of events; subsets of Ωi (σ-algebra)
Pi : Probability measure on the scenario space Ωi of job Ji⊗n

i=1 Mi : n-fold product σ-algebra
P : Probability measure on the product scenario space
ζi, Zi : Demand random variables
GZi : Distribution function of random variable Zi
E : Expectation operator with respect to product scenario space
1E(x) : Indicator function of a set E
δx(E), E is a set, x a point : Dirac measure
proji : Projection (coordinate) map, returns ith component of a given vector
0, 1 : All zeros and all ones vectors
ei : Unit vector whose ith coordinate is 1
A : {e1, . . . , en} ∪ 0, Action space of the MDP
S : State space of the MDP
at : n-component vector, action taken at time t
yt : n-component binary vector of job finish signals at time t
xt : n-component vector, cumulative execution time allocations up to time t
rt : scalar error flag
st = (t, yt, xt, rt) : State of the MDP at time t
A(st) : Admissible actions in state st
π(dst | st−1, at−1) : Markov policy
Q(dst | st−1, at−1) : State transition kernel of MDP
H∞ : Canonical trajectory space of the MDP induced by executing policy π
{At}, {St}, {Yt}, {Rt}, t ∈ Z+ : Action, state, finish signal, and error stochastic processes on H∞
crit : Ω =

∏n

i=1 Ωi → N : Scenario criticality level
critDemand : B ≡

∏n

i=1(0, ci]→ N : Demand realization criticality level
critPath : H∞ → N : System criticality level of trajectory (path)
critState : S→ {Lo,Hi,Unknown} : Operational system criticality level given a state
Pπ : The (unique) probability measure on H∞
Eπ : Expectation with respect to H∞
Fi ≡ Fπi : H∞ → N : (Random) Finish time of job Ji with respect to policy π
TLo ≡ TπLo : H∞ → N : Earliest time at which Lo system criticality level is inferred by policy π
THi ≡ TπHi : H∞ → N : Earliest time at which Hi system criticality level is inferred by policy π
TCI ≡ TπCI : min(TLo, THi), TCI of a trajectory in H∞
w : S× S→ Z+ : Local (immediate, per stage) objective cost function of MDP
W ≡Wπ : H∞ → Z+ : WTF random variable on trajectory space
κ : S→ {0, 1} : Immediate constraint cost function of MDP
C ≡ Cπ : H∞ → Z+ : Constraint cost random variable on trajectory space

LITES

01:10 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

We shall denote vectors ω ∈ Ω as ω1, . . . , ωn, where ωi ∈ Ωi is the ith coordinate of ω. We extend
every ζi to be defined on Ω as follows. Let Zi = ζi ◦ proji. Then Zi : Ω→ (0, ci(L)] depends only
on the ith coordinate of a given ω ∈ Ω; that is,

Zi(ω) = ζi
(
proji(ω)

)
= ζi(ωi) (ω ∈ Ω).

We define the demand vector Z =
(
Z1, . . . , Zn

)
: Ω→

∏n
i=1(0, ci(L)]. Then

Z−1(C1 × · · · × Cn) =
(
Z1, . . . , Zn

)−1(C1 × · · · × Cn)
= {ω ∈ Ω : Zi(ω) ∈ Ci ∀i ∈ [n]} [=

⋂n
i=1 Z

−1
i (Ci)]

= {ω ∈ Ω : proj−1
i (ω) ≡ ωi ∈ ζ−1

i (Ci) ∀i ∈ [n]}

=
n∏
i=1

ζ−1
i (Ci). (2)

Then the definition of P implies that the distribution of Z, PZ , is such that

PZ(C1 · · ·Cn) = P
(
Z−1(C1 · · ·Cn)

)
= P
(⋂n

i=1 Z
−1
i (Ci)

)
= P
(∏n

i=1 ζ
−1
i (Ci)

)
=(∗)

∏n

i=1 Pi
(
ζ−1
i (Ci)

)
=
∏n

i=1 Pζi (Ci),

where equality (∗) follows by (1).
We will let Gζi(t) = Pζi

(
(−∞, t]

)
denote the distribution function of ζi. In the probabilistic

setting, every ω ∈ Ω is a scenario of execution, and Z(ω) is the corresponding system demand
realization (contrast these definitions with their counterparts in the deterministic setting described
above). Every execution scenario maps to a unique system criticality level realization through
the function crit : Ω→ [L], where

crit(ω) = min
{
` ∈ [L] : Zi(ω) ∈ (0, ci(`)] for all i ∈ [n]

}
. (3)

That crit is defined for all scenarios ω ∈ Ω follows by monotonicity of ci(`) with respect to `.
Fix ` ∈ [L]. For a scenario ω ∈ Ω, by (3), crit(ω) = ` if there is at least one job, say Ji, such

that ci(`− 1) < Zi(ω) ≤ ci(`), while the remaining jobs are such that Zj(ω) ≤ cj(`). For ` ∈ [L],
by independence of job demands,

P(crit ≤ `) = P
(⋂n

i=1{Zi ≤ ci(`)}
)

=
∏n
i=1Gζi

(
ci(`)

)
.

Since every scenario has a unique criticality level,

P(crit ≤ `) =
∑̀
k=1

P(crit = k).

Therefore,

P(crit = `) = P(crit ≤ `)− P(crit ≤ `− 1) =
n∏
i=1

Gζi

(
ci(`)

)
−

n∏
i=1

Gζi

(
ci(`− 1)

)
,

with the convention that ci(0) = 0. Specializing to the dual criticality case, where Lo ≡ 1 and
Hi ≡ 2, we have

P(crit = Lo) =
n∏
i=1

Gζi

(
ci(Lo)

)
, P(crit = Hi) = 1−

n∏
i=1

Gζi

(
ci(Lo)

)
. (4)

B.N. Alahmad and S. Gopalakrishnan 01:11

Now we recast the definitions made earlier in terms of scenarios spaces, random variables, and
the functions that we have just defined.

A scheduling policy is a rule that at every time instant decides which job, from the set
of available jobs (those that have not finished execution), is assigned the processor. At every
time instant, a scheduling policy may use the characterizing parameters of all jobs, as well as its
previous decisions, in making its next job allocation decision.

I Definition 2 (Correct MC-Schedulability). A policy π is said to correctly MC-schedule an
instance I = (J1, . . . , Jn;L) if for every scenario ω ∈ Ω, every Ji with χi ≥ crit(ω) receives Zi(ω)
units of execution during [0, di] under π.

We stress again that this definition does not require that jobs whose criticality is less than that of
the realized system criticality level be given any execution; in fact, we will consider doing so as an
undesired allocation scheme that is wasting the processor utilization.

I Definition 3 (MC-Feasibility, Classical). An instance I = (J1, . . . , Jn;L) is MC-feasible if there
is an online (non-clairvoyant) scheduling policy π under which I is correctly MC-schedulable.

Since our setting is probabilistic, we will be concerned with the notions of probabilistic feasibility
and expected WTF-optimality. We defer the formal definitions of these notions until we have
precisely defined the stochastic process induced by a policy, and the underlying probability space
over which the expectation is taken (Definitions 4 and 5 in section 3.4).

3 Problem Definition: Integer Demands and Dual Criticalities

We consider a specialization of the setting discussed in the previous section, in which all demand
random variables are integer-valued2, and the system is dual-criticality. We are given two error
parameters: One is a lower bound on the probability that all n jobs finish at or before their
deadlines if the system criticality level is realized as Lo, and the other is a lower bound on the
probability that Hi-criticality jobs meet their deadlines if the system criticality level is realized
as Hi. We are required to compute a scheduling policy that minimizes, in expectation, the time
wasted scheduling Lo-criticality jobs if the system criticality level turns out to be Hi, while
respecting the deadline miss constraints. That is, we want to compute a policy that minimizes
the WTF for the given instance, while respecting the timeliness constraints given by the error
parameters. We will make the definition of deadline miss probability precise in sections to follow.
Formally, the demand becomes the random variable

ζi : Ωi → {1, 2, . . . , ci(Lo), ci(Lo) + 1, . . . , ci(χi)}.

Accordingly, all demand realizations are integers, and we will therefore consider scheduling at
integer boundaries. We shall assume that a job system is MC if not all the input jobs have the
same criticality.

3.1 MDP Setup
Let Y = {0 : finished, 1 : not finished}n, and let yt ∈ Y be the following variable (n-component
vector): yit = 1 iff job Ji still requires execution at time t, and yit = 0 iff Ji has finished execution.
At time 0, all jobs require execution, so we shall assume that y0 = 1, the vector of all 1s. The

2 One may equally well work with rational times by regarding time as being divided into integer multiples of
some fixed rational quantum q > 0, and using scaling arguments to convert to integers.

LITES

01:12 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

evolution of the system state depends on the policy, so will specify precisely how the system
evolves after formally defining policies.

Let A be the set of control actions (here jobs) available to the scheduler. We will let A =
{e1, . . . , en} ∪ {0}, where 0 is the vector of all 0s, and {e1, . . . , en} is the standard basis for Rn;
ei is the unit vector that is 1 at the ith coordinate and 0 elsewhere. If the action taken at time
t ∈ Z+ is at ∈ A, then at = ei means that job Ji occupies the processor during [t, t+ 1]. If at = 0,
then no job is scheduled and the processor is kept idle. Let xt = (x1

t , . . . , x
n
t) encode the amount

of execution time that every job has been allocated up to the beginning of the tth epoch (before
acting at time t); that is, x0 = 0 and xt =

∑t−1
m=0 am for t ∈ N. Then for every t ∈ Z+ and i ∈ [n],

xit ∈ Xi =
{

0, 1, . . . , ci(χi)
}
. We will let X =

∏n
i=1 Xi. We will utilize a variable rt to “mark” the

state as “error”. An error flag stamped on a state signifies a deadline miss. rt assumes values in

R =
{
not error, potential error, error, error′

}
.

The state of the scheduling system at time t ∈ Z+ is st = (t, yt, xt, rt) ∈ S, where
S ⊂ {0, . . . , N} × Y × X × R. The rationale behind our choice of this particular design of
system state will become clear during the derivation of the state process below. For now, we
mention how each element comprising our state representation achieves a desirable merit we seek
in the system state:

t: The main reason we include time is that we want to encode job finish times in the state,
because we will identify “error” states as those where some job’s finish time exceeds its deadline.
As a byproduct, augmenting the state with time will result in time-homogeneous (stationary)
state transition dynamics (Hernández-Lerma [25], p. 13);
yt: Implements the idea that a job signals that it has finished execution; this is the only state
element that we observe, the others we set according to yt;
xt: Summarizes all we need to know about the decisions we have made (allocations) up to
time t, thus eliminating the need to include all actions up to time t. This is the key to ensure
that the state process, which we derive below, is a Markov chain;
rt: One case where a state st becomes error is if some Hi-criticality job i ∈ IHi has just missed
its deadline, which happens when t = di and Ji still requires execution (yit = 1). In this case,
we will set rt = error. When rt = error, we will set rt′ to error′ for all t′ > t; we do so to avoid
charging the trajectory of execution more than once if more then one job miss their deadlines
(see (17) and the discussion thereafter). Another possible error scenario is that when some
Lo-criticality job i ∈ ILo has just missed its deadline (t = di) and still demands execution
(yit = 1), and the system criticality level realization is inferred as Lo at or before t; that is, all
Hi-criticality jobs have already finished execution with Lo demand realizations (yjt = 0 and
xjt ≤ cj(Lo) for all j ∈ IHi). However, those are not the only cases where the state becomes
error. Consider the more subtle situation where no job has missed its deadline prior to time t,
and st is such that there is i ∈ ILo that just missed its deadline (t = di and yit = 1), but the
scenario’s criticality level realization is not yet determinable; in terms of our control variables,
there is a non-empty F ⊂ IHi, possibly all of IHi, such that every job j in F has executed for
at most cj(Lo)− 1, and none of the jobs in F have finished execution (yjt = 1 and xjt < cj(Lo)
for all j ∈ F), while the other k ∈ IHi \ F , if any, have finished already with Lo demand
realizations (ykt = 0 and xkt ≤ ck(Lo) for all k ∈ IHi \F). In this case, the Lo-criticality job Ji
that just missed its deadline does not drive the system into an error state at time t since, by
our definition of MC feasibility, this cannot be decided until we know the execution scenario’s
criticality level realization with certainty, which here depends on the (yet unknown) demand
realizations of the jobs in F . In such case, we will say that the system is potentially in error
state at time t, and we set rt = potential error to “remember” that a Lo-criticality job has

B.N. Alahmad and S. Gopalakrishnan 01:13

missed its deadline at t. Doing so gives us the facility to decide later whether or not the system
is in error state—as soon as the scenario’s criticality level realization is inferred—and, as a
consequence, deduct the penalties correctly in the MDP.

For t ∈ N, let (S × A)t be the Cartesian product of S × A with itself t times. Define the set of
admissible histories up to time t as H0 = S, and

Ht = (S× A)t × S (t ∈ N).

Every element of Ht is called a t-history, and has the form

ht = (s0, a0, . . . , st−1, at−1, st).

t-histories are the information available to the scheduler before making its job selection decision
at time t.

Let A(st) ⊂ A be the set of actions that the scheduler is allowed to apply at time t when the
scheduling system is in state st. We shall call A(st) the set of admissible actions in state st.
A scheduling policy is a sequence π = {πt : t ∈ Z+}, where πt is a stochastic kernel on A(st)
given Ht. That is, if we denote the power set of a set X as 2X , then πt ≡ πt(dat | ht), where
πt : 2A(st) ×Ht → [0, 1] is such that
(i) for every B ∈ 2A(st), πt(B | ·) is a function from Ht to [0, 1], and
(ii) for every ht ∈ Ht, πt(· | ht) : 2A(st) → [0, 1] is a probability measure on A(st).

The state st summarizes all allocation decisions and remaining demands up to time t. We will
restrict our attention to Markov policies, where πt(at|ht) = πt(at|st) for every ht ([26] Definition
2.3.2 a).

A Note on Terminology: Since our state and action spaces are finite, all the stochastic (trans-
ition) kernels here can be represented by transition matrices. In this article, however, we will not
use any of the matrix algebra machinery used to analyze Markov chains, so we will present our
framework in the language of stochastic kernels.

A work-conserving scheduling policy always schedules a job that still demands execution;
i.e., it never keeps the processor idle whenever there is a job that has not finished execution. Thus
a policy is non-work-conserving iff there is t ∈ Z+ such that at = 0 (no job is selected) and there
is i ∈ [n] such that Ji has not finished execution; i.e., yit = 1. The epoch N =

∑n
i=1 ci(χi) is

an upper bound on our planning horizon. With N fixed, any trajectory induced by executing a
work conserving policy satisfies 1)

∑n
i=1 x

i
t = t for every t ∈ {0, . . . , N} for which yit = 1 for some

i ∈ [n], and 2) xt = xT for all t ∈ {T, . . . , N}, where T is the first time instant at which all jobs
finish execution. A non-work-conserving schedule will only delay job completions and the time at
which the criticality level realization can be inferred, so we restrict ourselves to work-conserving
policies.

We implement the requirement that the scheduling policy be work-conserving by specifying
that A(st) includes only vectors ei for which yit = 1, if any. We will drop Lo-criticality jobs
(temporarily) as soon as the state st indicates that the operational system criticality level is Hi,
and we will enforce this by placing further restrictions on A(st). Namely, given state st, if there is
i ∈ IHi such that both xit ≥ ci(Lo) and yit = 1, then the operational system criticality level at
time t is Hi and there are Hi-criticality jobs still requiring execution, so we exclude from A(st) all
Lo-criticality jobs. Otherwise, we include all Lo-criticality jobs that have not finished yet. If st
does not satisfy the latter condition, then either the system criticality level realization cannot be
inferred at t, or all Hi-criticality jobs finished with Lo demand realizations before or at t, or the

LITES

01:14 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

system criticality level was known before or at t as Hi, but all Hi-criticality jobs have finished
execution at t. In the last case, we might have dropped Lo-criticality jobs earlier, and, since
scheduling Lo-criticality jobs at time t in this case is not considered WTF (and does not affect
feasibility), we may bring back any Lo-criticality jobs that still need to execute. In summary,

A(st) =


{ei : yit = 1, χi = Hi} (∗) if there is i ∈ IHi such that xit ≥ ci(Lo) and yit = 1
{ei : yit = 1} if (∗) not satisfied and there is i ∈ [n] such that yit = 1
{0} otherwise (all jobs finished execution).

Control Model

Scheduling decisions are made at every t ∈ {0, . . . , N − 1} exclusively. If a certain job is chosen
to execute at some t, then this job occupies the processor for the duration [t, t + 1], without
interruption, until the scheduler is invoked again at t+1. We call [t, t+1] the tth control interval.
At any t > 0, if job Ji was chosen to occupy the processor during [t− 1, t] (i.e., at−1 = ei), then
the scheduler knows at time t whether or not job Ji requires more execution by observing the
value of yit, which will be set to finished if job Ji signals that it has finished execution at time t.
The other jobs’ demands are not affected by scheduling job Ji, and whether or not the other jobs
require more execution does not change in [t− 1, t]. The information available to the scheduler at
the beginning of the tth control interval is at−1, yt, xt, and rt.

Let s = (t, y, x, r) and ŝ = (t̂, ŷ, x̂, r̂). It is necessary for transition (s, a, ŝ) to be valid that all
the following be satisfied:

NC : t̂ = t+ 1,
n∑
i=1

xi = t,

a = x̂− x = ei for some i ∈ [n], or a = x̂− x = 0
y − ŷ ∈ {0, ei} for the same i, and
(r, r̂) /∈

{
(error, not error), (error, potential error), (not error, error′),
(potential error, error′), (error′, r) ∀r ∈ R \ {error′}

}
.

However, not all state transitions satisfying NC are valid, as we will describe below. All
invalid state transitions have Q({ŝ} | s, a) = 0, however. To this end, we note that the state
includes all the information necessary to determine whether or not the system criticality level
is inferred, and if so, determine its value. To simplify the exposition, we define a function
critState : S→ {Lo,Hi,Unknown}, where critState(s) is the system criticality level realization,
and is defined as follows: For s = (t, x, y, r),
(1) critState(s) = Lo if all Hi-criticality jobs finished execution with Lo demand realizations;

that is, if yi = 0 and xi ≤ ci(Lo) for all i ∈ IHi;
(2) critState(s) = Hi if either

(i) there is i ∈ IHi such that xi(Lo) = ci(Lo) and yi = 1, or
(ii) there is i ∈ IHi such that xi(Lo) > ci(Lo);

(3) If neither of the above holds, then critState(s) = Unknown.

Now assuming transition (s, a, ŝ) satisfies NC, we will use monotonicity of t 7→ xt and t 7→ yt, and
that s0 is fixed, to list additional conditions regarding the error flags under which (s, a, ŝ) is a
valid transition in an exact sense. In what follows, for a state s = (t, x, y, r) and ` ∈ {Lo,Hi},
the statement “an `-criticality job misses its deadline at time t” is to be understood formally as
“there is i ∈ I` such that di = t and yi = 1 (not finished).”

B.N. Alahmad and S. Gopalakrishnan 01:15

E1. (r = not error, r̂ = potential error): If all of the following conditions hold:
(i) no Hi-criticality job misses its deadline at time t̂ = t+ 1,
(ii) a Lo-criticality job misses its deadline at time t̂, and
(iii) the system criticality level is not yet determinable at t̂; that is, critState(ŝ) = Unknown

(r = no error says that no Hi-criticality jobs missed their deadlines up to time t);
E2. (r = not error, r̂ = error): Either

(i) a Hi-criticality job misses its deadline at time t̂, or
(ii) a Lo-criticality job misses its deadline at time t̂ and critState(ŝ) = Lo;

E3. (r = potential error, r̂ = error): Same as 2, except that we dispense with the condition in 22ii
that a Lo-criticality job misses its deadline at time t̂. r = potential error is saying that no
Hi-criticality job missed its deadline till t, and the criticality level could not be inferred till t,
but a Lo-criticality job has missed its deadline already;

E4. (r = potential error, r̂ = potential error): Same as conditions (i) + (iii) of E1;
E5. (r = potential error, r̂ = not error): If critState(ŝ) = Hi and no Hi-criticality job misses its

deadlines at time t̂ = t+ 1;
E6. (r = not error, r̂ = not error): The combined conditions of (r = not error, r̂ 6= potential error)

and (r = not error, r̂ 6= error);
E7. (r = error, r̂ = error′): always;
E8. (r = error′, r̂ = error′): always.

The following summarizes the control model:
1. At t = 0, all jobs are ready to execute and they all demand execution, and the scheduler needs

to pick a job to schedule for exactly one time unit before it is invoked again at t = 1 (i.e., a0
needs to be set). Then y0 = 1, x0 = 0, and r0 = no error;

2. At the beginning of the tth control interval:
2.1 Update the cumulative system allocation by setting xt ← xt−1 + at−1;
2.2 Observe (acquire) yt;
2.3 Set Error: Set rt given rt−1 according to one of E1–E8;
2.4 Act: Set at to one of the vectors in A(st).

We will say that a state is valid if it can be generated by the control model above. The state
space S contains only the valid states; i.e., S is the subset of {0, . . . , N} × X × Y × R that can
be generated by the control model. For instance, if s = (t, x, y, r) is such that t = di + 1 and
yi = 1 (not finished) for some i ∈ [n], and r = not error, then for no x is s is valid, even if x is
such that

∑n
j=1 x

j = t (necessary for a state to be valid) and xj < cj(χj) for all j.
We point out that the state transition diagram has the simple structure of a directed tree of

depth at most N (the maximum horizon length), with fixed root s0, and each node in level t,
t ∈ {0, . . . , N}, corresponds to a possible state at time t (i.e., st.) Each intermediate node (state)
has at most |A||Y| = 2n children, each corresponding to a unique current action and next finish
signal pair (at, yt+1). Note that the next cumulative allocation vector, xt+1, and the next error
flag, rt+1, are deterministic once we know at and yt+1, so there is only one choice for each given
st and at.

3.2 The Transition Probabilities
We describe the evolution of the system state by a transition kernel (transition matrix) Q(dŝ|s, a) :
2S × (S × A) → [0, 1]. Since our state space S is finite, transition kernel Q should satisfy the
following for fixed action a and previous state s,
Q1. Q(∅|s, a) = 0;
Q2. Q(S|s, a) = 1;

LITES

01:16 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

Q3. Q(U |s, a) =
∑
ŝ∈U Q({ŝ}|s, a) for every U ⊂ S;

Q4. 0 ≤ Q(U |s, a) ≤ Q(V |s, a) ≤ 1 for every U ⊂ V ⊂ S.
We shall abuse notation and write Q(ŝ|s, a) for Q({ŝ}|s, a). Let (s, a, ŝ) be a valid transition. If
s = (t, y, x, r), then t̂ = t+ 1, and we shall use the more time-suggestive notation ŝ ≡ st+1, where
ŷ ≡ yt+1, x̂ ≡ xt+1 and r̂ ≡ rt+1, and we similarly denote s as st. If (s, a, ŝ) is not valid, then
Q(ŝ|s, a) = 0. Fix an action at = ei. Then for transition (st, ei, st+1) to be valid, we must have
yit = 1 and xit+1 = xit + 1. Also, scheduling Ji does not affect the execution time demands of the
other jobs, so st+1 must satisfy yjt = yjt+1 for every j 6= i. For our fixed state-action pair (st, ei),
we know at time t that Zi > xit, and for j 6= i, Zj ∈ Cj for some Cj ⊂ [cj(χj)] . The following is a
complete list of all the possible next states st+1 and the corresponding transition probabilities
for the fixed action-state pair (st, at = ei) (it is here where we fully utilize the assumption of
independent job demands):

yit+1 = 1 (not finished): This says that the scenario ω is such that Zi(ω) > xit+1 = xit + 1, and
since Zj(ω) remains in Cj for every j 6= i at time t+ 1, we have

Q(st+1|st, ei) = P(Zi > xit + 1, Zj ∈ Cj ∀j 6= i | Zi > xit, Zj ∈ Cj ∀j 6= i)

= P(Zi > xit + 1, Zj ∈ Cj ∀j 6= i)
P(Zi > xit, Zj ∈ Cj ∀j 6= i)

= P(Zi > xit + 1)P(Zj ∈ Cj ∀j 6= i)
P(Zi > xit)P(Zj ∈ Cj ∀j 6= i)

= P(Zi > xit + 1)
P(Zi ≥ xit + 1)

(5)

if xit < ci(χi) − 1, and Q(st+1|st, ei) = 0 otherwise. The second to last equality follows by
independence of job demands.
yit+1 = 0 (finished): Here the demand of job Ji is realized at time t+ 1; that is, we know that
the scenario ω is such that Zi(ω) = xit+1 = xit + 1. Using the same reasoning as in the previous
case,

Q(st+1|st, ei) =


P(Zi=xi

t+1)
P(Zi≥xi

t+1) if xit < ci(χi)− 1,
1 if xit = ci(χi)− 1
0 otherwise.

(6)

Then for fixed (st, at = ei), summing over all possible next states; i.e., adding (5) and (6), we have

P(Zi > xit + 1) + P(Zi = xit + 1)
P(Zi ≥ xit + 1)

= P(Zi ≥ xit + 1)
P(Zi ≥ xit + 1)

= 1.

That is, our prescribed transition kernel Q satisfies property Q2, and indeed all the others.

3.3 The Underlying Probability Space
In this section we will outline in detail the construction of the probability space that we will be
working with. We will shift our attention from scenario spaces (the Ωis, section 2) to trajectory
spaces, which consist of the sample paths induced by executing policies. We will need this
construction when stating the formal definition of our problem, and we shall make several
references to it. Readers acquainted with the theory of Markov decision processes may only wish
to familiarize themselves with our notation.

B.N. Alahmad and S. Gopalakrishnan 01:17

Consider the product space

(S× A)∞ =
∞∏
t=0

(St × At),

where S0 = {s0}, s0 ≡ (t = 0, x0 = 0, y0 = 1, r0 = not error) is our fixed initial state (all jobs are
allocated 0 execution time and they all require execution,) St ⊂ {t} × Y × X × R, and At is a
copy of A. We will consider the subset of (S× A)∞ where each sequence of state-action pairs can
be generated by our control model, and we will call such sequences the valid trajectories. We
denote the set of valid trajectories as H∞, and we call H∞ the trajectory space induced by all
work-conserving scheduling policies. Every h ∈ H∞ is a trajectory induced by executing some
work-conserving policy, and is of the form

h = (s0, a0, s1, a1, . . .).

That is, every h is a realization of a schedule. We endow H∞ with the product σ-algebra, which we
denote as H∞. Let St : H∞ → S be the projection (coordinate) map on H∞ such that St(h) = st,
h ∈ H∞. Define At : H∞ → A(st) similarly. Given policy π = {πt : t ∈ Z+}, transition kernel Q,
and initial distribution ν on S, the Ionescu-Tulcea extension theorem ([32], Theorem 14.32; [5],
Theorem 2.7.2) asserts that there exists a unique probability measure Pπν on H∞ such that

Pπν
(
St ∈ U | ht−1, at−1

)
= Q

(
U |st−1, at−1

)
(U ⊂ S).

We have ν = δs0 for s0 = (0,0,1, not error), where δs0 is Dirac measure on H∞, so for brevity we
write Pπ ≡ Pπδs0

. We denote expectation with respect to Pπ (on H∞) as Eπ. Moreover, because
every policy is Markov as mentioned above, it follows that the induced state process {St : t ∈ Z+}
is a Markov chain for every policy π. That is, for every U ⊂ S and t ∈ Z+,

Pπ
(
St+1 ∈ U | st, . . . , s0

)
= Pπ

(
St+1 ∈ U | st

)
= Q

(
U |st, πt

)
,

where for fixed st,

Q
(
U |st, πt

)
=
∫

A
Q
(
U |st, at

)
πt(dat|st) =

n∑
i=1

Q
(
U |st, ei

)
πt(ei|st).

From now on, all subsequent random variables will be defined on H∞.
I Remark. For a given st, each action random variable At of the induced action process {At :
t ∈ Z+} is distributed according to πt(· | st); that is, Pπ(At ∈ C | St = st) = πt(C | st) for every
C ⊂ A(st).

3.4 Problem Statement
We start by formally defining the random variables that make up our objective function and
constraints, in terms of the induced MDP. First, we note that to every trajectory corresponds
at least one scenario in Ω, and that all scenarios that correspond to a trajectory have the same
criticality level. Consequently, we define the criticality level of a trajectory as the criticality level
of any scenario corresponding to it3.

3 To ensure that the trajectory criticality level is well-defined, we must assume that every policy assigns every
Hi-criticality job the processor for at least ci(Lo) time units. However, this is readily satisfied by every policy
since, by the way we specified the set of admissible actions A(st), Hi-criticality jobs are never dropped.

LITES

01:18 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

To this end, let I` = {i ∈ [n] : χi ≥ `}. Let h ∈ H∞ be a trajectory of execution. If h’s
criticality level is Hi, then the earliest time at which this can be inferred is the first instant at
which some job Ji with χi = Hi demands more than ci(Lo) units of execution. We denote this
random time as THi : H∞ → N ∪ {∞} and, in accordance with our control model, we define it as

THi = min
{
t ∈ N : Xi

t = ci(Lo) and Y it = 1 (not finished) for some i ∈ IHi
}
, (7)

with the usual convention min ∅ =∞.
If the trajectory’s criticality level is Lo, then this can be inferred with certainty only at the

first instant at which all Hi-criticality jobs finish execution. We denote this random time instant
as TLo : H∞ → N ∪ {∞}, and we define it as

TLo = min
{
t ∈ N : Y it = 0 (finished) and Xi

t ≤ ci(Lo) for all i ∈ IHi
}
. (8)

We note that the events {TLo <∞} and {THi <∞} are mutually exclusive, since a trajectory
of execution cannot be both Lo and Hi criticality. This makes the events {TLo = ∞} and
{THi =∞} mutually exclusive, since every trajectory must have a criticality. There are therefore
exactly two possibilities, and one of them must occur: Either {TLo < ∞} and {THi = ∞}, or
{TLo = ∞} and {THi < ∞}, exclusively. Accordingly, we define the TCI of a trajectory under
policy π as the random (finite) time

TCI = min(THi, TLo).

Recalling the manner in which we specified the set of admissible actions A(st), every policy
drops Lo-criticality jobs as soon as the scenario’s criticality level is realized as Hi; moreover, only
allocations made to Lo-criticality jobs prior to the TCI are considered as WTF, and this allocation
is regarded as WTF only if the system criticality level realization is Hi. Let critPath(h) denote
criticality level realization of trajectory (path) h ∈ H∞; critPath : H∞ → {Lo,Hi}. Then one way
to define the WTF of a trajectory h ∈ H∞ is as the random variable

W (h) = 1{critPath=Hi}(h)
∑

i:χi=Lo
Xi
TCI

(h), (9)

where Xi
TCI

(h) ≡ Xi
TCI(h)(h) is job Ji’s total allocation sampled at TCI. That is, for valid trajectory

h ∈ H∞, W (h) = 0 if critPath(h) = Lo, and W (h) is equal to the total allocation given to the
Lo-criticality jobs up to the TCI if critPath(h) = Hi.

We define the finish time of job Ji with respect to policy π as the stopping time Fi : H∞ → N,
where

Fi = min
{
t ∈ N : Y it = 0 (finished)

}
.

Objective: A dual-criticality probabilistic MC (pMC) instance I is described by the tuple(
{J1, . . . , Jn}, εLo, εHi

)
, where for every i ∈ [n], Ji is specified by the tuple

(
(Ωi,Mi,Pi), ζi, χi, ci, di

)
.

The error parameters εLo and εHi are the desired upper bounds on the deadline miss probabilities,
and both are in the interval [0, 1]. We seek a scheduling policy π such that the expected WTF,
EπW , is minimized, while simultaneously guaranteeing probabilistic MC-feasibility in the following
sense: (1) Conditioned on critPath = Lo, a job, among all n jobs, may miss its deadline with
probability at most εLo, and (2) conditioned on critPath = Hi, a Hi-criticality job may miss its
deadline with probability at most εHi.

We write our problem as the following CMDP:

CMDP :minimize
π∈Π

EπW

subject to Pπ
(⋃

i∈[n]{Fi > di} | critPath = Lo
)
≤ εLo

Pπ
(⋃

i∈IHi
{Fi > di} | critPath = Hi

)
≤ εHi.

(10)

B.N. Alahmad and S. Gopalakrishnan 01:19

We note that for any ` ∈ {Lo,Hi}, {critPath = `} = {TCI = T`} = {T` < ∞} ⊂ H∞, and that
TπCI <∞ Pπ-almost surely for any work conserving policy π.

Having formalized the problem, we are now able to give precise definitions of what its means
for an instance with probabilistic information to be feasible in the MC setting.

I Definition 4 (Probabilistic MC-feasibility). A pMC instance I is probably MC-feasible (pMC-
feasible) if there is a policy π such that the constraints (10) are satisfied.

A scheduling policy under which pMC instance I is pMC-feasible is said to correctly pMC-
schedule I. Let Π(I) denote the set of scheduling policies that correctly pMC-schedule instance
I.

I Definition 5 (Expected WTF-Optimality). A scheduling policy π is said to be WTF-optimal for
pMC instance I in expectation (or expected-WTF-optimal) if π ∈ Π(I) and EπW ≤ Eπ′

W for all
π′ ∈ Π(I).

Accordingly, given pMC instance I, our goal is to compute an expected WTF-optimal scheduling
policy for I.
I Remark. For ` ∈ {Lo,Hi}, Pπ(· | critPath = `) is a probability measure on the restriction of
H∞ to trajectories of criticality `. In the special case where H∞ is finite and Pπ(· | critPath = `)
is uniform measure, the constraint Pπ

(
Fi > di for some i ∈ [n] | critPath = `

)
≤ ε` has the

following simple interpretation: If we let H∞(`) be the subset of H∞ consisting of the trajectories
whose criticality is `, then the number of trajectories in H∞(`) where all n jobs do not miss their
deadlines is required to be at least (1− ε`)|H∞(`)|.

4 Solution Approach: Risk-Constrained MDP

The WTF as defined in (9) depends on the whole trajectory, so in its current form is not suitable
in the MDP framework, where costs are accrued per stage. We wish to define the WTF as a sum,
over the horizon, of functions that depend at each t ∈ Z+ on st−1 and st only. To this end, we
will use the following

I Proposition 6. Let h = (s0, a0, s1, a1) be a valid trajectory (in H∞). Then
(a) If critState(st) = Unknown for some t ∈ N, then critState(sm) = Unknown for every m < t;

and
(b) If critState(st) = ` for some t ∈ N and ` ∈ {Lo,Hi}, then critState(sm′) = ` for every m′ > t.

Proof. Follows readily from monotonicity of t 7→ Xi
t(h) and t 7→ Y it (h) for every i ∈ [n] and

h ∈ H∞, together with the fact that x0 = 0 and y0 = 1, and that we consider only work conserving
policies. J

We define the local (per stage) objective cost function w : S× S→ Z+, where

w(s, ŝ) = 1
{
critState(s) = Unknown

}
1
{
critState(ŝ) = Hi

} ∑
i:χi=Lo

x̂i

for s, ŝ ∈ S. That is, w(s, ŝ) is equal to the total Lo criticality allocation
∑
i:χi=Lo x̂

i only if the
criticality level realization is inferred as a consequence of moving from state s to state ŝ and is Hi
criticality; otherwise, w(s, ŝ) = 0. Since we are working with the set valid trajectories exclusively,
we may use Proposition 6 to write the WTF as

W (h) =
N−1∑
t=0

w
(
St(h), St+1(h)

)
.

LITES

01:20 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

4.1 The Risk Constraints
We will leverage the ideas of Geibel and Wysotzki [21] to carry out the transformation of the
deadline miss probabilities into a single “risk” constraint that takes the form of the expectation of
immediate costs.

We may write the first constraint in CMDP as

Pπ(Fi > di for some i ∈ [n], critPath = Lo) ≤ εLoPπ(critPath = Lo), (11)

where

Pπ(Fi > di for some i ∈ [n], critPath = Lo) = Pπ
(
{h ∈ H∞(Lo) : ∃t ∈ N s.t. rt = error}

)
.

(12)

Following Geibel and Wysotzki [21], constraint (11) defines the risk across the Lo-criticality
trajectories associated with executing policy π. Similarly to the Lo-criticality case, we write the
second constraint in CMDP as

Pπ(Fi > di for some i ∈ IHi, critPath = Hi) ≤ εHiPπ(critPath = Hi), (13)

where

Pπ(Fi > di for some i ∈ IHi, critPath = Hi) = Pπ
(
{h ∈ H∞(Hi) : ∃t ∈ N s.t. rt = error}

)
.

(14)

The trajectories

Her
∞ ≡

{
h = (s0, a1, s1, . . .) ∈ H∞ : ∃t ∈ N s.t. rt = error

}
are the error trajectories that we want to avoid with high probabilities.

H1(Lo)

H1(Hi)

H
er

1
(Lo)

H
er

1
(Hi)

Figure 2 Every policy π induces a probability measure Pπ on the trajectory space H∞, where the latter
consists of two disjoint sets: The Lo and Hi-criticality trajectories H∞(Lo) and H∞(Hi), respectively.
The ovals are graphical representations of the error trajectory sets that we wish to avoid. Given a policy,
say π, the “sizes” of the induced error sets Her

∞(Lo) and Her
∞(Hi) (relative to the entire trajectory space

H∞) are given by the unique probability measure Pπ. The smaller the size a policy assigns to the error
subsets, the better it is at avoiding trajectories in them. Roughly speaking, each `th (criticality-specific)
constraint in ECMDP is a restriction on the “size” of the corresponding error set Her

∞(`) relative to the
trajectories of the same criticality; i.e., relative to the size of H∞(`) (and not to the whole trajectory
space H∞); hence the conditioning in the constraints.

B.N. Alahmad and S. Gopalakrishnan 01:21

We now combine the constraints in CMDP. Put p` = ε` P(crit = `), ` ∈ {Lo,Hi}, and let

∆ = min(pLo, pHi).

Since H∞ is the disjoint union of H∞(Lo) and H∞(Hi), we may combine (12) and (14), and
require the satisfaction of the more conservative risk

Pπ
(
Her
∞
)

= Pπ
(
{h ∈ H∞ : h is error}

)
= Pπ

(
∃t : Rt = error

)
≤ ∆. (15)

For then,

Pπ
(
Hπ,er
∞ (`)

)
≤ Pπ

(
Her
∞
)
≤ ∆ = min(pLo, pHi) ≤ p`, for all ` ∈ {Lo,Hi}. (16)

Next we write the risk constraint (15) as an expectation under Eπ of immediate costs having a
form similar to κ. Inspired by Geibel and Wysotzki [21], we define the per-stage constraint cost
function κ : K→ {0, 1} as

κ(s, a) ≡ κ(s) =
{

1 if r = error,
0 otherwise.

(17)

This way, if a trajectory h = (s0, a0, s1, a1, . . .) is error, then since there is t ∈ N such that rt = error
and rt′ = error′ for all t′ > t, it follows that the sequence of constraint costs corresponding to this
trajectory is such that

κ(s0) = 0, . . . , κ(st−1) = 0, κ(st) = 1︸ ︷︷ ︸, κ(st+1) = 0, . . . , κ(sN) = 0.

If h is not error, then κ(st) = 0 for all t ∈ Z+. If we let C =
∑N
t=0 κ(St), then C ∈ {0, 1}; that is,

C is a Bernoulli random variable with probability of success Pπ(C = 1). Success of this Bernoulli
trial happens if there is t ∈ N such that Rt = error. That is,{

C = 1
}

=
{
∃t : Rt = error

}
,

from which it follows that

Pπ(C = 1) = Pπ
(
∃t : Rt = error

)
.

Since C is Bernoulli, it follows that

EπC = Pπ(C = 1),

from which we may write the risk constraint as

Pπ
(
∃t : Rt = error

)
= Pπ

(
C = 1) = EπC = Eπ

N∑
t=0

κ(St) ≤ ∆.

As a result of this transformation, all costs are now expectations of immediate costs, and
CMDP has the form

ECMDP : minimize
π∈Π

EπW = Eπ
N−1∑
t=0

w(St, St+1)

subject to EπC = Eπ
N∑
t=0

κ(St) ≤ ∆.

(18)

We denote as V ∗ the optimal value of ECMDP, where

V ∗ = inf
π∈Π

V (s0, π), V (s0, π) = EπW,

subject to the constraint EπC ≤ ∆.

LITES

01:22 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

4.2 The Linear Programming Approach
Most of the results that we apply in what follows regarding LP formulations for constrained MDPs
are due to Kallenberg [27] and Altman [3]. These formulations are also discussed in several other
references [4, 28, 29].

We define the immediate objective cost of taking action at in state st as the expected cost
over all possible next states:

w(st, at) = Eπw(st, at, St+1) =
∑
st+1∈S

w(st, at, st+1)Q(st+1 | st, at) =
∑
st+1∈S

w(st, st+1)Q(st+1 | st, at)

(see Puterman [35] equation (2.1.1).) To this end, recall that the schedule concludes when all
jobs finish execution. Moreover, costs (both objective and constraint) is (possibly) incurred only
until all jobs finish execution. That is, from the costs’ perspective, we are concerned with the set
of states

S′ =
{
s = (t, x, y, r) ∈ S : yi = 1 (not finished) for some i ∈ [n]

}
.

Costs keep (possibly) accruing until the state process hits S \ S′. Moreover, the set U ≡ S \ S′

is always reached under any work-conserving policy in finite time that is bounded above by
maxi∈[n]{Fi} ≤ N . Since we are considering work-conserving policies only, S′ also excludes any
states s = (t, x, y, r) for which t = N . Once the state process hits the set U , it never departs
U ; that is; U is absorbing under any work-conserving policy. In this case, our MDP is called
S′-transient (Altman [3]). In fact, our MDP is in a more restricted class that is a subset of
S′-transient MDPs. If we let TU be the hitting time of set U ; i.e.,

TU = inf{t ∈ N : St ∈ U},

then EπTU ≤ Eπ maxi∈[n]{Fi} ≤ N <∞ for any work-conserving policy π, and our MDP is said
to be S′-absorbing, or absorbing to U .

An optimal policy can be derived by solving the following linear program (Altman [4], equa-
tion (8.18)):

LP : minimize
[∑
s∈S

∑
a∈A(s)

w(s, a)ρ(s, a) =
∑
s∈S

∑
a∈A(s)

ρ(s, a)
∑
ŝ∈S

w(s, ŝ)Q(ŝ|s, a)
]

subject to
∑
s∈S

κ(s)
∑
a∈A(s)

ρ(s, a) ≤ ∆

∑
a∈A(s)

ρ(s, a)−
∑
s′∈S′

∑
a∈A(s′)

ρ(s′, a)Q(s|s′, a) = δs0(s) ∀s ∈ S (∗)

ρ(s, a) ≥ 0 ∀s ∈ S, a ∈ A(s).

An equivalent formulation is also given by Kallenberg [27], Theorem 6, and Kallenberg [29],
equation (57) and Theorem 26, where time is explicit. We note that in constraint (∗) of LP, for
every s ∈ S, the second summation is taken only over the states in S′ that are predecessors to
state s; that is, over s′ ∈ S′ for which there is a ∈ A(s′) such that Q(s|s′, a) > 0. For instance, if
the state is s = (t, x, y, r), then s′ = (t′, x′, y′, r′) ∈ S′ is a predecessor of s if t′ = t− 1.

If we let M =
∑
s∈S |A(s)|, then the decision variables involved in LP are

(
ρ(s, a) : s ∈ S, a ∈

A(s)
)
∈ [0,∞)M . If we let K =

{
(s, a) : s ∈ S, a ∈ A(s)

}
be the set of admissible state-action

pairs, then the vectors ρ over which the optimization in LP is carried out are non-negative finite
measures on

(
K, 2K

)
.

B.N. Alahmad and S. Gopalakrishnan 01:23

By Altman [4] Theorem 8.2, an optimal policy is the following: When the state is s, if
ρ
(
s,A(s)

)
> 0, then π chooses action a ∈ A(s) with probability

π(a|s) = ρ(s, a)
ρ
(
s,A(s)

) = ρ(s, a)∑
a′∈A(s) ρ(s, a′) , (19)

and otherwise chooses a arbitrarily from A(s).
I Remark. For (st, at) ∈ K, ρ(st, at) has the interpretation of being the probability that both
state st is occupied and action at ∈ A(st) is taken at time t under policy π defined by (19). In
fact,

ρ(st, at) = Eπ
N∑
q=1

1
{
Sq = st, Aq = at

}
, (20)

where 1{Sq = st, Aq = at} ≡ 1{Sq = st, Aq = at}(h) is the indicator function that evaluates to 1
if the trajectory of execution h is such that both Sq(h) = st and Aq(h) = at, and to 0 otherwise.
The RHS of (20) is the expected number of times that state-action pair (st, at) is visited under
policy π, and is termed the state-action occupation measure (or visitation frequency) associated
with policy π. The summation in (20) reduces to 1{St = st, At = at}, from which it follows that

ρ(st, at) = Pπ(St = st, At = at).

I Remark. Although we embedded time in the state to leverage results for computing stationary
policies, the policy defined by transformation (19) is time-dependent (non-stationary); it is Markov
nonetheless. However, we do not need to include time in the state; this is because all jobs start at
time 0, the schedule concludes when all jobs finish execution, and we consider only work-conserving
policies, so for a valid triple (x, y, r),

∑n
i=1 xi maps to the unique time instant during the schedule

when the state is occupied. All the previous discussion can be modified so that s = (x, y, r), and
implicitly using t =

∑n
i=1 x

i. We chose to include t explicitly in the state to make the exposition
clearer.
Our main result follows from the previous discussion, and is contained in

I Theorem 7. Given a pMC instance I, if LP is feasible, then I is pMC-feasible. Moreover, if I
is pMC-feasible, then the policy given by transformation (19) is expected-WTF-optimal for I.

4.3 A Less Pessimistic Exact Formulation
Recall that we combined the constraints of CMDP into the single risk constraint (15). The
combined constraint is more conservative than the original constraints, and it certainly restricts the
feasible region of CMDP, in the sense that there might be a policy that is feasible for the original
problem but not for the one with combined constraints. We did so to simplify the exposition, so
as to have a CMDP with a single constraint (and a single cost random variable). Now we detail
how to handle the exact case. This will be done at the expense of a constant increase in the size
of the state space, and slightly more complicated transition dynamics.

We distinguish two error types: Lo-errors and Hi-errors. The Lo-error trajectories are
described by the event

Her
∞(Lo) ≡ {h ∈ H∞ : Fi(h) > di for some i ∈ [n]} ∩ {critPath = Lo},

whereas the Hi-error trajectories are precisely

Her
∞(Hi) ≡ {h ∈ H∞ : Fi(h) > di for some i ∈ IHi} ∩ {critPath = Hi}.

LITES

01:24 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

Thus, if a Hi-criticality job misses its deadline under a policy but the trajectory is Lo criticality,
then this is a Lo-error. On the other hand, if a Lo-criticality job misses its deadlines but the
trajectory is Hi criticality, then this is not an error.

We enlarge the set of error flags by adding criticality-specific ones:

R =
{
not error, potential error, error, errorLo, errorHi︸ ︷︷ ︸, error′}.

For h = (s0, a0, s1, . . .) ∈ H∞ and ` ∈ {Lo,Hi}, h ∈ Her
∞(`) iff there is t ∈ N such that rt = error`.

Here, the flag error no longer identifies an error trajectory, but r = error means that a Hi-criticality
jobs missed its deadline but the system criticality level realization is not yet determinable. If
rt = error for some t, then an error will happen at some t′ > t when the criticality level of the
trajectory becomes known, at which point the type of the error will be determined; therefore, it
is always the case that rt′ = error` for some ` and all t′ > t. The flags error` communicate the
following information: They indicate the occurrence of an error and the type of the error; that
is, if rt = error` for some t ∈ N and `, then the trajectory is an error and it is a type ` error
(so it is also saying that the system criticality level realization is determined). We will define
criticality-specific constraint cost functions, where the `-error cost function charges a unit cost
whenever the state’s error flag is error`.

The following is the modification of conditions E1–E8 to accommodate the new setup:
E1’. (r = not error, r̂ = potential error): If a Lo-criticality job misses its deadline at time t̂ = t+ 1

and no Hi-criticality job misses its deadline at time t̂, but critState(ŝ) = Unknown;
E2’. (r = not error, r̂ = error): If a Hi-criticality job misses its deadline at time t̂ = t + 1, but

critState(ŝ) = Unknown;
E3’. (r = not error, r̂ = errorLo), (r = potential error, r̂ = errorLo): If critState(ŝ) = Lo and either

1. a Lo-criticality job misses its deadline at time t̂ but no Hi-criticality jobs miss their deadlines
at t̂, or

2. a Hi-criticality job misses its deadline at time t̂;
E4’. (r = not error, r̂ = errorHi), (r = potential error, r̂ = errorHi): If a Hi-criticality job misses its

deadline at time t̂ and critState(ŝ) = Hi;
E5’. (r = potential error, r̂ = error): Same as E2’;
E6’. (r = error, r̂ = error`) for any `: If critState(ŝ) = `;
E7’. (r = potential error, r̂ = potential error): Same as before;
E8’. (r = potential error, r̂ = not error): Same as before;
E9’. (r = not error, r̂ = not error): Same as before;
E10’. (r = error`, r̂ = error′) for any `: always;
E11’. (r = error′, r̂ = error′): always.
The control model is modified so that the step 2.3 that sets the error flags uses rules E1’–E11’
instead.

Now we define two immediate constraint-cost functions κLo, κHi : S→ {0, 1}, where κ`(s) =
1{r = error`}, ` ∈ {Lo,Hi}. If h = (s0, a0, s1, . . .) is `-error, then there is exactly one t ∈ N such
that rt = error`, and rt′ = error′ for all t′ > t. For this trajectory and the t in the preceding sentence,
κ`(st) = 1, and κ`(st′) = 0 for all t′ 6= t. Therefore,

∑
m=0 κ`(sm) = 1, and

∑
m=0 κ`′(sm) = 0 for

`′ 6= `. If h is not error, then
∑
m=0 κLo(sm) =

∑
m=0 κHi(sm) = 0. If we define the constraint-cost

random variables CLo, CHi : H∞ → R+ such that C` =
∑N
t=0 κ`(St), ` ∈ {Lo,Hi}, then every C` is

a Bernoulli random variable, with probability of success Pπ(C` = 1) = Pπ(∃t ∈ N such that Rt =
error`) = Pπ

(
Her
∞(`)

)
, where Pπ(C` = 1) = EπC`.

B.N. Alahmad and S. Gopalakrishnan 01:25

Then, we have the following optimization problem:

ECMDP′ : minimize
π∈Π

EπW = Eπ
N−1∑
t=0

w(St, St+1)

subject to EπC` = Eπ
N∑
t=0

κ(St) ≤ p`, ` ∈ {Lo,Hi}.

(21)

Finally, an exact WTF-optimal policy may be derived by solving a modification of LP, where the
constraint

∑
s∈S κ(s)

∑
a∈A(s) ρ(s, a) ≤ ∆ is replaced by the criticality-specific cost constraints∑

s∈S
κLo(s)

∑
a∈A(s)

ρ(s, a) ≤ pLo,
∑
s∈S

κHi(s)
∑
a∈A(s)

ρ(s, a) ≤ pHi.

Computational Complexity

An optimal satisfying assignment for the variables
{
ρ(s, a) : s ∈ S, a ∈ A(s)

}
can be found using

any variant of the simplex algorithm, which, in practice, is efficient in the number of decision
variables and the number of constraints. However, linear program LP can have as many as n|S|
decision variables and |S| constraints, so it requires explicit enumeration of the state space S, and
therein lies the trouble. If we let c = maxi∈[n]{ci(χi)}, then a “very” crude estimate of the size of
S is 2n4(c+ 1)n (since we do not need to include time in the state as mentioned earlier).

An MC instance might look like the following: n = 10 jobs and c = 100; for this instance, |S|
might be as large as 210 × 4 × 10110 ≈ 1023, which is astronomical. In a typical MC instance,
c� n, so our estimate of |S| indicates that the main cause of this “state space explosion” is the
state variable x that records the cumulative execution time allocations, and which introduces the
factor (c+ 1)n into our estimate of |S|.

A Note on Approximation. We point out that despite the high computational complexity, the
problem can be approximated efficiently and accurately using the factored MDP representation
framework [13]. In it, instead of explicitly enumerating the states, the transition kernel is stored
compactly by considering only the variables on which each state variable depends. To make
use of the compact state space representation, we may utilize the symmetric primal-dual LP
approximation techniques by Dolgov and Durfee [20], in which the variables of both LP and its
dual are replaced with linear combinations of basis functions that are defined only on subsets
of the state space—the so called features. Because jobs are independent, each variable (feature)
comprising the state space depends only on a small number of variables, and our MDP falls in a
special category of MDPs that are amenable to approximation, namely loosely (weakly) coupled
MDPs [34]. The basic idea is to decompose the MDP into smaller MDPs—which is possible by
the independence assumption—whose exact solutions can be obtained in manageable time, and
then combine the solutions for the subMDPs in a proper way to construct a solution for the
global MDP. This, together with the simple additive form of our cost functions, results in a linear
program that contains substantially less decision variables and constraints, which can then be
solved efficiently to get an approximate policy that is close to optimal.

5 Quantitative Evaluations

The purpose of this section is to provide intuition on how worst-case based approaches may
underperform when worst-case demands are not realized, or when errors may be allowed. Despite
the sizeable state space, we were able to compare the performance of our approach to the OCBP
algorithm [10] on small instances.

LITES

01:26 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

OCBP builds offline a fixed priority table, and then schedules jobs according to their computed
priorities. At every iteration of the priority computation procedure, OCBP finds the lowest priority
job as follows: Job Ji has the lowest priority among the set of jobs that have not been assigned a
priority yet if there is ci(χi) time in [0, di] when the other jobs j have executed for their demand
at Ji’s criticality; that is, for cj(χi) each. If a lowest priority job is found at a certain iteration,
then it is removed from the set of jobs that have not yet been assigned a priority, and the priority
computation procedure is applied to the remaining set. If a total ordering is found on the whole
input job set, then the instance is said to be OCBP-schedulable.

In our evaluation, we consider 14 pMC instances, each comprised of 3 or 4 jobs. The instances
are handcrafted to showcase different aspects of our approach. For each instance, we generate
job Ji’s probability mass functions (pmf) over {1, 2, . . . , ci(χi)}, i ∈ [n], as a uniform vector in
the standard (ci(χi)− 1)-simplex. For this purpose, we use the UUniFast Algorithm [12], which
generates uniformly distributed task utilization vectors. By setting the target system utilization
of UUniFast to unity, we get the desired pmfs. We generate the state space using a recursive
procedure, and we use Gurobi optimization software [24] to solve LP. The simulation is written
in C, and is publicly available at https://github.com/RADICAL-UBC/mc-simulation.git.

For each instance, we simulate job execution on 100, 000 demand vectors (behaviors) that are
randomly drawn from the job pmfs. Table 3 lists the input job parameters for each instance and
the results of job executions. The entry “# Errors” is the number of simulation samples—out
of 100, 000—where an execution error occurred under the policy derived by solving the more
conservative formulation LP. An error occurs for a sample if either some job misses its deadline
and the sample is Lo-criticality, or a Hi-criticality job misses its deadline and the sample is Hi
criticality (the definition of error according to the classical job dropping model.) An error is
counted only once for a sample if it happens, even if multiple jobs miss their deadlines. The entry
“# Deadline misses” in Table 3 is the number of samples per job for which the job missed its
deadline. Note that, by definition of error, if a job misses its deadline for some sample, then this
does not necessarily mean that an error occurred for that sample.

Putting ε` = 0 for any criticality ` results in ∆ = 0, which means that not a single error is
permitted. We observed that if an instance is OCBP-schedulable, then it is pMC-feasible with
ε` = 0 for any `. Instances I1, I2 and I3 are examples of this situation, in which no error happens
in any of the simulated demand samples under the policy derived from a solution to LP. This is
not surprising, however, because worst-case OCBP-schedulability implies worst-case MC-feasibility,
so our approach would not make sense if it cannot correctly schedule, with zero errors, pMC
instances that are OCBP-schedulable. We note that for I3, even though J3 misses its deadline in
some samples, none of those deadline misses are errors.

The remaining instances are all not OCBP-schedulable. The job sets comprising instances I4
and I5 are identical, and all jobs in both instances have the same execution time pmfs. Moreover,
both instances were simulated over the same execution time samples. These instances show how
one can control the desired error by supplying different error parameters. Instance I4 results in
10, 874 error executions (i.e., 10.87% of the samples) when εLo = εHi = 1.0 (100% allowed error;
we do not care about errors,) whereas in instance I5, where εLo = 0.2 (20%) and εHi = 0.4 (40%),
only 7, 921 samples (i.e., 7.92% of the samples) were erroneously scheduled. For the results to
make sense, we simulated both I4 and I5 on the same demand samples.

Instance I6 is not even (deterministically) MC-schedulable by the clairvoyant algorithm, so
one would not expect this instance to be pMC-feasible for vanishing error parameters. This is
indeed the case, and our algorithm reported that I6 is not pMC-feasible when ε` = 0 for any `.
However, when allowing for some (controlled) error, I6 might become pMC-feasible, and this is
the case for I7, which is identical to I6 (including its job execution time distribution,) except that

https://github.com/RADICAL-UBC/mc-simulation.git

B.N. Alahmad and S. Gopalakrishnan 01:27

some error is permitted. Instance I8 has the same jobs and error parameters as I7, except that
the job demand distributions are different. Also here we simulated both I7 and I8 on the same
demand samples.

Instance I9 is identical to I8 (including their job demand distributions,) but instance I9’s error
parameters are an order of magnitude less that those of I8. The number of errors dropped from
1, 862 for I8 with εLo = 0.4 and εHi = 0.5 to 890 for the same simulation samples in I9 with
εLo = εHi = 0.05. We observe that the reduction in the number of error executions is not linear
with respect to the error parameters.

Instance I11 is not OCBP-schedulable but it schedulable by the clairvoyant algorithm, and it
turns out that this instance is pMC-feasible when the error parameters are vanishing. There are
no error executions out of all the simulated samples. This is one of many MC instances where
OCBP overestimates the resources required for correct (deterministic) MC-feasibility, a problem
that our approach tackles effectively. Whereas OCBP requires an s-speed processor to schedule
this instance for some s > 1 (the speed-up factor,) our approach is capable of scheduling this
instance on a unit-speed processor without incurring any errors, thus maximizing the processor
utilization.

Instance I12 and I13 are identical (including job demand distributions,) and they are another
example where the resulting error executions can be controlled by controlling the error parameters,
but for 3 job instances. Finally, instance I14 is a pMC-feasible instance whose job execution times
are significantly larger than all of the other instances.

In all of the simulated instances, we observed that our algorithm favors Hi criticality jobs;
in every simulated instance, the number of Hi-criticality deadline misses is much less than Lo-
criticality deadline misses. This can be attributed to the way the set of admissible actions A(s) is
prescribed, where Lo-criticality jobs are always dropped whenever the scenario’s criticality level
is inferred as Hi.

6 Concluding Remarks

We developed a probabilistic framework for reasoning about dual-criticality MC jobs systems
when job demand distributions are available. We transformed the problem of constructing optimal
scheduling policies into a risk-constrained MDP, where risk is the probability of missing deadlines
at the two criticalities, taken over the relevant trajectories induced by the MDP. We solved the
constrained MDP using a Linear Programming formulation, and showed how to construct optimal
randomized Markov policies from the solution of the Linear Program. We also provided simulation
results of our approach on some representative MC instances to verify and sharpen intuition.

We assumed complete knowledge of job demand distributions, and we did not consider the
problem of obtaining and estimating those distributions. The latter is an important problem
of investigation, and complements the probabilistic framework that we have developed. In the
same vein, it is natural to consider variants of our problem where only samples of the demand
distributions are available instead of full fledged distributions. This entails that the state transition
probabilities are not known a priori, and the problem becomes that of adaptive control. If a
sampler that can be queried is available, then sample average approximation (SAA) techniques
can be utilized to approximate the expectation-based objectives through suitably defined empirical
measures. Moreover, learning techniques, such as unsupervised learning (Q-Learning), can be
used to estimate the transition probabilities and construct reasonable heuristics efficiently.

Although our approach is optimal in expectation, it is nevertheless computationally expensive,
and its practicality is limited to small instances. This is due to the large state space that grows
exponentially in the number of input jobs. Our next-step is to investigate provable approximation
schemes that trade optimality for efficiency.

LITES

01:28 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

Table 3 Simulation instances and job execution results. The execution of each instance is simulated,
using the policy generated by solving LP, over 100, 000 demand samples (vectors)

Instance OCBP Schedulability # Deadline Misses # Errors (Lo + Hi)

Instance εLo εHi Job χ c(Lo) c(Hi) d

I1 0.0 0.5

J1 Hi 70 75 160

YES

0

0J2 Lo 50 50 50 0
J3 Hi 8 20 85 0
J4 Hi 1 15 65 0

I2 0.0 0.5

J1 Lo 100 100 218

YES

0

0J2 Lo 50 50 50 0
J3 Lo 8 8 58 0
J4 Hi 60 61 119 0

I3 0.0 0.0

J1 Lo 60 60 161

YES

0

0J2 Lo 50 50 50 0
J3 Lo 20 20 70 1,447
J4 Hi 30 31 101 0

I4 1.0 1.0

J1 Lo 10 10 140

NO

0

10,874J2 Lo 75 75 75 20,251
J3 Lo 50 50 100 29,931
J4 Hi 5 15 120 0

I5 0.2 0.4

J1 Lo 10 10 140

NO

0

7,921J2 Lo 75 75 75 43,781
J3 Lo 50 50 100 7,109
J4 Hi 5 15 120 0

I6 0.0 0.0

J1 Lo 20 20 70

NO

–

not pMC feasibleJ2 Lo 30 30 80 –
J3 Hi 27 30 50 –
J4 Hi 8 25 70 –

I7 0.4 0.5

J1 Lo 20 20 70

NO

240

192J2 Lo 30 30 80 1,669
J3 Hi 27 30 50 0
J4 Hi 8 25 70 183

I8 0.4 0.5

J1 Lo 20 20 70

NO

4,640

1,862J2 Lo 30 30 80 10,667
J3 Hi 27 30 50 0
J4 Hi 8 25 70 1,845

I9 0.05 0.05

J1 Lo 20 20 70

NO

5,504

890J2 Lo 30 30 80 9,982
J3 Hi 27 30 50 0
J4 Hi 8 25 70 883

I10 0.07 0.07

J1 Hi 20 49 50

NO

0

18J2 Lo 30 30 80 14,822
J3 Hi 1 12 50 0
J4 Hi 5 23 110 13

I11 0.0 0.0
J1 Hi 3 10 27

NO
0

0J2 Lo 15 15 17 39, 561
J3 Hi 2 5 7 0

I12 0.05 0.09
J1 Lo 50 50 90

NO
3,726

2,239J2 Lo 30 30 50 50, 563
J3 Hi 19 30 35 0

I13 0.4 0.5
J1 Lo 50 50 90

NO
4,493

2,342J2 Lo 30 30 50 33, 981
J3 Hi 19 30 35 0

I14 0.03 0.03
J1 Hi 49 75 100

NO
0

685J2 Lo 120 120 210 31, 883
J3 Hi 125 275 400 588

B.N. Alahmad and S. Gopalakrishnan 01:29

We assumed that the given job demands are independent; however, we can drop the independ-
ence assumption as long as we are given the joint distribution of job demands. Our framework can
handle this with minimal modifications; in particular, the product space construction (that we
carried out in section 2) is no longer needed, but one needs to be able to compute the marginal
demand distributions in order to compute the MDP’s transition probabilities. This, however,
places a greater burden on the system designer, because the joint distribution of job demands
might be harder to obtain compared to individual job demand distributions. Nevertheless, our
framework, as presented, offers great flexibility, because it allows the individual job distributions
to be defined on different probability spaces (the Ωis) that might correspond to different operating
environments and settings.

Finally, two important extensions to our model deserve special mention and are due future
studies. The first is the case of arbitrary number of criticality levels, and the second is the sporadic
task model.

References
1 AdaCore. What is do-178b?, 2014. URL:

http://www.adacore.com/gnatpro-safety-
critical/avionics/do178b/.

2 Bader Alahmad, Sathish Gopalakrishnan, Luca
Santinelli, and Liliana Cucu-Grosjean. Probabil-
ities for Mixed-Criticality Problems: Bridging the
Uncertainty Gap. In The Work in Progress session
of the 32nd IEEE Real-time Systems Symposium -
RTSS 2011, Wien, Austria, November 2011. URL:
https://hal.inria.fr/hal-00646586.

3 Eitan Altman. Constrained markov decision pro-
cesses with total cost criteria: Lagrangian ap-
proach and dual linear program. Math. Meth.
of OR, 48(3):387–417, 1998. doi:10.1007/
s001860050035.

4 Eitan Altman. Constrained Markov Decision Pro-
cesses. Chapman and Hall/CRC, 1999.

5 Robert B. Ash. Real Analysis and Probability. Aca-
demic Press, 1972.

6 Neil C. Audsley, Alan Burns, Mike M. Richard-
son, Ken Tindell, and Andy J. Wellings. Apply-
ing new scheduling theory to static priority pre-
emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993. doi:10.1049/sej.1993.0034.

7 Sanjoy Baruah. Mixed criticality schedulab-
ility analysis is highly intractable. to ap-
pear. URL: http://www.cs.unc.edu/~baruah/
Submitted/02cxty.pdf.

8 Sanjoy K. Baruah, Vincenzo Bonifaci, Gian-
lorenzo D’Angelo, Haohan Li, Alberto Marchetti-
Spaccamela, Nicole Megow, and Leen Stougie.
Scheduling real-time mixed-criticality jobs. In
Petr Hlinený and Antonín Kucera, editors, Math-
ematical Foundations of Computer Science 2010,
35th International Symposium, MFCS 2010, Brno,
Czech Republic, August 23-27, 2010. Proceedings,
volume 6281 of Lecture Notes in Computer Sci-
ence, pages 90–101. Springer, 2010. doi:10.1007/
978-3-642-15155-2_10.

9 Sanjoy K. Baruah and Zhishan Guo. Scheduling
mixed-criticality implicit-deadline sporadic task
systems upon a varying-speed processor. In
Proceedings of the IEEE 35th IEEE Real-Time
Systems Symposium, RTSS 2014, Rome, Italy,

December 2-5, 2014, pages 31–40. IEEE Computer
Society, 2014. doi:10.1109/RTSS.2014.15.

10 Sanjoy K. Baruah, Haohan Li, and Leen Stougie.
Towards the design of certifiable mixed-criticality
systems. In Marco Caccamo, editor, 16th IEEE
Real-Time and Embedded Technology and Applica-
tions Symposium, RTAS 2010, Stockholm, Sweden,
April 12-15, 2010, pages 13–22. IEEE Computer
Society, 2010. doi:10.1109/RTAS.2010.10.

11 Sanjoy K. Baruah and Steve Vestal. Schedulab-
ility analysis of sporadic tasks with multiple crit-
icality specifications. In 20th Euromicro Confer-
ence on Real-Time Systems, ECRTS 2008, 2-4
July 2008, Prague, Czech Republic, Proceedings,
pages 147–155. IEEE Computer Society, 2008. doi:
10.1109/ECRTS.2008.26.

12 Enrico Bini and Giorgio C. Buttazzo. Measur-
ing the performance of schedulability tests. Real-
Time Systems, 30(1-2):129–154, 2005. doi:10.
1007/s11241-005-0507-9.

13 Craig Boutilier, Richard Dearden, and Moisés
Goldszmidt. Stochastic dynamic programming
with factored representations. Artif. Intell., 121(1-
2):49–107, 2000. doi:10.1016/S0004-3702(00)
00033-3.

14 Alan Burns and Robert I. Davis. Mixed criticality
systems - a review. Preprint, 2015. URL: http:
//www-users.cs.york.ac.uk/burns/review.pdf.

15 Yao Chen, Qiao Li, Zheng Li, and Huagang
Xiong. Efficient schedulability analysis for mixed-
criticality systems under deadline-based schedul-
ing. Chinese Journal of Aeronautics, 27(4):856
– 866, 2014. doi:http://dx.doi.org/10.1016/j.
cja.2014.05.003.

16 José Luis Díaz, Daniel F. García, Kanghee Kim,
Chang-Gun Lee, Lucia Lo Bello, José María López,
Sang Lyul Min, and Orazio Mirabella. Stochastic
analysis of periodic real-time systems. In Proceed-
ings of the 23rd IEEE Real-Time Systems Sym-
posium (RTSS’02), Austin, Texas, USA, Decem-
ber 3-5, 2002, pages 289–300. IEEE Computer So-
ciety, 2002. doi:10.1109/REAL.2002.1181583.

17 José Luis Díaz and José María López. Probabilistic
analysis of the response time in a real-time system.
Technical Report, 2001.

LITES

http://www.adacore.com/gnatpro-safety-critical/avionics/do178b/
http://www.adacore.com/gnatpro-safety-critical/avionics/do178b/
https://hal.inria.fr/hal-00646586
http://dx.doi.org/10.1007/s001860050035
http://dx.doi.org/10.1007/s001860050035
http://dx.doi.org/10.1049/sej.1993.0034
http://www.cs.unc.edu/~baruah/Submitted/02cxty.pdf
http://www.cs.unc.edu/~baruah/Submitted/02cxty.pdf
http://dx.doi.org/10.1007/978-3-642-15155-2_10
http://dx.doi.org/10.1007/978-3-642-15155-2_10
http://dx.doi.org/10.1109/RTSS.2014.15
http://dx.doi.org/10.1109/RTAS.2010.10
http://dx.doi.org/10.1109/ECRTS.2008.26
http://dx.doi.org/10.1109/ECRTS.2008.26
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1016/S0004-3702(00)00033-3
http://dx.doi.org/10.1016/S0004-3702(00)00033-3
http://www-users.cs.york.ac.uk/burns/review.pdf
http://www-users.cs.york.ac.uk/burns/review.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.cja.2014.05.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.cja.2014.05.003
http://dx.doi.org/10.1109/REAL.2002.1181583

01:30 Risk-Aware Scheduling of Dual Criticality Job Systems Using Demand Distributions

18 José Luis Díaz and José María López. Safe exten-
sions to the stochastic analysis of real-time systems.
Technical Report, 2004.

19 José Luis Díaz, José María López, Manuel Gar-
cía Vazquez, Antonio M. Campos, Kanghee Kim,
and Lucia Lo Bello. Pessimism in the stochastic
analysis of real-time systems: Concept and applic-
ations. In Proceedings of the 25th IEEE Real-Time
Systems Symposium (RTSS 2004), 5-8 December
2004, Lisbon, Portugal, pages 197–207. IEEE Com-
puter Society, 2004. doi:10.1109/REAL.2004.41.

20 Dmitri A. Dolgov and Edmund H. Durfee. Symmet-
ric approximate linear programming for factored
mdps with application to constrained problems.
Ann. Math. Artif. Intell., 47(3-4):273–293, 2006.
doi:10.1007/s10472-006-9038-x.

21 Peter Geibel and Fritz Wysotzki. Risk-sensitive re-
inforcement learning applied to control under con-
straints. J. Artif. Intell. Res., 24:81–108, 2005.
doi:10.1613/jair.1666.

22 Zhishan Guo and Sanjoy K. Baruah. Implement-
ing mixed-criticality systems upon a preemptive
varying-speed processor. LITES, 1(2):03:1–03:19,
2014. doi:10.4230/LITES-v001-i002-a003.

23 Zhishan Guo, Luca Santinelli, and Kecheng Yang.
EDF schedulability analysis on mixed-criticality
systems with permitted failure probability. In
21st IEEE International Conference on Embedded
and Real-Time Computing Systems and Applica-
tions, RTCSA 2015, Hong Kong, China, August
19-21, 2015, pages 187–196. IEEE Computer Soci-
ety, 2015. doi:10.1109/RTCSA.2015.8.

24 Inc. Gurobi Optimization. Gurobi optimizer refer-
ence manual, 2015. URL: http://www.gurobi.com.

25 Onésimo Hernández-Lerma. Adaptive Markov con-
trol processes. Applied mathematical sciences.
Springer, New York, 1989.

26 Onésimo Hernández-Lerma and Jean B Lasserre.
Discrete-Time Markov Control Processes: Basic
Optimality Criteria. Stochastic Modelling and
Applied Probability. Springer-Verlag, New York,
1996.

27 L. C. M. Kallenberg. Unconstrained and con-
strained dynamic programming over a finite hori-
zon. Technical Report, 1981.

28 L. C. M. Kallenberg. Linear Programming and Fi-
nite Markovian Control Problems. Amsterdam :
Mathematisch Centrum, 1983.

29 Lodewijk C. M. Kallenberg. Survey of lin-
ear programming for standard and nonstandard
markovian control problems. part I: theory. Math.
Meth. of OR, 40(1):1–42, 1994. doi:10.1007/
BF01414028.

30 Bala Kalyanasundaram and Kirk Pruhs. Speed is
as powerful as clairvoyance. J. ACM, 47(4):617–
643, 2000. doi:10.1145/347476.347479.

31 Kanghee Kim, José Luis Díaz, Lucia Lo Bello,
José María López, Chang-Gun Lee, and Sang Lyul
Min. An exact stochastic analysis of priority-driven
periodic real-time systems and its approximations.
IEEE Trans. Computers, 54(11):1460–1466, 2005.
doi:10.1109/TC.2005.174.

32 Achim Klenke. Probability Theory: A Compre-
hensive Course. Universitext. Springer, 2 edition,
2014.

33 Dorin Maxim and Liliana Cucu-Grosjean. Re-
sponse time analysis for fixed-priority tasks with
multiple probabilistic parameters. In Proceedings
of the IEEE 34th Real-Time Systems Symposium,
RTSS 2013, Vancouver, BC, Canada, December
3-6, 2013, pages 224–235. IEEE Computer Society,
2013. doi:10.1109/RTSS.2013.30.

34 Pascal Poupart, Craig Boutilier, Relu Patrascu,
and Dale Schuurmans. Piecewise linear value func-
tion approximation for factored mdps. In Rina
Dechter, Michael J. Kearns, and Richard S. Sut-
ton, editors, Proceedings of the Eighteenth Na-
tional Conference on Artificial Intelligence and
Fourteenth Conference on Innovative Applica-
tions of Artificial Intelligence, July 28 - Au-
gust 1, 2002, Edmonton, Alberta, Canada., pages
292–299. AAAI Press / The MIT Press, 2002.
URL: http://www.aaai.org/Library/AAAI/2002/
aaai02-045.php.

35 M. L. Puterman. Markov Decision Processes:
Discrete Stochastic Dynamic Programming. John
Wiley and Sons, New York, 5 edition, 2005.

36 Martin L. Shooman. Avionics software problem
occurrence rates. In Seventh International Sym-
posium on Software Reliability Engineering, IS-
SRE 1996, White Plains, NY, USA, October 30,
1996-Nov. 2, 1996, pages 55–64. IEEE Computer
Society, 1996. doi:10.1109/ISSRE.1996.558695.

37 Dario Socci, Peter Poplavko, Saddek Bensalem,
and Marius Bozga. Mixed critical earliest deadline
first. In 25th Euromicro Conference on Real-Time
Systems, ECRTS 2013, Paris, France, July 9-12,
2013, pages 93–102. IEEE Computer Society, 2013.
doi:10.1109/ECRTS.2013.20.

38 Steve Vestal. Preemptive scheduling of multi-
criticality systems with varying degrees of exe-
cution time assurance. In Proceedings of the
28th IEEE Real-Time Systems Symposium (RTSS
2007), 3-6 December 2007, Tucson, Arizona, USA,
pages 239–243. IEEE Computer Society, 2007. doi:
10.1109/RTSS.2007.47.

http://dx.doi.org/10.1109/REAL.2004.41
http://dx.doi.org/10.1007/s10472-006-9038-x
http://dx.doi.org/10.1613/jair.1666
http://dx.doi.org/10.4230/LITES-v001-i002-a003
http://dx.doi.org/10.1109/RTCSA.2015.8
http://www.gurobi.com
http://dx.doi.org/10.1007/BF01414028
http://dx.doi.org/10.1007/BF01414028
http://dx.doi.org/10.1145/347476.347479
http://dx.doi.org/10.1109/TC.2005.174
http://dx.doi.org/10.1109/RTSS.2013.30
http://www.aaai.org/Library/AAAI/2002/aaai02-045.php
http://www.aaai.org/Library/AAAI/2002/aaai02-045.php
http://dx.doi.org/10.1109/ISSRE.1996.558695
http://dx.doi.org/10.1109/ECRTS.2013.20
http://dx.doi.org/10.1109/RTSS.2007.47
http://dx.doi.org/10.1109/RTSS.2007.47

	Introduction
	System Model
	Problem Definition: Integer Demands and Dual Criticalities
	MDP Setup
	The Transition Probabilities
	The Underlying Probability Space
	Problem Statement

	Solution Approach: Risk-Constrained MDP
	The Risk Constraints
	The Linear Programming Approach
	A Less Pessimistic Exact Formulation

	Quantitative Evaluations
	Concluding Remarks

