
Errata for Three Papers (2004-05) on Fixed-Priority
Scheduling with Self-Suspensions∗

Konstantinos Bletsas
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto
Porto, Portugal
ksbs@isep.ipp.pt

https://orcid.org/0000-0002-3640-0239

Neil C. Audsley
University of York
York, United Kingdom
neil.audsley@york.ac.uk

https://orcid.org/0000-0003-3739-6590

Wen-Hung Huang
TU Dortmund
Dortmund, Germany
wen-hung.huang@tu-dortmund.de

https://orcid.org/0000-0001-9446-4719

Jian-Jia Chen
TU Dortmund
Dortmund, Germany
jian-jia.chen@tu-dortmund.de

https://orcid.org/0000-0001-8114-9760

Geoffrey Nelissen
CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto
Porto, Portugal
grrpn@isep.ipp.pt

https://orcid.org/0000-0003-4141-6718

Abstract
The purpose of this article is to (i) highlight the
flaws in three previously published works [3, 2, 7]
on the worst-case response time analysis for tasks

with self-suspensions and (ii) provide straightfor-
ward fixes for those flaws, hence rendering the ana-
lysis safe.

2012 ACM Subject Classification Computer systems organization → Embedded systems, Computer
systems organization → Real-time systems, Software and its engineering → Real-time schedulability
Keywords and Phrases real-time; scheduling; self-suspension; worst-case response time analysis
Digital Object Identifier 10.4230/LITES-v005-i001-a002
Received 2015-07-17 Accepted 2018-02-12 Published 2018-05-30

∗ This paper is supported by DFG, as part of the Collaborative Research Center SFB876 (http://sfb876.tu-
dortmund.de/) project B2.

© Konstantinos Bletsas, Wen-Hung Huang, Jian-Jia Chen, Neil Audsley, and Geoffrey Nelissen;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 5, Issue 1, Article No. 2, pp. 02:1–02:20
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ksbs@isep.ipp.pt
https://orcid.org/0000-0002-3640-0239
mailto:neil.audsley@york.ac.uk
https://orcid.org/0000-0003-3739-6590
mailto:wen-hung.huang@tu-dortmund.de
https://orcid.org/0000-0001-9446-4719
mailto:jian-jia.chen@tu-dortmund.de
https://orcid.org/0000-0001-8114-9760
mailto:grrpn@isep.ipp.pt
https://orcid.org/0000-0003-4141-6718
http://dx.doi.org/10.4230/LITES-v005-i001-a002
http://sfb876.tu-dortmund.de/
http://sfb876.tu-dortmund.de/
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

02:2 Errata for Three Papers on FP Scheduling with Self-Suspensions

1 Introduction

Often, in embedded systems, a computational task running on a processor must suspend its
execution to, typically, access a peripheral or launch computation on a remote co-processor. Those
tasks are commonly referred to as self-suspending. During the duration of the self-suspension, the
processor is free to be used by any other tasks that are ready to execute. This seemingly simple
model is non-trivial to analyse from a worst-case response time (WCRT) perspective since the
classical “critical instant” of Liu and Layland [13] (i.e., simultaneous release of all tasks) no longer
necessarily provides the worst-case scenario when tasks may self-suspend. A simple solution
consists in modelling the duration of the self-suspension as part of the self-suspending task’s
execution time. This so-called “self-suspension oblivious” approach allows to use the “critical
instant” of Liu and Layland but often at the cost of too much pessimism. Therefore, various
efforts have been made to derive less pessimistic, but still safe, analyses.

The results published in [3, 2, 7, 6] propose solutions for computing upper bounds on the
response times of self-suspending tasks. However, we have now come to understand that they
were flawed, i.e., they do not always output safe upper bounds on the task WCRTs. Through this
paper, we therefore seek to highlight the respective flaws and propose appropriate fixes, rendering
the two analysis techniques previously proposed in [3][2][7] safe.

2 Process model and notation

We assume a single processor and n independent sporadic1 computational tasks scheduled under a
fixed-priority policy. Each task τi has a distinct priority pi, an inter-arrival time Ti and a relative
deadline Di, with Di ≤ Ti (constrained deadline model). Each job released by τi may execute
for at most Xi time units on the processor (its worst-case execution time in software – S/W
WCET) and spend at most Gi time units in self-suspension (its “H/W WCET”). What in the
works [3, 2, 7, 6] is referred to as (simply) “the worst-case execution time” of τi, denoted by Ci, is
the time needed for the task to complete, in the worst-case, in the absence of any interference from
other tasks on the processor. Hence Ci also accounts for the latencies of any self-suspensions in
the task’s critical path2. This terminology differs somewhat from that used in other works, which
call WCET what we call the S/W WCET. This is mainly because it echoes a view inherited
from hardware/software co-design that the task is executing even when self-suspended on the
processor, albeit remotely (i.e., on a co-processor).

As illustrated on Figure 1, in the general case, Ci ≥ Xi, Ci > Gi but Ci ≤ Xi +Gi, because
Xi and Gi are not necessarily observable for the same control flow, unless it is explicitly specified
or inferable from information about the task structure that Ci = Xi +Gi.

Additionally, lower bounds on the S/W and the “H/W” best-case execution times are denoted
by X̂i and Ĝi, respectively.

Our past work considered two submodels (referred to as “simple” and “linear”), depending on
the degree of knowledge that one has regarding the location of the self-suspending regions inside
the process activation and whether or not Ci = Xi +Gi.

1 The original papers, assumed periodic tasks with unknown offsets. It was in the subsequent PhD thesis [6]
that the observation was made that the results apply equally to the sporadic model, which is more general
in terms of the possible legal schedules that may arise.

2 We assume, as in [3, 2, 7, 6], that there is no contention over the co-processors or peripherals accessed during
a self-suspension.

K. Bletsas et. al. 02:3

Figure 1 Examples of task graphs for task with self-suspensions. White nodes represent sections of
code with single-entry/single-exit semantics. Grey nodes represent remote operations, i.e., self-suspending
regions. The nodes are annotated with execution times, which in this example are deterministic for
simplicity. The directed edges denote the transition of control flow. Any task execution corresponds to a
path from source to sink. For task graph (a), two different control flows exist (shown with dashed lines).
In this case, the software execution and the time spent in self-suspension are maximal for different control
flows. As a result of this, C < X +G; specifically, C = X = 25 and G = 10. However, task graph (b) is
linear, so it holds that C = X +G for that task.

2.1 The simple model
The simple model, assumed in [2, 3], is also called “floating” or “dynamic self-suspension model”
in many later works of the state-of-the-art. This model is entirely agnostic about the location
of self-suspending regions in the task code. Hence, there is no information on the number of
self-suspending regions, on the instants at which they may be activated and for how long each
of them may last at run-time. Moreover, the self-suspension pattern may additionally differ for
subsequent jobs released by the same task τi. The sums of the lengths of the “S/W” and “H/W”
execution regions are however subject to the constraints imposed by the attributes Ci, Xi and
Gi. Figure 2 illustrates this concept.

2.2 The linear model
The linear model, which was presented in [7], is also known as the “multi-segment self-suspension
model” in many later works. It assumes that each task is structured as a “pipeline” of interleaved
software and self-suspending regions, or “segments”. Each of these segments has known upper
and lower bounds on its execution time. This means that, in all cases, Ci = Xi + Gi and the
task-level upper and lower bounds on its software (respectively, hardware) execution time, Xi

and X̂i (respectively, Gi and Ĝi) are obtained as the sum of the respective estimates of all the
software (respectively, hardware) segments.

3 The analysis in [2, 3], its flaws and how to fix it.

The two works [2, 3] that targeted the simple model, sought to derive the task WCRTs by shifting
the distribution of software execution and self-suspension intervals within the activation of each
higher-priority task in order to create the most unfavorable pattern, across job boundaries. This
also involved aligning the task releases accordingly, in order to obtain (what we thought to be)
the worst case. In order to facilitate the explanation of the specifics, it is perhaps best to first

LITES

02:4 Errata for Three Papers on FP Scheduling with Self-Suspensions

Figure 2 Under the simple model any job by a given task τi can execute for at mostXi units in software,
at most Gi time units in hardware and at most Ci time units overall. The locations and number of the
hardware operations (self-suspensions, from the perspective of software execution) may vary arbitrarily
for different jobs by the same task, subject to the previous constraints. This is depicted here for a task
τi, with the parameters shown, which (for simplicity) is the only task in its system. Upward-pointing
arrows denote task arrivals (and deadlines, since the task set happens to be implicit-deadline). Shaded
rectangles denote remote execution (i.e., self-suspension).

present the corresponding equation for computing the WCRT of a task τi derived in [3]:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + (Cj −Xj)

Tj

⌉
Xj (1)

where the term hp(i) is the set of tasks with higher-priority than τi. For the special case
where Ci = Xi +Gi ,∀i, the above equation can be rewritten as [2]

Ri = Ci +
∑

j∈hp(i)

⌈
Ri +Gj
Tj

⌉
Xj (2)

Intuitively, τi is pessimistically treated as preemptible at any instant, even those at which it
is self-suspended. Each interfering job released by a higher-priority task τj contributes up to Xj

time units of interference to the response time of τi. However, the variability in the location of
self-suspending regions creates a jitter in the software execution of each interfering task. The
term (Cj − Xj), for each τj ∈ hp(i), in the numerator, which is akin to a jitter in Equation 1,
attempted to account for this variability. Intuitively, it represents the potential internal jitter,
within an activation of τj , i.e., when its net execution time (in software or in hardware) is
considered, and disregarding any time intervals when τj is preempted. Figure 3 illustrates this
concept for some task τk.

However, as we will show in Example 1, in the general case the jitter can be larger than
(Cj −Xj). This is because the software execution of τj can be pushed further to the right along
the axis of time, due to the interference that τj suffers from even higher-priority tasks.

It is worth noting that the authors of [2] were fully aware at the time that the term⌈
Ri+(Cj−Xj)

Tj

⌉
Xj is not an upper bound on the worst-case interference exerted upon τi from

any individual task τj ∈ hp(i). However, it was considered (and erroneously claimed, with faulty

proof) that
∑

j∈hp(i)

⌈
Ri + (Cj −Xj)

Tj

⌉
Xj was nevertheless an upper bound for the total interfer-

ence jointly caused by all tasks in hp(i), in the worst case. The flaw in that reasoning came
from assuming that the effect of any additional jitter of interfering task τj , caused by interference
exerted upon it by even higher-priority tasks would already be “captured” by the corresponding
terms modelling the interference upon τi by hp(j) ⊂ hp(i). This would then suppress the need to
include it twice.

K. Bletsas et. al. 02:5

Figure 3 For a job by some task τk that executes in software for Xk time units and Ck time units
overall (i.e., in software and in hardware), the latest that it can start executing in software, in terms
of net execution time (i.e., excluding preemptions) is after having executed for Ck − Xk time units in
hardware. Differences in the placement of software and hardware execution across different jobs of τk

manifest themselves as jitter for its sofware execution.

Accordingly, then, the worst-case scenario for the purposes of maximisation of the response
time of a task τi, released without loss of generality at time t = 0 would happen when each
higher-priority task

is released at time t = −(Cj − Xj) and then releases its subsequent jobs with its minimum
inter-arrival time (i.e., at instants t = Tj − (Cj −Xj), 2Tj − (Cj −Xj), . . .;
switches for the first time to execution in software (for a full Xj time units) at t = 0, for its
first interfering job, i.e., after a self-suspension of Cj −Xj time units;
executes in software for Xj time units as soon as possible for its subsequent jobs.

Figure 4(a) plots the schedule that reproduces this alleged worst-case scenario, for the lowest-
priority task in the example task set of Table 1. In this case, the top-priority task τ1 happens
to be a regular non-self-suspending task, so its worst-case release pattern reduces to that of Liu
and Layland. However, for the middle-priority task τ2 which self-suspends, its execution pattern
matches that described above.

However, this schedule does not constitute the worst-case, as evidenced by the following
counter-example:

I Example 1. Consider the task set of Table 1. Assume that the execution times of software
segments and the durations of self-suspending regions are deterministic. As shown below using a
fixed point iteration over Equation 1, the analysis in [2, 3] would yield R3 = 12:

R3 = C3 +
⌈
R3 + C1 −X1

T1

⌉
X1 +

⌈
R3 + C2 −X2

T2

⌉
X2 ⇒ R3 = 1 +

⌈
R3

2

⌉
1 +

⌈
R3 + 5

20

⌉
5

R
(0)
3 =1

R
(1)
3 =1 +

⌈
1
2

⌉
1 +

⌈
1 + 5

20

⌉
5 = 7

R
(2)
3 =1 +

⌈
7
2

⌉
1 +

⌈
7 + 5

20

⌉
5 = 10

R
(3)
3 =1 +

⌈
10
2

⌉
1 +

⌈
10 + 5

20

⌉
5 = 12

R
(4)
3 =1 +

⌈
12
2

⌉
1 +

⌈
12 + 5

20

⌉
5 = 12

The corresponding schedule is shown in Figure 4(a). However, the schedule of Figure 4(b), which
is perfectly legal, disproves the claim that R3 = 12, because τ3 in that case has a response time

LITES

02:6 Errata for Three Papers on FP Scheduling with Self-Suspensions

Table 1 A set of tasks with self-suspensions. The lower the task index, the higher its priority.

τi Ci Xi Gi Ti

τ1 1 1 0 2
τ2 10 5 5 20
τ3 1 1 0 ∞

of 22− 5ε, where ε is an arbitrarily small quantity. It therefore proves that the analysis initially
presented in [2] and [3] is unsafe.

Let us now inspect what makes the scenario depicted in the schedule of Figure 4 so unfavour-
able that the analysis in [2, 3] fails, and at the same time let us understand how the analysis
could be fixed.

Looking at the first interfering job released by τ2 in Figure 4, one can see that almost all its
software execution is still distributed to the very right (which was supposed to be the worst-case
in [3]). However, by “strategically” breaking up what would have otherwise been a contiguous
self-suspending region of length G2 in the left, with arbitrarily short software regions of length ε
beginning at the same instants that the even higher-priority task τ1 is released, a particularly un-
favourable effect is achieved. Namely, the execution of τ1 on the processor and the self-suspending
regions of τ2, “sandwiched” in between are effectively serialised. In practical terms, it is the equi-
valent of the execution of τ1 on the processor preempting the execution of τ2 on the co-processor!
This means that, when finally τ2 is done with its self-suspensions, its remaining execution in
software is almost its entire X2, but occurs with a jitter far worse than that modelled by Equa-
tion 1. And, when analysing τ3, this effect was not captured indirectly, via the term modelling
the interference exerted by τ1 onto τ3.

So in retrospect, although each job by each τj ∈ hp(i) can contribute at most Xj time units
of interference to τi, the terms (Cj −Xj) in Equation 1, that are analogous to jitters, are unsafe.
The obvious fix is thus to replace those with the true jitter terms for software execution. As
proven in Lemma 2 below, safe upper bounds for these are Rj − Cj , ∀ τj ∈ hp(i).

Reconsidering the analysis presented in [2, 3] in light of this counter-example, one can draw
the following conclusions:
1. the terms Xj , one for every higher-priority task, in Equation 1, which model the fact that

each job released by a task τj ∈ hp(i) can contribute at most Xj time units of interference,
do not introduce optimism;

2. the terms (Cj −Xj), one for every higher-priority task, in Equation 1, that are analogous to
jitters, are unsafe.

Formally, these conclusions can be summarised by the following Lemma 2, that serves as a
sufficient schedulability test:

I Lemma 2 (Corresponding to Corollary 1 in [9]). Consider a uniprocessor system of constrained-
deadline self-suspending tasks and one task τi among those, in particular. If every task τj ∈
hp(i) is schedulable (i.e., if an upper bound Rj on the worst-case response time of τj exists with
Rj ≤ Dj ≤ Tj) and, additionally, the smallest solution to the following recursive equation is
upper-bounded by Di,

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + (Rj −Xj)

Tj

⌉
Xj (3)

then τi is also schedulable and its worst-case response time is upper-bounded by Ri, as computed
by Equation 3.

K. Bletsas et. al. 02:7

Figure 4 Subfigure (a) depicts the schedule, for the task set of Table 1 that was supposed to result
in the WCRT for τ3 according to the analysis presented in [2, 3]. Subfigure (b) depicts a different legal
schedule that results in a higher response time for τ3.

3.1 Proof of Lemma 2

Consider a schedule Ψ of the self-suspending task system in consideration whereby some job of
task τi is released at time ri and completed at time fi.

We define a transformed scheduled Ψ′ as the schedule in which (i) the jobs of every higher-
priority task τj ∈ hp(i) are released at the exact same instants as in Ψ; (ii) only one job by τi
is released, at time ri; (iii) no jobs by lower-priority tasks are released and (iv) the suspensions
by all higher-priority jobs take place during the exact same intervals as in Ψ; additionally (v) we
modify the job of τi (which in Ψ executed on the processor for xi time units and was suspended
for gi time units) such that it executes on the processor for Ci ≥ xi+gi time units. Recall that Ci
is defined as the worst-case combined execution in software and hardware, i.e., sum of processor-
based execution and self-suspension. After this last conversion (a safe, widely used transformation
known in the literature as “conversion of suspension to processor-based computation”, followed
by a potential increase of that processor-based execution time), we can verify (see also Lemma 3
just below) that: (i) Over the interval [ri, fi), for every instant that the job by τi in Ψ is executing

LITES

02:8 Errata for Three Papers on FP Scheduling with Self-Suspensions

or suspended or suspended and no higher-priority task is executing on the processor, the job by
τi in Ψ′ is executing on the processor, at the same instant. And (ii) for the completion time f ′i
of τ ′i in Ψ′, it holds that f ′i ≥ fi; in other words the response time of the job in consideration in
Ψ′ does not decrease over that in Ψ.

For notational brevity, we denote the (only) job of τi in Ψ′ as originating from a task τ ′i with
C ′i = X ′i = Ci, G′i = 0, D′i = Di, T ′i = Ti. Note that Ψ′ remains a fixed-priority schedule.

I Lemma 3 (Corresponding to Lemma 2 in [9] with minor variations). Assuming that the worst-case
response time of τi is upper bounded by Ti and given the definition of schedule Ψ′, the response time
of the job of τ ′i in consideration in Ψ′ is not smaller than the response time of the corresponding
job of τi in Ψ, for any possible xi, gi such that xi ≤ Xi and gi ≤ Gi and xi + gi ≤ Ci.

Proof. We know, by definition of fixed-priority schedules, that jobs by lower-priority tasks do not
impact the response time of the jobs by τi. Therefore, their elimination in Ψ′ has no impact on
the response time of the jobs of τi. Moreover, since from the assumption in the claim, the worst-
case response time of τi is upper-bounded by Ti, no other job by τi in Ψ impacts the schedule of
the job by τi released at ri. Since all other parameters (i.e., releases and suspensions of higher-
priority tasks) that may influence the scheduling decisions are kept identical between Ψ and Ψ′,
the response time (R̄) of the job by τi released at time ri would have been identical in Ψ′ to the
one in Ψ if we had not converted that job’s suspension time to processor-based computation.

Let xi and gi respectively denote the total duration of processor-based execution and self-
suspension characterising the job of τi in consideration. Given that xi + gi ≤ Ci for any job by τi
means that additionally substituting in Ψ′ the particular job τi by a job by τ ′i as defined above
cannot result in the response time being lower than R̄, which in turn was shown to be no less
than the response time of the job in Ψ. J

We now analyse the properties of the fixed-priority schedule Ψ′. For any interval [ri, t), with
t ≤ fi, we are going to prove an upper bound (denoted as exec(ri, t)) on the amount of time
during which the processor is executing tasks.

Because in Ψ′ there exist no jobs of lower priority than that of τ ′i , we only focus on the
execution of the tasks in hp(i)∪ τ ′i . (Recall that we use the notation τ ′i here instead of simply τi,
because when constructing Ψ′ from Ψ, we replaced the self-suspending job of τi released at ri by
a job of the same priority that executes entirely in software for X ′i

def= Ci ≤ Xi +Gi time units.)

I Lemma 4. For any t such that ri ≤ t < f ′i , the cumulative amount of time that τ ′i executes on
the processor over the interval [ri, t), denoted by execi(ri, t) is strictly smaller than Ci.

Proof. Since the finishing time of the transformed job by τi is f ′i > t, it means that it has executed
for strictly less than its total execution time of Ci. J

I Lemma 5 (Corresponding to Lemma 8 in [9]). Assume that Rj ≤ Tj for all jobs by τj in Ψ′. Let
Jj be the last job of τj released before ri in Ψ′ and let x∗j be the remaining processor execution
time of Jj at time ri. For any task τj ∈ hp(i) and any ∆ ≥ 0, it holds that

execj(ri, ri + ∆) ≤ Ŵ 0
j (∆, x∗j)

where

Ŵ 0
j (∆, x∗j)

def=


W 1
j (∆) if x∗j = 0

∆ if x∗j > 0 and ∆ ≤ x∗j
x∗j if x∗j > 0 and x∗j < ∆ ≤ ρj
x∗j +W 1

j (∆− ρj) if x∗j > 0 and ρj < ∆

(4)

K. Bletsas et. al. 02:9

with

W 1
j (∆) def=

⌊
∆
Tj

⌋
+ min

{
∆−

⌊
∆
Tj

⌋
Tj , Xj

}
(5)

and ρj
def= Tj −Rj + x∗j

Proof. We explore two complementary cases:
Case x∗

j = 0: In this case, there is no residual (sometimes called carry-in) workload of τj
at time ri. Furthermore, execj(ri, ri + ∆) is maximised when every job of τj released after
ri executes on the processor for its full processor execution time Xj , with any self-suspension
strictly occurring (if at all) after it completes its Xj time units of execution on the processor.
(Remember that there is no carry-in workload and hence pushing the execution of a job
later by means of self-suspension will not increase the amount of computation within the
window [ri, t)). This is analogous, in terms of processor-based workload pattern, to τj being
a sporadic, non-self-suspending task with a worst-case execution time of Xj time units on
the processor. Since, as already shown in the literature [5], W 1

j (∆), which is usually called
workload function, is an upper bound on the cumulative amount of time that a sporadic task
with a worst-case execution time Xj and inter-arrival time Tj can execute on the processor
without self-suspension, we know that execj(ri, ri + ∆) ≤W 1

j (∆). This proves case 1 of (4).
Case x∗

j > 0: By assumption, there is Rj ≤ Tj . Additionally, the earliest completion time for
the job Jj of τj with residual workload x∗j at time ri must be ri+x∗j (from the definition of x∗j).
Therefore, the earliest arrival time of a job of τj strictly after ri is at least ri +x∗j + (Tj −Rj),
which is equal to ri + ρj . Since no other job of τj is released in [ri, ri + ρj), this means that
execj(ri, ri + ∆) is upper-bounded by min{∆, x∗j} for ∆ ≤ ρj , thereby proving cases 2 and
3 of (4). Furthermore, by assumption, the job of τj with residual workload x∗j at time ri
completes no earlier than time ri + ρj . Therefore, following the same reasoning as for the
case that x∗j = 0, it holds that execj(ri + ρj , ri + ∆) is upper bounded by W 1

j (∆− ρj) when
∆ > ρj . This proves the fourth case of (4). J

I Lemma 6 (Lemma 9 in [9]). ∀∆ > 0, it holds that Ŵ 0
j (∆, Xj) ≥ Ŵ 0

j (∆, x∗j).

Proof. See proof in [9]. J

I Lemma 7. For any ∆ > 0, it holds that

Ŵ 0
j (∆, Xj) ≤

⌈
∆ +Rj −Xj

Tj

⌉
Xj (6)

Proof. From the definition of W 1
j (∆) in (5), we have

W 1
j (∆) =

⌊
∆
Tj

⌋
Xj + min

{
∆−

⌊
∆
Tj

⌋
Tj , Xj

}
≤
⌈

∆
Tj

⌉
Xj (7)

If 0 < ∆ ≤ Xj , then by (4), it holds that Ŵ 0
j (∆, Xj) = ∆. Moreover, because the worst-case

response time Rj of a task cannot be smaller than its worst-case execution time Cj ≥ Xj , we
have that ∆+Rj−Xj

Tj
> 0. Hence, Ŵ 0

j (∆, Xj) = ∆ ≤ Xj ≤
⌈

∆+Rj−Xj
Tj

⌉
Xj

If ∆ > Xj , then by the third and fourth cases of (4) and using (7) that we just proved,
it holds that Ŵ 0

j (∆, Xj) ≤ Xj + W 1
j (∆ − (Tj − Rj + Xj)) ≤ Xj +

⌈
∆−Tj+(Rj−Xj)

Tj

⌉
Xj ≤⌈

∆+Rj−Xj
Tj

⌉
Xj . J

LITES

02:10 Errata for Three Papers on FP Scheduling with Self-Suspensions

Now that we have derived an upper bound on the cumulative execution time execj(ri, ri + ∆)
by each task τj in Ψ′, we can use these upper bounds in order to derive properties for the schedule
over any interval [ri, t).

Recall that, for the schedule Ψ′, the finishing time of the job of τ ′i in consideration is f ′i ≥ fi
(where fi is its corresponding finishing time in Ψ).

I Lemma 8. Assuming that the worst-case response time of τi is upper bounded by Ti, and
assuming that Rj ≤ Tj for all jobs by τj in Ψ′. ∀t | ri ≤ t < f ′i it holds that:

Ci +
i−1∑
j=1

⌈
t− ri +Rj −Xj

Tj

⌉
Xj > t− ri (8)

Proof. When we constructed Ψ′, we transformed any suspension time of τi into processor execu-
tion time. Hence, it must hold that there is no idle time within [ri, f ′i), i.e., between the release
and completion time of the transformed job of τi. Indeed, if there was an idle time within [ri, f ′i),
it would mean that either τi completed its job before f ′i or the scheduler would not be work
conserving. A contradiction with the assumptions of this problem in both cases.

Therefore, for every t such that ri ≤ t < f ′i , it holds that
∑i
j=1 execj(ri, t) = t − ri. By

application of Lemmas 5 and 6 to the LHS, we get

execi(ri, t) +
i−1∑
j=1

Ŵ 0
j (t− ri, Xj) ≥ t− ri

Further, applying Lemma 7,

execi(ri, t) +
i−1∑
j=1

⌈
t− ri +Rj −Xj

Tj

⌉
Xj ≥ t− ri

The fact that the (transformed) job by τi has not yet completed at t < f ′i in Ψ′ also means
(see Lemma 4) that execi(ri, t) < Ci. Substituting to the LHS of the above equation yields
Ci +

∑i−1
j=1

⌈
t−ri+Rj−Xj

Tj

⌉
Xj > t− ri. J

I Corollary 9. Consider a uniprocessor system of constrained-deadline self-suspending tasks and
one task τi among those, in particular. Assume that the worst-case response time of τi does not
exceed Ti and also that Rj ≤ Tj ,∀τj ∈ hp(i), where Rj denotes an upper bound on the worst-case
response time of the respective task τj. Then, the worst-case response time of τi is upper-bounded
by the minimum t greater than 0 for which the following inequality holds.

Ci +
∑

j∈hp(i)

⌈
t+ (Rj −Xj)

Tj

⌉
Xj ≤ t (9)

Proof. Direct consequence of Lemma 8. J

Having proven Corollary 9, what remains to show is the following:

I Lemma 10. Consider a uniprocessor system of constrained-deadline self-suspending tasks and
one task τi among those, in particular. Assume that Rj ≤ Tj ,∀τj ∈ hp(i), where Rj denotes an
upper bound on the worst-case response time of the respective task τj. If the worst-case response
time of τi is greater than Ti or unbounded (which implies that τi is unschedulable), it holds that

Ci +
∑

j∈hp(i)

⌈
t+ (Rj −Xj)

Tj

⌉
Xj > t, ∀t|0 < t ≤ Ti (10)

K. Bletsas et. al. 02:11

Proof. By the assumption that Ri > Ti for some task τi, there exists a schedule Ψ such that the
response time of at least one job of τi is strictly larger than Ti. Consider the first such job in
the schedule, and suppose that it arrives at time ri. At that instant, there is no other unfinished
job by τi in the system (or else, this would contradict the assumption that the job arriving at ri
is the first job of τi whose response time exceeds Ti). So by Lemma 7 we can safely remove all
other jobs by task τi that arrived before or at time ri, without affecting the response time of the
job that arrived at time ri. Nor is its response time affected, if we additionally remove all other
jobs of τi that arrived after time ri. Let fi be the finishing time of the job by τi that arrived
at ri in the above schedule, after removing all other jobs of that task. We therefore know that
fi − ri > Ti.

Then, we can follow all the procedures and steps in the proof of Corollary 9, to eventually
reach Equation 10. J

The joint consideration of Corollary 9 and Lemma 10, which we have now proven, serves as
proof of Lemma 2.

3.2 Discussion
We had already publicised the flaws in [2, 3] and the proposed fix, immediately upon realising
the problem, in a technical report [8]. However, this article addresses the issue more rigorously,
in terms of proofs.

Note also that Huang et al. already proposed a correct variation of Equation 3 in [12], using
the deadline Dj of each higher priority task as the equivalent jitter term in the numerator of
Equation 1 (see Theorem 2 in [12]). Although slightly more pessimistic, this solution has the
advantage of remaining compatible with Audsley’s Optimal Priority Assignment algorithm [1].

The fix proposed in Lemma 2, in this article, mirrors the approach taken by Nelissen et al.
in [15], for which a proof sketch had already been provided (see Theorem 2 in [15]). Later, that
approach was also extended for a more general result [9]. Compared to [9], the corrected analysis
in the present article has the following differences:
1. In [9], the authors combine a second, newer technique for upper-bounding task response times,

that had not been invented at the time that the papers under correction [2, 3] were published.
That aspect of their analysis makes it more general.

2. In [9], the authors assume a model whereby Ci = Xi + Gi, ∀i. Instead, in this article, as in
[3], we assume a slightly more general model whereby Ci ≤ Xi +Gi. This makes the present
analysis more general, in that regard, although there is no fundamental reason why the result
in [9] cannot be similarly extended.

Other than the above observations, one “side-effect” of the proposed fix is that the WCRT
estimate output by Equation 3 is no longer guaranteed to always dominate the estimate de-
rived under the pessimistic but jitterless “suspension-oblivious” approach. In the “suspension-
oblivious” approach, self-suspensions are treated as regular S/W executions on the processor.
That is, every task τi ∈ τ is modelled as a sporadic non-self-suspending task with a WCET equal
to Ci ≥ Xi. Using our notation described above, the corresponding WCRT equation for the
suspension-oblivious approach is given by:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj (11)

A simple way for obtaining a WCRT upper bound that dominates the suspension-oblivious
one is to always pick the smallest of the two WCRT estimates, output by Equations 3 and 11.

LITES

02:12 Errata for Three Papers on FP Scheduling with Self-Suspensions

4 The analysis in [7], its flaws and how to fix it.

For the “linear model” described earlier, a different analysis was proposed in [7]. It uses the ad-
ditional information available on the execution behaviour of each task, to provide tighter bounds
on the task WCRTs. That analysis was called synthetic because it attempts to derive the WCRT
estimate by synthesising (from the task attributes) task execution distributions that might not
necessarily be observable in practice but (were supposed to) dominate the real worst-case exe-
cution scenario. Unfortunately, that analysis too, was flawed – and as we will see, the flaw was
somehow inherited from the “simple” analysis already discussed in Section 3.

The linear model permits breaking up, for modelling purposes, the interference from each task
τj upon a task τi into distinct terms Xjk , each corresponding to one of the software segments of
τj . These software segments are spaced apart by the corresponding self-suspending regions of τj ,
which, for analysis purposes, translates to a worst-case offset (see below) for every such term Xjk .
This allows in principle, for more granular and hence less pessimistic modelling of the interference.
However, one problem that such an approach entails is that different arrival phasings between τi
and every interfering task τj would need to be considered to find the worst-case scenario. This is
yet undesirable from the perspective of computational complexity.

The main idea behind the synthetic analysis was to calculate the interference from a higher-
priority task τj exerted upon the task τi under analysis assuming that the software segments
and the self-suspending regions of τj appear in a potentially different rearranged order from the
actual one. This so-called synthetic execution distribution would represent an interference pattern
that dominates all possible interference patterns caused by τj on τi, without having to consider
every possible phasing in the release of τj relative to τi. This approach is conceptually analogous
to converting a task conforming to the generalised multiframe model [4] into an accumulatively
monotonic execution pattern [14] - with the added complexity that the spacing among software
segments is asymmetric and also variable at run-time (since the self-suspension intervals vary in
duration within known bounds).

In terms of equations, the upper bound on the WCRT of a task τi claimed in [7] is given by:

Ri = Ci +
∑

j∈hp(i)

n(τj)∑
k=1

Ri>ξOjk

⌈
Ri − ξOjk +Aj

Tj

⌉
ξXjk (12)

where n(τj) is the number of software segments of the linear task τj and the terms ξXjk (a
per-software-segment interference term), ξOjk (a per-software-segment offset term) and Aj (a
per-task term analogous to a jitter) are defined in terms of the worst-case synthetic execution
distribution for τj .

For a rigorous definition, we refer the reader to [6]. However, for all practical purposes, one can
intuitively define ξXj1 as the WCET of the longest software segment of τj ; ξXj2 as the WCET of
the second longest software segment; and so on. Analogously, ξGj1 is the best-case length of the
shortest hardware segment (i.e., self-suspending region) of τj (in terms of their BCETs); ξGj2

is that of the second shortest one; and so on. However, in addition to the actual self-suspending
regions of τj , when creating this sorted sequence ξGj1 ,

ξGj2 , . . . a so-called “notional gap” Nj of
length Tj −Rj is considered3. For tasks that both start and end with a software segment, this is
the minimum spacing between the completion of a job by τj (i.e. its last software segment) and

3 In [7], the length of the notional gap was incorrectly given as Tj −Cj . In this paper, we consider the correct
length of Tj −Rj , as in the thesis [6].

K. Bletsas et. al. 02:13

the time that the next job by τj arrives4 . This is so that the interference pattern considered
dominates all possible arrival phasings between τj and τi.

As for ξOjk , it was defined5 as

ξOjk =
{

0, if k = 1∑k−1
`=1 (ξXj` + ξGj`), otherwise

(13)

Finally, Aj is given by

Aj = Gj − Ĝj (14)

As we will now demonstrate with the following counter-example, it is in the quantification of
this final term Aj , that the analytical flaw lies.

I Example 11. Consider a task set with the parameters shown in Table 2. Each task is described
as a vector consisting of the execution time ranges of its segments in the order of their activation;
self-suspending regions are enclosed in parentheses. In this example, the execution times of the
various software segments and self-suspending regions are deterministic. The analysis in [7],
as sanitised in [6] with respect to the issue of Footnote 3, would be reduced to the familiar
uniprocessor analysis of Liu and Layland [13] for the first few tasks, since τ1 and τ2 lack self-
suspending regions. So we would get R1 = 2 and R2 = 4.

Using Equation 12 for τ3 would yield R3 = 19. Note that since the software segments and
the intermediate self-suspending region of τ3 execute with strict precedence constraints, it is also
possible to derive another estimate for R3 by calculating upper bounds on the WCRTs of the
software/hardware segments and adding them together6. Doing this, and taking into account
that the hardware operation suffers no interference, yields R3 = 5 +G3 + 5 = 15. This is in fact
the exact WCRT, as evidenced in the schedule of Figure 5, for the job released by τ3 at t = 0.

Next, to obtain R4 we need to generate the worst-case execution distribution of τ3. Since, in
the worst-case, τ3 completes just before its next job arrives (see time 15 in Figure 5) its “notional
gap” N3 = (T3 −R3) is 0. Then, the synthetic worst-case execution distribution for τ3 is

[1, (0), 1, (5)]

which is equivalent to a non-self-suspending task with a WCET C3 = 2.
From the fact that software and self-suspending region lengths are deterministic, we also have

A3 = 0 (using Equation 14). In other words, to compute R4 according to this analysis is akin
to replacing τ3 with a (jitterless) sporadic task without any self-suspension, with C3 = 2 and
D3 = T3 = 15. Then, the corresponding upper bound computed with Equation 12 for the WCRT
of τ4 is R4 = 15.

4 For tasks that start and/or end with a self-suspending region, the Ĝ of the corresponding self-suspending
region(s) is also incorporated to the notional gap. But that is part of a normalisation stage that precedes
the formation of the worst-case synthetic execution distribution, so the reader may assume, without loss of
generality, that the task both starts and ends with a software segment. For details, see page 115 in [6].

5 It is an opportunity to mention that in the corresponding equation (Eq. 12) of that thesis [6], there existed
two typos: (i) the condition for the first case has “k = 0” instead of “k = 1” and (ii) the right-hand side for
the second case does not have parentheses as should. We have rectified both typos in Equation 13 presented
here.

6 In [6], the definition of WCRT is extended from tasks to software or hardware segments: The WCRT Rij of a
segment τij is the maximum possible interval from the time that τij is eligible for execution until it completes.
This approach of computing the WCRT of a self-suspending task by decomposing it in subsequences of one
or more segments and adding up the WCRTS of those subsequences is also described there.

LITES

02:14 Errata for Three Papers on FP Scheduling with Self-Suspensions

Table 2 A set of linear tasks where the numbers within parentheses represent the lengths of the
self-suspending regions and the other numbers represent the lengths of the S/W execution regions.

τi execution distribution Di Ti

τ1 [2] 5 5
τ2 [2] 10 10
τ3 [1, (5), 1] 15 15
τ4 [3] 20 ∞

Figure 5 A schedule, for the task set of Table 2, that highlights the flawedness of the synthetic
analysis [7]. The job released by τ4 at time 40 has a response time of 18 time units, which is more than
the estimate for R4 (i.e., 15) output by the analysis presented in [7].

However, the schedule of Figure 5, which is perfectly legal, disproves this. In that schedule,
τ1, τ2, and τ3 arrive at t = 0 and a job by τ4 arrives at t = 40 and has a response time of 18 time
units, which is larger than the value obtained for R4 with Equation 12. Therefore, the analysis
in [7] is also flawed.

For the purposes of fixing the analysis, we note that the characterisation of the interference
by τj upon τi is correct for any schedule where no software segment by τj interferes more than
once with τj . This holds by design, because the longest software segments and the shortest
interleaved self-suspending regions are selected in turn (according to the property of accumulative
monotonicity). Moreover, even in the case that there is interference multiple times by one or more
software segments of the synthetic τj , i.e., when some γ segments interfere β > 1 times with τi and
the remaining segments interfere β − 1 times with it, by the design of the equation it is ensured
that these are its γ longest segments and that they are clustered together in time as closely as
possible. Therefore, the problem lies in the quantification of the per-task term Aj , that acts as
jitter for the task execution. Given that, for the simpler dynamic model, it was shown before
that a value of Rj − Xj for this jitter was safe, one may conjecture that using Aj = Rj − Xj

would also make the synthetic analysis for the segmented linear self-suspension model safe. After
all, in the latter model, there is a smaller degree of freedom, in the execution and self-suspending
behaviour of the tasks.

Indeed, not only is the above conjecture true, but below we are going to show that a smaller
jitter term of Aj = Rj −Xj − Ĝ also works and makes the analysis safe.

I Lemma 12. Consider a uniprocessor system of constrained-deadline linear (i.e., segmented)
self-suspending tasks and one task τi among those, in particular. If for every task τj ∈ hp(i) an
upper bound Rj ≤ Tj on its WCRT exists, and, additionally, the smallest positive solution Ri to

K. Bletsas et. al. 02:15

the following recursion is upper-bounded by Ti, then the WCRT of is τi is upper-bounded by Ri,
as defined below.

Ri = Ci +
∑

j∈hp(i)

n(τj)∑
k=1

Ri>ξOjk

⌈
Ri − ξOjk +Aj

Tj

⌉
ξXjk (15)

where

ξOjk =
{

0, if k = 1∑k−1
`=1 (ξXj` + ξGj`), otherwise

and

Aj = Rj −Xj − Ĝk

Proof. Let us convert the self-suspension of τi to computation. Then, whenever τi is present in
the system and a higher-priority task is executing τi is preempted. Then the response time of a
job of τi is maximised if the total execution time by higher-priority tasks, between its release and
its completion, is maximised. Therefore we can upper-bound the WCRT of τi by upper-bounding
the total execution time of higher-priority tasks during its activation. We are, pessimistically,
going to do that by upper-bounding the execution time of every τj ∈ hp(i) and then taking the
sum.

Consider some τj ∈ hp(i). Without loss of generality we will consider the canonical form
where it both starts and ends with a software segment. Then, it has the form

[xj1 , gj1 , xj2 , . . . , gjn(τj)−1 , xjn(τj)]

Let us consider one software segment xjk . As shown in Figure 6, from the moment that this
segment completes, until another instance of the same segment (belonging to the next job of τj)
executes for one time unit, there is a minimum time separation. Indeed:

All subsequent self-suspensions and software segments of the original job (if any) must execute,
i.e., gjk , xjk+1 , . . . , gjn(τj)−1 , xjn(τj) .
Then, there is at least Nj = Tj −Rj time units until the next job of τj arrives (i.e., what we
earlier called the notional gap).
Then all preceding software segments and self-suspensions (if any) of the next job of τj must
complete, i.e., [xj1 , gj1 , xj2 , . . . , gjk−1]

The workload generated by τj in any window of a given length is maximised when its execution
segments execute for their respective WCETs and those belonging to jobs released after τi are
released as early as possible whereas those belonging to a carry-in job by τj (if any) are released
as late as possible. This implies that self-suspending regions of τj overlapping with that time
window execute for their respective minimum suspension time. Under this scenario, it follows
that the minimum time separation between time instants where two different instances of segment
xjk execute is∑

k≤`≤n(τj)−1

Ĝj` +
∑

k<`≤n(τj)

Xj` + Tj −Rj︸ ︷︷ ︸
notional gap

+
∑

1≤`≤k−1
Xj` +

∑
1≤`≤k−1

Ĝj`

= Tj −Rj +Xj + Ĝj −Xjk (16)

This is also illustrated in Figure 6. Note that for successive instances of xjk released no earlier
than τi, under this worst-case scenario, the corresponding minimum time separation is Tj −Xjk .

LITES

02:16 Errata for Three Papers on FP Scheduling with Self-Suspensions

Figure 6 Illustration of the minimum time separation between two different instances of a segment of
the same task τj .

This means that, in the above scenario, within any time interval of length ∆t ≤ Tj − Rj +
Xj + Ĝj − Xjk , the execution by segment xjk is at most Xjk time units. And within any time
interval of length ∆t = (Tj − Rj + Xj + Ĝj) + M , with M > 0, the total execution time by
segment xjk is no more than Xjk + bMTj cXjk + min(Xjk ,M − bMTj cTj).

This means that, over a time interval of length ∆t, the worst-case amount of execution by
segment xjk is the same as the corresponding worst-case amount of execution, over an interval of
length ∆t, of an independent periodic non-suspending task with a WCET equal to Xjk , a period
of Tj and a release jitter equal to (Rj −Xj − Ĝj).

Then, for any particular given phasing of the interfering tasks, the response time of a job of
τi is upper-bounded by the smallest solution to

R∗i = Ci +
∑

j∈hp(i)

∑
xjk∈τj

⌈
R∗i + (Rj −Xj − Ĝj)−Ojk

Tj

⌉
0

Xjk (17)

where Ojk is an offset that describes the phasings of the different segments and d·e0
def=

(maxd·e, 0).
Now, observe that the leftmost interfering segment of τj , within the interval under consider-

ation, will not necessarily be τj1 . It could be any other segment, depending on the release offset.
So, it will not hold in the general case that Ojk < Ojk+1 , k ∈ {0, 1, n(τj)}. Let us use introduce
some notation to refer to the segments of τj by the order that they first appear in the time interval
under consideration. So, if the βth segment of τj is the one to appear first (i.e., leftmost), then
let

x′j1

def= xjβ

and

x′jk
def= xjβ+k−1 , ∀k ∈ {1, 2, . . . , n(τj)}

Accordingly Equation 17 can be rewritten as

R∗i = Ci +
∑

j∈hp(i)

∑
x′
jk
∈τj

⌈
R∗i +A′j −O′jk

Tj

⌉
0
X ′jk (18)

where A′j = Rj − Xj − Ĝj and it will hold that O′jk < O′jk+1
, k ∈ {0, 1, n(τj)}. Intuitively,

the RHS is maximised when the O′jk positive offsets are minimised. And a lower-bound on each

K. Bletsas et. al. 02:17

of those is

O′j1
= 0

O′j2
= X ′j1

+ Ĝ′j1

. . .

O′jk =
(
k−1∑
`=1

X ′j`

)
+
(
k−1∑
`=1

Ĝ′j`

)
, k ∈ {1, . . . , n(τj)} (19)

where g′jk is defined as the self-suspension interval immediately after segment x′jk (or, the
notional gap, in the special case that x′jk is xjn(τj) .)

Now compare Equation 19 with Equation 15, from the claim of this lemma. By the design of
the latter equation, it holds that

k∑
`=1

ξXj` ≥
k∑
`=1

X ′j` ,∀j, k ∈ {1, 2, . . . , n(τj)}

ξOjk ≤ O′jk ,∀j, k ∈ {1, 2, . . . , n(τj)}

Aj = A′j

This means that the RHS of Equation 15 dominates the RHS of Equation 18, so the respective
solution to the former upper-bounds the response time of τi under any possible combination of
release phasings of higher-priority tasks. This proves the claim. J

5 Additional discussion

Priority assignment. In [2], it was claimed that the bottom-up Optimal Priority Assignment
(OPA) [1] algorithm could be used in conjunction with the simple analysis. However, once the
proposed fix is applied, it becomes evident that this is not the case. Namely, we now need
knowledge of Rj , ∀j ∈ hp(i) in order to compute Ri. In turn, these values depend on the relative
priority ordering of tasks in hp(i). This contravenes the basic principle upon which OPA relies [1].

Resource sharing. In [3], WCRT equations are augmented with blocking terms, for resource
sharing under the Priority Ceiling Protocol. However, there was an omission of a term in those
formulas (since those blocking terms have to be multiplied with the number of software segments
of the task – or, equivalently, the number of interleaved self-suspensions plus one). This has
already been acknowledged and rectified in [6], p. 101, but we repeat it here too, since this is the
erratum for that paper.

Multiprocessor extension of the synthetic analysis. In Section 4 of [7], a multiprocessor ex-
tension of the synthetic analysis is sketched, assuming multiple software processors and a global
fixed-priority scheduling policy. Showing whether or not this would work for the corrected analysis
is a conjecture that we would like to tackle in future work.

6 Some experiments

Finally, we provide some small-scale experiments, with synthetic randomly-generated tasks in
order to have some indication about:

The performance of the corrected analysis techniques, as compared to the baseline suspension-
oblivious approach.

LITES

02:18 Errata for Three Papers on FP Scheduling with Self-Suspensions

The extent by which the original flawed techniques were potentially optimistic.

The metric by which we compare the approaches is the scheduling success ratio. We gen-
erated7 hundreds of implicit-deadline task sets with n = 6 tasks each. The total processor
utilisation (

∑n
i=1

Xi
Ti

) of each task set did not exceed 1, in order to avoid generating task sets
that would be a priori unschedulable. Additionally, the suspension-oblivious task set utilisation
(
∑n
i=1

Ci
Ti
) of each task set ranged between 0.6 and 1.2, with a step of 0.05. Each generated task

consisted of 3 software segments and 2 interleaved self-suspending regions. For simplicity, the
best-case execution time of each software segment and self-suspending region matched its worst-
case execution time. Task inter-arrival times were uniformly chosen in the range 105 to 106. For
each suspension-oblivious task set utilisation (i.e., 0.6, 0.65, . . ., 1.2) we generated 100 such task
sets. For each target suspension-oblivious utilisation we used the randfixedsum function [11] to
randomly generate the suspension-oblivious utilisations of the individual tasks, which could not
exceed 1. Then, the suspension-oblivious execution time Ci of each task was derived by multiply-
ing with the task inter-arrival time Ti. Subsequently, for each task, we randomly generated its
Xi and Gi parameters: Gi was randomly chosen between 5% and 50% of Ci and Xi was set to
Ci−Gi. The function randfixedsum was again invoked to randomly generate the execution times
of the individual software segments and self-suspending regions from Xi and Gi, respectively.

Figure 7 plots the results from applying the following schedulability tests.
obl The baseline suspension-oblivious approach (Equation 11).
simple The simple approach from [2, 3] as corrected in Section 3 (namely Equation 3).
simple∪obl Applying both “simple” and “obl” and picking the smallest WCRT.
synth The “synthetic” approach from [7], already partially corrected8 in the Thesis [6] and
as further corrected in Section 4 (namely Equation 15, that uses for Aj the value perscribed
by Lemma 12).
synth∪obl Applying both “synth” and “obl” and picking the smallest WCRT of the two.
simple-bad The original, flawed technique from [2, 3], which was proven to be unsafe in
Section 3.
synth-bad The “synthetic” analysis technique from [7], as partially corrected in [6], which
was proven unsafe in Section 4.

The main findings from this experiment are as follows:
1. The suspension-oblivious analysis trails all other approaches in performance.
2. The benefits of the synthetic approach over the simple approach when used as a schedulability

test are limited but non-negligible.
3. Combining either of the suspension-aware tests with the suspension-oblivious test offers a slight

improvement in the middle region of the plot. This means that a small but not negligible
number of task sets is found schedulable by the suspension-oblivious test but not by the
suspension-aware tests.

4. The original flawed formulations of the simple and the synthetic analysis “perform” identic-
ally. The region of the plot enclosed between these curves and synth∪obl upper-bounds the
potential incidence of task sets that are in fact unschedulable but would have been erroneously
deemed schedulable by those flawed tests.

7 We are grateful to José Fonseca, for having granted us use of his Matlab-based task generator and schedulab-
ility testing tool, which he has been developing in the context of his ongoing PhD.

8 With respect to the length of the “notional gap”.

K. Bletsas et. al. 02:19

Figure 7 A comparison of the performance of different schedulability tests. The y-axis is the fraction
of task sets deemed schedulable. The x-axis is the suspension-oblivious task set utilisation, defined as∑n

i=1
Ci
Ti
. The original flawed variants of the analysis techniques corrected by this paper are also included

in the plot.

7 Conclusions

It is very unfortunate that the above flaws found their way to publication undetected. However,
as obvious as they may seem in retrospect, they were not at the time, to the authors and reviewers
alike. At least, this errata paper comes at a time when the topic of scheduling with self-suspensions
is attracting more attention by the real-time community. Therefore we hope that it will serve as
a stimulus for researchers in the area to revisit past results and scrutinise them for correctness.
For more details regarding the state of the art, Chen et al [10] have recently provided high-level
summaries of the general analytical methods for self-suspending tasks, the existing flaws in the
literature, and potential fixes.

References
1 Neil C. Audsley. On priority assignment in fixed

priority scheduling. Inf. Process. Lett., 79(1):39–
44, 2001. doi:10.1016/S0020-0190(00)00165-4.

2 Neil C. Audsley and Konstantinos Bletsas. Fixed
priority timing analysis of real-time systems with
limited parallelism. In 16th Euromicro Conference
on Real-Time Systems (ECRTS 2004), 30 June
- 2 July 1004, Catania, Italy, Proceedings, pages
231–238. IEEE Computer Society, 2004. doi:
10.1109/ECRTS.2004.12.

3 Neil C. Audsley and Konstantinos Bletsas. Real-
istic analysis of limited parallel software / hard-
ware implementations. In 10th IEEE Real-Time

and Embedded Technology and Applications Sym-
posium (RTAS 2004), 25-28 May 2004, Toronto,
Canada, pages 388–395. IEEE Computer Society,
2004. doi:10.1109/RTTAS.2004.1317285.

4 Sanjoy K. Baruah, Deji Chen, Sergey Gorinsky,
and Aloysius K. Mok. Generalized multiframe
tasks. Real-Time Systems, 17(1):5–22, 1999. doi:
10.1023/A:1008030427220.

5 Marko Bertogna, Michele Cirinei, and Giuseppe
Lipari. New schedulability tests for real-time task
sets scheduled by deadline monotonic on multipro-
cessors. In James H. Anderson, Giuseppe Pren-
cipe, and Roger Wattenhofer, editors, Principles

LITES

http://dx.doi.org/10.1016/S0020-0190(00)00165-4
http://dx.doi.org/10.1109/ECRTS.2004.12
http://dx.doi.org/10.1109/ECRTS.2004.12
http://dx.doi.org/10.1109/RTTAS.2004.1317285
http://dx.doi.org/10.1023/A:1008030427220
http://dx.doi.org/10.1023/A:1008030427220

02:20 Errata for Three Papers on FP Scheduling with Self-Suspensions

of Distributed Systems, 9th International Confer-
ence, OPODIS 2005, Pisa, Italy, December 12-14,
2005, Revised Selected Papers, volume 3974 of Lec-
ture Notes in Computer Science, pages 306–321.
Springer, 2005. doi:10.1007/11795490_24.

6 Konstantinos Bletsas. Worst-case and Best-case
Timing Analysis for Real-time Embedded Systems
with Limited Parallelism. PhD thesis, Dept of
Compputer Science, University of York, UK, 2007.

7 Konstantinos Bletsas and Neil C. Audsley. Ex-
tended analysis with reduced pessimism for sys-
tems with limited parallelism. In 11th IEEE Inter-
national Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA
2005), 17-19 August 2005, Hong Kong, China,
pages 525–531. IEEE Computer Society, 2005.
doi:10.1109/RTCSA.2005.48.

8 Konstantinos Bletsas, Neil C. Audsley, Wen-Hung
Huang, Jian-Jia Chen, and Geoffrey Nelissen. Er-
rata for three papers (2004-05) on fixed-priority
scheduling with self-suspensions. Technical report,
CISTER Research Centre, ISEP, Porto, Portugal,
2015.

9 Jian-Jia Chen, Geoffrey Nelissen, and Wen-Hung
Huang. A unifying response time analysis frame-
work for dynamic self-suspending tasks. In 28th
Euromicro Conference on Real-Time Systems,
ECRTS 2016, Toulouse, France, July 5-8, 2016,
pages 61–71. IEEE Computer Society, 2016. doi:
10.1109/ECRTS.2016.31.

10 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung
Huang, Maolin Yang, Björn Brandenburg, Kon-
stantinos Bletsas, Cong Liu, Pascal Richard,
Frédéric Ridouard, Neil, Audsley, Raj Rajkumar,
Dionisio de Niz, and Georg von der Brüggen.
Many suspensions, many problems: A review

of self-suspending tasks in real-time systems.
Technical Report 854, 2nd version, Faculty
of Informatik, TU Dortmund, 2017. URL:
http://ls12-www.cs.tu-dortmund.de/daes/
media/documents/publications/downloads/
2017-chen-techreport-854-v2.pdf.

11 P. Emberson, R. Stafford, and R. I. Davis. Tech-
niques for the synthesis of multiprocessor tasksets.
In Proc. 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-
time Systems (WATERS 2010), pages 6–11, 2010.

12 Wen-Hung Huang, Jian-Jia Chen, Husheng Zhou,
and Cong Liu. PASS: priority assignment of real-
time tasks with dynamic suspending behavior un-
der fixed-priority scheduling. In Proceedings of
the 52nd Annual Design Automation Conference,
San Francisco, CA, USA, June 7-11, 2015, pages
154:1–154:6. ACM, 2015. doi:10.1145/2744769.
2744891.

13 C. L. Liu and James W. Layland. Scheduling
algorithms for multiprogramming in a hard-real-
time environment. J. ACM, 20(1):46–61, 1973.
doi:10.1145/321738.321743.

14 Aloysius K. Mok and Deji Chen. A multiframe
model for real-time tasks. In Proceedings of the
17th IEEE Real-Time Systems Symposium (RTSS
’96), December 4-6, 1996, Washington, DC, USA,
pages 22–29. IEEE Computer Society, 1996. doi:
10.1109/REAL.1996.563696.

15 Geoffrey Nelissen, José Carlos Fonseca,
Gurulingesh Raravi, and Vincent Nélis. Timing
analysis of fixed priority self-suspending sporadic
tasks. In 27th Euromicro Conference on Real-
Time Systems, ECRTS 2015, Lund, Sweden, July
8-10, 2015, pages 80–89. IEEE Computer Society,
2015. doi:10.1109/ECRTS.2015.15.

http://dx.doi.org/10.1007/11795490_24
http://dx.doi.org/10.1109/RTCSA.2005.48
http://dx.doi.org/10.1109/ECRTS.2016.31
http://dx.doi.org/10.1109/ECRTS.2016.31
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2017-chen-techreport-854-v2.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2017-chen-techreport-854-v2.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2017-chen-techreport-854-v2.pdf
http://dx.doi.org/10.1145/2744769.2744891
http://dx.doi.org/10.1145/2744769.2744891
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1109/REAL.1996.563696
http://dx.doi.org/10.1109/REAL.1996.563696
http://dx.doi.org/10.1109/ECRTS.2015.15

	Introduction
	Process model and notation
	The simple model
	The linear model

	The analysis in [2,3], its flaws and how to fix it.
	Proof of Lemma 2
	Discussion

	The analysis in [7], its flaws and how to fix it.
	Additional discussion
	Some experiments
	Conclusions

