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ducing the papers appearing in this special issue.
Work at this intersection is steadily growing in im-
portance, especially in the context of autonomous
and cyber-physical systems design. Vision-based
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challenges like, how to efficiently implement vision

processing algorithms on resource-constrained em-
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tional and timing correctness of these algorithms.
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1 Computer vision and embedded systems

Efficiently implementing computer vision algorithms on resource-constrained embedded systems
is necessary for many application domains and is continuing to attract widespread attention in
the research community [50]. We are witnessing a surge in the development of various smart
and autonomous systems – such as autonomous cars, robots, drones, and industrial automation
systems. All of these systems rely on environmental perception in order to generate the necessary
control action. Towards this, inputs from various sensors like cameras and lidars need to be
processed and their output serves as inputs to control algorithms that compute commands for
realizing the desired system functionality. Hence, vision processing algorithms have to meet
various architectural and resource constraints and need to be certified for functional and timing
correctness in order to ensure the reliability of the entire system. This has triggered research
on the development of high-performance embedded systems architectures to support computer
vision solutions, e.g., using accelerators like FPGAs and GPUs, in particular for those that rely
on machine learning. There has also been recent work on how to provide timing guarantees
to computer vision algorithms that are a part of feedback control loops. Power and memory
optimization of computer vision algorithms, and issues related to privacy and security of vision-
based applications and systems have also been published during the past couple of years.

In view of these developments, we organized this special issue for the Leibniz Transactions
on Embedded Systems and invited papers on a variety of topics at this intersection of computer
vision and embedded systems. The topics we listed included new embedded systems architectures
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– including FPGAs, GPUs, and heterogeneous MpSoCs – for computer vision, novel algorithms
for computer vision targeting embedded applications, machine learning and neural networks for
image and video understanding for autonomous systems, timing analysis of computer vision al-
gorithms and architectures, performance and power analysis and management of computer vision
systems, vision-based control or visual servoing systems, security and privacy issues in vision-
based embedded systems, robustness issues in vision-based autonomous systems, and debugging
vision-based embedded systems. Papers on applications of computer vision were also invited.

Before we introduce the three papers that comprise this special issue, we briefly review some
of the recent literature on the above topics. This review is by no means complete or detailed. Its
only purpose is to provide a context for this special issue and impress upon the reader the variety
of work that has been done in this area, and the rich set of challenges that are still remaining.

1.1 Control + Vision
As we already hinted above, almost all autonomous systems rely on different feedback control-
lers that need to be implemented on resource-constrained distributed embedded systems [5]. In
the past, controller design and their implementation were done separately, which resulted in a
mismatch between model-level assumptions and implementation realities. This necessitated an
iterative design approach and significant effort in testing and debugging. More recently, different
parts of a control system are being co-designed and co-synthesized [42].

In the case of visual servoing systems, where a computer vision system is used to compute
control inputs, co-design is also being used. More specifically, while controller design was tra-
ditionally done independently and was disconnected from the vision or perception processing
techniques, recently the need for co-design between the two is being recognized [19, 53]. Holistic
approaches to closed-loop behavior have also been studied in [44], instead of designing compon-
ents like object detection, tracking, motion planning, and multi-sensor fusion in isolation, followed
by integrating these components together. By co-designing and optimizing these components to-
gether, it has been shown that resource utilization may be significantly reduced with minimal
impact on performance such as motion planning.

Several studies have focused on evaluation of vision-in-the-loop systems, since building a full
prototype of such systems might be too expensive and infeasible. Hence, the evaluation is done in
a progressive manner as different components of the system are designed. Here, the work in [21]
has proposed an evaluation framework for model-in-the-loop, software-in-the-loop, and processor-
in-the-loop simulation features, as the design progresses from the model of the system, to the
software and its deployment on multi-core processors. The goal of this work was to evaluate
the closed-loop performance of industrial motion control systems. The design of the control
strategy, and the design and implementation of the vision processing system – both involve
several parameters. How to jointly determine the values of these parameters in order to optimize
control performance, and also resource usage, is the main problem. Today, only “point solutions”
exist and we will continue to see more work in this area.

1.2 Efficient implementation of vision processing (incl. GPUs & FPGAs)
Efficient implementation of compute-intensive tasks on resource-constrained architectures, such
as those seen in the automotive domain, require the use of various forms of hardware accelerators
like FPGAs [48]. Towards this, [20] proposed a FPGA-based scalable and resource-efficient multi-
camera GigE Vision IP core for video and image processing. This IP core, that was implemented
on a Xilinx Virtex-4 FPGA, supports the connection of multi-camera interfaces to a single Gigabit
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Ethernet port using an Ethernet switch. Similar FPGA-based implementations have also been
studied in [29] and [49]. Since modern cars are now equipped with multiple cameras, lidar, and
radar sensors, the volume of data that needs to be acquired for efficient processing is also large and
efficient data acquisition techniques and communication architectures have also been studied [14].

Sensor fusion is a standard task in many domains like automotive and robotics, and can be
very resource-heavy. Therefore, techniques for efficient sensor fusion has attracted considerable
attention. For example, [43] proposes techniques for spatiotemporal sampling to activate Lidars
only at regions-of-interest that are identified by analyzing the visual input. Such a task-based
sampling approach significantly reduces the volume of data that is sensed and transferred, thereby
reducing sensor fusion workload. A similar approach, where a smart camera captures only task-
critical information and is driven by embedded deep neural network algorithms for real-time
control of sensor parameters has been presented in [32].

As outlined above, in most vision-based control applications, the vision processing algorithms
incur very heavy computational workload. The work in [8] studied approximate image processing
techniques to reduce this workload, making vision-based control suitable for embedded platforms.
The underlying control strategy was adapted to an approximation-aware optimal linear-quadratic-
gaussian (LQG) controller, where the approximation error was modeled as sensor noise. This work
may also be viewed as a co-design between control strategy and its implementation, along the
lines of other studies like [19, 53]. Further, the tradeoffs between the degree of approximation,
and the resulting closed-loop quality-of-control, and metrics like memory utilization and energy
consumption have been studied in [7].

Yet another example of efficient implementation of vision-based control is in [30], which pro-
poses identifying different system scenarios that are optimized, and a switched controller switches
between these scenarios. Identifying only a limited number of scenarios helps with optimization
that would not be possible otherwise. Along similar lines, the work in [31] attempts to reduce
sensor-to-actuator delay in vision-based control applications by pipelining the vision task on a
multiprocessor architecture. In particular, this work shows how such pipelining may be imple-
mented for model predictive control, while accounting for workload variations in the different
stages of the image processing pipeline. As a continuation of this study, how the number of
pipeline stages impacts the quality of control has been studied in [45].

1.3 Verification and monitoring
Safety [57] and security [54] of autonomous systems is usually of crucial importance. While
there has been considerable work on the functional [17] and also timing verification [47] of cyber-
physical systems, and in particular controllers implementing different autonomous features, a full
verification of the system also requires a verification of the vision processing and understanding
algorithms that provide inputs into the controllers. Towards this, monitoring [13], debugging [12]
and optimization techniques for FPGA-based implementation of vision processing [11] have also
attracted considerable attention recently. However, work in this area is relatively nascent; as
systems become more complex and the need for certification increases, we will see more results
in this domain.

1.4 Timing predictable vision processing
While mainstream computer vision has considered fast vision processing algorithms, the issue of
real-time, viz., guaranteeing that the output is produced within a deadline, has not been studied.
However, when used in conjunction with control algorithms and in safety-critical systems, such
real-time processing guarantees become necessary. Towards this, temporal isolation might be
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needed between soft real-time applications like computer vision and time-critical applications like
control tasks [27]. Although many certification techniques rely on time partitioning, it has been
shown that the use of multicore + accelerator platforms can disrupt such partitioning or timing
isolation schemes [3]. In this context, how to design the vision processing system to be timing
predictable [2, 4], and how to debug systems for timing violations have also been studied [41].

Most control systems tend to be have a certain degree of timing robustness [18], and this can
be used for the design of the perception processing subsystem. How the behavior of vision-in-the-
loop control systems is impacted by the processing platform and the control software executing on
it has been studied in [21]. This study, in particular, evaluates the predictability of the embedded
computational platform “CompSOC” [16], which guarantees periodic and deterministic execution
of control tasks, allowing a verification of their timing properties.

Timing predictable GPU processing: A number of papers have recently investigated the
role of GPUs in providing such timing guarantees. It has been established that using OpenCV-
based applications on GPUs, unexpected delays might occur not only on the GPUs, but also
on the host CPUs, which might jeopardize the real-time constrains associated with vision-based
applications [1]. While most studies have focused on how to use GPUs to gain computational
advantage, there has been relatively less work done on evaluating the real-time characteristics of
GPUs – from both AMD and also NVIDIA [34]. Allocation strategies for real-time management
of multi-GPU systems has been been studied in [9].

1.5 Algorithms and data structures for efficient vision processing
There exists a variety of algorithms, processing architectures, and techniques for implementing
vision processing tasks on embedded computing platforms [28]. In particular, a lot of recent
attention has been on neural network based processing and their implications, like ensuring con-
sistency in their performance [51], or efficiently implementing them on resource-constrained edge
devices [15]. To cite examples from specific domains – in-vehicle augmented reality applica-
tions [40] and autonomous features in cars (such as automated parking or driving) require new
data structures and algorithmic techniques for vision processing [37]. More importantly, these
have to be resource efficient, e.g., so that complex 3D shapes of the environment can be trans-
mitted within the vehicle using low- to medium-bandwidth communication infrastructure [36]. In
addition to suitable data structures, special compression techniques for resource efficient in-vehicle
communication and computation have also been studied [38, 35].

The use of neural networks for image processing on embedded systems has been widely
studied in the literature [52, 58], along with specialized hardware architectures for vision pro-
cessing [26, 29]. When multiple convolutional neural networks (CNNs) with each processing a
different video stream are implemented on the same resource-constrained embedded platform,
then their inference and timing performance might not be satisfactory. However, reorganizing
these CNNs and exploiting parallelism, pipelining, and merging the images, might lead to signific-
ant improvements [56]. Some studies have also considered different graph transformation [10] and
scheduling strategies for OpenVX graphs to achieve better real-time performance [55]. OpenVX is
a standard for cross-platform acceleration of computer vision algorithms, and provides a high-level
of abstraction for programming vision applications [33].

In many cost-sensitive domains like automotive and also for general purpose cost-effective
imaging, a common challenge is to solve problems using low-cost and resource-constrained com-
ponents. For example high dynamic range images may be recovered by fusing multiple low
dynamic range (LDR) images. If all the LDR images are perfectly aligned, then this fusion pro-
cess is much easier. However, in reality, there are misalignments and jitters between different
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cameras and several studies have proposed machine learning techniques for correcting them (e.g.,
see [25]). This is especially relevant in the automotive and robotics domains where physical
movement causes cameras to vibrate. Another example in the same direction – where intelligent
algorithmic or machine learning techniques are used to utilize low-cost or resource-constrained
components – is where 3D shapes of objects are created from a single image using deep neural
networks in the context of autonomous driving [39].

As outlined above, there has been a tremendous growth in the use of machine learning al-
gorithms for vision processing in various embedded computing settings, especially in the auto-
motive domain. But a big challenge in their use is the need for a large amount of labelled training
data, especially because often the data needs to be manually labeled. To address this, various
techniques have been proposed to reduce the volume of such data that is needed. One such
technique is referred to as active learning, where a model selects samples for labeling based on
their uncertainty, thereby reducing the volume of data needed for various tasks like 3D object
detection [46].

1.6 Other applications
While we have so far mostly focused on autonomous systems and their instantiations in domains
like automotive and robotics, vision processing is also useful in various monitoring applications
for example for monitoring traffic flow [23] to devise suitable traffic analysis [24] and management
strategies [6]. Embedded vision processing has also been used for security and face recognition,
where various efficient implementation techniques have been studied, including how to best use
combinations of cloud and edge processing [22].

2 Papers in this special issue

This special issue features three papers. The first, entitled “Susceptibility to Image Resolution
in Face Recognition and Training Strategies to Enhance Robustness” by Knoche, Hörmann and
Rigoll studies how facial recognition algorithms are susceptible to the resolution of the input
images. They show that recognition accuracy can dramatically drop when the image resolution is
reduced. Since training images and input images that need to be recognized might not have the
same resolution, this finding poses a serious problem. To addresses this, they have proposed new
training strategies on state-of-the-art face recognition models, which provided significant boost
in accuracy and improved robustness.

The second paper, entitled “Micro- and Macroscopic Road Traffic Analysis using Drone Image
Data” by Kruber et al. discusses analysis of traffic image data that is captured using drones.
This includes estimating vehicle states and trajectories, and also macroscopic statistics such as
traffic flow and traffic density. Finally, the third paper, “HW-Flow: A Multi-Abstraction Level
HW-CNN Codesign Pruning Methodology” by Vemparala et al. is on optimizing convolutional
neural network models, that are widely used for image classification, segmentation, and object
detection tasks in autonomous vehicles. Towards this, the paper proposes a framework referred to
as HW-Flow that achieved around 2x reduction in energy and latency in a number of well-known
neural networks and datasets.

We hope that readers will find these articles to be interesting and will gain new insights into
this evolving area of embedded systems for computer vision. We thank everyone who submitted
their research to this special issue. We also thank all the reviewers, the EiC – Alan Burns –
and members of the LITES Editorial Office, especially Michael Wagner, without whose help this
special issue would not have been possible.
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