Micro- and Macroscopic Road Traffic Analysis using

Drone Image Data
Friedrich Kruber &

Technische Hochschule Ingolstadt, Esplanade 10, Ingolstadt, Germany

Eduardo Sanchez Morales &

Technische Hochschule Ingolstadt, Esplanade 10, Ingolstadt, Germany

Robin Egolf =

Technische Hochschule Ingolstadt, Esplanade 10, Ingolstadt, Germany

Jonas Wurst =

Technische Hochschule Ingolstadt, Esplanade 10, Ingolstadt, Germany

Samarjit Chakraborty &

University of North Carolina at Chapel Hill (UNC), Department of Computer Science, NC 27599, USA

Michael Botsch &=

Technische Hochschule Ingolstadt, Esplanade 10, Ingolstadt, Germany

— Abstract
The current development in the drone technology,
alongside with machine learning based image pro-
cessing, open new possibilities for various applica-
tions. Thus, the market volume is expected to grow
rapidly over the next years. The goal of this paper
is to demonstrate the capabilities and limitations of
drone based image data processing for the purpose
of road traffic analysis.

In the first part a method for generating micro-
scopic traffic data is proposed. More precisely, the
state of vehicles and the resulting trajectories are
estimated. The method is validated by conducting
experiments with reference sensors and proofs to
achieve precise vehicle state estimation results. It
is also shown, how the computational effort can be
reduced by incorporating the tracking information

into a neural network. A discussion on current lim-
itations supplements the findings. By collecting a
large number of vehicle trajectories, macroscopic
statistics, such as traffic flow and density can be
obtained from the data. In the second part, a pub-
licly available drone based data set is analyzed to
evaluate the suitability for macroscopic traffic mod-
eling. The results show that the method is well
suited for gaining detailed information about mac-
roscopic statistics, such as traffic flow dependent
time headway or lane change occurrences.

In conclusion, this paper presents methods to ex-
ploit the remarkable opportunities of drone based
image processing for joint macro- and microscopic
traffic analysis.
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1 Introduction

Drones are an excellent example of the ongoing technological development of embedded systems.
The commercial drone market is already a multi-billion dollar business. Growth rates of 15 percent
per year are forecast for the coming years [13]. The capability of drones to carry payloads make
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them versatile tools. They are used to detect biological microorganisms or chemical substances, to
inspect technical equipment such as wind turbines and gas pieplines, or to monitor crop growth
and measuring biomass, to name a few examples [56]. Most commonly, drones are equipped with
cameras. The development of drones as embedded vision systems runs parallel to breakthroughs in
computer vision using deep learning methods. This increases the potential for automated analysis
of image data.

The present work is specifically dedicated to the application for traffic surveillance and analysis.
Traffic is traditionally analyzed either on a global, macroscopic view, or in contrast, on a vehicle
based, microscopic view. Section 2 summarizes typical sensor setups and study procedures from
established methods.

Section 3 proposes methods for some of the core elements for the data acquisition via drones:
image registration, object detection, coordinate transformation and object tracking. The re-
quirements for object detection are high, since every pixel translates into several centimeters
on the ground. For example, it is crucial to know which lane a vehicle is located in. Thus,
the tolerance is accordingly in the range of a few decimeters or pixels, respectively. In order
to map the images to the real world, the pixelized information has to be transformed to real
world coordinates. Since a hovering drone is exposed to wind, slight movements have to be
compensated with image registration techniques. By tracking vehicles over time, state variables,
such as position over time, speed, acceleration and orientation can be obtained. To validate
the proposed method of estimating the vehicle’s state, experiments with reference sensors are
conducted in this work. Lastly in Section 3, a novel approach to reduce the computational load of
the object detection is proposed. For this, Kalman Filter based predictions are fed into a neural
network as region proposals, which allows to deactivate one part of the neural network temporally
and increases the average throughput. The code for the complete methodology is available at
https://github.com/fkthi/OpenTrafficMonitoringPlus.

By collecting a large number of vehicle trajectories, macroscopic traffic statistics can be derived
as well. In Section 4, a publicly available dataset, acquired by means of drones, is used to validate
the approach for macroscopic traffic statistics. The synchronization of the micro- and macroscopic
domain can improve traffic modeling, but is difficult to accomplish with established approaches.
Now, information from both domains can be captured synchronous by a single camera, mounted
on a drone. Questions like how likely are lane changes performed in relation to the traffic flow,
how do vehicles distribute on multi-lane roads, or how do drivers adapt distances related to the
traffic situation, can be answered with bird’s-eye view images from hovering drones.

Possible applications are accordingly diverse. For example, the data can be used to understand
risk factors for traffic accidents by analyzing the behavior of traffic participants in intersections.
Macroscopic traffic simulations benefit from real traffic measurements too. They are applied in
many fields, for example to predict the effects of road network modifications, to optimize traffic
signal coordination for green wave traffic, or to improve emergency vehicles travel times [10].
Roadside unit sensors are expensive to plan, install and maintain, while drone recording campaigns
can be carried out at every place with low effort, so that investigations can also be conducted off
the main roads and at very short notice. Such data supports engineers in making traffic in various
situations more predictable and controllable as well.

Other applications target the automotive industry. Trajectory prediction and path planning
are two main challenges for automated driving. Here, data is typically collected with test vehicles,
equipped with reference sensors. However, the field of view from the vehicle perspective is limited
because of occlusions and the range of vision, which negatively affects the understanding of
other traffic participants decisions and actions. Images from aerial campaigns do not suffer from
occlusion and observe a large area on ground. They allow data collection for many vehicles in
parallel and capture how individual objects interact with each other.
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2 Related work

This section starts with an overview on typical measurement principles for macroscopic data,
followed by the microscopic data collection. The third subsection summarizes the current state of
traffic surveillance from aerial imagery and provides an overview of public available data sets.

2.1 Macroscopic data

Traffic flow theory has been intensively researched for decades, starting with Greenshields pub-
lication and the first fundamental diagram in 1933 [18]. The works of [20, 23] provide a broad
overview of the literature research of traffic stream characteristics and comparisons of several
approaches on how to obtain data. Table 1 summarizes the measurement principles, typical
sensors and the obtained measurements. It should be noted that, while some variables cannot
be measured with certain methods, they can still be estimated to some extent. For example,
single loop detectors cannot estimate speed, but if several of them are placed within distances
of some hundred meters, average speed can still be estimated. Around 90 % of fixed sensors
are induction loops [9], which are buried in the pavement. Radars and cameras are increasingly
becoming established and are constantly being further developed. Floating car data, acquired by
cell phones, enables end-user services for estimated travel times and alternative routes. Electronic
toll collection is automated with RFID tag equipped vehicles. By measuring the time between
consecutive toll readers, the travel times can be estimated as well [9]. The type of variables
that can be captured by a fixed camera depends on the mounting location. For example, if they
are located on a high building to perceive a large area, they offer the same possibilities as a
drone. A major advantage of image-based methods is that they can deliver both, point-based and
distance-based variables. Looking at an individual image frame, the distance-based traffic density
can be estimated. However, if one considers a sequence of video frames, the number of vehicles
crossing a specific location over time yields the traffic flow.

The costs for fixed sensor units are estimated up to USD 20,000, depending on existing
structures [15]. Once installed, they deliver a constant data stream and they are less affected by
weather conditions compared to drones. In contrast to that, drone data can only be obtained within
certain time windows and the data acquisition causes variable costs. Batteries are a bottleneck,
but this disadvantage can nowadays be compensated by tethered drone systems, which allow flight
durations of several hours. Wind and water resistance, alongside with low-light capabilities of
cameras, are still weak points. In return, drone based data acquisition has three key advantages:
1) data can be recorded without the necessity of additional infrastructure and 2) both, point-based
and distance-based variables can be obtained, and 3) it enables joint micro- and macroscopic
traffic analysis.

2.2 Microscopic data

In this work, microscopic data is defined as the estimation of vehicle state variables, such as speed,
accelerations and rotation rates. By observing several nearby located vehicles, their interactions
can be inferred as well. In contrast to that, the aggregation of data from many vehicles over
time or space defines the macroscopic view. While the macroscopic analysis is rather of interest

for transportation planners, the microscopic data is targeted towards the automotive industry.

Typical data recording procedures from the ego vehicle perspective are:
Field Operational Tests (FOT),
Natural Driving Studies (NDS).
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Table 1 Measurement principles, available sensors and corresponding traffic variables for macroscopic
traffic stream characteristics.

M t
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The two procedures differ according to their target [35]. In FOT, the drivers get instructions
in order to validate or assess a certain functionality. As an example, the drivers are asked to
evaluate a lane keeping assist. In contrast to that, NDS are free of instructions in order to analyze
unbiased driving behavior. For example, NDS can be used to examine how fast drivers approach
an uncontrolled intersection, or how often they perform lanes changes. Car manufacturers proceed
similarly. Test drives can be performed to validate a specific functionality according to given
specifications. Alternatively, long term tests can be carried out without specific instructions in
order to reveal any sort of unexpected malfunction, especially in the context of system integration.
In both cases, FOT and NDS, vehicles can be either equipped with series production sensors, or
additionally with reference sensors, such as Lidars and additional cameras.

The scope of in-vehicle testing spans all aspects of driving: perception, planning, and execution.
In contrast to that, recordings from external sensors capture only the output of these tasks.
Nevertheless, such data is valuable for several purposes, such as developing trajectory planning
algorithms, where the drone based recordings function as ground truth data. Another application
is the development of behavior models of traffic participants.

2.3 Traffic data acquired with drones

The interest in traffic data acquisition with drones is underlined by the increasing number of
publications over the past years. Here, related works are divided into object detection methods
from aerial imagery, followed by publicly available data sets.

Some works propose architectures for object detection from satellite or airplane images [34, 4, 41],
while the present work pursues a precise state estimation from flight altitudes of up to 100 m.
Other works focus on detection and tracking from drones or infrastructure cameras [19, 53, 32].
DroNet [32] is a lean implementation of the YOLO network [45], where the number of filters in
each layer is reduced. DroNet outputs several frames-per-second (fps) with onboard hardware,
but at the cost of lower detection performance and image resolution. The network struggles with
variations in flight height and vehicle sizes. It outputs horizontal bounding boxes, which are not
favorable for estimating variables such as the vehicle orientation or yaw rate. DroNet is rather
implemented for vehicle detection with a moving drone, than for vehicle state estimation. The
R3 network [34] enables the detection of rotated bounding boxes from high altitude images. R?
is a bounding box detector, while the method in this work uses Mask R-CNN [22], which is an
instance segmentation network. Except for [53], no other work focuses on the vehicle tracking and

state estimation.
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Figure 1 The overall process: From data recording to tracking.

The work in [19] approximates the most to the present work. A test vehicle was equipped
with a GPS logger that receives positions and speed. The images were geo-referenced to obtain a
fixed frame. The main differences with the present work can be stated as follows: The detection
algorithm in [19] compares the differences between two frames, hence identifying moving objects
by localizing altered pixel values. This type of detector is prone to errors, e.g., during vehicle
standstills, changing light conditions or due to the movement of vegetation, as stated by the
authors. The output is a non-rotated bounding box, which fails to estimate the vehicles shape
and thereby worsens the state estimation. The images in [19] were processed with a Gaussian blur
filter, which is claimed to eliminate high frequency noise. Applying such a filter blurs the edges
and is contra productive when applying a neural network detector. Finally, relief displacement was
not taken into account, which causes an increasing error with growing distance to the principal
point, see Section 3. The authors state a normalized root mean square error of 0.55m at a flight
altitude of 60 m. By the same measure, the error obtained in the present work is much lower with
0.18 m at a flight altitude of 75 m and identical image resolution. Finally, the reference sensor used
in [19] has an accuracy of 0.2m and 0.03m/s in the position and velocity respectively, while the
one used in this work has a position and velocity accuracy of 0.01 m and 0.01 m/s accordingly. A
better reference sensor accuracy allows a pixel-accurate comparison, which makes the experiments
more relevant.

Regarding the public data sets, two different types are available. The first type provides
pre-processed trajectory data [28, 58, 47, 12, 6]. With more trajectory data sets available now, not
only vehicles are tracked, but also bicycles and pedestrians among other classes. Also, the types

of locations broaden, from highway to urban infrastructure, such as crossings and roundabouts.

The dataset in [6] extends the perceptive field throughout a complete city district with a swarm
of several drones flying simultaneously.

The other type of data sets provide labeled training data to improve computer vision methods
and tracking algorithms. Large data sets can be found in [42, 59]. Despite their size, these are less
useful for traffic monitoring and vehicle state estimation, since the drone does not hover but flies
without providing the flight meta data of the drone. Additionally, it was found that [59] appears
to lack partly label quality, which is a key factor to obtain good results. Other data sets, such
as [40, 11] provide additionally flight meta data including the measurements from GPS and a
Inertial Measurement Unit (IMU). In these works, the drones fly at low altitudes, thus capturing
a smaller area on ground. The scope of these works is rather on visual odometry, Simultaneous
Localization and Mapping (SLAM) or autonomous aerial surveillance.

3 Drone image based vehicle state estimation

This section builds on our previous work in [30, 50] and describes a method to acquire a highly
accurate vehicle state based on computer vision detection. An overview of the main steps is
depicted in Figure 1. In the present work, the method is extended by feeding Kalman Filter [24]
based proposals into the neural network in order to reduce the computational load.

The section starts with a description of the coordinate systems, followed by the method
description and experiments.
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3.1 Coordinate systems

The coordinate systems used in this work are described in what follows. The vehicles move on the
Local Tangent Plane (LTP), where z1, points east, yr, north and 2z, upwards, with an arbitrary
origin oy, on the surface of the earth. The Local Car Plane (LCP) is defined according to the
ISO 8855 norm, where z¢ points to the hood, yc to the left seat, z¢ upwards, with the origin o¢
at the center of sprung mass of the vehicle. For simplification, it is assumed that
1) the zcyc-plane is parallel to the xpyp-plane,
2) the centre of sprung mass and geometrical centre of the vehicle are identical, and
3) the sensor in the vehicle measures in the LCP.
Quantities expressed in the LTP and LCP are given in the International System of Units (SI).
The Pixel Coordinate Frame (PCF) is a vertical image projection of the LTP, where zp and yp
represent the axes, with the origin op in one corner of the image. It is assumed that the camera is
pointing vertically downwards. Quantities expressed in PCF are given in pixels (px).

In the following, vectors are represented in boldface and matrices in boldface, capital letters.

3.2 Data generation setup

The data set was recorded on a test track. This gives certain degrees of freedom regarding
arbitrary vehicle trajectories within the image frame and allows the experiments to be repeated
with the same setup. The test vehicle was equipped with an Inertial Navigation System (INS)!,
which serves as a reference sensor for the position, velocity, acceleration, orientation and rotation
rate. This INS is equipped with servoaccelerometers, optical gyroscopes and receives Real-Time
Kinematic (RTK) correction data. The Correvit sensor? estimates the linear velocities (v, vy)
along the longitudinal and lateral axes of the vehicle by means of an optical grid [21]. According
to [16] the sideslip angle of the vehicle is defined as

8= arctan(z—z). (1)

Therefore, the Correvit can serve as the reference sensor for the estimated sideslip angle.
Table 2 depicts the flight altitudes and Ground Sampling Distance (GSD) for the drone® in
use, Section 3.5.1 details the computation.

Table 2 Total count of frames and GSD per altitude.

Flight altitude | 50m 75m  100m
Number of frames | 14532 15217 24106
GSD [cm/px] 3.5 5.2 6.9

Generally, for a vertical photograph, the GSD S is a function of the camera’s focal length f
and flight altitude H above ground:

=1 2)

1 GeneSys ADMA-G-PRO+
2 Kistler Correvit S-Motion
3 DJI Phantom 4 Pro V2
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Figure 2 Registered image (left) and the raw drone image (right) of a Ground Control Point (GCP)
from 1.5 m height. The borders of the left image are clipped due to translation and rotation. The red box
depicts the GCP location at the first video frame, which was shot around 30s beforehand.

Varying altitudes brings flexibility in the trade-off between GSD and the captured area on the
ground. For each altitude, from 50 m to 100 m, several videos were recorded. Note, that minor,
unavoidable altitude differences during hovering are compensated by the image registration, see
Section 3.3. The camera frame-rate fr was set to fr = 50 fps and exposure time was kept constant

1 .
at 155 s for all recordings.

3.3 Pre-processing

The pre-processing consists generally of two parts: The camera calibration and the image registra-
tion. According to the manufacturer of the drone, the camera is shipped calibrated, so this step is
skipped. The image registration is performed to overlay the sequential video frames over the first
one to ensure a fixed image frame. The registration implemented in this work is composed of a
correction of the orientation, translation, and scaling of the image. Figure 2 depicts an example of
the registration result. This process involves three steps in order to find correspondences between
two images: a feature detector, a descriptor and finally the feature matching. The goal of the
detector is to find identical points of interest under varying viewing conditions. The descriptor is
a feature vector, which describes the local area around the point of interest. To match the points
between two images, the distances between the feature vectors are computed. If the distance
fulfills a certain criterion, e. g., a nearest neighbor ratio matching strategy, a matching point on
two images is found. The matches are then fed into the MLESAC algorithm [54] to eliminate
outliers. Lastly, a randomly selected subset of the remaining matching points is used for the image
scaling, rotation and translation. The scenery recorded should offer some distinguishable, static
features to ensure a robust image registration. Since all consecutive video frames are compared
to the very first frame, a confusion between static and moving objects can be avoided. In this
work, two competitive algorithms are applied and compared according to their execution time:
SURF [7] and ORB [49], based on their openCV implementation. Additional information can be
obtained from the survey [27].

3.4 Object detection

In addition to the object detection, an estimation of the dimensions and orientation of the vehicles
is required for many applications. Semantic segmentation networks are suitable for this purpose,
since they detect objects in random shapes, based on a pixelwise prediction. From these shapes
rotated rectangles can be derived, which serve as bounding boxes for the vehicles. In particular,
networks of the subgroup of instance segmentation are advantageous, since these networks output
directly object wise instances, instead of a pixelwise class prediction over the complete image. For
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Figure 3 Detection examples: The left column depicts examples from the experiments performed on
the test track. Other images are taken on roads, partly from publicly available sources [59, 44]. The
masks, depicted with random colors, are used to compute the location, size and orientation of the smallest
rectangle containing all mask pixels of the detected object. Note, the non-rotated bounding boxes would
be the final output of typical object detectors without the segmentations masks.

this work, the Mask R-CNN network [22] is chosen for its strong detection performance for traffic
surveillance with drone images. Mask R-CNN extends Faster R-CNN [46] by adding a parallel,
Fully Convolutional Network [39] branch for instance segmentation, next to the classification and
bounding box regression from Faster R-CNN. The network is a so called two stage detector: In
the first stage, feature maps generated by a backbone network are fed into a Region Proposal
Network (RPN), which outputs Regions of Interest (RoI). In the second stage, the predictions are
performed within the Rol Heads. One head predicts classification and regression, the second head
provides segmentation masks. These masks are used to compute the location, size and orientation
of the smallest rectangle containing all mask pixels of the detected object, in our case a vehicle.
The combination of the RPN with a Feature Pyramid Network (FPN) [37], both part of Mask
R-CNN, achieve strong detection results for rather small objects and additionally for objects of
different scales, which result from varying flight altitudes, as well as the varying objects sizes from
a small car up to a large truck, see Figure 3 for examples.

The network is pre-trained on the Common Objects in Context (COCO) data set [38]. To
predict vehicles from the top view, transfer learning has been applied with an own, manually
labeled data set. Further details, along to the extension with Kalman Proposals are presented
in Section 3.9. Implementation details are provided in our repository. Figure 3 depicts some
detection examples. The left column depicts examples from the experiments performed on the
test track (Section 3.7). Other images are taken on roads, partly from publicly available sources
[59, 44]. Note, the non-rotated bounding boxes in Figure 3 would be the final output of typical
object detectors without the segmentations masks.

3.5 Post-processing steps

To complete the process for a single image, two more steps are performed. First, the output from
the neural network, given in PCF, has to be mapped to the LTP. The mapping in this work is
applied in order to perform the experiments with the reference sensors. Another use-case for the
mapping is the translation of the pixelized information onto a road map. In the second step,
measures are taken to reduce errors induced by the relief displacement.

3.5.1 PCF Mapping

A comparison to the reference sensors requires the mapping of the PCF to the LTP. For this,
GCPs are placed on the zpyp-plane, in such a way that they are visible on the image. The ¢-th
GCP is defined in LTP as g; 1, = [z 1, yi,L]T, and in PCF as g;p = [z;p yi,p]T. The GSD S
is calculated from two GCPs by
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g |git1,. — gi Ll @)
|gi+1,P —giP

The i-th GCP can then be expressed in meters by
_ _ 4T
gi=gip-S=12 ¥l . (4)

The orientation offset ¢ from the LTP to the PCF is calculated as
0= 91 - Hi,L,With (5)

0; = atan2(giy1 — Gi, Tir1 — Ti), (6)
0;1, is calculated by analogy. The GCP g; is then rotated as follows
9i =R, (5)" g, (7)

where R, () is a 2D rotation matrix. The linear offsets from the LTP to the PCF are calculated
by A = g; — g; 1. Finally, a pixel pp = [QEP yp]T on the PCF can be mapped to the LTP by

Pk = (B ()" (pr - 9)) - A. 8)

The next stage is to semantically define the four bounding box corners. It is assumed that the
box covers the complete shape of the vehicle. The i-th corner of the bounding box is defined in
PCF as b; = [Ib7i7p ybﬂv,p]T, and the bounding box is defined in PCF as

Bp=[bi by b3 by. (9)

The corners of the bounding box are mapped to the LTP as shown in Eq. (8) to obtain BE. The
geometric centre of the vehicle oy, is calculated by

max(B% 1Vi)+min(B]1; Li)
_ 2
Oveh = max(BIf,%i)erin(BIl;z,i) ’ (10)
2

for i =1,...,4. The dimensions of the detected vehicle are calculated next. Let
b2 = b1 < [[bs — bu|| < [[bs — by]], (11)

then & = S-||by — by || and [ = S - ||bs — by || are the estimated width @ and length [ of the vehicle
in meters.
Knowing this, the orientation ¢L of the vehicle is given by

’lr/)\I/Jeh = atan?(y?,P - y%,Pa m?P - x%,P)v (12)

where j is the element of Bp associated with the length [ of the vehicle. The measurement vector
for the Kalman Filter is then defined as

Zin = [Ogeh w&eh]T . (13)

02:9
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The estimation of the measurement noise is detailed in what follows. As described above, the
GSD and the orientation offset can be estimated from one pair of GCPs as long as they are visible
on the PCF. By using the same method, if n > 2 GCPs are visible on the PCF, then the number
of values ¢ that can be calculated for the GSD and for the orientation offset can be calculated as

n!

T2

(14)

where n is the number of GCPs. An arithmetic mean S for the GSD can then be calculated as

_ .S,
5= iz 5 (15)
c
where S; is the GSD estimated with the i-th pair of GCPs. Likewise, an arithmetic mean § for

the orientation offset can be calculated as

5= Z§=1 d;

C

: (16)

where §; is the orientation offset estimated with the i-th pair of GCPs. The measurement error

Co,ven for the position and the measurement error ¢y ven for the orientation can then be calculated
by

Co,ven = Max (Sl- — F) , with i € {1,...,c}, (17)

Cpven = max (6; — 6) , with i € {1,...,c}. (18)
The measurement noise for the Kalman Filter is then defined as the diagonal matrix ¢,

Cz = diag (Co,vehv Co,vehv Cw,veh) . (19)

3.5.2 Relief displacement

Photographs yield a perspective projection. A variation in the elevation of an object results in a
different scale and a displacement of the object. An increase in the elevation of an object causes
the position of the object’s feature to be displaced radially outwards from the principal point O,
[36].

Assuming a vertical camera angle, the displacement can be computed from the similar triangles
LO A" and AA’A”, according to Figure 4:

D R d r

h H h H (20)
where the second equation is expressed in GSD, with d defining the relief displacement and r the
radial distance between o. and the displaced point a in PCF. D defines the equivalent distance of
d, projected on the ground, R the radial distance from O., H defining the flight altitude and h
being the object height in LTP. L is the camera lens exposure station, where light rays from the
object intersect before being imaged at the cameras’ sensor. The relief displacement decreases
with an increasing hovering altitude and is zero at O.

According to Eq. 20, the bounding box has to be shifted radially. Two approaches are
considered: The first one requires knowledge of the vehicle sizes, and the second one is an
approximation for unknown vehicle dimensions. Since the training is performed to detect the
complete vehicle body, the corner closest to O, can be identified as the bottom of the vehicle body.
So the height of this point is equal to the ground clearance. Knowing the height of this corner, its
displacement is corrected as described in what follows.
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Figure 4 Geometry of the relief displacement, adapted from [36]. The red bar depicts an object of
height h. Due to the perspective projection and R > 0, the top of the bar A is displaced on the photo
compared to the bottom A’. The relief displacement d is the distance between the corresponding points a
and a’ in the PCF.

Defining the horizontal and vertical resolution of the image as r, and ry, the coordinates in
PCF of b; w.r.t. the image center are given by

|:xb,i,img:| _ [xb,i.,P - :2:} ) (21)
2

Yb,i,img Yb,i, P —

The shift A, p along the zp axis is calculated on the PCF by

R S
App = MTW’ (22)

where hy, ; 1, is the height of the i-th corner on the LTP. The shift for A, p is computed by analogy
along the yp axis. The shifted coordinates b; snis of b; are then given by

b; shite = b; — [Ny p Ay,P]T- (23)

Let w be the width and [ the known length of the vehicle and b; be the closest corner to the
image centre. Then, b is used for scaling by and bz as follows

w
buscatea = (= (b2 = b1)) + by, and (24)

l
b1 scaled = <Z - (bs — bl)) + by, (25)

where w is the element of Bp associated with ||bs — b1 || and 1 associated with ||bs—b; ||, respectively.
The shifted centre of the vehicle can then be calculated by

bw7scaled + bl,scaled
9 .

(26)

Oveh,shift =
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When gathering data on public roads, the vehicle dimensions are unknown and cannot be estimated
with a mono camera. An approximation for the displacement can be performed by assuming that
two sides of the bounding box closest to o., are collinear to the lowest part of the vehicle chassis.
The ground clearance can be approximated as 15 cm for passenger cars [55]. The remaining two
sides can usually be referred to as the vehicle body shoulders, which usually protrude further
than the roof of the vehicle. The shoulders height is roughly half of the vehicle height and can
be approximated with 75 cm for passenger cars. Then all four corners can be shifted following
Eq. (22). Although this is only a coarse approximation, the overall error is reduced when compared
to the initial situation of neglecting the displacement.

3.6 Tracking and state estimation

To enable the object tracking, the detections must be associated across frames in a sequence
of images. The association procedure in this paper follows the computationally efficient SORT
algorithm [8]. In contrast to batch tracking methods, this algorithm solely requires information
from the previous and current frame. It is therefore suitable for real-time applications and
endless video recording or streaming. In principle, an Intersection-over-Union (IoU) distance is
computed for all detected vehicle shapes from two consecutive frames and stored in a cost matrix.
The assignment is computed optimally using the Hungarian algorithm [31]. If no detection is
associated to a vehicle no corresponding measurement vector can be generated. However, its state
is continuously predicted without measurement variables using the Kalman Filter. After a defined
number of frames without association, the vehicle track is withdrawn. The IoU distance allows
implicitly short-term occlusions.

Having the measurement vector from Equation (13), the state vector from Equation (27) and
measurement noise from Equation (19) assigned to an object, the next step is to estimate the
vehicle state using the Kalman Filter as described in [24]. The Kalman Filter also allows to
estimate state variables that are not part of the measurement vector by allowing the system noise
to propagate. The specifics applicable to this work are described in the following.

The used state vector is defined as

i T
T = [mcah Year; Vz,cars Vy,cary Gz cary Ay, car, wcara wcar] ) (27)

where Zcar and Year are the (x,y) coordinates of Ocay in LTP, v, car and vy car are the velocities of
Oc,r along the xp, and y1, axes, ag car and ay car are the accelerations of oc,, along the zr, and yy,
axes, Ycay 18 the angle from zy, to z¢ in LTP, and 1/}Car is the yaw rate around zc. In this work a
linear motion model is used.

Since the course over ground .., in LTP of the vehicle is defined as

Hcog = aftan2(vy,car7 Um,car)a (28)
the sideslip g of the car can then be calculated by

ﬂ = gcog - wcap (29)

Detailed information about vehicle dynamics and non-tractive driving can be found in [3] and [52].

In this work, the sideslip angle is estimated by means of a Linear Kalman Filter and Equation
(29). This produces better results than using an Extended Kalman Filter. This is explained by
the fact the sideslip angle is not part of the measurement vector. Using an Extended Kalman
Filter would imply the estimation of the sideslip angle by noise propagation, whereas Equation
(29) allows a direct calculation.
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3.7 Experiments

This section details the experiments carried out on the test track for the validation of the proposed
methods. The errors are defined as the deviation from the reference sensors to the estimated
states. Figure 5 a) depicts the cumulative error curves for the position estimation before applying
the Kalman Filter, so that the results represent unfiltered detections. A spiral template trajectory
is driven to obtain different vehicle poses and to cover a large are of the image. The test vehicle
is then equipped with a driving robot and a Satellite Navigation (SatNav) system that receives
RTK correction data. This ensures an identical reproduction of the trajectory for all experiments,
and a centimeter-accurate vehicle localization. No markers are placed on the vehicle to approach
real-testing conditions on public roads.

Depicted are curves for each flight altitude and the three main processing steps, where =
depicts results for non-registered images, == for registered images, and == for registered images
with corrected relief displacement. Image registration is the key to obtain reasonable results. The
correction of the relief displacement improves the results by 0.8 px on a weighted average*. Note,
that the impact of the relief displacement is dependent on the distance R of the vehicle to the
image center O.. Hence, data sets recording vehicles at the image border benefit more. The mean
position error is 0.2m and 0.14m for a flight altitude of 100 m and 50 m, respectively. In terms of
pixels, the errors are comparable for all flight heights. Around 90 % of all frames have an error of
7 px or less.

Figure 5 b) depicts the cumulative error curves for all estimated state variables, where =
depicts cumulative error plots for 50m, == for 75m and == for 100 m hovering altitude,
respectively. To generate the data from Figure 5 b) and c¢), which includes the tracking and
Kalman Filter, the vehicle is equipped with the reference sensors and is driven in a random manner
on a test track. No specific maneuver is driven in order to avoid tuning Kalman Filter parameters
for a specific trajectory or specific driving style. The test drives include standstill, walking velocity,
high acceleration, hard braking, tractive and non-tractive driving (drifting). The results show that,
once steps are taken to minimize errors, the precision of the estimated vehicle state is comparable
to the precision of consumer-grade sensors, such as silicon-based INSs or SatNav receivers with no
correction data. This with the advantage of being able to record information for various traffic
participants with a single drone. Also, the precision of the estimated sideslip angle allows to
differentiate between tractive and non-tractive driving [3]. As part of the experiment strategy, the
vehicle was forced to perform drift maneuvers, so that the side slip angle reached high values of
up to 28°. The sideslip angle is a relevant state variable to determine the vehicle stability.

Figure 5 c) depicts the estimated state variables (=) against the reference sensors (=) for
one test drive, which includes full-throttle acceleration, hard braking and sudden steering. The
estimated position, course over ground and yaw angle for this trial have a mean error of 0.19 m,
4.7° and 1.0° respectively. This precision is equivalent to that of consumer-grade INSs. Subfigure
¢) also shows that the estimated velocity is affected by a dampening effect and by a time delay.
Both are caused by the Kalman gains. A test-specific tuning of the gains could help to reduce
the velocity error for this trial, but would increase the error for other tests with lower vehicle
dynamics. The deviation of the estimated sideslip is caused mainly by the velocity error. This
is because the sideslip angle is estimated using the course over ground, which is calculated from
the velocity. During this test, a sideslip angle of 28° is reached, which clearly indicates that the
vehicle is drifting. The error in the acceleration is explained by two facts: First, the estimated
acceleration is calculated by system noise propagation, so it is low-pass filtered. Second, the
reference acceleration, that is measured by the INS, includes vibrations from the drivetrain, the
tires and the suspension, as well as from the pitch and roll of the vehicle.

4 weighted by the number of frames per height
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a) Position estimation with effects of registration and relief displacement (before tracking)
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Figure 5 Depicted are: a) Cumulative error curves for the position estimation with the effect of
registration and relief displacement before applying the KF, b) Cumulative error curves for all estimated
state variables after the KF, ¢) Estimated states variables against the reference sensor for one test drive
with high longitudinal and lateral dynamics.
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A summary of the experimental results leads to the following conclusions:

1) A robust image registration is crucial for a good performance. If the effects of the relief
displacement are neglected, larger errors are present in the estimated vehicle state. This error
increases as the hovering altitude decreases and as the objects are farther away from the nadir
point.

2) Considering the pixelwise results, similar performance is observed for all three altitudes, which
proofs that the traffic data can be obtained at different flight heights by a single Mask R-CNN
network. This advantage can also be helpful for detecting other object classes.

3) As a consequence of the GSD, the best results in metric units are achieved at lower altitudes.
Alternatively, in order to capture a larger surface area, one can raise the drone to higher
altitudes, increase the resolution and crop the image if necessary.

4) Regarding real-world applications, the vehicle can be associated to a lane with a precise velocity
and orientation estimation, and it can be identified whether the vehicle is drifting or not.

To identify the root causes of the deviations from ground truth, the next section analyzes
important sources of errors.

3.8 Limitations and sources of error

The methodology involves several processing steps with associated error sources. The main sources
of errors are listed in what follows:

pixel ambiguity and blurring effect,

relief displacement,

sensor synchronization.

The blurring effect that can be appreciated on the images can be caused by image compression,
camera optics or light propagation. It is precisely this blurring effect that prevents to unambiguously
associate a point to a GCP, or a pixel to the vehicle during the labeling of training data or object
detection. A pixel ambiguity ¢ &+ 1 px in both, the xp and yp axes is not uncommon. Since the
detection error of +1 px per axis is transferred to the bounding box, then b; could have an error
of V2 px.

The effect on the PCF to LTP mapping is shown next. Similarly, the effect of pixel ambiguity
can be applied to the image registration process, when pixel-pairs of two images do not match
exactly. For a GCP, the g; p is rewritten as

gip = |zip yi,P]T +¢. (30)

This association ambiguity has an effect on all three parameters that map the PCF to the
LTP. The case of the spatial resolution is analyzed first.

Considering a pixel ambiguity of { £ 1 px per axis and squared pixels, the distance between
the true and associated positions of a GCP on the PCF can be of /2 px. This mis-association
causes an error on the spatial resolution. The similarity in percentage ns between the seen and
the true values of the spatial resolution is calculated by

|£Iz'+1,1D —3gi,P

ns = : (31)
git1.p — gip| +2-/2¢
The Equation (4) is then rewritten as
T
gli=gip-S-ns =[xt yul . (32)
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From the Equations (31) and (32), it can be deducted that the effect of 1)y, increases as g; p — gi+1,p-
In a scenario for a Full-HD image, where both GCPs are placed on opposite diagonal corners of
the picture, the similarity can drop to 99.87%. For example, if the true value of |g;4+11 — ¢i1| is
100m, a similarity of 99.87 % will rescale it as 99.87m, meaning a 0.13 m difference.

Next, the effect on the orientation offset is analyzed. This is done in pixels to decouple errors
caused by ng. To consider the pixel ambiguity, the Equation (6) is rewritten as

geimage = atanZ((gl“rl - gl) i 2(? (i‘l“l’l - ‘%'L) i 2C>7 (33)

where ( is multiplied by two because & is calculated using two GCPs. Similar as with g, the

effect of the pixel ambiguity increases as .;i,P — gi+1,p. In a scenario for a Full-HD image, where
the GCPs are in opposing diagonal corners of the image, then TE6,mage could reach 0.07°.

The orientation error affects the rotation step of the PCF to LTP mapping. So, the effect of
orientation error increases as the points to map are farther from the rotation axis. For the i-th
corner of the bounding box, the mapping error 7, due to the orientation error is given by

) bi — b - S. (34)

Mo, = ’R <77€eimge
For example, if the drone records a Full-HD video while hovering at 50 m, bi:[1920 1080]T and
Neormage — 0.07°, then 7, ~ 0.08 m.

The error propagation causes a deviation on the linear offsets as well. The linear offset error
N¢, due to the orientation and scaling errors is expressed by

Neg = (<R (U&eimage)T (gip ’Tls)) - Qi,P) -5, (35)

In a scenario where the drone records a Full-HD video while hovering at 50 m, gi’p=[1920 1080] T,

a similarity of 99.87% and orientation error of 0.07°, then n¢, ~ [70.13m —0.03 m]T.

From the previous, it is deducted that the best way to minimize errors caused by the PCF to
LTP mapping, is to locate the GCPs as far from each other as possible. Also, since the direction
of the pixel ambiguity is not deterministic, the errors can be compensated by using different
combinations of various GCPs.

Next, the effect of the relief displacement is analyzed. The maximum positioning error 7,
when assuming that the true centroid of the vehicle corresponds to the seen centroid yields:

\/x%,i,img + ylfz),i,img -5 (h - hC)

= , 36
K 5 H (36)

For example, if the drone hovers at 50m, the vehicle height is A = 1.4 m, the ground clearance
is he = 0.15m and b; is on one corner of the image, then 7, ~ 0.48 m. From the discussion above
it follows that the best way to minimize positioning errors due to relief displacement, is to correct
it only for the corner nearest to the centre of the image, and to re-scale the bounding box.

Another relevant source of error is the synchronization of the sensors. This error is only relevant
in a multi-sensor setup as used in this work for the experiments, which is usually not required
for real world applications. In this work, the synchronization is performed by using the in-built
PPS-LED light of a SatNav receiver as reference. The rising edge of the PPS pulse indicates the
start of every second. This rising edge is used as a trigger for lighting up a LED that stays on for
a determined period of time so that the light can be seen on the image to be processed. Since this
LED is part of the SatNav module, the latency between the PPS reception and the LED lighting
up is negligible. The start of each second can be known with frame-accuracy by recording this
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LED. The limitation of this technique is that the videos are a series of static pictures. Hence, it is
not known if the LED lights up when the shutter is closed, creating a synchronization error. The
maximum synchronization error 7, is given by

1
Uks A

In this work, 50 fps are used, so that n, < 0.02s. The positioning error ny.s caused by 7, is given
by

Tlpos = \/ ’U%,Car + U,g,car “Nr- (38)

As an example with a vehicle moving with 50km/h and a drone hovering at 100 m recording
a video with 50fps, then 1,0 < 0.25m. It can be deduced from what is discussed above that
synchronization errors, even in the millisecond order, have a significant influence.

(37)

3.9 Extension with Kalman Proposals

Common object detection methods are designed for standstill images without spatiotemporal
correlation. As a result, a massive amount of anchors are generated throughout the complete
image. In the case of Mask R-CNN, these proposals are generated in the Region Proposal Network
(RPN). The proposals are ranked by confidence and a predefined number of top ranked proposals

is fed into the second stage for the computation of the classification, regression and mask output.

Image sequences are highly correlated, especially when traffic is recorded from a bird’s-eye

view. Several works propose architectures, which integrate the tracking task into a neural network.

Usually, these papers deal with the challenge of the visual appearances changes in natural captured
images, i.e. images from a human perspective [57, 26, 25, 5, 17]. To combine detection and
tracking in a neural network is appealing. However, the approaches have some of the following
drawbacks: 1) The methods require a batch-wise computation, which means they process a
complete video sequence at once. The batch-wise computation makes them unsuitable for online
tracking, which is required in real time applications such as surveillance video streams. 2) Visual
tracking requires storing the information over consecutive frames, which limits the sequences
length input.

Changing appearances are not a particular problem for detecting vehicles from bird’s-eye view
images. Therefore, in this paper an alternative approach is introduced, which efficiently utilizes
the existing information from previous frames to accelerate the detection by coupling the Kalman
Filter predictions into the neural network. Compared to the related works above, this approach

is forward capable, i.e. one is not restricted to run through a complete video sequence at once.

The Kalman proposal method can be added to any detector which predicts the output based on
region proposals. The Kalman predicted proposals are guided into the second stage of the detector
and replace the RPN network for a defined time window. Since only few Kalman Proposals are
sufficient for accomplishing the task, less computational resources are required when compared to
the typical brute-force proposal generation. To match the expected input for the ROI heads, the
Kalman Proposals are fed in as non-rotated bounding boxes.

For initializing the tracks, the RPN is still required and switched on for a certain amount of
frames. Then it is turned off and only Kalman Proposals are fed into the second stage of Mask
R-CNN. The region proposals for the next video frames are estimated based on the Kalman Filter
predicted position of the vehicle and its estimated size. In order to feed these regions to the Mask
R-CNN network, they are transformed from the LTP back to the PCF. Afterwards, the same
cycle is repeated for detecting new objects. Figure 6 illustrates the changes applied to a Mask
R-CNN network, with Kalman Predictions active and the RPN deactivated.
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Figure 6 Kalman-Proposals, as part of the assignment and tracking task, are fed into a Mask R-CNN
network. The RPN can be switched on and off depending on a time-based event. When the RPN is
switched off, only Kalman Predictions are fed into the second stage of Mask R-CNN. The output of the
Mask Head functions as measurements induced to the tracking task. The final output is acquired from
the KF objects, depicted with a folder symbol.

ROI Align

Table 3 Performance results for Kalman Proposals: On the left side the RPN is turned on for a varying
number of consecutive frames and turned off for v = 23 frames. On the right side the RPN is turned on
for 10 frames and turned off for a varying number of frames, where Kalman Proposals are fed in instead.

True Positives are depicted below (v), False Negatives below (X) and hit rates below ﬁ
RPNon | RPNoff | v X | 7% || RPNon | RPNoff | v X | 7
3 23 52544 | 396 | 99.1% 10 10 52808 | 132 | 99.7%
5 23 52574 | 366 | 99.2% 10 23 52616 | 324 | 99.3%
10 23 52616 | 324 | 99.3% 10 50 51973 | 967 | 98.1%
20 23 52657 | 283 | 99.4% 10 75 51143 | 1797 | 96.5%

In order to evaluate the Kalman Proposals, five video sequences with totally 10000 frames are
analyzed. The videos were recorded at a public roundabout location. When the vehicles enter or
leave the image, they are not fully visible, which results in a shifted centroid oyen. The centroid is
used for tracking, as described in Section 3.6. In other words, during entering or exiting the image
frame, the vehicles’ state estimations are not valid. Therefore, the tracking generally only starts

,t

at a minimum vehicle length ratio 7 = li , where lAq,t is the estimated vehicle length at frame
q

t and fq the arithmetic mean value of all measurements for that specific g-th vehicle. In these
experiments, the threshold is set to 7 = 80%.

Next, a suitable time window, where only Kalman Proposals are fed into the network, has
to be defined. The suggested approach is to set the trigger according to the maximum velocity
observed for all vehicles in relation to the average vehicle length [ and frame rate fe

y= 2y, (39)

Each video is initialized with 50 frames to compute a first valid . Then, the RPN is turned
off according to v and turned on for between 3 and 20 frames, as depicted in Table 3 on the left
side. Next, the RPN is turned on for 10 frames and its off cycle is varied up to a 75 frames, as
depicted in Table 3 on the right side. The results show for experiments with v a hit rate of over
99%. Furthermore, shorter switching cycles show better performance. Expanding the Kalman
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Table 4 Execution time in milliseconds. With Kalman Proposals, the speed gain is achieved at the
RPN and ROI stage. Lowering the resolution by half reduces the execution by approximately two thirds.

Registration Detection with RPN
Resolution Back- | RPN ROI Pre CUDA . Total
[px] SURF | ORB bone KP / Heads POS_: Total Tracking Runtime
1920x1080 90 38 57 17 8 12 94 4 136
960x540 33 18 16 7 7 4 34 4 56
Detection with Kalman Proposals
1920x1080 90 38 57 2 4 11 74 4 116
960x540 33 18 16 2 4 4 26 4 48

* A100 [2020) [ 2.9
RTX 3090 [2020] [ 1.75

* V100 [2017] [ 1.25
2080 Ti [2018] [ 1

Figure 7 Comparison between two generations of consumer and server grade (*) Nvidia GPUs with
their release date in squared brackets. The numbers indicate the relative training throughput for a Mask
R-CNN network according to [33].

Proposal bounding boxes to compensate prediction uncertainty yields lower performance. For
example, increasing the boxes in both axis by 5% or 10% reduces the hit rate by approximately
0.4% and 0.7%. Finally, it should be noted, that the runtime and hit rate with Kalman proposals
is tested with a Mask R-CNN network. Nevertheless, these proposals are applicable for replacing
the common brutal force proposal generation as part of other neural network architectures as well.
The execution time for the detection is not only reduced in the region proposal part, but also
in the final detection and segmentation head, since only a few proposals are evaluated by the
network.

3.9.1 Runtime and hardware requirements

This section takes a in-depth look at the runtimes. The measurements are depicted in Table 4. The
code was processed on a workstation®. Image registration was performed with the ORB and SURF
implementation from the OpenCV library. The measurement includes the writing of registered
images on the hard drive. ORB outperforms SURF in terms of execution time. Nevertheless, the
registration acquires 38 ms for a FHD resolution. The other major bottlenecks are the backbone
(ResNet50-FPN) and the RPN. The average RPN execution time can be dramatically reduced by
using the Kalman Proposals. The pre- and post-processing part within the detection performs
image normalization, copies the image into the GPU RAM and expands the predictions to the
input image size after the network again.

Regarding the object detection, the Kalman Proposals reduce the time for the proposal
generation, as well as for the ROI heads. The proposal generation takes only 2 ms instead of 17
ms, and the ROI heads runtime is reduced by half. The runtime is reduced to about one third by
decreasing the resolution by half. The tracking part includes copying the results to the hard disk,

5 Intel Xeon E-2176G, Nvidia Geforce 2080 Ti, M.2 SSD
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the code is written in Phyton. Overall, the complete method achieves approximately 7 fps at FHD
and 18 fps at half FHD resolution, considering the workstation in use. A benchmark from [33]
indicates, that the throughput for a Mask R-CNN network increases by about 75% with the next
generation GPU, compared to the GPU used in this work, see Figure 7. With new generation
hardware, typical camera frame rates of 25 or 30 fps are within reach for half FHD resolution.

In order to achieve a higher throughput, besides faster hardware, several aspects can be
considered for future work: 1) perform the registration on the GPU directly and pass the image
tensor on to the detection network, 2) avoid image registration by detecting Ground Control
Points automatically in order to apply the image transformation, 3) replace the backbone by a
light-weight network.

On-board GPU accelerated hardware, mounted on a drone, can only process a fraction of the
information compared to a full-size GPU. Therefore, running high resolution image registration
and segmentation on such platforms remains a challenging task currently.

4 Macroscopic statistics

In the previous section the focus was to detail how to generate new traffic data sets by using drones.
The focus of the following is to show how such data sets can be used to perform a macroscopic
traffic analysis. The pre-processed image data from the publicly available highD dataset [28] is
used because such type of analysis benefit from bigger data sets. The results are compared with
literature data to examine the validity of the approach.

4.1 Data set description

The highD data set was published alongside with the publication [28]. Videos of German motorways
were recorded from a drone perspective. The following list, adopted from [28], depicts some key
facts about the data set:

around 110500 vehicles recorded,

road length of about 420 m with two or three lanes,

the total driven distance is 45000 km,

the GSD is 0.1 m/px.

The semantic segmentation was performed using a modified U-Net neural network [48]. Transfer
learning was applied with around 3000 manually labeled image patches. The trajectories were
smoothed and validated in a post-processing step according to the authors. Already preprocessed
variables are for example the velocities, accelerations and time headway for each recorded frame.
The vehicles are divided into two classes: cars and trucks.

The present work focuses on the aggregated, macroscopic view on the data. For an example
for utilizing the data for a vehicle based view, interested readers are referred to [51]. In that work,
cut-ins and hard braking maneuvers are analyzed and related to automatic emergency braking
system alerts.

4.2 Variables of interest

The three macroscopic variables considered in this work are the traffic flow rate, the traffic density
and the average velocity of the traffic stream. With these variables the fundamental diagrams are
plotted. The flow rate ¢ is defined as

q= vehicles/time (40)
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and is measured at a certain point over time. The traffic density p is defined as
p= Vehides/distance. (41)

In order to measure the traffic density, a road segment of at least several hundred meters should
be observed [20]. The third and last variable, the average velocity, can be estimated as “time
mean velocity” or “space mean velocity” [20]. The difference of both is minor for stable traffic
flow and therefore neglected in the following.

Two more relevant variables for traffic modeling are the distance to the front vehicle, the
distance headway (DHW), and the time headway (THW). The THW is defined as

THW = 2L (42)

vf

where = denotes the position and v the velocity. The subscript [ denotes the leader vehicle, the
subscript f the follower vehicle.

4.3 Fundamental diagrams

This subsection starts with a brief description of the terms free flow, bounded flow and congested
traffic. Graphically, these terms are depicted in the fundamental traffic diagrams. The fundamental
diagrams visualize the relationship of traffic flow, density and speed. In this work, these macroscopic
variables are also linked to the microscopic based THW measure in order to demonstrate the
interconnection between both domains. A synchronous linking of both domains is difficult with
traditional methods, but can be easily achieved with drone based image data analysis.

The terms free flow, bounded flow and congested /jammed traffic are briefly discussed based
on [43] and referenced literature. Graphically, they are depicted by the dashed lines in the p — ¢
diagram in Figure 8 a).

During free flow traffic, the dependency of the flow rate to the density can be fitted linearly,
as the fluctuations are minor. The positive signed slope of the curve represents the average
velocity for that traffic type. Exceeding a certain density threshold, the average velocity drops
significantly. The critical density threshold depends on the drivers and environmental parameters,
including the road infrastructure. Beyond the critical density threshold, the traffic characteristics
change and reach the state of bounded traffic. Bounded traffic can be divided into three classes.
First, the homogeneous flow, where density and velocities stay rather constant. This state can be
depicted as a point in the fundamental diagram. In the second case, the velocity is homogeneous,
but the flow rate and density vary over time and space. This state can be depicted as a line
with negative gradient in the fundamental diagram. In the third and most frequently appearing
class for bounded traffic, all three parameters vary, while vehicles still keep a certain velocity.
Considering time series data, the consecutive datapoints of this inhomogeneous traffic stream class
jump stochastically in the fundamental diagram. A further increase of the traffic density yields a
stop-and-go situation followed by the jammed traffic with zero velocity.

The following part of this subsection depicts the classical fundamental diagrams derived from
the data set. The relationship between the density and flow rate is depicted in Figure 8 a). For
free flow traffic up to around p = 10 — 15 veh/km, the curve can be fitted linearly. The correlation
coefficient R, for p < 15veh/km is R. = 0.94. The zone for bounded traffic up to stop-and-go traffic
is depicted within the two dashed lines. The transition from stop-and-go to jammed traffic arises
with a density of approximately p = 30 — 40 veh/km, while saturating at around p = 45 — 50 veh/km
per lane. The plot coincides with the results of the empirical studies in [14, 43], which were
obtained with another data source.
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Figure 8 Fundamental diagrams: The dashed lines in a) and c¢) represent the transition from free flow
to bounded flow up to stop-and-go traffic. Jammed traffic was not recorded within one-minute periods.

Figure 8 b) depicts the average flow rate over the velocity. Two different velocity ranges can
be found at the same flow rate, which yields to the classification of stable and unstable traffic
flow. Figure 8 ¢) depicts the velocity over the traffic density. The graph is approximately divided
into the three traffic types (dashed lines). The average velocity decreases slightly up to a certain
density threshold. Above the threshold the velocity drops significantly. Most of the recorded data
is located in the transition zone of free flow to bounded traffic, while still retaining a velocity of
v > 100km/h. Figure 8 d) depicts a three-dimensional plot, combining all three variables.

Finally, Figure 9 depicts the relationship between the flow rate, density and THW from all
available time frames, aggregated to one minute slices. Overall, the THW is considerably lower for
cars than for trucks. The datapoints for cars show a clear tendency towards smaller THW with an
increasing density and flow rate. Trucks have a larger spread and are less correlated to the density
and flow. The THW values reach a bottom of 1.2s around the transition zone between bounded
traffic and stop-and-go traffic (p = 30veh/km). From there on a tendency towards larger THW
values can be recognized. Drivers keep in average a certain minimum distance of some meters to
their leader vehicle during stop-and-go traffic. This yields larger averaged THW values due to the
low velocity.
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Figure 9 The traffic density, flow rate and the average THW over all recorded time frames, aggregated
to one minute slices.

4.4 Lane changes and load per lane

For the design of highways, it is important to know to which proportions a lane is used and where
the saturation point is reached. From the perspective of traffic safety, accidents caused by lane
changes are ranked third, behind speed violations and short distances [1, 2]. Since these two
indicators are important for traffic analysis, the load per lane and lane changes in dependance to
the traffic flow are examined and compared to literature.

Figure 10 depicts the relative lane load depending on the traffic flow rate of the road. Here,

the load per lane is defined as the fraction of the overall number of vehicles on the road segment.

Higher traffic flow rates increase the proportion of vehicles on the outer left lane. Smaller flow
rates increase the proportion to the outer right lane, since drivers are legally obliged to drive
on the right lane, if not driving at a higher velocity than the leader vehicle. In order to reach
velocities above the truck velocity limits at higher flow rates, drivers switch to the middle and with
further increasing traffic flow switch more often to the left lane. This observation holds as long as
the traffic does not reach a stop-and-go state. The conclusions from [14] coincide by means of the
tendency, that higher flow rates increase the proportion of vehicles on the left lane, decrease it on
the middle lane slightly and decreases it heavily on the right lane. The publication [14] proposes
flow rates per lane as depicted in Figure 11. The right lane saturates at around ¢ = 800 veh/n and
the left lane at around ¢ = 2600 veh/n [14, 29].

Figure 12 and Figure 13 depict the normalized number of lane changes over the flow rate and
traffic density. The data points depicted in the figures are aggregated values of one-minute slices.

Publication [14] proposes a maximum lane change rate at around 3500 vehicles per hour for a 3
lane motorway. In [14] the lane change rate is described by step functions which form a triangular
shape. Similar to [14], a triangular fit for the highD data set is depicted in Figure 12. It encloses
at least 97% of all depicted one-minute slices for the upper and lower road. The results on the
lane change rate coincide with the observation in [14]. Regarding the dependency on the traffic
density, the lane change rate increases up to around 10-12 vehicles per kilometer and lane [14],
according to the findings depicted in Figure 13.

The results from this chapter confirm that the drone-based approach can provide valid
estimates on macroscopic traffic data. Furthermore, the results can be interpreted in the context
of microscopic variables as well. This is demonstrated with the relationship of the THW to the
traffic density and flow.
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The technological improvement of drones combined with the capabilities of computer vision
methods, namely deep neural networks, open a new chapter for applications in road traffic
surveillance and analysis. Observation campaigns can be carried out at every place, without the
need of installing and maintaining roadside units. First projects attempt to expand the field of
view by operating with swarms of drones and thereby capture whole city districts. The accuracy of
the state estimation by means of aerial imagery is suitable for many trajectory based applications
as well. This enables the individual analysis of objects, as well as observing the interaction between

traffic participants.

In this work, a methodology for generating microscopic traffic data is proposed. More precisely,
the state of vehicles and the resulting trajectories are estimated. The method is validated
with experiments and reaches consumer-grade INS precision for the vehicle state estimation. A
detailed look into the error sources, limitations and runtimes complements the proposed method.
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Additionally, a new approach for reducing the average computational runtime, named Kalman

Proposals, are presented. With Kalman Proposals, the runtime for object detection can be

decreased by up to 20% with minor losses on the detection performance.

Furthermore, a publicly available data set for highway traffic is analyzed in order to validate

the drone based approach for macroscopic traffic analysis. The statistics derived in this work
are compared to related publications, where data was collected and processed with alternative

approaches. The analysis confirms the applicability for capturing macroscopic traffic data as well.

In conclusion, the results of this paper underline the versatility of drone based image processing

for synchronous macro- and microscopic road traffic analysis.
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