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Abstract
In order to render software viable for highly safety-
critical applications, we describe how to incorporate
fault tolerance mechanisms into the real-time pro-
gramming language PEARL. Therefore, we present,
classify, evaluate and illustrate known fault toler-
ance methods for software. We link them together
with the requirements of the international standard

IEC 61508-3 for functional safety. We contribute
PEARL-2020 programming language constructs for
fault tolerance methods that need to be implemen-
ted by operating systems, and code-snippets as
well as libraries for those independent from runtime
systems.
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1 Introduction

Highly safety-critical applications need automation systems that are failsafe or at least fault
tolerant. An automation system is called failsafe if it falls back into a stable state with a sufficient
degree of functional safety. Functional safety is a system’s property guaranteeing that the risk to
harm human beings, environment or other assets is below a risk limit [3]. Automation systems
are increasingly composed of software, thereby allowing to control more complex applications
than pure hardware-based solutions, providing greater flexibility in adapting systems to changing
requirements [22], consuming less space than mechanical constructions [9], and permitting to
change system functionality by remote maintenance [17, 25]. Unfortunately, software cannot fall
back into a safe state, triggered by laws of nature, like hardware [22]. Therefore, software systems
have to use fault tolerance methods in order to provide functional safety as demanded in the
international standard IEC 61508-3 [3]. Fault tolerance (FT) refers to a system fulfilling a specified
function, even if a limited number of subsystems are erroneous [38]. FT methods rather prevent
the consequences of a software error than the occurrence of the error itself [41]. FT methods,
hence, are composed of error recognition and error treatment [38].

Our long-term objective is to adapt the real-time programming language PEARL-90 to
functional safety as defined in the normative part of IEC 61508-3 [3]. In this paper we focus on
the topic of fault tolerance by propagating syntax and semantics to its derivative PEARL-2020
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01:2 Programming Language Constructs Supporting Fault Tolerance

and elucidating the rationale behind our adaptations. Introducing FT into PEARL is beneficial,
since PEARL was the first language providing user-friendly concurrency concepts. These simple
but powerful concurrency concepts render PEARL appropriate for highly safety-related software
[22] which leads to a wide deployment throughout Europe [31]. PEARL is particularly tailored to
process control due to its system part that addresses peripherals. It is standardised in DIN 66253-2
as PEARL-90 [4] and DIN 66253 Part 3 as Multiprocessor PEARL [1]. The latter is composed
of two parts: the first part is a parametrisation language for compilers, binders and loaders and
the second part describes various communication protocols for synchronous and asynchronous
task cooperation and message passing. For a detailed introduction we refer to [19]. Currently,
Müller and Schaible [32] map out a PEARL-90 compiler which will serve as a base for a future
PEARL-2020 compiler. In our paper we contribute to the topic of fault tolerance in software as
follows:

We provide a complete overview of fault tolerance methods including their definition, classifi-
cation and one or more coding examples, and
present an evaluation of each FT method according to the insights from the examples with
respect to stumbling blocks for programmers and suitability as language elements, code snippets
or library implementations. In detail, we arrive at (c.f. Table 4):

additional PEARL syntax elements and semantics for assertions, load shedding, monotone
tasks and the Byzantine method,
code snippets in PEARL for forward recovery, functional and implementation diversity,
PEARL library implementations for majority voting and other plausibility checks,
further changes to the PEARL-90 programming language, i.e. judiciously removing backward
recovery, temporal redundancy and dynamic reconfiguration.

The outline of this paper is as follows. We start with related work in Section 2. Section 3
presents a comprehensive set of known fault tolerance methods for software with their classification
and examples. A few examples came from literature, most of them are devised by ourselves in the
application domains space flight and advanced driver assistance systems. Only one example per
FT method will be realised in the final language standard, but we state them for comparison. This
is the base for our framework addressing fault tolerance for software, in particular for PEARL.
The framework comprises examples, code-snippets, library procedures and language primitives.
In Section 4, we further explain the rationale behind this subdivision and link the FT methods
with requirements from IEC 61508-3. We publish our implementations under the following web
addresses:

concrete examples and general fault tolerance handlers for PEARL-90:
http://sourceforge.net/projects/openpearl/files/Example
a fault tolerance library for PEARL-2020:
http://www.real-time.de/service/downloads.html

2 Related Work

Most of the literature focuses on a single FT method. There are few papers that aim at combining
more than one method: Shelton [36] derived patterns from three different FT methods considering
task allocation and graceful degradation. DanYong and YongDuan [15] and Chen et al. [13]
inspected fault tolerance from the mathematical point of view setting up differential equations in
order to assess discrepancies from nominal values. Anwar [6] monitors a mainly software driven
system and switches to a redundant mechanical system only in case of an error. A different area
of application is treated by [30] who invented a fault tolerant TTP/C communication protocol. In
contrast to these, our paper targets a larger amount of FT methods as can be seen in Table 4.

http://sourceforge.net/projects/openpearl/files/Example
http://www.real-time.de/service/downloads.html
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PEARL encompasses multiple derivatives, several of which already provide approaches for
integrating FT. Multiprocessor PEARL offers keywords for dynamic reconfiguration. PEARL-90
allows for redundancy with the help of its easy to use concurrency concepts. This language
derivative is branched into four subsets by [24], each addressing one of the four safety integrity
levels (SILs) of IEC 61508. These subsets are Table-PEARL for SIL 4, Verifiable PEARL for SIL 3,
Safe PEARL for SIL 2 and High Integrity-PEARL for SIL 1. Out of these, High Integrity-PEARL
entails language elements to state alternative procedure bodies. Object-oriented derivatives of
PEARL are PEARL* and Object-PEARL. PEARL* differs from PEARL-90 by keywords for
objects and interfaces. Object-PEARL implements alternative methods and monotone tasks as
FT concepts [14].

Fault tolerance in other languages is covered in Ada and languages like GRAFCET [2] for
programmable logic controllers (PLCs). SPARK and Ravenscar inherit from Ada but restrict its
variability for highly safety-critical applications. SPARK avoids error-prone language constructs
and provides a certified tool chain for compiling [7], while Ravenscar parametrises the scheduling
policy used in runtime systems in order to detect deadlocks and to guarantee timely task execution.
PLC languages are standardised with libraries encompassing building blocks that support fault
tolerance.

3 Fault Tolerance Methods

Fault tolerance methods are composed of error recognition and error treatment [38]. Error
recognition is covered in the next section. A categorisation of error treatment methods is given in
Section 3.2 and their elementary techniques in Section 3.3.

3.1 Error Recognition
In order to recognise an error, an automation system needs additional information on the range
of values of an expected result. This additional information can either entail functional content,
checked by voters, or is based on flow of control, checked by watchdogs. Examples for watchdogs
are given in Table 1. Voters can be classified into absolute or relative voters. Absolute voters
use hard-coded predicates as additional information, while relative voters compare the results of
various implementations [10]. As a conclusion, absolute voters return whether a result is feasible
or not. Since hard-coded predicates can be checked faster and more easily, they are predominantly
used for dynamic redundancy. In contrast, a relative voter additionally returns a certain value of
the output range or a combination of the output values. Examples of both types of voters are
shown in Table 1.

Our first PEARL example is a majority voter. It can be used for N floating point numbers and
returns the majority value if more than N // 2 units possess a similar value or ERROR_FLOAT if
not. Similar values are found by initial clustering. Afterwards, the cluster with most elements is
processed.

MajorityVoting : PROCEDURE ( Values () FLOAT IDENT ) RETURNS ( FLOAT );
DCL Precision FLOAT INIT (0.01) ,

CntClasses FIXED INIT (0) ,
( RoundValues (N), ClassValues (N)) FLOAT ,
CntClassMembers (N) FIXED , Found BIT ,
( CntMaxMembers , IdxMaxMembers ) FIXED ;

! Clustering of input values .
FOR i FROM 1 TO N REPEAT

RoundValues (i) := ROUND ( Values (i) / Precision ) * Precision ;
Found := ’0’B;
FOR k FROM 1 TO CntClasses REPEAT

IF RoundValues (i) EQ ClassValues (k) THEN
! Existing class gets new member .

LITES
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Table 1 Types of watchdogs and voters. This table shows error recognition methods that can be
applied before any fallback state of a fault tolerance method is triggered.

watchdogs:
heartbeat to monitor the system’s availability
compatibility of actual with formal arguments [8]
checking data integrity with respect to contents and structure [8]
supervision of infinite loops or other unintended branching of the control flow, realisable by
diverse conditions in branches [8]
monitoring of runtime expenditure of tasks and noticing anomalies like frequent interruptions [8]

absolute voters:
pre- and post-conditions
assertions
invariants of loops or objects

relative voters:
majority voting, i.e. at least dn

2 e units out of n must provide the same result
consensus voting, i.e. largest number of members with equal results [42]
combinations like arithmetic mean, weighted sum, median or fuzzy logic [42]
statistical prediction, e.g. Kalman filtering [18]
test against the inverse of a function [8], e.g. matrix inversion by A ·A−1 = I [33]
checksums and parity bits, e.g. checksums for matrix multiplication [33]

CntClassMembers (k) := CntClassMembers (k) + 1;
Found := ’1’B;
EXIT ;

FIN;
END;
IF Found EQ ’0’B THEN

! A new class has to be created .
CntClasses := CntClasses + 1;
ClassValues ( CntClasses ) := RoundValues (i);
CntClassMembers ( CntClasses ) := 1;

FIN;
END;
! Find class with max member count .
CntMaxMembers := -1;
IdxMaxMembers := -1;
FOR i FROM 1 TO CntClasses REPEAT

IF CntClassMembers (i) > CntMaxMembers THEN
CntMaxMembers := CntClassMembers (i);
IdxMaxMembers := i;

FIN;
END;
IF CntMaxMembers > N // 2 THEN

RETURN ( Result );
ELSE

RETURN ( ERROR_FLOAT );
FIN;

END;

3.2 Error Treatment

3.2.1 Redundancy

Redundancy means deploying more resources than necessary [38]. Redundant units increase
functional safety, because automation systems with n redundant and independent resources are
robust against failing of n − 1 resources. Furthermore, failsafe hardware does not need an error
detection unit, since it fails due to environmental effects. Software, however, is in need of additional
error detection. If a software implementation produces an erroneous result, this is revealed by the
results from the other redundant implementations. For this reason, software is only robust against
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Table 2 Matrix explaining hierarchy of error treatment with software fault tolerance.

redundancy graceful degradation
homogeneous diversity homogeneous diversity

functional diversity 3 3

load shedding 3

milestone method 3

implementation diversity 3 3

backward recovery 3 3

temporal redundancy 3

forward recovery 3 3

timed forward recovery 3 3

timed data diversity 3

dynamic reconfiguration 3

Byzantine method 3

less than n − 1 errors. Hierarchical redundancy refers to nesting different fault tolerance methods.
Redundancy is further divided into temporal, analytic, static and dynamic methods [36, 23]. We
explain these types later on.

3.2.2 Diversity
Plain redundancy refers to a homogeneous composition of multiple units, while diversity is a form
of redundancy with each unit being different from the others. Diversity is differentiated into the
types implementation, functional, physical, manufacturing diversity and diversity of operating
conditions [22]. Physical and manufacturing diversity refer to hardware-based automation systems.
Since we consider software safety, we will not target hardware topics in the following. The other
diversity types are integrated into the presented fault tolerance methods later on. For software,
only diverse implementations increase functional safety. Homogeneous implementations would
contain the same errors by definition [23]. Exceptions to this rule are race conditions and transient
hardware errors influencing registers used by a program.

3.2.3 Graceful Degradation
An automation system degrades gracefully if it provides reduced albeit specified automation
behaviour in case of too many errors [40]. Here, a system can degrade either in functionality or
availability [40]. Graceful degradation comes along with all fault tolerance methods for software
aside from static redundancy.

3.3 Elementary Techniques for Error Treatment
After the error recognition step one or more of the following treatment methods are applied
for fault tolerance. These elementary treatment methods can be categorised into homogeneous
redundancy, diversity and graceful degradation as described above, see Table 2.

3.3.1 Analytical or Functional Diversity
The diverse components in a system using analytical redundancy or functional diversity, respectively,
possess different specifications. They provide distinct although related functions. The relationship
between the components allows either to restore a corrupted value with the help of the other

LITES
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functions, or permits relative plausibility checks. One example is distance, velocity and acceleration
[36] linked by the formula a = v̇ = s̈. Another one describes the dynamics of gas [36] inside a
combustion chamber given by the formula pV = nRT , where T is the temperature, p the pressure,
V the gas volume, n the amount of substance and R the gas constant. Advantages and drawbacks
of analytical redundancy can be studied by the following implementation:

TYPE TFunction REF PROC RETURNS ( FLOAT );
TYPE TRelation REF PROC ( Values () INV FLOAT IDENT ) RETURNS ( FLOAT );

TYPE TRelatedFunctions STRUCT (/
Count FIXED ,
Functions (1: Max) TFunction ,
Results (1: Max) FLOAT ,

/* Results = measured values retrieved by Functions */
Relations (1: Max) TRelation ,
Restored (1: Max) FLOAT

/* Restored = calculated values retrieved by Relations */
/);

Initialisation : PROC ( RelFuns TRelatedFunctions IDENT ) GLOBAL ;
FOR i FROM 1 TO RelFuns . Count REPEAT

RelFuns . Results (i) := RelFuns . Functions (i);
END;
FOR i FROM 1 TO RelFuns . Count REPEAT

RelFuns . Restored (i) := RelFuns . Relations (i)( RelFuns . Results );
END;

END;

Plausibility : PROC ( RelFuns TRelatedFunctions INV IDENT ) RETURNS (BIT) GLOBAL ;
FOR i FROM 1 TO RelFuns . Count REPEAT

IF ABS( RelFuns . Results (i) - RelFuns . Restored (i)) GT Epsilon THEN
RETURN ( False );

FIN;
END;
RETURN (True);

END;

Restoration : PROC ( RelFuns TRelatedFunctions IDENT , Index FIXED ) GLOBAL ;
RelFuns . Results ( Index ) := RelFuns . Relations ( Index )( RelFuns . Results );
FOR i FROM 1 TO RelFuns . Count REPEAT

RelFuns . Restored (i) := RelFuns . Relations (i)( RelFuns . Results );
END;

END;

The precision of plausibility checks depends on the choice of the acceptance gap between the
measured input values and the values calculated from the given formulas [33], see Epsilon in
Plausibility.
Plausibility checks between all participating diverse functions’ results do not reveal which
result is corrupt.
This fault tolerance type is not suited as library implementation due to the following drawbacks:
The complexity of this method is not situated in the library procedures, but in the implement-
ation of the diverse functions.
Additionally, the library procedures increase the program’s complexity, since the linkage of
the measured input values to arguments of the relationship functions has to be realised by a
generic array TRelatedFunctions.Results in Restoration with no relation to the original
variables’ nomenclature.
The restore-functions’ signatures depend on the type of relationship, e.g. direct calculation in
the case of gas dynamics vs. multiple inputs for derivatives in the case of movements.

In the next example we show how to use the library implementation from above in order to
realise the gas dynamics formula. Line 3 shows the problem of mapping the application-related
variables (p, V, n, T) to the formal parameters of the library Values(1:Max), which is only
viable by error-prone pointers (REF in PEARL):
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DCL Max FIXED INIT (4);
DCL Values (1: Max) FLOAT ;
DCL (p, V, n, T) REF FLOAT INIT ( Value (1) , Value (2) , Value (3) , Value (4));
DCL Funs () TFunction INIT ( Piezo .Read , Flow.Read , GasScale .Read , Thermo .Read);
SPC (Pressure , Volume , Substance , Temperature ) TRelation ;
DCL Relations () TRelation INIT (Pressure , Volume , Substance , Temperature );
DCL GasChamberFuns TRelatedFunctions INIT (Max , Functions , Values , Relations );

Pressure : PROC ( Values () INV FLOAT IDENT ) RETURNS ( FLOAT );
RETURN (n * R * T / V);

END;

Volume : PROC ( Values () INV FLOAT IDENT ) RETURNS ( FLOAT );
RETURN (n * R * T / p);

END;

Substance : PROC ( Values () INV FLOAT IDENT ) RETURNS ( FLOAT );
RETURN ((R * T) / (p * V));

END;

Temperature : PROC ( Values () INV FLOAT IDENT ) RETURNS ( FLOAT );
RETURN ((n * R) / (p * V));

END;

GasChamberControl : TASK MAIN ;
REPEAT

AFTER 5 MSEC RESUME ;
Initialisation ;
IF NOT Plausibility ( GasChamberFuns ) THEN

...
Restoration ( GasChamberFunctions , ErrIdx );
...

FIN;
END;

END;

3.3.2 N-Version Programming
With N-version programming, a software part addressing a certain problem provides at least
two solution methods with the same in- and output interface. These solutions can be diverse
implementations or further enrichment of a result. A solution may be fortified with information
from a task that may also be skipped, or with information from a task that provides more precise
results the longer it is executed. N-version programming is divided into three sub-methods, namely
sieve method, milestone method and implementation diversity [29].

3.3.3 Load Shedding or Sieve Method
If a hazardous or unanticipated situation occurs, an embedded computing system might react by
scheduling more tasks than in normal mode. The higher the number of unanticipated requests is,
the higher the number of tasks to be executed will be. In such situations, not all of these tasks
can meet their deadlines. A fault tolerance method handling such cases is load shedding or the
sieve method. There are two variants, i.e. skipping all tasks of minor importance and extending
the periods [34]. Properties are:

In contrast to hardware redundancy, load shedding does not underutilise processors when no
overloads occur, at the expense of losing minor functionality [34].
The difference to monotone tasks is, that sieve methods shall be either completed or skipped
entirely, because there is no benefit to partly execute them [29].
A programmer shall be able to group sieve methods, since for some applications, it is useless
or even flawed to execute certain tasks if others were skipped.
Load shedding is interwoven with the runtime system, since the applied scheduling strategy
must allow to detect transient overloads before important tasks miss their deadlines. Earliest

LITES



01:8 Programming Language Constructs Supporting Fault Tolerance

deadline first (EDF) is applicable as scheduling strategy. Moreover, worst case execution times
(WCETs) must be determined by a compiler, as explained in the following paragraph.
Load shedding needs a mechanism for stating which tasks to skip primarily. On one hand,
this can be done by priorities as in the next example, on the other hand, by modes as in the
example thereafter.

If load shedding is to be applied, worst case execution times for each affected task should be
provided by the compiler in the declaration part. A compiler can determine WCETs statically by
summing up known maximum runtimes for each assembler instruction, multiplying them for loops,
and using the worst case branch on conditional program jumps [22]. This procedure nearly always
yields too pessimistic WCETs [37]. Therefore, compilers can build upon one of the following three
alternatives:

restricting language constructs (e.g. prohibit unbounded loops) [22],
simplifying processor architecture (e.g. omit pipelining and caches, only fixed point arithmetic)
[8],
assessing WCETs empirically with the help of very pessimistic cache trashers (guaranteeing
maximum number of cache misses) [20].

The following PEARL specifications illustrate language constructs for load shedding in the
context of space vehicles. TIMING and LOADSHEDDING are module parts like SYSTEM and PROBLEM.
The timing part is a synopsis of the timing analysis of all tasks, where WCET states the worst case
execution time determined by a compiler and RESPONSE states the available response duration
determined by an engineer. The first example shows how to state priorities. In case of transient
overloads, a runtime system has to remove all tasks beginning with those carrying the smallest
priority value. It gradually removes all tasks with the next priority value until all remaining tasks
can meet their deadlines.

TIMING ;
TelescopeAdjustment :

WCET (5.1 MSEC ) RESPONSE (10 MSEC );
...

LOADSHEDDING ;
PRIO (1): ! skip first when in emergency mode

TelescopeAdjustment , AntennaAdjustment ;
PRIO (2): ! skip second when in emergency mode

EngineFineControl , SolarCellsFineControl ;

The aforementioned solution is based on two modes, namely normal and emergency mode
[26], whereas the second example uses multiple modes and tasks assigned to them. The TIMING
part equals the example from above, while the LOADSHEDDING part consists of several modes with
several tasks, each of which is executed when the runtime system finds itself in the respective
mode. SCIENCEMODE is the default and desired operating state. However, if no timely execution
can be guaranteed, the runtime system switches into one of the other modes. In the worst case,
SAFEMODE has to be executed. The mode is chosen as follows: Each time the schedule changes, i.e.
a task is activated, suspended or terminated, the runtime slack of all active tasks is computed. If
the slack is negative, the system has to switch into a lower mode. This is iterated until the slack
is non-negative or SAFEMODE is reached. On positive slack the runtime system can change into a
higher mode. In order to avoid toggling between two modes in both our examples, the following
options are viable:

the slack on the active mode must exceed a given threshold,
after a given period of time, the system automatically switches into the next higher mode,
the emergency mode is revoked by a human operator.



C. Houben and S. Houben 01:9

TIMING ;
MainEngineRoughControl :

WCET (2.7 MSEC ) RESPONSE (8 MSEC );
...

LOADSHEDDING ;
SCIENCEMODE :

EngineFineControl , SolarCellsFineControl ,
TelescopeAdjustment , AntennaAdjustment ;

INTERMEDIATE :
...

SAFEMODE :
RollControl , EngineRoughControl , ...;

3.3.4 Monotone Tasks or Milestone Method
Monotone tasks produce results with higher quality the longer they are running. If such tasks are
terminated before final completion, they return the most recent valid result. Each intermediate
result represents a milestone. A monotone task is decomposable into a mandatory part and a
number of optional parts [29]. In the following, we evaluate three implementation types for the
milestone method:

DCL Flag BIT;
ZeroByNewton :

PROCEDURE ((F, D) TFunction ) RETURNS ( FLOAT );
DCL Xi FLOAT INIT (0.0) ;
DCL MaxLoops INV FIXED INIT (20);
DCL Loops FIXED INIT (0);
WHILE (NOT Flag) AND ( Loops <= MaxLoops )
REPEAT

Xi := Xi - F(Xi)/D(Xi);
Loops := Loops + 1;

END;
RETURN (Xi);

END;

DCL Result FLOAT ;
ZeroByNewton : PROCEDURE ((F, D) TFunction );

DCL Xi FLOAT INIT (0.0) ;
FOR i FROM 1 TO 20 REPEAT

Xi := Xi - F(Xi)/D(Xi);
Result := Xi;
UPDATE ;

END;
END;

ZeroByNewton :
PROCEDURE ((F, D) TFunction ) RETURNS ( FLOAT );
DCL Xi FLOAT INIT (0.0) ;
MILESTONE (Xi);
ON EARLYEND : BEGIN RETURN (Xi); END;
FOR i FROM 1 TO 20 REPEAT

Xi := Xi - F(Xi)/D(Xi);
END;
RETURN (Xi);

END;
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The first implementation uses a flag for each task that can be terminated beforehand. To
terminate a task, its flag has to be set. This implementation suffers from interspersing the pure
task functionality with milestone checks and the unbounded duration between two milestones.
Another implementation type by [14] is to introduce a keyword UPDATE. At each such update
point the scheduler can decide whether to terminate or to continue the task. The drawbacks
are the same as in the implementation before. Moreover, the result variable must be non-local.
Our third proposition is to forbid termination heteronomy. Instead, a TERMINATE instruction
for a monotone task shall produce a signal EARLYEND, which must be caught by monotone
tasks. A signal handler inside such tasks, then, releases all resources and returns the most
recent result. With this method, monotone tasks can be terminated at arbitrary points in
time. The WCET of the signal handler is clear to state and allows to bound the termination’s
duration in an intelligible way. This implementation type needs atomic sections, which are not
interruptible by signals in order to avoid race conditions for assignments to the result variable.
Therefore, all commands executed on variables stated in a MILESTONE list are compiled as
atomic.

3.3.5 Implementation Diversity
Implementation diversity uses at least two alternatives that fulfil the same function, but with
different designs or implementations [22]. With respect to software, one can vary architecture,
algorithms, data representations on the one hand, and operating systems, runtime systems,
compilers, programming languages, integrated development environments and test methods on the
other [23]. Implementation diversity can be used dynamically or statically. Dynamic execution
means that a scheduler decides at runtime which alternative to execute next. In static execution,
it is known beforehand that all alternatives are executed and, afterwards, a voter receives all
results to determine the correct one. With the static variant, the alternatives can be executed
sequentially or in parallel [23]. The following three implementations show these FT types by
conventional PEARL constructs, while the fourth example demonstrates new language constructs
proposed by [22].

With respect to functional safety, one can vary the alternatives in simplicity or in runtime
complexity. These categories are not exclusive. Simplicity increases the quality of an alternative,
since less complex solutions contain less programming errors [36]. Using the runtime consideration,
one alternative shall produce an exact result with long processing time, the other an imprecise
result with short processing time. Before executing an alternative, the scheduler calculates the
amount of time available and chooses the alternative with the highest result quality under the
constraint of timeliness. Table 3 shows which execution types are reasonable to combine. Dynamic
implementation diversity is related to recovery blocks, as we will explain further on.

Without using specialised PEARL syntax, the following three examples demonstrate how to
realise the aforementioned three implementation diversity types. By contrast, the fourth example
uses specialised syntax from [22]. Therein, DIVERSE introduces a block of alternatives, where
each block starts with ALTERNATIVE. The keyword ASSURE signals the beginning of the plausibility
check.

SequentialStaticRedundancy : PROC ( Input STRUCT , Output STRUCT IDENT ) RETURNS (BIT);
DCL Results (1:N) STRUCT ;
/* execute all alternatives */
Results (1) := Alternative1 ( Input );
...
Results (N) := AlternativeN ( Input );
/* relative plausibility check */
RETURN ( VoterDecision (Results , Output ));

END;
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Table 3 Implementation diversity types: In dynamic implementation diversity, a scheduler decides at
runtime which alternative to execute next, while static means that all alternatives are executed and the
results are passed on to a voter. These alternatives can be executed sequentially or in parallel. During
design of the alternative functions one can aim at optimising simplicity, runtime or other goals.

dynamic static static
sequential sequential parallel

simplicity 7 3 3

runtime 3 7 7

other 3 3 3

DCL Input STRUCT ;
DCL Results (1:N) STRUCT ;
DCL Barrier (1:N) SEMAPHORE PRESET (1);

ParallelStaticRedundancy : PROCEDURE (X STRUCT , Y STRUCT IDENT ) RETURNS (BIT);
Input := X;
/* execute all alternatives */
ACTIVATE Alternative1 ;
...
ACTIVATE AlternativeN ;
/* join with all alternatives */
REQUEST Barrier (1);
...
REQUEST Barrier (3);
/* relative plausibility check */
RETURN ( VoterDecision (Results , Y));

END;

DynamicRedundancy : PROCEDURE (X STRUCT , Y STRUCT IDENT ) RETURNS (BIT);
/* execute first alternative */
Y := Alternative1 (X);
/* absolute plausibility check */
IF PlausiCheck (X,Y) THEN RETURN (’1’B); FIN;
/* evtl . execute and check others */
...
/* evtl . execute last alternative */
Y := AlternativeN (X);
/* absolute plausibility check */
IF PlausiCheck (X,Y) THEN RETURN (’1’B); FIN;
/* return error if all tasks failed */
RETURN (’0’B);

END;

DIVERSE
ALTERNATIVE

Segments1 := RegionGrowing ( Bitmap );
ALTERNATIVE

Segments2 := EnergyMinimisation ( Bitmap );
ASSURE

IF Diff(Segments1 , Segments2 ) < 0.2 THEN
RETURN ( Intersect (Segments1 , Segments2 ));

ELSE
INDUCE Error ;

FIN;

3.3.6 Recovery Blocks

Recovery blocks are a fault tolerance method, where the “blocks” represent diverse implementations
executed dynamically in sequential order and “recovery” refers to variables that need to be kept
in memory for roll-back in order to restore a stable program status if a block failed. The following
subsections describe both variants, namely backward and forward recovery.

LITES



01:12 Programming Language Constructs Supporting Fault Tolerance

3.3.7 Backward Recovery

Backward recovery is employed as follows [35, 36]: At first, backward recovery uses a checkpoint, if
one of the following alternative blocks changes input- or program-state-variables during execution.
A checkpoint is a snapshot of at least all the variables that could be changed by one of the
diverse alternatives in the recovery block. Second, a primary implementation representing the
conventional algorithm is applied. Third, an absolute plausibility test is evaluated after each
alternative has been processed. This test is called acceptance test. It can contain an alternative’s
own post-condition or the post-condition of all alternatives. If the acceptance test fails, the system
is rolled back to the last checkpoint, i.e. all variables are restored, and the next alternative is
executed. When passing the acceptance test, all other alternatives of the block are ignored. If all
alternatives fail, a computation error has to be reported followed by a fall-back to a surrounding
fault tolerance level. Further reasons to roll back and retry are internal computation errors like
division by zero and time-outs. Backward recovery embodies the following properties:

− Building a checkpoint consumes runtime and memory even if no error occurs [39]. For a
supercomputer, creating a checkpoint file on a disc is reported to consume up to 25 min [11].

− Rolling back to a checkpoint takes runtime, but only in case of errors [39].

− Restoring a checkpoint takes time as well [11].

± If preventive checkpoints are not possible due to runtime overhead, periodic checkpointing can
be applied [11].

± The post-conditions must be simple and ideally proven correct in order to prevent introducing
further design errors [22].

± For checkpointing, it would be beneficial to have a primitive at hand, that closely packs
all checkpoint variables without padding in order to transfer a single memory block with
one instruction. The packing becomes an optimisation problem if different checkpoints are
necessary.

Segmentation : PROCEDURE RETURNS ( TSegments );
DCL ( PreSegments , Segments ) TSegments ;
PreSegments := PreSegmentation ;
! checkpoint
Segments := PreSegments ;
! primary implementation
RegionGrowing (Bitmap , Segments );
! acceptance test
IF Quality ( Segments ) < 0.5 THEN

! roll - back
Segments := PreSegments ;
! alternative
EnergyMinimisation (Bitmap , Segments );
! acceptance test
IF Quality ( Segments ) < 0.5 THEN

! fall - back
INDUCE Error ;

END;
FIN;
RETURN ( Segments );

END;

If only one alternative is executed multiple times, backward recovery degrades to temporal
redundancy. It is not reasonable to execute the same code twice due to the systematic nature
of software errors. Hence, an error would be produced twice [22]. This is only useful in case of
corrupt data, e.g. flipped bits, or race conditions.
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3.3.8 Forward Recovery
Forward recovery is a fault tolerance method working in the same way as backward recovery with
the sole difference that each alternative has its own pre-condition. The first alternative whose
pre-condition is fulfilled is executed [21].

The pre-conditions of forward recovery allow to skip alternatives if it is known beforehand
that certain data would cause an alternative to fail.
This fact saves runtime and decreases the hazard of executing program errors that could render
the program unstable.
Moreover, pre-conditions facilitate reading and understanding of the program text and contrib-
ute information for program verification.
If an alternative triggers a peripheral process that irrevocably changes the program state,
checkpointing is not possible, but forward recovery is [21].
The diverse alternatives must employ different input interfaces in such a way that each
subsequent pre-condition is not stronger than its predecessors’ pre-conditions, i.e. weaker or
not related. Otherwise, the program would contain unreachable code.
The order of alternatives and their pre-conditions shall be checked during compilation.

EdgeDetection : PROCEDURE RETURNS (BIT);
DECLARE Success BIT;
CALL CopyImages ;
IF Weather . Bright AND Weather .Dry THEN

Success := SobelOperator ( VisualImage );
IF Success THEN RETURN (True);
ELSE CALL RestoreImages ; FIN;

FIN;
IF Weather .Dark AND Weather .Dry THEN

Success := SobelOperator ( InfraredImage );
IF Success THEN RETURN (True);
ELSE CALL RestoreImages ; FIN;

FIN;
IF Weather .DARK AND ( Weather .Fog OR Weather .Rain) THEN

Success := SobelOperator ( RadarImage );
IF Success THEN RETURN (True);
ELSE CALL RestoreImages ; FIN;

FIN;
RETURN ( False );

END;

TYPE TVoid REF STRUCT (/ /);
TYPE TProcedure REF PROC ;
TYPE TFunction REF PROC ( TVoid ) RETURNS (BIT);
TYPE TBlock REF PROC ( TVoid ) RETURNS ( TVoid );

TYPE TAlternative STRUCT (/
Precondition TFunction ,
Implementation TBlock ,
Postcondition TFunction

/);

ApplyForwardRecovery : PROCEDURE (
Alternatives () INV TAlternative IDENT ,
Input TVoid ) RETURNS ( TVoid ) GLOBAL ;
DCL ( Checkpoint , Output ) TVoid ;
DCL Next BIT INIT (True);
Checkpoint := Input ;
FOR i FROM 1 TO UPB( Alternatives ) REPEAT

IF Alternatives (i). Precond ( Input ) THEN
Output := Alternatives (i).Impl( Input );
IF Alternatives (i). Postcond ( Output )

THEN RETURN ( Output );
ELSE Input := Checkpoint ;

FIN;
FIN;

END;
RETURN (NIL);

END;
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The preconditions can be restricted on response times, in order to meet deadlines in case of
transient overloads. Here, a scheduler decides which alternative to execute depending on the
response time the system must achieve and the WCET of the alternatives. The first example
shows the syntax of [22], while the second one shows the syntax of [14].

EvasiveManeuvre : TASK RUNTIME SELECTABLE ;
BODY

ALTERNATIVE WITH RUNTIME 2500 MSEC ;
CALL ParticleFilter ;
! the best parameter estimation
! out of many simulations

ALTERNATIVE WITH RUNTIME 25 MSEC ;
CALL SimulationOnlyWithAvr ;
! improves based on average value
! with only one simulation

FIN;
END;

BrakeControl CLASS [
EvasiveManeuvre : PROCEDURE RETURNS ( FLOAT ) VIRTUAL ;

CALL ParticleFilter ;
END;
EvasiveManeuvre :: ALTPROCEDURE ;

CALL SimulationOnlyWithAvr ;
END;

];

3.3.9 Time-constrained Data Diversity

Data diversity means that the same algorithm is executed with input data that is represented
in different ways. Data diversity is split into three further types [5]. One type uses dynamic
redundancy, where data is reformulated if the used implementation raises an error. Another type
uses static redundancy, where data is reformulated n times and each version is processed by the
same algorithm. Afterwards, a voter decides which output to return. Both methods circumvent
errors due to unstable algorithms, but we recommend to use forward recovery instead and to use
algorithms that are stable for a certain input space. In contrast, the third data diversity type can
be employed to meet deadlines by resizing data to a smaller extent. For the implementation of a
procedure using time-constrained data diversity, the procedure needs the remaining processing
time and a worst case execution time with respect to a certain data size. Apart from that, an
implementation is very clear to read.

ImageProcessing : PROCEDURE ( Image TBitmap , RemainingTime DURATION );
DCL WCETperPixel INV DURATION INIT (7 MSEC );
Compress (Bitmap , Image . Width * Image . Height * WCETperPixel / RemainingTime );
...

END;

3.3.10 Dynamic Reconfiguration

After a watchdog has detected an error, it sets an error flag and, thereby, provokes the runtime
system to shift certain task sets from one processor to another processor or node. Multiprocessor-
PEARL realises dynamic reconfiguration by a CONFIGURATION part [1]. Its organisation is similar
to High Integrity-PEARL, that uses STATEs with Boolean expressions and LOAD...TO as well
as REMOVE...FROM keywords to shift task sets [22]. Dynamic reconfiguration creates a host of
drawbacks:
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− Dynamic reconfiguration suffers from hard-wiring of peripheral components to certain processors
such that a shifted task cannot access certain resources [22].

− Some processors have to be reserved as spare units [11].
− Moreover, reconfiguration is a dynamic language construct. This implies that shifting a task

set to another processor can cause unanticipated timing behaviour complicating the program
schedule, provoking transient overload, or causing failures due to consuming an unexpected
high amount of memory.

In order to avoid a system shut-down during reconfiguration, preventive migration together
with error prediction can be applied [11]. Here, software execution continues, but processing speed
slightly degrades during preventive migration. Preventive migration has to be combined with
other fault tolerance methods if an error was not predicted [11].

3.3.11 Rejuvenation and Byzantine Method
Rejuvenation is restarting a system from a checkpoint [42]. The restart can be of the form
rebooting, garbage collection, swapping space etc. [12]. It can be used for the whole system, a
node or a task [12]. The Byzantine method uses rejuvenation for n systems that are restarted
periodically, each at a different point in time [27]. After a spare unit restarts, it uses the state
stored by the other units.

+ The Byzantine method can bridge the time of switching to another processor [25].
+ Rejuvenation can be used to discharge a processor from radiation [25].
+ It avoids numerical error accumulation [12].
± The downtime for rejuvenation is planned and, therefore, less hazardous than an unplanned

downtime due to an error [12].
± It is applicable when system resources are exhausted or data is corrupt [12]. In this case,

rejuvenation is a crude method, because the error source is not detected.
− Program execution is interrupted during reboot [11].

4 Conclusions for PEARL-2020

After insights in multiple fault tolerance methods for software and their implementations, we select
appropriate methods for highly safety-critical applications. Table 4 gives a synopsis of all methods
presented, their objective, their linkage to IEC 61508-3 regulations and recommendations with
respect to the four safety integrity levels (SILs). The higher the SIL is, the higher the integrity
of an automation system has to be. The SIL is determined by questions considering extent
and limitation of damage for human beings, environment and assets, probability of failure and
duration of stay in a danger area. We marked which methods are applicable and recommend which
implementation type to use in PEARL-2020, the new standard that shall substitute PEARL-90
and Multiprocessor-PEARL. Therefore, we can choose from four implementation types, namely
hand-coded, code-snippets, library procedures and language primitives. For election, we consider
the following constraints formulated with respect to language primitives. This leads us to the aim
of devising language primitives only for FT methods that must be monitored by a runtime system.

+ If a language provides more primitives than necessary, a programmer can choose the best-suited
one, which improves readability of the source text.

− With too many primitives, programs become unintelligible if the primitives are mixed [28].
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Table 4 Synopsis of the presented fault tolerance methods.

fault tolerance method objective IEC SIL PEARL implementation
61508 1 2 3 4 2020

abs. plausibility checks correctness A.2.3a + + + ++ 3 primitives
rel. plausibility checks correctness A.2.3b ± + + ± 3 library
functional diversity correctness A.2.3e ± ± + ++ 3 code-snippets
load shedding timeliness − 3 primitives (states)
milestone method timeliness − 3 primitives (update)
implementation diversity correctness A.2.3d ± ± ± + 3 code-snippets
backward recovery correctness A.2.3f + + ± − 7 −
temporal redundancy correctness A.2.4a + + ± ± 7 −
forward recovery correctness − 3 code-snippets
timed forward recovery timeliness − 3 code-snippets
timed data diversity timeliness − 3 hand-coded
dynamic reconfiguration correctness A.2.6 ± −− −− −− 7 −
Byzantine method correctness − 3 primitives

− Libraries are more appropriate than programming language constructs tailored to a certain
area of application since the latter can become deprecated and cannot be exchanged easily if
application areas develop further [16].

− With a minimum of language primitives, a language is easier to learn, better to understand
and verify [22].

+ With FT primitives, a compiler can choose whether to translate into sequential or parallel
execution [22].

± Primitives as well as libraries allow to change program behaviour with only little adaptations
to the source text, either by parametrisation of the compiler or by exchanging class and module
names.

4.1 Individual Language Design Decisions
We suggest to introduce absolute plausibility checks by the primitives PRECOND for pre-conditions,
POSTCOND for post-conditions and ASSERT for invariants within a procedure body. The explicit
distinction of those three keywords addresses semi-automatic program verification for the pre- and
post-conditions. Whether or not to check those assertions is to be parametrised in the compiler.
Relative plausibility checks will be provided by a library implementation since the necessary
checks, e.g. for majority voting, tend to be more complex and regulation A.2.8 from IEC 61508-3
demands to use verified software components.

We advocate for providing functional diversity and implementation diversity by use of code-
snippets, because mapping the nomenclature of a program’s area of application to arguments of
an FT handler is misleading and IEC 61508-3 regulation B.1.5 advises against the use of pointers,
refer to the example from Section 3.3.1. Benefits of code-snippets are that they guide programmers
to best-practice and allow to easily switch from sequential to parallel execution or vice versa.

Regarding load shedding, two design decisions have to be made: First, whether to provide two
states (normal and emergency) and assign a priority to every task group or to provide multiple
user-defined states with associated tasks, second, how to indicate state transitions to the runtime
system. We also point out that we neglect regulation A.2.3g from IEC 61508-3 which recommends a
stateless program design. We prefer to define multiple states in the program system part since they
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allow to discard but also re-enable tasks if a transient overload becomes more critical. Considering
the second design choice there are two possible solutions as well: define the current state only
by using the current processor load or let the transitions be initiated by the programmer. Both
options bear the risk of toggling between two or more states. We prefer the second option since it
allows to query diverse conditions. The conditions have to be stated within the LOADSHEDDING
part of a PEARL module due to readability.

We base the milestone method on the language primitive UPDATE as proposed by [14], but with
a single change: instead of using a global return variable we use PEARL’s conventional function
header syntax with the new attribute MONOTONE that entails the name of the return variable. With
the example from Section 3.3.4 in mind, this means ZeroNewton: PROC((F, D) TFunction)
RETURNS(FLOAT) MONOTONE(Xi); The hand-coded variant with flags is inappropriate, since abort
conditions and setting the flag can be misimplemented by a programmer. The termination
heteronomy variant is insufficient to handle semaphore operations in case of early function exits.

We decided to drop language constructs for backward recovery and temporal redundancy, as
they are not recommended by IEC 61508-3 for higher SILs. Furthermore, backward recovery
should be substituted by forward recovery and temporal redundancy only aims at race conditions
that should be eliminated beforehand. Dynamic reconfiguration is left out as well, because IEC
61508-3 strongly advises against it due to its dynamic nature as stated in regulation B.1.2. In
order to prevent the disadvantages that come with dynamic reconfiguration we support the use of
the Byzantine method.

Forward recovery should be supported with code-snippets that entail sequential IFs for pre-
conditions and nested IFs for post-conditions. Language primitives are ruled out, because they
unnecessarily enlarge the set of keywords. Library procedures are excluded, since they imply the
need for parametric polymorphism or inheritance. The code-snippet for time-constrained forward
recovery extends the forward recovery code-snippet by one further input argument for the response
duration. Time-constrained data diversity, on the other hand, should be hand-coded, because
data can be simply and readably resized before the actual function implementation.

The rejuvenation of the Byzantine method has two aspects: what to rejuvenate and how. Since
subsystems are addressed by other FT methods, we restrict it to the whole embedded system.
Therefore, the time period and offset for rejuvenation of certain processors can be stated within
the program’s ARCHITECTURE part. We allow only restarting, since it enables radiation discharging
without complicating the language with other options. PEARL is a real-time programming
language, hence, memory operations, e.g. garbage collection, are forbidden. In principle, compiler
hints for swapping would be allowed, but we prefer not to intervene into these processes. Finally,
there is a need for a hand-coded initialisation procedure based on program states of the other
Byzantine processors.

4.2 Criteria of Effectiveness
We conclude our paper with several measures on how to obtain quantitative results to demonstrate
the effectiveness of the proposed approach, see Table 5. The coverage of IEC regulations can be
derived from column IEC 61508 of Table 4 for fault tolerance methods. For general language
constructs, PEARL-2020 is as well-suited as other safety-related languages like MISRA-C, but no
other language provides such powerful fault-tolerance language constructs. Thus, PEARL-2020
has a higher coverage than state-of-the-art languages. The IEC regulations enforce functional
safety. The programmers, hence, are relieved from checking them explicitly and may concentrate
on program validation and verification. Likewise, official certification authorities require less effort.
Another criterion of effectiveness would be to compare accident statistics from programs developed
with PEARL-2020 and other safety-related languages. We want to address this issue in future
work.
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Table 5 Criteria of effectiveness.

main goal: functional safety
↗ coverage of IEC regulations (see column IEC 61508 of Table 4)
↗ seamless implementation of various functional safety concepts, programmers do not need to

address them explicitly
↘ programming effort and more effortless verification
↘ examination effort for certification authorities [22]
? accident statistics for machines and plants that are programmed with PEARL-2020 compared

to other languages like MISRA-C (future work)
↗ maintainability and debuggability

side constraints: resources
↗ length of source code
→ memory for application data
→ runtime

We would like to juxtapose general program metrics of PEARL-2020 to other languages in a
qualitative fashion: The length of PEARL-2020 source code is expected to become longer as many
diverse checks are demanded. Memory requirements are equivalent to that of other safety-related
languages because, even today, all devices implement diverse memory in agreement with IEC
regulations. Runtime should remain at the same level.
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Abstract
This paper addresses the problem of real-time
scheduling of a set of sporadic tasks on uni- and mul-
tiprocessor platform based on priority promotion. A
new preemptive scheduling algorithm, called Fixed-
Priority with Priority Promotion (FPP), is proposed.
In FPP scheduling, tasks are executed similar to
traditional fixed-priority (FP) scheduling but the
priority of some tasks are promoted at fixed time
interval (called, promotion point) relative to the
release time of each job. A policy called Increase
Priority at Deadline Difference (IPDD) to compute
the promotion points and promoted priorities for
each task is proposed. FPP scheduling prioritizes
jobs according to Earliest-Deadline-First (EDF) pri-
ority when all tasks’ priorities follow IPDD policy.

It is known that managing (i.e., inserting and
removing) jobs in the ready queue of traditional
EDF scheduler is more complex than that of FP sched-

uler. To avoid such problem in FPP scheduling, a
simple data structure and efficient operations to
manage jobs in the ready queue are proposed. In
addition, techniques for implementing priority pro-
motions with and without the use of a hardware
timer are proposed.

Finally, an effective scheme to reduce the av-
erage number of priority promotions is proposed:
if a task set is not schedulable using traditional
FP scheduling, then promotion points are assigned
only to those tasks that need them to meet the
deadlines; otherwise, tasks are assigned traditional
fixed priorities without any priority promotion. Em-
pirical investigation shows the effectiveness of the
proposed scheme in reducing overhead on uniproces-
sor and in accepting larger number of task sets in
comparison to that of using state-of-the-art global
schedulability tests for multiprocessors.
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1 Introduction

The thirst to utilize increasingly more processing capacity of underlying hardware platform while
meeting the deadlines of hard real-time sporadic tasks has resulted in the design of numerous
scheduling algorithms. The preemptive dynamic-priority-based EDF scheduling is an optimal
algorithm for uniprocessor: if there is an algorithm that can schedule a task set such that all the
deadlines are met, then the task set is also schedulable using EDF scheduling [17]. In contrast, fixed-
priority scheduling does not provide such a guarantee, even under the (optimal for uniprocessor)
Deadline-Monotonic (DM) priority assignment [22].
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For uniprocessor, although EDF can better utilize the processing capacity, many practical
systems implement FP scheduling due to its efficient run-time support and low overhead in
managing the ready queue. For multiprocessors, there is no evidence whether global fixed-priority
(G-FP) scheduling dominates or is dominated by the global earliest-deadline first (G-EDF) scheduling:
some task set may only be deemed schedulable using the state-of-the-art G-EDF test while others
only using G-FP test [15]. The question this paper addresses is: Can we combine the schedulability
and implementation benefits of both FP and EDF?

In many real-time systems, e.g., avionics, spacecraft and automotive, it is important to
efficiently use the processing resources due to size, weight and power constraints. Reducing
overhead of task scheduling in such systems can cut cost for mass production of, for example,
cars, trucks or aircraft. A theoretically “good” scheduling algorithm may not be used in practice
if the overhead of implementation (e.g., managing tasks in the ready queue) is large. This paper
proposes an unifying approach to integrate the schedulability and implementation benefits of both
FP and EDF scheduling.

A new preemptive scheduling algorithm, called Fixed Priority with Priority Promotion (FPP),
is proposed in this paper. Under FPP scheduling, each task has a fixed priority that may undergo
priority promotion at fixed time intervals (called, promotion points) relative to the release time
of each job. For example, consider task τi that has (initial) fixed priority p with two promotion
points δ1 and δ2 at which the priority of the task is promoted to priority levels p1 and p2 such that
δ1 < δ2 and p2 < p1 < p (lower priority value implies higher fixed priority). If a job of task τi is
released at time ri, the priority of this job is p at time ri and promoted to priority levels p1 and p2
at time (ri+ δ1) and (ri+ δ2), respectively. After a task’s priority is promoted, its priority remains
at this promoted priority until either (i) the task completes execution, or (ii) another promotion
point is reached at which the task’s priority is again promoted. As will be evident later, two or
more jobs may have the same fixed priorities due to priority promotion. The FPP scheduler has a
special tie-breaking policy in such case: a newly released job cannot preempt a currently-executing
job if both of these jobs have the same priority. Other than priority promotion, FPP scheduling is
same as traditional FP scheduling on uniprocessor and multiprocessors1 platform while applicable
to implicit-, constrained- or arbitrary-deadline sporadic tasks.

The FPP scheduler consists of a dispatcher and a ready-queue manager. The dispatcher at each
time instant dispatches the highest-priority ready job if a processor is idle. If all the processors are
busy, then a newly released job with higher priority can preempt a currently-executing relatively
lower priority job. Active jobs that cannot be executed wait in the ready queue. The ready-queue
manager inserts and removes jobs to and from the ready queue. The ready-queue manager also
takes care of priority promotion of the jobs that are currently awaiting execution in the ready
queue.

The effectiveness of FPP scheduling in meeting the deadlines of the tasks depends on the
promotion points and promoted priorities of each task. A simple policy called Increase Priority at
Deadline Difference (IPDD) to compute (offline) the promotion points and promoted priorities for
each task is proposed. When all the tasks are assigned priorities based on IPDD policy, it will be
shown that the FPP scheduling essentially prioritizes jobs of the tasks according to EDF priority.
Recall that a job with shorter absolute deadline has smaller priority in EDF scheduling. We say
that job Ja has higher EDF priority than job Jb if the absolute deadline of Ja is shorter than that of
job Jb. Executing jobs of the tasks in EDF order but using priority-promotion-based FPP scheduler
is one of the major contributions in this paper.

1 In this paper, the term “FPP scheduling” in general applies to scheduling on uniprocessor and multiprocessors.
For multiprocessors, FPP scheduling means global FP scheduling with priority promotion.
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Since jobs can be prioritized in EDF order, the management of jobs in the ready queue of
FPP scheduler would suffer from the same overhead problems (as discussed by Buttazzo [12]) if it
is implemented similar to that of traditional EDF scheduler. On the other hand, the ready queue
management and run-time support for traditional FP scheduling is much simpler, which is the
main reason for its popularity in many commercial real-time kernels. This paper proposes a simple
data structure and constant-time, i.e., O(1) operations for implementing the ready queue. The
ready queue management using the proposed scheme has similar benefits as that of traditional
FP scheduler, which is another major contribution of this paper.

The only source of additional overhead for managing the jobs in the ready queue of FPP scheduler
in comparison to that of FP scheduler is the cost of priority promotion. To reduce such overhead
due to priority promotion, a joint priority assignment and schedulability test, called FPP_Test, is
proposed for FPP scheduling. The FPP_Test assigns traditional fixed priorities (with no promotion
point) to some tasks while assigns priorities to other tasks (with promotion points) using IPDD policy.
Such priority assignment is effective for task set that is neither schedulable using pure FP scheduling
nor using pure EDF scheduling. This result is very important for scheduling on multiprocessors
since neither FP nor EDF scheduling is optimal for multiprocessor scheduling which is in contrast to
scheduling on uniprocessor for which EDF is the optimal algorithm. The FPP_Test thus combines
the schedulability benefits of both fixed and dynamic (i.e., IPDD) priorities in addition to having
the similar implementation benefits of traditional FP scheduler.

To measure the effectiveness of FPP scheduling in terms of reducing overhead for managing jobs
in the ready queue in comparison to that of EDF scheduling, the execution of randomly generated
task sets is simulated using both FPP and EDF scheduling. The ready queues are simulated using
the proposed data structure (presented in Subsection 4.2.1) for FPP scheduler and using a priority
queue implemented as a binary min-heap (as is used in [10]) for EDF scheduler. The simulation
result shows that ready queue management of FPP scheduler suffers significantly less overhead in
comparison to that of EDF scheduler.

The FPP_Test is applicable to both uniprocessor and multiprocessor platform. On uniprocessor
platform, any task set schedulable using the optimal preemptive EDF scheduling is also schedulable
using FPP scheduling. Thus, FPP is also optimal for uniprocessor. On multiprocessor platform,
it will be shown that the FPP_Test dominates both the state-of-the-art G-FP and G-EDF tests.
Simulation result shows the effectiveness of FPP scheduling in determining higher percentage of
schedulable task sets and in reducing the number of preemptions and migrations.

Finally, techniques to implement priority promotion with and without using hardware timer
are proposed. We tackle the challenge of using one hardware timer to implement multiple
priority promotions that are due at some later time. In addition, we also address the problem of
implementing priority promotions without using a timer (i.e., based on pure software approach).
In such software-based approach, a technique called delayed promotion is used: some jobs’ priority
promotions are delayed until it is necessary to ensure specific property of the underlying schedule.

Related Work. The FPP algorithm is similar to the well-known dual-priority scheduling which
was first proposed by Burns and Wellings [11] in 1993, and analyzed by Davis and Wellings [13, 16]
considering shared resources, release jitter and for scheduling soft real-time tasks. In dual-priority
scheduling, each task undergoes priority promotion only once. In contrast, a task in FPP scheduling
may have more than one promotion point. The reason for having more than one promotion point
is to have the power to prioritize jobs in EDF order to meet deadlines.

Gonzalez Harbour et al. [18] considered scheduling FP scheduling of periodic tasks where
each task is divided into a collection of precedence-constrained subtasks such that each subtask
has its own priority. It is shown using an example by Burns and Wellings [11] that a task set
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may be schedulable in dual-priority scheduling and may not be schedulable using the approach
proposed by Gonzalez Harbour et al. [18]. After around one-and-half decade, Burns [9] presented
an open problem at the RTSOPS seminar in ECRTS 2010: Is the utilization bound of dual-priority
scheduling of implicit-deadline tasks on uniprocessor 100%? While Burns [9] solved this problem
for task set having n = 2 tasks, the answer to this question for n > 2 is still unknown for
dual-priority scheduling. This paper will show that the utilization bound of FPP scheduling of
implicit-deadline tasks on uniprocessor is 100% for any n.

Organization. The rest of the paper is organized as follows. Section 2 presents the task model.
The IPDD policy and important lemmas of this policy are presented in Section 3. The dispatcher
and ready queue manager of FPP scheduler are presented in Section 4. Technique to reduce
the total number of promotion points, particularly, the FPP_Test is proposed in Section 5. The
FPP_Test is applied to both uni- and multiprocessors considering constrained-deadline tasks
and experimental results are presented in Section 6 and Section 7, respectively. Techniques to
implement priority promotions for FPP scheduling are proposed in Section 8. Finally, Section 9
concludes this paper.

2 Task Model

This paper considers scheduling a collection of n sporadic tasks in set Γ = {τ1, . . . τn}. Each
task τi is characterized by a triple (Ci, Di, Ti), where Ci represents the worst-case execution
time (WCET), Di is the relative deadline, and Ti is the minimum inter-arrival time of the jobs or
instances of task τi. Successive arrivals of the instances (called jobs) of task τi are separated by at
least Ti time units. Each job of task τi after its release requires at most Ci units of execution
time before its relative deadline. The release time and absolute deadline of job Ja of task τi are
respectively denoted by ra and da such that da = ra +Di.

A job is called active if it is released but has not completed its execution. An active job may
be in execution or awaiting execution in the ready queue at any time instant. The FPP scheduling
is applicable to implicit-, constrained- and arbitrary-deadline tasks. This paper assumes that
lower priority value implies higher priority levels; i.e., 1 and n are the highest and lowest priority
levels, respectively.

3 Priority Promotion Policy: IPDD

The effectiveness of FPP scheduling depends on the promotion points and promoted priorities for
each task. In this section, the IPDD priority-promotion policy that can prioritize jobs of the tasks
in EDF order while executing using priority-promotion-based FPP scheduling is presented.

The IPDD priority-promotion policy requires n distinct fixed-priority levels to determine the
promotion points and promoted priorities of n tasks. Tasks are indexed in deadline-monotonic
order, i.e., if j < i for any two tasks τj and τi, then Dj ≤ Di. Therefore, there are (i−1) tasks (i.e.,
τ1, τ2, . . . τi−1) that have their relative deadlines no larger than that of task τi. The IPDD policy
computes the promotion points and promoted priorities for each task τi ∈ Γ as follows:

Task τi has i different priority levels: starting from priority level i to the highest priority level
1. Task τi’s initial priority i is promoted (i− 1) times. At each of the (i− 1) promotion points,
the priority is promoted by one priority level. Figure 1 depicts IPDD priority-promotion policy
for task τi.
Each job of task τi when released has (initial) priority level i, which is promoted to priority
level (i− 1) at the first promotion point; then promoted to priority level (i− 2) at the second
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Figure 1 IPDD priority-promotion policy for task τi. Consider that an arbitrary job of task τi is released
at time ri and has deadline at di = ri + Di. The dotted vertical lines are the promotion points. The
κth promotion points is (Di −Di−κ) time units later than time ri for κ = 1, 2 . . . (i − 1). Between two
consecutive promotion points ta and tb, the priority of the job remains at the priority level set at the
earlier promotion point ta.

promotion point; and continuing in this manner, finally, promoted to the (highest) priority
level 1 at the last, i.e., (i− 1)th promotion point.
The promotion points apply to each job of task τi. Each promotion point of a job is a fixed
time interval from the release time of the job. The κth promotion point is equal to the (relative)
deadline difference of tasks τi and τi−κ, which is equal to (Di −Di−κ). The priority of each
job of τi is promoted to priority level (i− κ) at the κth promotion point which is (Di −Di−κ)
time units later than its release time, for κ = 1, 2, . . . (i− 1). Since Di ≥ Di−1 . . . ≥ D1,
we have (Di −Di−1) ≤ (Di −Di−2) . . . ≤ (Di −D1), which implies that priority of task τi is
non-decreasing.
If any two tasks τi and τj , where i < j, have the same relative deadline, then task τj ’s initial
priority is i (not j) since Dj −Di = 0 and the promotion points of τj are computed the same
way that are computed for τi.

Each task τi has i priority levels i, (i− 1), . . . 1 with total (i− 1) promotion points. And, each
task τj has j priority levels j, (j − 1), . . . i, (i− 1), . . . 1 with total (j − 1) promotion points where
i < j. In other words, according to IPDD policy, i priority levels are common (shared) for any
two tasks τi and τj whenever i < j. Due to sharing of priority levels, the number of distinct
fixed-priority levels required to assign priorities to all the n tasks is at most n. As will be evident
later, if two or more newly released jobs have the same initial priority, the FPP scheduler breaks
the tie arbitrarily. If a newly released job has the same priority as that of a currently-executing
job, the new job does not preempt the executing job in FPP scheduling. Example 1 demonstrates
the IPDD policy using an example of three tasks.

I Example 1. Consider (Ci, Di, Ti) for three tasks τ1 ≡ (1, 2, 4), τ2 ≡ (4, 7, 8) and τ3 ≡ (3, 10, 16).
In IPDD policy, each job of task τ1 starts with priority level 1 which is never promoted since there
is no other task with smaller relative deadline than D1. If a job of task τ1 is released at time r1,
then the priority of this job remains at priority level 1 during [r1, r1 +D1).

Since there is one other task (i.e., τ1) with smaller relative deadline thanD2, each job of τ2 starts
with priority level 2, which is promoted exactly once at time r2 +(D2−D1) = r2 +(7−2) = r2 +5,
where r2 is the release time of an arbitrary job of τ2. The priority of the job remains at priority
level 2 and 1 respectively during [r2, r2 + 5) and [r2 + 5, r2 +D2) = [r2 + 5, r2 + 7).

Since there are two other tasks (i.e., τ1 and τ2) with smaller relative deadlines than D3, each
job of τ3 starts with priority level 3, which is promoted twice – first at time r3 + (D3 −D2) =
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Figure 2 FPP schedule of three tasks in Example 1 where each task is assigned priorities using IPDD policy.
Note that task τ3’s priority is promoted to priority level 1 at time t = 8 and is not preempted by the
third job of task τ1 that is released at time t = 8 although both jobs have the same priority. This is
because a newly released job cannot preempt a currently executing job if both have the same priority in
FPP scheduling.

r3 + (10 − 7) = r3 + 3 and second at time r3 + (D3 − D1) = r3 + (10 − 2) = r3 + 8, where r3
is the release time of an arbitrary job of τ3. The priority of the job is at priority level 3, 2 and
1 respectively during [r3, r3 + 3), [r3 + 3, r3 + 8) and [r3 + 8, r3 + D3) = [r3 + 8, r3 + 10). The
FPP schedule of this task set (assuming strictly periodic release for all tasks staring from time 0)
is given in Figure 2 (the scheduler is formally presented in Subsection 4.1).

The remainder of this section presents important Lemmas regarding the properties of IPDD pol-
icy and will be used to show that FPP scheduling generates EDF schedule.

I Lemma 2. If the priority of job Ja is promoted to priority level ` at time ta, then (da− ta) = D`.

Proof. Assume that job Ja is a job of task τi. Therefore, da = ra +Di. According to IPDD policy,
ta = ra + (Di −D`). Consequently, (da − ta) = D`. J

I Lemma 3. If job Ja has higher priority than another job Jb at time t according to IPDD policy,
then
1. the deadline da is smaller than the deadline db, and
2. Ja’s priority never becomes smaller than that of Jb.

Proof. Consider that Ja and Jb have priorities ν and ` at time t where ν < `. We will show that
(1) da < db, and (2) Ja’s priority is never becomes smaller than that of Jb.
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Since Jb’s priority is ` at time t, its priority will ultimately be promoted to (higher) priority
level ν according to IPDD policy. Let Jb’s priority will be promoted to priority ν at time tb where
t < tb. On the other hand, Ja’s priority is already at priority ν at time t. Let Ja’s priority be
set to priority ν at time ta where ta ≤ t. Therefore, ta < tb. From Lemma 2, it follows that
(da − ta) = Dν and (db − tb) = Dν . Since ta < tb, it follows that da < db (part (1) is proved).

It follows from IPDD policy that the priorities of Ja and Jb are set to priority level κ, for
κ = ν, (ν − 1), . . . 1, respectively at time (ta +Dν −Dκ) and (tb +Dν −Dκ). Since ta < tb, we
have (ta +Dν −Dκ) < (tb +Dν −Dκ) for κ = ν, . . . 1. Therefore, priority of Ja is promoted to
higher priority level earlier than that of Jb. Any job having priority κ remains at priority level κ
for duration of (Dκ −Dκ−1) time units in IPDD policy. Therefore, Ja’s priority is never smaller
than that of Jb (part (2) is proved). J

I Lemma 4. Consider that job Ja has priority ` at time t according to IPDD promotion policy. If
a new job Jb of task τ` is released at time t, then the da ≤ db.

Proof. According to IPDD policy, job Jb of task τ` has priority ` at time t since it is released at
time t. Since Jb is released at time t, we have (db − t) = D`.

Job Ja’s priority is already at priority ` at time t. Let Ja’s priority be set to priority level ` at
time ta where ta ≤ t. From Lemma 2, we have (da− ta) = D`. Since ta ≤ t, we have (da− t) ≤ D`.
From (db − t) = D` and (da − t) ≤ D`, its follows that da ≤ db. J

I Lemma 5. Consider set J of active jobs. If all the jobs in J have same priority ` at some
time instant, then the job with the earliest deadline is promoted to priority level ν no later than
that of any other job in J , where ν < `.

Proof. Consider any two jobs Ja and Jb in J . Without loss of generality assume that da ≤ db.
Let Ja and Jb are promoted to higher-priority level ν at time ta and tb, respectively. We will
show that ta ≤ tb, which implies that Ja with deadline no later than that of Jb is promoted to
priority level ν no later than that of job Jb. It follows from Lemma 2 that (da − ta) = Dν and
(db − tb) = Dν . Since da ≤ db, we have ta ≤ tb. J

It will be shown based on Lemmas 2–5 that the FPP scheduling generates the EDF schedule
of the tasks when priorities to all the tasks are given using IPDD policy. The dispatcher and
the ready queue manager of FPP scheduler are presented in Section 4. Then Section 5 presents
techniques to reduce the number of promotion points by not assigning priorities to all the tasks
using IPDD policy (i.e., some tasks have no promotion point).

4 Dispatcher and Ready Queue Manager

The dispatcher of the FPP scheduler determines which active job to execute while the ready-queue
manager is responsible for managing the ready jobs in the ready queue.

4.1 The Dispatcher

The dispatcher of FPP scheduler considering global multiprocessor scheduling on m identical
processors is presented below. When m = 1, this dispatcher applies to uniprocessor. In addition,
some important events related to the operations performed by the ready-queue manager are also
highlighted below. The FPP dispatcher at each time t works as follows:
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At most m highest-priority jobs at time t are dispatched for execution. If t is the promotion
point for a currently-executing job, then its priority is promoted2 at time t.
If all the m processors are busy and a new job Jnew with priority higher than that of the
currently-executing lowest-priority job Jexe_low is released at time t, then Jnew starts execution
by preempting Jexe_low. The preempted job Jexe_low is inserted in the ready queue. This
(insertion) event managed by the ready-queue manager is called the “rel_prmt” event.
If all the m processors are busy and a new job Jnew with priority not higher than that of
the currently-executing lowest-priority job Jexe_low is released at time t, then Jnew does not
preempt Jexe_low. And, Jnew is inserted in the ready queue. This (insertion) event managed by
the ready-queue manager is called the “rel_no_prmt” event. Note that if Jnew has the same
priority as that of Jexe_low (ties in priority ordering), then Jnew does not preempt Jexe_low.
If some processor becomes idle while the ready queue is not empty, then the job having
the highest priority from the ready queue is removed and dispatched for execution on the
idle processor. The ready-queue manager performs this removal and this event is called the
“idle_remv” event.

In summary, the FPP dispatcher works similar to traditional global FP scheduler with one
additional feature: jobs may undergo priority promotion. If the total number of active jobs is
not more than m, then all active jobs are in execution and the ready queue is empty. If the total
number of active jobs is more than m, then all the processors are busy and some active jobs are
in the ready queue. Example 1 presents the FPP schedule for three tasks. Theorem 6 proves that
FPP scheduling executes jobs in EDF order if all tasks have priorities based on IPDD.

I Theorem 6. If tasks are given priorities based on the IPDD policy, then the jobs of the tasks are
executed in EDF order by the FPP scheduler at each time instant t.

Proof. If the number of active jobs is no more than m, then each active job is executing at time t
on separate processor. The claim of this theorem holds trivially. Now consider the case when the
number of active jobs is exactly m at time t. If a new job Jnew arrives at time t (i.e., number
of active job becomes larger than m) such that the priority of Jnew is not higher than that of
the currently-executing lowest-priority job Jexe_low, then Jnew is inserted in the ready queue. If
Jnew’s priority is smaller than that of Jexe_low, then from Lemma 3 it follows that the absolute
deadline of job Jnew is larger than that of job Jexe_low. If Jnew’s priority is equal to Jexe_low, then
it follows from Lemma 4 that the deadline of job Jnew is not smaller than that of job Jexe_low.
Similarly, since Jexe_low is the currently-executing lowest-priority job, its deadline is not smaller
than any other currently-executing job. Therefore, job Jnew with EDF priority not higher than any
of the currently-executing job is inserted in the ready queue.

On the other hand, if Jnew has higher priority than that of job Jexe_low, then Jnew preempts
the execution of Jexe_low and Jexe_low is inserted in the ready queue. According to Lemma 3, job
Jnew has earlier deadline than that of job Jexe_low. Therefore, job Jexe_low having a relatively
lower EDF priority is inserted in the ready queue.

2 For example, to perform the promotion, a special task can be designed whose only job is to promote the
priority of the application tasks, as pointed by Burns [11] for dual-priority scheduling. In addition, all the
priority promotions of a currently-executing job may be postponed until a new job is released. This is because
the execution of a currently-executing job may be interfered only if a new job is released. When a new job
is released at time t, the priority of the currently-executing job is determined considering the last priority
promotion at or immediately before t. This can avoid unnecessary overhead due to priority promotion of
the executing tasks. Section 8 will present different hardware and software-based techniques to implement
priority promotion.
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According to Lemma 3, if job Ja is prioritized by the dispatcher over another job Jb, then job
Jb will never have higher priority (even if its priority might be promoted) than job Ja at another
(future) time instant. Consequently, if job Jb is inserted in the ready queue because it cannot be
prioritized by the dispatcher over another job Ja, then job Jb from the ready queue (even if its
priority might be promoted) cannot preempt the execution of job Ja at some other (later) time.
Therefore, no job that is inserted in the ready queue can preempt the jobs that are in execution.

Whenever some processor becomes idle at time t while the ready queue is not empty, the
highest-priority job from the ready queue is removed and dispatched for execution. However, due
to priority promotion, there may be multiple jobs waiting at the highest priority level in the ready
queue. It will be shown in Subsection 4.2 that the ready-queue manager (when handling the
idle_remv event) removes the job with shortest deadline (i.e., highest-priority EDF job) from the
ready queue. Therefore, jobs are executed in EDF priority order in FPP scheduling in all cases. J

Now we concentrate on the ready queue manager, in particular, the events it has to manage. In
addition to the rel_prmt, rel_no_prmt and idle_remv events, the ready queue manager needs to
handle another event. If some job’s priority is to be promoted while that job is awaiting execution
in the ready queue, the ready-queue manager needs to manage this promotion. This event managed
by the ready-queue manager is called “pri_prom” event. Therefore, the ready-queue manager
needs to handle four different events: rel_prmt, rel_no_prmt, idle_remv and pri_prom. If
multiple events occur at the same time, they are managed by the ready-queue manager in any
order.

A Note on Ready-Queue Manager for FP Scheduler. The ready-queue manager of traditional
FP scheduling also needs to manage the rel_prmt, rel_no_prmt and idle_remv events. The
ready-queue for FP scheduler can be implemented as an array of length n where task control blocks
(TCBs) of the ready tasks are stored. The κth position of the array stores the TCB of the ready
task that has current priority κ for κ = 1, . . . n.

If rel_prmt or rel_no_prmt event occurs, then a job (particularly, Jexe_low or Jnew) is inserted
in the ready queue. If a job of task τκ is to be inserted in the ready-queue, then the priority of
τκ is used to index the ready-queue array position at which the TCB of τκ is stored. Therefore,
insertion is done in constant time.

If an idle_remv event occurs, then the highest-priority job from the ready queue is removed
and dispatched for execution. Finding the highest-priority job from the ready-queue can be
performed in constant time as follows. A bitmap array B[n . . . 1] of the ready-queue array is
maintained. Initially, all the elements in bitmap B are zero to specify that there is no job awaiting
execution at any priority level in the ready-queue array. When a job with priority κ is inserted in
to the ready-queue array, the κth bit of the bitmap is set (i.e., B[κ] = 1) to specify that there is a
job awaiting execution in the ready queue at priority level κ. Determining the highest-priority job
from the ready queue is to find the position of the least set bit in the bitmap B[n . . . 1], which
can be performed in constant time using, for example, deBruijn sequence [21], if not supported
as a machine-level instruction [27]. Once the position is known, the TCB of the job is removed
and corresponding job is dispatched and we set B[κ] = 0. An interesting discussion how the
highest-priority task from the ready queue can be removed efficiently for FP scheduling can be
found in [27].

In FP scheduling at most one element (i.e., job) is stored at each priority level in the ready
queue. If the number of supported priority levels is smaller than the number of fixed-priority
tasks, then the ready queue may be split into n different priority levels as is discussed by Buttazzo
in [12]. In such case, the a FIFO queue is maintained at each priority level.
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A Note on Ready-Queue Manager for EDF Scheduler. Implementing EDF requires to keep track
of all absolute deadlines and perform a dynamic mapping between absolute deadlines and priorities.
If the number of possible absolute deadlines for all the active tasks is larger than the the total
number of distinct priority levels, managing the ready tasks is complex in EDF scheduling. If the
number of active tasks is smaller than the number of different priority levels, updating the ready
queue has higher overhead in comparison to that of FP scheduling, as is discussed by Buttazzo [12].

In the worst case, all the ready jobs may need to be remapped to new priority levels, which
increases the overhead of ready queue management. The complexity and overhead in managing
ready queue of EDF scheduler make it less popular in commercial kernel although EDF always
performs better in terms of schedulability on uniprocessor when overheads are not considered.

Theorem 6 shows that the FPP scheduling executes jobs similar to EDF when tasks are given
priorities using IPDD policy. However, managing jobs in the ready queue of FPP scheduler,
if implemented similar to that of known for EDF, will have the same overhead problems that
EDF suffers. In this paper, a new ready-queue management scheme for FPP scheduler is proposed.
In particular, a data structure for the ready queue and constant-time operations to manage each
of the rel_prmt, rel_no_prmt, idle_remv and pri_prom events is proposed.

In FPP scheduling, if the priority of a currently-executing job is promoted, then such promotion
does not remap any job in the ready queue. However, if the priority of a job residing in the ready
queue is promoted, then such promotion (as will be evident shortly) remaps that job to a new
position in the ready queue data structure and thus incurs overhead.

Inspired by the discussion of Buttazzo [12], the overhead model this paper considers is the sum
of total number of times each of the jobs in the ready queue is remapped to some other position.
It will be empirically shown, based on this overhead model, that FPP scheduler has significantly
lower overhead than that of EDF. Such low overhead of FPP scheduler shall make it popular in
practice.

4.2 The Ready Queue Manager
This subsection presents the data structure of the ready queue and operations to handle the events
rel_prmt, rel_no_prmt, idle_remv and pri_prom.

4.2.1 Data-Structure for the Ready Queue
Due to priority promotion and sharing of priority levels in FPP scheduling, multiple active jobs
may have the same priority at the same time instant. This is because two jobs of two different
tasks τi and τj shares i priority levels where i < j. Therefore, the ready queue may need to store
more than one job at the same priority level. An array of total n linked lists are used to implement
the ready queue of the FPP scheduler. The κth linked list at any time instant stores all the TCBs
of the ready jobs that have priority level κ at that time instant.

The κth linked list has two pointers: head[κ] and tail[κ] that respectively point the first
and last TCB in the κth linked list. This ready queue data structure along with the bitmap is
depicted in Figure 3. The purpose of the bitmap B[n . . . 1] is to perform efficient searching to find
the highest priority job from the ready queue.

4.2.2 Operations by the Ready Queue Manager
The ready-queue manager updates the ready queue whenever rel_prmt, rel_no_prmt, idle_remv
and pri_prom event occurs. The jobs stored in the ready queue at any time instant will satisfy
the following two properties:
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Figure 3 Proposed data structure of the ready queue for FPP scheduling.

P1: All jobs stored in the νth linked list of the ready queue have higher EDF priorities than
any other job stored in the `th linked list where ν < `.
P2: All jobs in the `th linked list are stored in order of non-increasing EDF priority, i.e., the
head[`] and tail[`] respectively points the highest and lowest priority EDF job in the `th

linked list for ` = 1, . . . n.

Assume that these two properties hold at time t0 (such t0 exists at least for the case when the
system starts, i.e., when there is no job in the ready queue). Consider that some event (rel_prmt,
rel_no_prmt, idle_remv or pri_prom) occurs at time t such that there is no other event after t0
and before t. We will show that how properties P1 and P2 continue to hold after ready queue is
updated to handle the event that occurs at time t. Maintaining properties P1 and P2 are very
important to ensure that operations on the ready queue can be done in constant time. Given the
structure of the ready-queue in Subsection 4.2.1, operations on the ready queue for managing
events rel_prmt, rel_no_prmt, idle_remv and pri_prom are presented below.

Event rel_prmt. This event occurs if a newly released job Jnew starts executing by preempting
currently-executing lowest-priority job Jexe_low. The TCB of job Jexe_low is inserted in the ready
queue. If priority of job Jexe_low is ` when preempted by Jnew, then the TCB of job Jexe_low is
inserted at the front of the `th linked list of the ready queue. The insertion at the front is done in
constant time using the head[`] pointer. We set B[`] = 1 to specify that there is a TCB awaiting
execution at priority level `.

Since job Jexe_low has priority ` at time t and was in execution, the 1st, 2nd, . . . (`− 1)th linked
lists of the ready queue at time t are empty. It follows from the proof of Theorem 6 that any
job in the ready queue at time t neither has higher priority nor has earlier deadline than the
currently-executing lowest-priority job Jexe_low. Therefore, inserting job Jexe_low at the front of
the `th linked list at time t guarantees that P1 and P2 continues to hold.

Event rel_no_prmt. This event occurs if a newly released job Jnew cannot preempt currently-
executing lowest-priority job Jexe_low and Jnew is inserted in the ready queue. If priority of Jnew
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is ` at time t, then the TCB of Jnew is inserted at the end of the `th linked list. The insertion at
the end is done in constant time using the tail[`] pointer. We set B[`] = 1 to specify that there
is a TCB awaiting execution at priority level `.

Since P1 holds at time t0 and job Jnew has priority ` at time t, it follows that all the jobs
in the κth linked list at time t have higher and lower EDF priorities than that of job Jnew where
κ < ` and κ > `, respectively. According to Lemma 4, all the jobs in the `th linked list at time t
have their absolute deadlines no later than that of job Jnew since job Jnew is released at time t.
Therefore, inserting Jnew at the end of the `th linked list at time t guarantees that P1 and P2
continues to hold.

Event idle_remv. This event occurs when some processor becomes idle while the ready-queue is
not empty. In such case, the highest-priority job from the ready queue is removed and dispatched
for execution. The highest-priority job is in the lowest-indexed non-empty linked list. The lowest-
indexed non-empty linked list (i.e., non-empty linked-list at the highest priority level) is found in
constant time using bitmap B based on the same technique used to find the highest-priority ready
task in traditional FP scheduling, for example, using deBruijn sequence [21].

Assume that the `th linked list of the ready queue is the lowest-indexed non-empty linked list.
Note that there may be multiple jobs awaiting execution in the `th linked list. The job from the
front of the `th linked list is removed and dispatched for execution. The removal from the front
is done in constant time using head[`] pointer. If head[`] becomes NULL after this removal
(i.e., the `th linked list becomes empty), then we set the B[`] = 0 to specify that there is no TCB
awaiting execution at priority level `.

Since property P2 holds at time t0, the job from the front of the lowest-indexed non-empty
linked list has the highest EDF priority at time t. And, after the removal of this job the remaining
jobs in the ready queue also satisfy P1 and P2 since removal a job cannot violate P1 or P2.

Event pri_prom. This event occurs at time t when the priority of some job in the ready queue
is to be promoted. If the priority of a job from the `th linked list is to be promoted to priority
level ν, then this job is removed from the `th linked list and inserted to the νth linked list.

Since P2 holds at time t0, the job at the front of the `th linked list has deadline no later than
any other jobs in `th linked list. According to Lemma 5, given a set of jobs having the same
priority ` at time t0, the priority of the job with earliest deadline will be promoted to priority
level ν no later than any other job in that set. Consequently, the priority of the job at the front
of the `th linked list is to be promoted to priority level ν. Let job Ja is the job at the front of the
`th linked list.

The TCB of job Ja is removed from the front of the `th linked list and inserted at the end of
the ν linked list. The removal and insertion can be done in constant time using the head[`] and
tail[ν] pointers, respectively. Finally, if the `th linked list becomes empty after this removal,
then we set the B[`] = 0. We set B[ν] = 1 to specify that the νth linked list is now not empty.

Since the promoted priority of job Ja is ν at time t, all jobs in the κth linked list, where κ > ν,
have absolute deadline larger than that of job Ja at time t according to Lemma 3. Since P1 holds
at time t0 and job Ja is in the `th linked list at time t0, it follows that all the jobs in the νth linked
list have smaller absolute deadlines than that of job Ja. Therefore, inserting Ja at the end of the
νth linked list ensures that P1 and P2 continues to hold.

In summary, when all the tasks are given priorities based on IPDD policy, the FPP scheduler
executes jobs in EDF priority order. Therefore, existing EDF schedulability tests for uniprocessor
and multiprocessors (i.e., G-EDF test) can be used to determine whether FPP scheduling can
guarantee the schedulability of the tasks that are given priorities using IPDD policy.
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If a currently-executing job’s priority is promoted, then such promotion does not need to
reorder the jobs in the ready queue (i.e., no ready queue management overhead is incurred). In
contrast, if the priority of a job residing in the ready queue is promoted, then such promotion
repositions the job to a higher-priority position in the ready queue data structure and thus incurs
overhead. While the ready queue management of FPP scheduler has similar implementation
benefits of FP scheduler (i.e., each event can be handled in constant time), the only source of
additional overhead in comparison to FP scheduler is the cost of priority promotion. However,
the number of promotion points can be reduced by assigning some tasks of a task set traditional
fixed priorities with no promotion point. To this end, a technique to reduce the total number of
promotion points and a new schedulability test called FPP_Test for FPP scheduling are proposed
in next section.

5 FPP_Test to Reduce Number of Promotions

In this section, a schedulability test called FPP_Test to determine whether a task set is schedulable
in FPP scheduling is proposed. The FPP_Test also determines the priorities of the tasks where a
subset of the tasks is assigned traditional fixed priorities (without any priority promotion) while
other tasks are assigned priorities (with priority promotion) based on the IPDD policy.

To determine which tasks can be assigned fixed priorities with no promotion point, an
important feature of the state-of-the-art FP schedulability test is exploited. For uniprocessor and
multiprocessor (global) FP scheduling, the corresponding state-of-the-art schedulability tests are of
iterative nature: the schedulability of each task τi is tested separately. For example, the well-known
response time analysis (RTA) for FP scheduling on uniprocessor [2] and multiprocessors [26] is of
iterative nature: the response time Ri of each task τi is computed. The crucial observation is that
when determining the schedulability of τi using an iterative FP schedulability test for uniprocessor
[2] or for multiprocessors [25], the worst-case interference computation due to the higher-priority
tasks in set hp(i) does not assume that the jobs of the tasks in hp(i) are also scheduled using
FP scheduling; rather, it only assumes that jobs of the tasks in hp(i) have higher priorities and
cause maximum interference on τi. Consequently, Corollary 7 holds.

I Corollary 7. If task τi is deemed to be schedulable at priority level ` using an iterative test where
hp(i) is assumed to be the set of higher priority tasks, then the schedulability of τi is preserved
when it is assigned traditional fixed-priority level ` regardless whether the jobs of the tasks in hp(i)
are scheduled using dynamic or fixed priority.

It follows from Corollary 1 that if some task τi is deemed schedulable using an iterative test at
fixed-priority level `, then task τi does not need to have any promotion point and the tasks in
hp(i) may be assigned fixed or IPDD (i.e., essentially dynamic) priorities in FPP scheduling. The
FPP_Test is designed based on this observation.

The FPP_Test (presented in Figure 4) requires two schedulability tests to determine the
schedulability of a task set in FPP scheduling. These two tests, denoted by Tfp and Tedf in Figure 4,
are not “real” schedulability tests. Depending on the task model (e.g., implicit-, constrained- or
arbitrary-deadline) and processor platform (uniprocessor or multiprocessors), we will plug in the
state-of-the-art iterative FP test and EDF test respectively in place of Tfp and Tedf . In Sections 6–7,
the actual tests used in place of Tfp and Tedf are presented respectively for uniprocessor and
multiprocessor platform.

The FPP_Test in Figure 4 takes as input a task set Γ and returns “true” if the task set is
deemed to be FPP schedulable; otherwise, it returns “false”. The FPP_Test also determines the
tasks that are given fixed priorities and the tasks that are given priorities based on IPDD policy.
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Algorithm: FPP_Test (Task Set Γ)

1. For priority level k = n to k = 1
2. For each priority-unassigned task τi ∈ Γ
3. If τi is schedulable at priority level k using
4. test Tfp with all other priority-unassigned
5. tasks assumed to have higher priorities
6. Then
7. assign τi to priority k
8. break (continue outer loop)
9. End If
10. End For
11. If all the priority-unassigned tasks pass Tedf , Then
12. Compute promotion points only for the
13 priority-unassigned tasks using IPDD policy

//Comment: IPDD policy uses (higher) priority levels
// k, (k − 1) . . . 1 for these priority-unassigned tasks

14. Return True
15. Else
16. Return False
17. End If
18. End For
19. Return True

Figure 4 Improved priority promotion policy for FPP scheduling.

Initially, all the tasks in set Γ are “priority-unassigned” in Figure 4, i.e., no task has any
priority. Based on Audsley’s OPA algorithm [1], the FPP_Test starts assigning traditional fixed
priorities to the tasks starting from the lowest priority level. For each priority level k in line 1, some
priority-unassigned task is searched using the inner loop in line 2-10 to assign it the fixed-priority
level k. Whether or not a (priority-unassigned) task, say task τi, can be assigned priority level
k is determined in line 3–5 by applying the iterative FP test Tfp and assuming higher priorities
for all other (priority-unassigned) tasks. If such a task τi is found in line 3–5, then task τi is
assigned the traditional fixed-priority level k in line 7 and the priority assignment for next (higher)
priority level starts by jumping from line 8 to line 1. If the outer loop in line 1–18 terminates
after assigning fixed priorities to all the tasks in Γ in line 7, then the algorithm returns “true” in
line 19. And, FPP schedules all tasks similar to FP scheduling without any priority promotion.

If no task can be assigned the current priority level k (i.e., the test in line 3–5 is false for all
the priority-unassigned tasks), then the inner loop in line 2–10 terminates. In such case, there
exist some priority-unassigned tasks. The schedulability of all these priority-unassigned tasks
are tested in line 11 by applying test Tedf . If these priority-unassigned tasks pass Tedf , then the
promotion points only for these priority-unassigned tasks are computed in line 12-13 based on the
IPDD policy and the algorithm returns “true” in line 14. Otherwise, the algorithm returns “false”
in line 16. Note that the tasks assigned priorities using the IPDD policy in line 12-13 have higher
priorities than any task that is given traditional fixed priority in line 7.

The FPP_Test guarantees schedulability of Γ using FPP scheduling if it returns “true”. Assume
that when the algorithm returns true, there are q tasks that are assigned traditional fixed priorities
in line 7 and the remaining (n− q) tasks are given priorities based on IPDD policy in line 12-13
for some q, 0 ≤ q ≤ n. Each of the q tasks that is given traditional fixed priority in line 7 is
schedulable in FPP scheduling based on Corollary 1. The schedulability of the (n− q) tasks that
are given IPDD priorities is not affected by the q tasks because these q tasks are given lower
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(traditional) fixed priorities. Since the (n− q) tasks, having priorities based on IPDD policy, are
essentially scheduled in EDF order by the FPP scheduler (proved in Section 4), satisfying the Tedf
test in line 11 guarantees that these (n − q) tasks are also schedulable in FPP scheduling. If a
task set is schedulable using traditional FP scheduling, then no promotion point is assigned to
any task using the FPP_Test and all tasks are executed similar to traditional FP scheduling using
FPP scheduler.

The ready queue management scheme of Subsection 4.2.2 still applies when priorities are
assigned using FPP_Test. This is because the ready jobs of the q tasks having traditional fixed
priorities are (i) stored in the linked lists corresponding to the q lower (i.e., (n−q+1), . . . n) priority
levels, (ii) never promoted to a higher priority level since they have no promotion point, and (iii)
dispatched for execution only after all the jobs that are given the (n− q) higher (i.e., (n− q), . . . 1)
priority levels are dispatched for execution. Properties P1 and P2 (defined in Section 4.2.2) do
not necessarily need to hold for the tasks that are assigned traditional fixed priorities but always
hold for the tasks assigned priorities using IPDD policy.

6 FPP_Test for Uniprocessor

In this section, the FPP_Test in Figure 4 is applied for determining schedulability of constrained-
deadline tasks on uniprocessor. The response-time test for uniprocessor FP scheduling proposed
by Audsley et al. [2] is considered in place of Tfp in Figure 4 to determine whether a (priority-
unassigned) task τi can be assigned fixed priority level k. Note that this response-time test
(which is an exact test) combined with Audsley’s OPA algorithm in Figure 4 guarantees optimal
fixed-priority assignment. And, the quick processor demand analysis (QPA), which is an exact
EDF test, proposed by Zhang and Burns [30], is considered in place of Tedf in line 11 to determine
whether all the priority-unassigned tasks are schedulable using EDF. The QPA test is an efficient
implementation of the processor demand analysis proposed by Baruah et al. [4].

If a task set is EDF schedulable, then the QPA test in line 11 will also be satisfied when not all
the tasks are assigned fixed priorities in line 7. Consequently, any task set that is schedulable
using optimal EDF scheduling on uniprocessor also satisfies the FPP_Test. Since preemptive EDF is
optimal [17], the FPP scheduling where priorities are assigned using the FPP_Test is also an optimal
scheduling algorithm for constrained-deadline tasks on uniprocessor. For implicit-deadline task
sets, the utilization bound of FPP algorithm is thus 100% because the utilization bound of EDF for
such task system is 100% [23].

While the performance of FPP scheduling in terms optimality is same as EDF scheduling, it
is not straightforward to see whether the overhead for managing jobs in the ready queue of
FPP scheduler is lower or higher than that of EDF scheduler. Simulation using randomly generated
task sets is conducted to measure such overhead.

Task Set Generation for Uni- and Multiprocessors. Each of the experiments is characterized
by a pair (m,n) where m is the number of processors and n is the cardinality of a task set. For
experiments on uniprocessor, we use m = 1. The UUnifast-Discard algorithm [14] is used to
generate n utilization values of a task set. This algorithm takes as input the number of tasks n and
total utilization U of the n tasks. And, it generates n utilizations {u1, u2, . . . un} of the n tasks
such that the total utilization of these n tasks is U . Once a set of n utilizations {u1, u2, . . . un}
of a task set is generated, the other parameters of each task τi in the task set are generated as
follows:

The minimum inter-arrival time Ti of each task τi is generated from the uniform random
distribution within the range [10ms, 1000ms].
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ing.

The WCET of task τi is set to Ci = ui · Ti.
The relative deadline Di of task τi is generated from the uniform random distribution within
the range [Ci, Ti] for constrained deadline tasks; otherwise Di is set to Ti for implicit-deadline
tasks.

Task sets are randomly generated at 40 different utilization levels {0.025m, 0.05m, . . . 0.975m,m}
for each experiment (m,n). A total of 1000 task sets at each of the 40 utilization levels are
generated. Each of the 1000 task sets generated at a particular utilization level, say U , has
cardinality n and total utilization equal to U .

Sources of Overhead. Insertion/removal of jobs to/from the ready queue of FPP scheduler (as
discussed in Subsection 4.2.2) can be done in constant time. However, jobs that are in the
FPP ready queue may need to change their position (i.e., upgraded to higher-priority linked list)
due to pri_prom events. On the other hand, if the ready queue of EDF scheduler is implemented as
binary min-heap [10] or binomial min-heap [8], then each insertion/removal of a job to/from the
ready queue of EDF scheduler may need to reorder the remaining jobs in the ready queue in order
to satisfy the min-heap property. Our objective is to compare such overhead in terms of total
number of times different jobs in the ready queue change their position to handle pri_prom event
(in FPP scheduling) and to maintain min-heap property (in EDF scheduling). The EDF ready queue
is simulated using a binary min-heap where the ready job with the shortest absolute deadline is
stored in the root. And, the FPP ready queue is simulated using the proposed data structure in
Figure 3.

Experiments (Uniprocessor). The randomly-generated task sets that are (exclusively) schedula-
ble using FPP/EDF (i.e., satisfy FPP_Test) and not schedulable using traditional FP scheduling are
considered to compare overheads between FPP and EDF. Figure 5 presents the number of such
task sets for each utilization level for different n.

For each such task set, the execution is simulated using both FPP and EDF scheduling. The
ready jobs that need to await execution are stored in the corresponding ready queue and reordered
when necessary. Since it is not computationally feasible to consider all possible release offsets
and inter-arrival separations of sporadic tasks exhaustively in simulation, all release offsets are
set to zero and all tasks are released periodically. The simulation is run for L time units where
L = min{lcm(T1, T2, . . . Tn), 108} to avoid simulation for very large hyperperiod.
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Overhead Metric. For each utilization level, the sum of total number of times each of the jobs of
a task set change their position in the ready queue is computed and then the average over all task
sets is determined for both FPP and EDF scheduling. EDFav and FPPav denote the average number
of times the jobs of a task set change their positions in EDF and FPP ready queue, respectively. The
improvement of managing jobs in the ready queue of FPP scheduler in comparison to EDF scheduler
at each utilization level is:

Improvement = EDFav − FPPav
max{EDFav, FPPav}

× 100% .

The value of Improvement ranges in [−100%,+100%]. For example, Improvement = −50%
implies that the ready queue of EDF scheduler on average can reduce 50% overhead of managing
jobs in the ready queue of FPP scheduler. And, Improvement = +60% implies that ready queue
of FPP scheduler on average can reduce 60% overhead of managing jobs in the ready queue of
EDF scheduler.

Empirical Results (Uniprocessor). The results of a series of simulations for different n ∈
{5, 10, 20, 40, 60} are presented in Figure 6 where the x-axis is the utilization level U and the
y-axis represents Improvement. The Improvement is non-negative in almost all the utilization
levels3. The improvement of FPP scheduler over EDF scheduler is significant in most cases, i.e.,
FPP incurs noticeably less overhead (in terms of number of times jobs in the ready queue are
remapped to new positions) than that of EDF.

The “positive” improvement of FPP is due to two main reasons. First, the proposed data
structure for FPP ready queue enables a job to be inserted/removed to/from the ready queue in
constant time without causing other existing jobs in the ready queue to change their position. In
contrast, each insertion/deletion to/from the ready queue of EDF scheduler may cause multiple
(i.e., O(logn)) jobs to change their positions to maintain the min-heap property. Second, the
FPP_Test test is effective in reducing the number of promotion points. This is verified by observing
(the outcome of FPP_Test on random task sets) that it is almost always the case where some tasks
for the majority of the task sets are given traditional fixed priorities with no promotion point.

The reduction in promotion point at each higher utilization level for task set with larger
cardinality is much higher than that of task set with smaller cardinality. For example, the average
reduction in promotion points at U = 0.8 is around 80% and 40% for task sets with cardinality
n = 40 and n = 10, respectively. This is because, when the number of tasks in a task set for a given
utilization level is fewer, the utilization of individual task is relatively larger and the execution
time of individual task tends to be larger. As execution time a individual task increases, jobs in
the ready queue stay longer and may undergo a relatively larger number of priority promotions.
And, more priority promotions cause higher number of times the jobs in the ready queue change
their positions.

Observing the significant reduction in overhead, it is expected that if the ready queue of
EDF scheduler is implemented using some other data structure, the benefit of proposed ready-queue
management scheme for FPP scheduler will still be realized. To verify this, experiment using other
data structure is needed and is left as a future work.

3 The value of Improvement at relatively lower utilization levels (e.g., when U < 0.4) is caused by very few task
sets (Figure 5 presents the number of such task sets) and such outliers can be ignored.
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7 FPP_Test for Multiprocessors

In this section, the FPP_Test in Figure 4 is applied to determine schedulability of constrained-
deadline tasks scheduled on multiprocessors. For G-FP scheduling, Pathan and Jonsson [26]
recently proposed an iterative G-FP test that is shown to perform better than any other iterative
test proposed earlier. This G-FP test [26] is used in place of Tfp in Figure 4 to determine if a
priority-unassigned task τi can be assigned fixed priority level k. For G-EDF scheduling, Bertogna
and Baruah [6] proposed a step-by-step approach to apply different G-EDF schedulability tests
proposed by other researchers. This G-EDF test in [6] is used in place of Tedf in line 11 of
Figure 4 to determine if all the priority-unassigned tasks are schedulable on m processors using
G-EDF scheduling.

There is no evidence regarding whether the G-FP test in [26] dominates or is dominated by
the G-EDF test in [6]. It is not difficult to see that if a task set is deemed to be schedulable using
G-FP test [26] or G-EDF test [6], then that task set also passes the FPP_Test for multiprocessors. In
other words, the FPP_Test dominates the state-of-the-art G-FP and G-EDF tests. To measure the
improvement of FPP_Test over G-FP test and G-EDF test, experiments using randomly generated
task sets are conducted.

Empirical Results. For each experiment (m,n), random task sets are generated using the
approach presented earlier.
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The schedulability of each of the 1000 task sets generated at each utilization level is determined
based on FPP_Test, G-FP test [26] and G-EDF test [6]. The acceptance ratio for each test at each
utilization level is computed. The acceptance ratio of a schedulability test is the percentage of
task sets deemed schedulable at a given utilization level.

A series of experiments for different (m,n), where m ∈ {2, 4, 8} and n ∈ {3m, 5m, 10m}, are
conducted. The result of two experiments with parameters (m = 2, n = 10) and (m = 4, n = 20)
are presented in Figure 7 and Figure 8. The x-axis represents the system utilization U/m for
utilization level U and the y-axis represents the acceptance ratio.

The performance of G-EDF test is better than G-FP test when m = 2 and n = 10 in Figure 7.
This behavior is reversed in Figure 8. This shows neither G-FP nor G-EDF test empirically performs
better than the other. The FPP_Test does not only theoretically dominate but also empirically
performs better than both G-FP and G-EDF tests. The performance of FPP_Test test using
implicit-deadline tasks is significantly better (see Figure 9 and Figure 10).

The difference in acceptance ratios among the tests are more pronounced at higher utilization
level since task sets with large total utilization are difficult to schedule. The FPP_Test has the
ability to accept higher percentage of task sets in comparison to that of G-FP and G-EDF tests by
exploiting the benefits of both fixed and dynamic priority.

7.1 Preemptions and Migrations
To investigate whether FPP scheduling incurs higher or lower number of preemptions and migrations
in comparison to G-EDF, simulations are conducted. Execution of randomly-generated task sets
that are not G-FP schedulable but schedulable using both FPP and G-EDF are simulated for FPP and
G-EDF scheduling. For each utilization level U ∈ {0.025m, 0.05m, . . .m}, the average number of
preemptions and migrations that a task set suffers is computed for both FPP and G-EDF scheduling.

GEDFavpr and FPPavpr denote the average number of preemptions that a task set suffers in
G-EDF and FPP scheduling, respectively. Similarly, GEDFavmg and FPPavmg denote the average
number of migrations that a task set suffers in G-EDF and FPP scheduling, respectively. The
improvement by FPP in reducing preemptions and migrations in comparison to G-EDF at each
utilization level is:

Improvement(prmt) = GEDFavpr − FPPavpr
max{GEDFavpr , FPPavpr}

× 100%

Improvement(migr) = GEDFavmg − FPPavmg
max{GEDFavmg, FPPavmg}

× 100%

The value of improvement ranges in [−100%,+100%]. For example, Improvement(prmt) = +50%
implies that FPP on average can reduce 50% preemptions that occur in G-EDF scheduling. The
results of simulations for different n ∈ {10, 20} and m ∈ {2, 4} are presented in Figure 11 and Fig-
ure 12, where the x-axis is the system utilization U/m and y-axis represents Improvement(prmt)
and Improvement(migr), respectively.

The value of Improvement for both preemptions and migrations is non-negative in almost all
the utilization levels. FPP scheduling can significantly reduce the number of preemptions and
migrations that are incurred in G-EDF scheduling. Since it is more difficult to schedule task sets at
higher utilization levels, the improvement decreases as utilization level increases in Figure 11 and
Figure 12.

7.2 Other Implementation Issues
Brandenburg and Anderson identified six different major sources of overhead in implementing
G-EDF algorithm using a Linux extension, called LITMUSRT, that allows different multiprocessors
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algorithm to be implemented as plugin components [7]. By conducting similar experiments for
FPP scheduling, the execution time of each task can be inflated to account such overhead in the
corresponding schedulability analysis. Although this paper does not implement FPP scheduling
algorithm in an RTOS, two important implementation issues of FPP scheduler warrant further
discussion: sharing the ready queue and managing timers for multiple pri_prom events.

If scheduling decisions are handled on multiple processors, for example, arrival of different
jobs are handled concurrently on different processors (similar to [7]), then the ready queue of
FPP scheduler is a shared resource. This ready queue needs to be protected against concurrent
updates using synchronization primitives. As a result, the operations on the ready queue of
FPP scheduler can be done in constant time (as discussed in Section 4.2) plus any additional
delay incurred by such synchronization primitives. Note that race condition in handling multiple
events in FPP scheduling will not occur. This is because when multiple rel_prmt, rel_no_prmt,
idle_remv and/or pri_prom events occur very close in time, then these events can be handled in
any order and properties P1 and P2 (defined in Section 4.2.2) continue to hold regardless of the
order these (nearly concurrent) events are processed.

Another issue to implement FPP scheduling is the mechanism used to implement priority
promotion. One way to implement such priority promotion is by using hardware timers to handle
pri_prom events: when a programmed timer expires, the handler can promote the priority and
repositions the ready job to the appropriate higher-priority linked list of the ready queue. If the
number of hardware timers is not sufficient to implement all the pri_prom events, then a queue of
timers needs to be managed. In next section, different techniques to implement priority promotions
are proposed. Given the effectiveness of FPP scheduling in reducing (i) the number of re-mappings
of jobs in the ready queue, and (ii) the number of preemptions and migrations, I expect that
FPP scheduling when implemented on real platform would show benefits over EDF scheduling.

Applicability of FPP_Test to Arbitrary-Deadline Tasks. The FPP_Test in Figure 4 can also
be applied arbitrary-deadline tasks as follows. For uniprocessor platform, the iterative FP test
proposed by Lehoczky [20] can be used as the Tfp test and the QPA test [30], which also applies to
arbitrary-deadline tasks, can be used as the Tedf test. For multiprocessor platform, the iterative
OPA-incompatible global FP test proposed for arbitrary-deadline tasks by Guan et al. [28] can be
made OPA-compatible using approach used by Davis and Burns for the DA-LC test in [14]. This
new test then can be used as the Tfp test in Figure 4. And, the G-EDF test proposed by Baruah
and Baker [3] can be used as the Tedf test for arbitrary-deadline tasks.
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8 Techniques to Implement Priority Promotion

This section presents different techniques to implement priority promotion, i.e., how event
pri_prom is implemented and is handled. First, four different hardware timer-based approaches
are presented to implement priority promotion (Subsection 8.1) along with a discussion about
advantage and disadvantage of each alternative. Second, a software-based approach that does not
rely on any support of hardware timer is presented (Subsection 8.1). A detailed implementation
of priority promotion using each of the suggested approaches is left as a future work.

In FPP scheduling, the priorities of the currently-executing jobs need to be promoted so that
preemption decision can be taken when a (new) job is released while all the cores are busy. In
addition, priorities of the jobs stored in the ready queue need to be promoted to ensure that
properties P1 and P2 (also restated below for better readability of this section) always hold.

P1: All jobs stored in the νth linked list of the ready queue have higher EDF priorities than
any other job stored in the `th linked list where ν < `.
P2: All jobs in the `th linked list are stored in order of non-increasing EDF priority, i.e., the
head[`] and tail[`] respectively points the highest and lowest priority EDF job in the `th

linked list for ` = 1, . . . n.

Based on the operations on the ready queue (please see Subsection 4.2.2) an important
observation for job Jk of task τk is presented below:

I Observation 8. The TCB of job Jk is never stored in the (lower-priority) `th link lists where ` =
(k+1), (k+2), . . . n. This is because the priority of the job is k or higher (i.e., (k−1), (k−2), . . . 1).
When the TCB of job Jk is in the `th linked list of the ready queue at time t where 1 ≤ ` ≤ k, its
absolute deadline is not larger than D` relative to t.

Maintaining both P1 and P2 at each time instant is the key to efficiently (in constant-
time) perform the insertion and removal operations to and from the ready queue, which is
same as FP scheduler in terms of time complexity (please see Subsection 4.2.2). However, unlike
FP scheduling, priority promotions cause repositioning of jobs in the ready queue. Overhead related
to such repositioning depends on how priority promotion (i.e., event pri_prom) is implemented
and handled. In this section, we present techniques to implement priority promotions (i) based on
hardware-based approach using timers (Subsection 8.1), and (ii) software-based approach with
no timer (Subsection 8.2). In the remainder of this section, we consider that all the tasks are
assigned priorities based on IPDD policy and need priority promotion.

According to IPDD priority-promotion policy, the initial priority of a job of task τi is i. This
initial priority i is promoted to priority levels (i− 1), (i− 2), . . . 1 at offsets (Di −Di−1), (Di −
Di−2), . . . (Di −D1) relative to the release time of the job. The difference in time between the
(κ− 1)th and κth promotion times is denoted as θiκ and is given as follows for κ = 1, 2, . . . (i− 1):

θiκ = Di−(κ−1) −Di−κ (1)

If a job of task τi is released at time ri, the first promotion point is at (ri + θi1) which is θi1
time units later than its release time. The second priority-promotion point is θi2 time units later
than the 1st priority promotion point. In general, the κth priority-promotion point is θiκ time
units later than the (κ− 1)th priority-promotion point.

8.1 Hardware Timer-Based Priority Promotion
Most computer platforms have a clock that increments a counter and can be programmed to
generate an interrupt when the counter reaches a certain expiration count called the expiration
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time. The combination of a clock and an expiration time is called a timer. In this subsection, we
present different alternatives to implement priority promotion based on such hardware timers.

Alternative 1. Consider a platform where the number of hardware timers is sufficient such that
one timer can be used for each active job. For such a platform, a one-shot timer can be programmed
at each promotion time of an active job such that the timer expires at next priority-promotion
time. Based on this principle, when a job of task τi is released at time ri, a hardware timer is
programmed to expire after θi1 time units. Remember that the initial priority i has to be promoted
to priority level (i− 1) at time (ri + θi1).

If a job completes its execution before the timer is expired, then the timer is disabled to avoid
unnecessary interrupt at expiration. Otherwise, when the timer generates an interrupt at time
(ri + θi1), the priority of the job is promoted to priority level (i− 1) and the timer is programmed
again to expire after θi2 time units at which priority is promoted to (i− 2) and so on. Following
this approach, the timer is programmed to expire after θiκ time units whenever priority of the
job is set to priority level (i− (κ− 1)) for κ = 1, 2, . . . (i− 1). After the priority of the job is set
to (highest) priority level 1, the timer is no more programmed since there is no more priority
promotion of this job according to IPDD policy.

While this approach is simple, it may not work for platform where the number of active jobs
is larger than the number of available hardware timer. In such case, a queue of (future) timed
events related to (future) priority promotions needs to be implemented using, for example, a single
hardware timer. In the remainder of this subsection, different alternatives to manage a queue of
(priority-promotion related) timed events using a single hardware timer are presented.

Alternative 2. A queue of (future) timed events can be maintained based on a timing wheel
which is a sequential array of records [29]. Inspired from the discussion of Baruah et al. in [5], we
assumed that time is represented using non-negative integers. The required number of records of
the timing wheel depends on the maximum time difference between any two consecutive priority
promotions. Based on Eq. (1), the maximum length between two consecutive priority promotions
of a job of τi is

i−1max
κ=1
{θiκ}. Consequently, the maximum length of any two consecutive priority

promotions for any task in set {τ1, τ2, . . . τn} is
nmax
i=1
{ i−1max
κ=1
{θiκ}}. For implementing a queue of

priority-promotion related timed events, the required number of records of the timing wheel,
denoted by L, is given as follows in Eq. (2):

L = 1+ nmax
i=1

{
i−1max
κ=1
{θiκ}

}
(2)

At each position of the timing wheel, a linked list of pointers to jobs’ TCBs is stored. A
variable to track current time, called CT, is initially set to 0. This variable is incremented (mod L)
at every system tick. In other words, CT is set to 1 after the first tick, set to 2 after the second
tick, set to back to 1 after L ticks, and so on. Such a timing wheel is shown in Figure 13 and
Figure 14.

When a job of task τi is released, its next promotion time is θi1 time units later relative to
current time. A pointer to the TCB of this job is stored in the linked list of the timing wheel at
position (CT + θi1) mod L. When CT points to a location of the timing wheel at which the linked
list is non-empty, the priorities of the jobs pointed by the elements of this linked list are promoted.
After the priority of a job of task τi at time CT is promoted to priority level (i− (κ− 1)) for some
κ such that 1 ≤ κ ≤ (i− 1), a pointer to the TCB of this job is again stored in the linked list at
position (CT + θiκ) mod L of the timing wheel for next (i.e., κth) priority promotion of this job.
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Figure 13 A timing wheel. CT points to the
second record. At every system tick, CT is incre-
mented by 1 (mod L).
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Figure 14 The linked list at position 4 stores
pointers to the TCBs of those jobs who need priority
promotion when CT will point location 4. The CT is
now at location 2 will point location 4 after 2 ticks.

According to Eq. (2), the value of L is one larger than the maximum difference between any
two consecutive promotion points. Therefore, (CT+θiκ) mod L is never equal to CT. In other words,
to distinguish between two (future) priority promotions separated by exactly nmax

i=1
{ i−1max
κ=1
{θiκ}}

time units, the number of records (as is shown in Eq. (2)) of the timing wheel is one larger than
the maximum difference between any two consecutive priority promotions.

Alternative 2 to manage multiple priority promotions requires the variable CT to be incremented
at every timer’s tick which may have high overhead. Next we propose Alternative 3 based on
timing wheel but with the exception that variable CT is not incremented at every system’s tick.

Alternative 3. Similar to Alternative 2, multiple (future) timed events related to priority promo-
tions are stored in the linked lists of a timing wheel but without requiring to increment variable
CT at every system’s tick. A bitmap, denoted by S[1, 2 . . . L], of length L corresponding to the
timing wheel is maintained. If the linked list of the ath position of the timing wheel is empty, then
S[a] = 0; otherwise, S[a] = 1. When all the linked lists of the timing wheel are empty, we set CT
to 0. The main idea is to program a one-shot timer that expires after a duration equal to the
earliest time of occurrence of any (future) timed event stored in the timing wheel. The approach
is described as follows:

(How an element is inserted in an empty timing wheel?) Consider that there is no element
in the timing wheel, i.e., CT = 0 and ∀`;S[`] = 0 at time t. Now consider that a new (future)
timed event appears at time t such that this event needs to occur after a time units relative to
time t. In other words, there is a future timed event that occurs after a time units relative to
CT. To implement priority promotion related to this event, a pointer to the TCB of the job is
inserted in the ath linked list of the timing wheel. A one-shot timer is set to expire after a
time units. To remember the total duration for which this timer is programmed, we set Initial
Value of the Timer as IVT = a. We also set S[a] = 1 to specify that the ath linked list of the
timing wheel is non-empty.
(How an element is inserted in a non-empty timing wheel?) Now consider that a new
(future) timed event appears at time t′ such that this event needs to occur after c time units
relative to time t′ and the timing wheel is non-empty at time t′. Since the timing wheel is
non-empty, the timer (that was last programmed) is running (not yet expired) at time t′.
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Assume that at time t′ the remaining time to expire the timer is b. The total time elapsed
between the time instant when the timer was last programmed and time t′ is (IVT− b) since
IVT stores the total duration for which the time was last programmed. At time t′ the value of
CT is updated by setting it equal to the old value of CT plus elapsed time from the time CT
was last set, i.e, CT = CT + (IVT− b). In addition, IVT is set to IVT = b to reflect the fact that
the timer expires after b time units relative to the (updated) current time CT. After updating
CT and IVT, we consider where the new event that appears at time t′ is to be inserted in the
timing wheel.
If c < b, then the new event has an earlier time of occurrence than that of any event stored in
any linked list of the timing wheel. Remember that the one-shot timer was programmed to
expire at time when the earliest event in the timing wheel will occur. Since c < b, the one-shot
timer is reprogrammed at time t′ to expire after c time units and we set IVT = c. On the other
hand, if c > b, then the new event does not have an earlier occurrence time and the one-shot
timer is not reprogrammed. After CT and IVT are updated at time t′, a pointer to the TCB of
the job corresponding to the new event is inserted to the (CT + c)th linked list of the timing
wheel. Note that the value (CT + c) essentially means (CT + c) mod L. If (CT + c)th linked list
was empty before this insertion, we set S[q] = 1 where q = (CT + c) mod L.

(How to deal with timer’s expiration?) The timer expires when no new event with earlier time
of occurrence appears after IVT was last set. When the one-shot timer expires after IVT time
units and generates an interrupt, the value of CT is updated by setting CT = (CT + IVT) mod L.
And, the priorities of the jobs pointed by the TCB pointers stored in the CTth linked list of the
timing wheel are promoted. If the next promotion time for such a job is a time units later,
then the pointer to the TCB of that job is again inserted in the (CT + a)th linked list and we
set S[CT + a] = 1. After processing each element of the CTth linked list in the timing wheel, all
the TCB pointers are removed from the CTth linked list and we set S[CT] = 0.
If the timing wheel is not empty after handling a timer’s expiration, then we have to program
the timer for the next promotion event that will occur the earliest. To program the timer for
the next earliest promotion time, the position of the first set bit of bitmap S starting from
position CT is determined. This can be done based on techniques similar to finding the highest
priority tasks from the ready queue of FP scheduler. Let this position is (CT + k) mod L, i.e.,
this position points to the kth linked list relative to the index of CTth linked list. If k is not a
valid index, then there is no element in the timing wheel and we set CT = 0. For a valid k, the
jobs corresponding to the TCB pointers stored in the (CT + k)th linked list have the earliest
promotion time. The timer is programmed to expire after k time units and we set IVT = k.

Note that in the approach described above, variable CT is not updated at every system’s tick.
It is updated either when a new event is to be stored in the timing wheel and/or when the timer
expires. One of the limitations with this approach is that if L is too large, then a hierarchical
bitmap needs to be maintained (as is suggested in [27]).

Alternative 4. This alternative to manage a queue of (future) timed events is based on the
RELTEQ approach proposed in [19]. The main idea of RELTEQ is that events are stored in an
ordered list based on the time of occurrences of the events relative to each other. The advantage
of this approach is that no bitmap needs to be maintained. But the disadvantage is that linear
search is needed to find the appropriate position for each new event. Please see details of RELTEQ
in [19].



R.M. Pathan 02:25

8.2 Software-Based Approach to Priority Promotion
In this subsection, we present software-based approach to show how priority promotion can be
implemented without using a hardware timer. Under this scheme, the the priorities of the jobs
that are in execution are never promoted. The priority of a job is promoted only if the job is in
the ready queue. For such a job in the ready queue, priority promotions that are due at a time
instant are delayed as long as properties P1 and P2 of the ready queue of FPP scheduler hold.

The jobs whose promotions are delayed are called colluding jobs. When any of the rel_prmt or
rel_no_prmt event occurs (i.e., a new TCB has to be inserted in the ready queue due to the
release of new job), we check if insertion of this new TCB in the ready queue according to the
approach presented in Subsection 4.2.2 could violate property P1 or P2. Note that such violation
may happen since priorities of the colluding jobs were not promoted when their promotions were
due and the corresponding TCBs of colluding jobs were not repositioned in the right place in the
ready queue. If we detect that such violation would occur, we fix the collusion by promoting some
or all colluding jobs so that property P1 and P2 continue to hold after insertion of the new TCB.

A job Ji of task τi is promoted according to IPDD priority-promotion policy in order to
determine whether a newly released job Jk of task τk needs to preempt the execution of Ji or
not. In contrast, the priorities of the currently-executing jobs are never promoted in delayed
preemption strategy. Whether a newly released job Jk preempts Ji or not can be determined by
comparing their absolute deadlines since we want to execute jobs in EDF order. Therefore, we
compare (ri +Di) and (rk +Dk). If (ri +Di) > (rk +Dk), then Jk preempts Ji; otherwise, Jk
does not preempt Ji. In the remainder of this section, we present how the new TCB is inserted
in the ready queue such that property P1 and P2 of the ready queue continue to hold after this
insertion.

Assume that property P1 and P2 hold at time t. Consider an earliest time instant t′ at which
a new job Jk of task τk is released and all the cores are busy such that t < t′. A new TCB (i.e.,
TCB of Jk or TCB of the preempted job Ji) is to be inserted in the ready queue at time t′. Since
t′ is the earliest time at which a new TCB is to be inserted in the ready queue, property P1 and
P2 continue to hold during the entire interval [t, t′) even if all promotions of the jobs in the ready
queue during this interval are delayed. In delayed promotion strategy, the promotions of the jobs
are delayed until a new job is released. Due to such delayed promotions, colluding jobs in the
ready queue are not promoted (i.e., repositioned) to higher-priority linked lists of the ready queue.
Consequently, property P1 and P2 may not hold at time t′ if the new TCB is inserted without
fixing the collusion. The challenge is to propose mechanism to ensure that after inserting the new
job, property P1 and P2 continue to hold also at time t′. There are two cases to consider:

Case (i) – Job Jk preempts Ji.
Case (ii) – Job Jk does not preempt Ji.

Case (i) – Jk preempts Ji: In such case, a newly released job Jk preempts the currently-
executing lowest EDF priority job Ji at time t′. Since Ji was in execution just before Jk was
released and because property P1 and P2 hold during [t, t′) during which no new job is released,
the EDF priority of job Ji is larger than the EDF priority of any other job in the ready queue.

Job Ji is inserted at the front of the highest-priority non-empty linked list if the index of the
highest-priority non-empty linked list of the ready queue is smaller than or equal to i; otherwise,
it is inserted as the first element in the ith linked list of the ready queue. Such insertion can be
done in constant time and ensures that Observation 8 still holds. It is easy to see that property
P1 and P2 continue to hold at time t′ after inserting the new TCB of Ji in the ready queue even
though all due promotions during [t, t′] are delayed. In such case, the delayed promotions in [t, t′]
are delayed further.
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Algorithm: Fix_Collusion(Job Jk)

// This algorithm is executed when a new job Jk cannot
// preempt any job and needs to be inserted in
// the ready queue (i.e., when rel_no_prmt event occurs)

1. NextList = k + 1
2. s = Position of the first set bit of bitmap B[NextList . . . n]
3. If s is a valid position of bitmap B
4. While (the absolute deadline of the first element of the sth

5. linked list is smaller than the absolute deadline of Jk)
6. J = remove the first element from the sth linked-list
7. Insert J at the end of the kth linked list
8. If the sth linked list is empty
9. NextList = s+ 1
10. Go to Step 2
11. End If
12. End While
13. End If
14. Insert Jk at the end of the kth linked list

Figure 15 Coalescing Priority Promotion to handle rel_no_prmt event.

Case (ii) – Jk does not preempt Ji: In such case, a newly released job Jk does not preempt the
currently-executing lowest EDF priority job Ji at time t′. The TCB of job Jk is to be inserted in
the ready queue. Based on the operations proposed in Subsection 4.2.2, this new TCB is inserted
at the end of the kth linked list since the priority of job Jk at time t′ is k. However, property
P1 and P2 may not hold at time t′ because promotions of the colluding jobs during [t, t′) are
delayed and not placed in the right position in the ready queue before inserting this new TCB.
The strategy to fix the collusion before inserting job Jk is as follows.

The absolute deadline of job Jk is Dk time units later than time t′ because job Jk is released
at time t′. Since jobs in the `th linked list of the ready queue at time t′ have their absolute
deadlines no later than D` time units relative to t′ for ` = 1, 2, . . . k, the EDF priorities of the
jobs in these linked lists are higher than that of job of Jk (follows from Observation 8). If job
Jk is inserted at the end of kth linked list, property P1 and P2 continue to hold at time t′ for
the 1st, 2nd, . . . , (k − 1)th, kth linked lists even if priority of the jobs in these linked lists are not
promoted during [t, t′].

On the other hand, since priority promotions of the jobs in (k+1)th, (k+2)th, . . . , (n−1)th, nth

linked lists are also delayed during [t, t′], the actual EDF priority of some of the colluding jobs in
these linked lists may be higher than that of job Jk at time t′. Such colluding jobs need to be
promoted (i.e., need to be repositioned) to fix the collusion so that property P1 and P2 continue
to hold after job Jk is inserted at the end of the kth linked list. Although there may be many
colluding jobs, we only need to promote the priority (i.e., reposition in the ready queue) of those
colluding jobs from the (k + 1)th, (k + 2)th, . . . , (n − 1)th, nth linked lists whose EDF priority is
larger than the EDF priority of Jk at time t′ to fix the collusion.

Notice that property P1 and P2 hold for the jobs in the (k + 1)th, (k + 2)th, . . . , (n− 1)th, nth

linked lists before inserting the new TCB at time t′. Before inserting job Jk at the end of the kth

linked list, the higher EDF priority jobs from the (k + 1)th, (k + 2)th, . . . , (n− 1)th, nth linked lists
are inserted (in decreasing EDF order) at the end of the kth linked list. Finally, job Jk is inserted
at the end of the kth linked list. The following algorithm in Figure 15, called Fix_Collusion,
implements this insertion.
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Algorithm Fix_Collusion in Figure 15 selects those jobs from the (k+ 1)th, (k+ 2)th, . . . , (n−
1)th, nth linked lists whose EDF priorities are higher than that of job Jk. These selected jobs are
inserted in decreasing EDF order at the end of the kth linked list, and finally, job Jk is inserted
at the end of the kth linked list. We will show that property P1 and P2 continues to hold after
algorithm Fix_Collusion is executed at time t′.

Line 1 initializes a variable NextList to (k + 1) in order to start the search from the (k + 1)th

linked list. However, the (k + 1)th linked list may be empty. The index of the first non-empty
linked list among the (k+ 1)th, (k+ 2)th, . . . , (n− 1)th, nth linked lists is determined in line 2 based
on the bitmap B[NextList, . . . n]. The index of the first set bit of the bitmap B[NextList, . . . n]
is stored in variable s in line 2.

If all of the (n − k) lower priority linked lists are empty, then s has an invalid index. The
condition in line 3 checks whether all of the (n− k) lower priority linked lists are empty or not. If
the condition in line 3 is false (i.e., there is no non-empty linked lists among the (n− k) lower
priority linked lists), then there is no TCB in the (k + 1)th, (k + 2)th, . . . , (n− 1)th, nth linked lists
and the TCB of job Jk is inserted at the end of the kth linked list in line 14. Since P1 and P2 hold
for k higher priority linked lists before inserting Jk (i.e., jobs in these linked lists have deadline no
larger than Dk relative to time t′) and since the deadline of Jk is Dk at time t′, P1 and P2 hold
after job Jk is inserted.

If condition in line 3 is true, then s is the index of the highest-priority non-empty linked lists
among the (k + 1)th, (k + 2)th, . . . , (n − 1)th, nth linked lists. In such case, all the TCBs of the
jobs having higher EDF priority than Jk (based on the condition of the while loop in line 4–5) are
removed from the sth linked list one-by-one in line 6 and inserted in non-increasing EDF priority
order at the end of the kth linked list in line 7.

Since the first job is removed from the sth linked list each time condition in line 4–5 is true
and because property P2 is satisfied (jobs in each list are in non-increasing EDF priority order),
inserting the removed job J at the end of the kth linked list ensures that jobs in the kth linked list
are in non-increasing EDF order.

We exit from the while loop in two cases: (i) some job’s EDF priority in the sth linked list is
lower than the EDF priority of Jk (i.e., condition in the while loop is false), or (ii) all the jobs from
the sth linked list are removed (i.e., condition in line 8 is true). In the first case, the algorithm
exit from the loop and executes line 14. This is because there is no other jobs in the (n− k) lower
priority linked list having higher EDF priority. In the second case (when the condition in line 8 is
true), the sth list is empty and the NextList is set to (s+ 1) to select other higher EDF priority
jobs from the remaining (n − s) linked lists. In such case, the algorithm jumps to line 2 from
line 10 and continues as described above. It is easy to see that number of times the while loop
executes is no more than the number of delayed promotions in [t, t′]. When the algorithm stops,
property P1 and P2 hold at time t′. Note that we need no timer to implement priority promotions
based on software-based delayed promotion mechanism. Evaluating all these priority promotion
schemes and the implementation of FPP scheduling on real platform is left as a future work.

9 Conclusion

The proposed FPP scheduling algorithm shows how jobs can be executed in EDF order based on
priority promotion. For uniprocessor, the FPP scheduling is also optimal as EDF scheduling. For
multiprocessors, it dominates the state-of-the-art G-FP and G-EDF tests for constrained-deadline
tasks. A technique to reduce the number of promotion points is proposed so that overhead
is low. The proposed data structure and operations for managing jobs in the ready queue of
FPP scheduler have benefits similar to that of traditional FP scheduler. Techniques to implement
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priority promotions based on hardware timers or purely in software are proposed. Simulation
results show that the overhead for managing jobs in the FPP ready queue is reduced significantly
in comparison to that of an EDF scheduler.
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Abstract
Many techniques and tools exist to estimate the

power consumption and the temperature map of
a chip. These tools help the hardware designers
develop power efficient chips in the presence of tem-
perature constraints. For this task, the application
can be ignored or at least abstracted by some high
level scenarios; at this stage, the actual embedded
software is generally not available yet.

However, after the hardware is defined, the em-
bedded software can still have a significant influence
on the power consumption; i.e., two implementa-
tions of the same application can consume more or
less power. Moreover, the actual software power

manager ensuring the temperature constraints, usu-
ally by acting dynamically on the voltage and fre-
quency, must itself be validated. Validating such
power management policy requires a model of both
actuators and sensors, hence a closed-loop simula-
tion of the functional model with a non-functional
one.

In this paper, we present and compare several
tools to simulate the power and thermal behavior
of a chip together with its functionality. We explore
several levels of abstraction and study the impact
on the precision of the analysis.
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1 Introduction

Reducing power consumption of Systems-on-a-Chip is an important challenge. Clearly, portable
devices should save energy to maximize battery life, but other issues like heat dissipation [21],
voltage drop [11] or faster aging [14] due to overheating are also of growing importance.
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With modern CMOS processes, static power consumption, due to leakage current, is increasing.
Power-saving techniques like clock-gating, that act only on dynamic consumption are no longer
sufficient. More heavy-weight techniques like DVFS and power-gating are necessary to control the
consumption of the chip. These mechanisms use sensors for non-functional properties (temperature,
voltage, ...) to control the chip’s clock generators and power supply [37, 3]. The power management
policy itself is usually implemented in software.

Developing such power management policies requires an execution platform, including models
of sensors, actuators, and taking into account the feedback loop between actuators and sensors.
Low-level (RTL, gate-level or even SPICE) simulations are possible, but too late in the design flow
and their simulation is not fast enough for system-level simulation including non-trivial software.
On the other hand, an accurate model of power consumption and temperature requires a realistic
model of timing.

Virtual prototyping of Systems-on-a-Chip is a well-established practice. The standard techno-
logy for fast and early functional simulation is SystemC/TLM [1], implemented as a C++ library.
Several abstraction levels are possible: one can model the timing-behavior precisely, requiring
a relatively detailed model of the micro-architecture. Early in the design-flow, more abstract
simulations that completely abstract the micro-architecture and with a very loose notion of timing
are more applicable.

Estimating power-consumption and temperature on early virtual prototypes is needed to allow
early power-aware software development and optimize the power-consumption at the system-level.
A solution for system-level power and temperature analysis must satisfy several criteria: it must
be fast, to allow simulating non-trivial scenarios on the whole hardware+software system. It must
be applicable early in the design flow, hence should require a low development effort, and it must
be applicable on early, hence abstract, virtual prototypes.

This paper presents several solutions satisfying these three criteria to augment a functional
SystemC/TLM model with non-functional information, and to perform power and thermal
analysis using a dedicated solver. The tool LIBTLMPWT [25] uses a tight coupling between
the functional simulation and the non-functional solver, and exploits this tight coupling for
performance optimizations (pwt stands for PoWer and Temperature). We also developed an
approach that allows using an external solver as black box and in a separate process [10], and
showed how the cosimulation approach could be used with loosely-timed models [9], validated by
a case-study [16]. The present paper gives a global but detailed presentation of these different
approaches. It includes both improvements in presentation of previously published content and
unpublished results.

We focus on the cosimulation of an existing thermal model (Hotspot [28], ATMI [38] or
Aceplorer [31]) with a functional SystemC/TLM simulation. The internals of the thermal model
are out of the scope of this paper: we study the coupling of simulators, and the impact of the
modeling style in SystemC/TLM on the accuracy of the result.

More specifically, the contributions of this paper are:

A detailed presentation of the tool LIBTLMPWT. Although the tool itself was published
with a technical report [25], it was never presented in a peer-reviewed publication. The tool
provides a new method for power instrumentation with low performance overhead. It take
into account standard SystemC/TLM performance optimizations like temporal decoupling and
direct memory interface (DMI). The annotation mechanism is based on activity ratios, and
takes into account the frequency changes automatically. It is available as free software [27],
including the instrumentation API, the cosimulation engine, and a graphical user interface.
An analysis of different levels of abstraction, and their consequences on possible cosimulation
techniques, with a comprehensive state of the art.
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A method to model abortion following an interrupt in loosely-timed systems.
New experimental studies, including an analysis of the development cost.

2 Modeling Power Management Policies

2.1 Power Management in Modern System-on-Chips
Power consumption of a silicon chip comes mainly from two sources:
dynamic power comes from switching activity. One can see transistors and wires as small

capacitors that are filled-in and emptied when the corresponding value switches from 0 to 1 or
1 to 0. This consumption therefore depends on the capacitance of physical elements (hence, of
the physical process), and on the frequency at which values change, i.e. how much computation
is being performed by the component.

static power comes from leakage current. For a given hardware component, it depends on the
state of the power supply (on or off, and voltage), but is independent of the computation being
performed. The leakage current tends to increase when the size of transistors is reduced. Since
heating silicon increases its conductivity, the static power also increases with temperature.
A simple way to reduce dynamic power consumption is clock gating, which stops the switching

activity by stopping the clock. Clock gating can be applied automatically by the synthesizer in
many cases, and the problem has been studied extensively for decades (e.g. [2, 6]). Clock-gating,
however, is not sufficient in modern Systems-on-Chip, where static power is non-negligible, if not
dominant.

To reduce static power, heavier techniques have to be used. Dynamic Voltage and Frequency
Scaling (DVFS) allows reducing the voltage, hence both static and dynamic power, but requires a
lower frequency. Switching from a voltage/frequency couple to another takes time, hence the policy
behind DVFS is non-trivial, and is usually implemented in software (for example, the cpufreq
drivers in Linux count for around 20,000 lines of code). Another technique is power gating, which
consists in disabling the power supply of unused components. Power gating also takes time, and
the transitions from a mode to another may take time and consume a lot of energy (typically,
before shutting down a component completely, a part of the internal state may have to be saved
to some retention registers), hence the policy to chose whether to power-gate a component or not
is again non-trivial. In the sequel, we call power controller the set of hardware components that
directly control these physical mechanisms, and power manager the implementation of the policy,
usually done at least partially in software. Bugs related to power management, or power bugs, can
drastically increase the power consumption of a system, and discharge the battery of a mobile
phone in a couple of hours [40]. Worse, serious bugs in the power management policy can lead to
deadlocks, e.g., waiting for interrupts from a component which has been completely switched off.

The need for low-power is obvious for battery-powered devices, but it is also important for
permanently plugged ones like set-top-boxes: in addition to being environment-friendly, a low-
power system needs cheaper packaging and avoids the need for a noisy cooling system. Power
consumption cannot be evaluated precisely independently from temperature, as hotter silicon
consumes more (and consuming more in turn increases temperature).

Temperature peaks can physically damage the chip. Since high temperature increases silicon
conductivity, hence static power consumption, a temperature peak can lead to a consumption
peak, and therefore a voltage drop. If the voltage goes below the appropriate threshold, the system
may stop working. It is therefore critical to have thermal estimations before manufacturing the
real system to dimension the packaging and cooling system appropriately.

Also, high temperature gradients lead to faster aging of the chip [14]. To avoid peaks and
minimize gradients, the chips are usually equipped with several temperature sensors (typically
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one or more per core on a many-core platform [37, 3]), allowing the implementation of a software
control loop to regulate temperature.

2.2 Virtual Prototyping for Power Aware Systems
2.2.1 Non-functional Models
A chip’s non-functional aspects can be modeled by specifying the power consumption of indi-
vidual components, the layout of components (called the floorplan), and the physical parameters
influencing heat dissipation (from a component to another, and from the chip to its environment).

For system-level simulations, modeling individual transistors precisely is clearly too low-level
and too slow. The physical parameters have to be abstracted into a set of operating modes for
each component, often called power-state [5, 7]. A power-state defines the power consumption (in
Watts, or the current intensity in Amperes), possibly as a function of temperature. The energy
consumption (in Joules, or the charge transported in Coulombs) is obtained by integrating the
power over time. When the power consumption of a power-state is constant, the integration is
simply a multiplication by a duration. A power-state is defined by several parameters:

Fixed parameters depend on the platform, but do not vary at runtime (we do not use the word
“static” to avoid confusion with “static power consumption”):

floorplan parameters: location of the module on the chip; used to compute the area of the
module, and the neighbor relations.
technology dependent parameters: physical values that depend on the technology used to
produce the physical chip; this includes capacitance, leakage current, influence of temperature
on the leakage, etc. Most of these values are common to all modules.

Runtime parameters depend on the platform’s activity and configuration:

Electrical state is the voltage and frequency of the component. It is influenced by DVFS
and power-gating, and controlled by the power-controller.
Activity defines the computation performed by the component (e.g., waiting, computing,
. . . ). The total power consumption related to activity can be expressed as K × F × V 2 × α,
where K is a fixed constant (depending on the number of gates and the capacitance of each
gate) taken into account in the technology dependent parameters, F is the frequency, V the
voltage, and α is the activity ratio. The activity ratio expresses the proportion of gates
involved. It varies from 0 (no activity) to 1 (all gates are active at each cycle).
Traffic is the amount of data processed by unit of time (e.g. number of transactions routed
for a bus, number of reads and writes for a memory, . . . ).

Note that different parameters correspond to different kinds of models. Electrical state fit very
well in the power-state model: one only needs to model transitions from state to state. Activity
can be modeled in several ways: either an operating mode is modeled as a power-state with a
given activity ratio independently from the functionality, or the activity of the functional model
is observed during simulation and used in the non-functional model. Traffic has to be modeled
separately, since the traffic of a component usually comes from the activity of another component.
We cannot define power-states for traffic a priori and need to take into account the traffic of
the functional simulation. The solutions presented in this paper take all these parameters into
account.

Depending on the stage in the design-flow, the power consumption associated with a power-
state can come from different sources. At early stages of development, they can be target values
(i.e., that further development will consider as an objective), or extrapolation from previous
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// SystemC thread
void compute () {

while (true) {
set_activity (0); // Enter IDLE mode
wait(event );
set_activity ( ACTIVITY_RATIO_RUN ); // enter RUN mode
f();
wait (100 , SC_US );
send_irq ();

}
}

Figure 1 Simple Power-model of a Hardware Component (pseudo-code).

generations of the same component. Later in the design flow, they can be more precise estimations
based on RTL or gate-level simulations, and physical measurements when a prototype of the
chip is available. Our contribution is not to provide these parameters to the user, but to allow
exploiting these per-component parameters for a system-level simulation including power and
thermal management policy and software. Because of heat dissipation, and of the relationship
between power and temperature, the composition of the component’s parameters is non-trivial.

Tools like Docea Power ’s Aceplorer [31] allow modeling a chip, taking into account both the
power consumption and the thermal aspects. The traditional way to use Aceplorer for simulation
is to define scenarios that define the sequence of modes for each component. The tool computes
the power consumption and the evolution of temperature (including the feedback of temperature
on power described above). Scenarios can be provided by hand, using UML’s activity diagrams,
or can be produced by a SystemC/TLM or RTL simulation.

In the scenario-based usage, the model does not allow the execution of power-aware software:
the SystemC or RTL simulation provides non-functional stimuli (typically dumped in a VCD
file for offline power/thermal analysis), but has no access to the result of the power and thermal
simulation. A temperature sensor, or battery monitor component could not be modeled. Our
contribution is to allow such closed-loop simulation.

2.2.2 Functional and Non-functional Models cosimulation
To illustrate the cosimulation concepts, let us first consider a very simple component, with 2
activity states. The component waits for an event in IDLE mode, and on reception of the event
performs a computation f that lasts 100 microseconds in mode RUN. A SystemC thread describing
this behavior is provided in Figure 1.

The principle of cosimulation is illustrated in Figure 2. The instrumented functional model
computes, at each point in time, the power state of each component. This power state information
is transmitted (a) to the power model, which uses this power state information together with
the temperature T obtained from the thermal solver (c) to compute the power consumption of
each component. The power consumption is used by the thermal solver (b) solver to compute
the derivative of the temperature. It is used together with the thermal model to compute the
evolution of temperature. The temperature (and possibly other non-functional information) are
transmitted back to the functional part and embedded software (d) through models of physical
sensors.

Note that the scheme illustrated in Figure 2 contains two loops. We focus on the Functional/Non-
functional loop ((a) and (d) on the figure: the behavior is influenced by temperature sensors, but
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Functional model:

SystemC/TLM model of
hardware
Actual Software

Power model:

Compute power as a
function of power state
and temperature

Temperature model:

Heat resulting from power
consumption
Dissipation (floorplan,
cooling system. . . )

(a)
po
we
r-s
tat
es

(b) power
consumption(c) temperature

(d) sensors model

Figure 2 Functional, Power and Thermal Models.

the temperature depends on the behavior). A second loop appears with Power/Temperature ((b)
and (c) on the figure: temperature increases as a consequence of power consumption, but static
power consumption increases when the temperature increases). This second loop is also managed
by our approach: when cosimulating with a black-box power/thermal solver like Aceplorer, the
solver deals with it internally. In LIBTLMPWT, the computation of power density can use the
temperature (it will actually use the temperature computed at the previous ATMI step).

2.2.3 Power-Aware Software Execution on a Virtual Prototype
To validate these power and thermal managers early in the design flow, one needs virtual prototypes
that allow execution of power-aware software. Among these models, various degrees of precision
can be achieved:

Purely functional: Even purely functional prototypes need models of temperature sensors: if
the embedded software reads a value from one of its registers, then the simulated platform
should include a component mapped at this address and returning a sensible value (possibly
an arbitrary constant).

Non-functional contracts: Some basic, but yet serious mistakes like reading from or writing to a
component which is switched off can be caught by assertions in the model. The assertions form
the contract [35] of the components, or of the hardware platform with respect to software.

Scenario-based models: To test some basic power management policies, one may need the non-
functional inputs to take different values. For example, if a platform triggers an emergency
stop when temperature goes above some threshold, then testing this functionality requires a
scenario where the temperature returned by the sensor crosses this threshold. This can be
done by returning a pre-defined sequence of values in the temperature sensor model.

Approximate models: When the policy to be tested is non-trivial, manually writing scenarios
is not feasible anymore. Not only the scenarios are too complex to be written by hand,
but realistic scenarios cannot be generated offline [41]. One needs an automated way to get
reasonable sequences of values. A simple thermal model can be sufficient: it will typically
let the temperature decrease when the system saves energy and vice versa. For example, a
software developer implementing a simple hysteresis policy (switch to power saving mode when
temperature is too high, and switch back to normal mode when the temperature crosses a low
threshold) can use this model to test that the mode switches are correctly performed. These
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models allow detecting some of the non-functional bugs in the embedded software (failure to
enter a low-power mode, polling instead of explicit wait for an interrupt, . . . ).

Precise models: To validate the parameters of a power management policy and get the actual
values for maximal temperature peaks and gradient, one needs a precise model. This implies
precision in the timing of the platform, and on the thermal model of the chip. Some degree of
precision is also needed to compare the efficiency of several power management policies.

We are interested in the last two. The following sections describe new tools to allow power
and thermal modeling on SystemC/TLM at different levels of timing granularity. In both cases,
the approach enriches a functional model with some power-state information, and cosimulates it
with a dedicated power and thermal solver.

The rest of the paper is organized as follows. We review related work in Section 2.3, and
then present our tools. Section 3 presents a cosimulation method implemented in LIBTLMPWT,
where the thermal solver is embedded in the simulation. Section 4 presents our techniques to deal
with loosely timed models without introducing simulation artifacts. In Section 5, we present a
prototype distinct from LIBTLMPWT based on similar ideas, that allows cosimulating a SystemC
simulation with an external power and temperature solver. We present our experimental results
in Section 6, and conclude in Section 7.

2.3 Related Work

2.3.1 Power-state Model

The power-state model we use has already been applied to SystemC in the TLM Power library
presented in [34, 55, 23]. TLM Power models a system-on-a-chip in SystemC/TLM, running the
actual software on top of a simulated hardware. The objective is to validate a power management
policy. We borrowed some ideas from TLM Power, but the latter does not allow temperature
management. Another approach using the power-state model on SystemC programs is presented
in [24], with advanced techniques for software integration like source-level simulation with back-
annotations. We extended the idea to support cosimulation with a thermal solver, including
closed-loop cosimulation where the software has access to non-functional values through sensors.
Also, [34, 55, 23, 24] target precisely timed models while we allow an analysis on temporally
decoupled or loosely timed models.

The power-state model is also used in [18] where the authors perform a thermal analysis to
evaluate and optimize the mean time to failure of a chip. [18] uses an abstraction of the software
as a task graph, unlike our approach which uses the concrete, actual software (i.e. a cross-compiled
binary executable).

The power-state model can also be used at a more abstract level, where the hardware and
the software are modeled with automata. Indeed, if the set of power-states is finite, then the
underlying formal model is the one of linear-priced timed automata [4]. On a simple enough model,
formal analysis is possible. For example, [19] formulates the thermal analysis problem as a hybrid
automata reachability verification problem, and solves it using model checking. [32] defines a
system-level analytical model to capture the consumption and thermal behavior of a chip with
Power Variability Curves, based on the framework of real-time calculus. These approaches cannot
be applied on a model precise enough to execute the actual software. Instead, the software is
modeled as a set of tasks, and the hardware architecture is not detailed. Power consumption is
considered to be a function of the executing software task, hence only processors are considered.
[32] computes guaranteed bounds on temperature peaks. The method is intended to be used at a
very early stage of the design. As opposed to this, we use SystemC/TLM models that model the
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hardware, but execute the actual embedded software (using either instruction set simulators or
source-level simulation [44]).

A concrete study of power-state models in Synopsys Platform Architect and Aceplorer is given
in [22]. Unlike the present paper, [22] focuses on the power/thermal analysis and does not consider
the cosimulation with a functional simulator nor software integration.

2.3.2 Low-Level Power Analysis

Our approach uses the power-state model, which assumes that the non-functional characteristics
like power-consumption are given for each component and each power-state. Other techniques, or
physical measurements, have to be used to find these values for each component. The power-state
model is used to compose the results at the system-level. The following techniques are lower-level
analysis techniques that can be used to calibrate a high-level power-state model.

[39] presents an analytical approach to dynamic power estimation of RTL descriptions. The
authors use the concept of entropy (from information theory) to estimate the average activity
factor. They consider only the combinatorial parts of a circuit.

The work described in [52] is a simulation method including the functionality and power
consumption. It focuses on instruction-level power consumption for software execution, describing
in details how to get the parameters of the power-model, with measures. It is limited to power-
consumption and does not take temperature into account. A case-study from Intel is described,
and the simulation results compared to measures on the real chip. The analysis is based on
Hamming distance, and this information is not available in most TLM models because they
abstract away details about transaction interleaving, signals switching and arbitration.

[13] provide a methodology for power characterization of the AMBA AHB communication Bus.
The resulting power characterization is based on monitoring some parameters of the functional
simulation. Accuracy of power estimation is gained at the expense of the functional model
abstraction level, and therefore at the expense of the simulation speed. Like for [52], it relies on
information that may not be available in TLM.

A technique for instruction level power modeling of processors is described in [51]. The intuitive
idea is to run repeatedly one instruction in a loop and measure the average power. The work
takes into account inter-instruction effect (switching from an instruction to another). Analysis
of assembly code can then associate power values with each basic block of the program. The
modeling approach targets software power optimization trough power-aware compilation. A similar
approach is described in [42].

[12] describes a methodology for deriving instruction-based dynamic power models from gate-
level simulations. The derived power models (in the form of look-up tables) are meant to be used
in system-level simulation models to allow for faster power simulation.

Industrial tools like Synopsys’s PrimeTime PX [49] allow a very detailed power analysis, but
these tools take as input the netlist of the circuit, which is not available at early stages of the
design-flow. They perform a detailed analysis hence run orders of magnitude slower than a TLM
model.

Several approaches are dedicated to the definition of power-state machines of individual IPs,
from data collected with low-level simulations. In some approaches, the structure of the machine
has to be known in advance, and the analysis of low-level simulations provides the consumption
values to be attached to the predetermined states. [17] proposes to run functional simulations of
an IP together with gate-level simulations, in order to synthesize both the structure of the power
state machine, and the consumption values attached to the states.



M. Moy, C. Helmstetter, T. Bouhadiba, and F. Maraninchi 03:9

2.3.3 Thermal Analysis
Several thermal solvers are available. Hotspot [28] can be used either as a standalone tool or
as a library. It takes as input the physical characteristics of the chip and a power-trace (power
consumption of each component as a function of time), and computes a thermal trace. ATMI [38]
follows a similar approach, with a focus on simplicity of integration. It is available only as a library.
3D-ICE [48] uses a similar model dedicated to 3D stacked chips. These tools do only thermal
analysis: in Figure 2, they can be used for step “Temperature model”, but need an additional
cosimulation engine to perform the complete simulation.

CTherm [33] proposes a cosimulation including functional (SystemC), power and thermal
(3D-ICE) models similar to ours (the thermal solver is triggered periodically from SystemC at a
user-defined pace). It does not allow Direct Memory Interface (DMI), temporal decoupling or
loose timing. However, it has some features like thermal checkpointing and automatic thermal
model generation that would be interesting to add to our tools.

Aceplorer [31] is an industrial tool which, coupled with AceThermalModeler, does both power
and thermal analysis (i.e. does both “Power model” and “Temperature model” in Figure 2).
Initially, it could get some power-state traces from an external SystemC/TLM model, but not
feed non-functional values back to the model. It did take into account the power/temperature
loop (arrows (b) and (c) on Figure 2), but did not allow a feedback loop from the non-functional
side to the functional model (arrow (d)). The AceTLMConnect [43] extension was added to the
tool based on our research prototype (as part of the joint project HeLP1).

These thermal solvers solve several problems. They can perform a steady-state analysis (i.e.,
compute the state of the system after a long period of time with constant load), or transient
analysis (i.e., model the response of a system to a change). The steady-state analysis is useful
to analyze the overall characteristics of a chip, but is not sufficient to execute a software power
management policy, hence is not sufficient to solve the problem addressed in this paper. A
steady-state analysis does not need the detailed behavior hence it does not need our cosimulation
technique. We use the transient analysis of these tools, and feed it with information produced by
the functional simulation.

2.3.4 Standards and Formats
Some common languages/formats (e.g., UPF [29] and CPF [45]) for low power design are emerging
and allow to describe power intents (power domains, power network, power switches, etc.) of a
circuit. These formats can be the entry point of a code generation flow [36] that avoids hardcoding
non-functional values into the SystemC/TLM code, and could use a cosimulation like ours to run
the simulation.

2.3.5 System-Level Power and Thermal Simulation
A widely used tool for system-level simulation is gem5 [8]. The principles behind gem5 and
SystemC/TLM are very similar: both are event driven simulators, and gem5 can actually cosimulate
with SystemC. gem5 is meant to be usable out of the box, and includes several instruction set
simulators and memory models, while SystemC only provides the building blocks to write such
simulators. gem5 can be configured with different speed Vs accuracy trade-offs, but even the
speed-oriented configurations are more precise than the loosely-timed models we are targeting in
this paper. For example, gem5 does not support temporal decoupling.

1 ANR Arpège, 2009-2013, see http://www-verimag.imag.fr/PROJECTS/SYNCHRONE/HELP/
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Figure 3 Example of a minimal SoC model with its power and temperature extensions.

gem5 can be augmented with a power model and cosimulate with a thermal solver like Hotspot
as done in [50]. Similarly to the present paper, [50] allows executing software that interact with
power-related sensors and actuators on the chip. However, the abstraction level is very different.
Our techniques allow for common optimizations on loosely-timed models: coarse-grained timing
with temporal decoupling (see Section 4.2), direct memory interface (see Section 3.3), including
traffic models. Also, to the best of our knowledge, gem5 is not able to cosimulate with an external,
black-box, power and thermal solver (see Section 5).

3 Standalone Power and Temperature Modeling

3.1 Architecture Overview
We now present the approach followed by LIBTLMPWT, in which all power and temperature
computations are integrated into the SystemC/TLM model. As shown on Figure 3, each module
contains code to estimate its power consumption, then a centralized temperature solver gathers
power information and evaluates the temperature of each module. An optional graphical user
interface (GUI) allows monitoring and controlling the simulation.

Temperature evaluation is done using the ATMI tool [38]. Basically, ATMI takes as input a
floorplan, i.e. a list of areas described by their coordinates, and the initial temperature. During
simulation, ATMI computes the temperature of each area based on its power consumption,
expressed as a power density. This computation is done at a regular pace, such as once every
millisecond (SystemC time). The temperature computation must be centralized, because the
temperature of any area depends on the temperature of neighbor areas.

Since ATMI is packaged as a C library, it can be directly called from SystemC code. This is
done by a SystemC module, called the ATMI wrapper. At elaboration time, we register to this
module each SystemC module that is mapped to an ATMI area. This module contains a SystemC
thread that calls the ATMI library according to the ATMI pace during simulation.

The ATMI wrapper algorithm is schemed by Figure 4. Given the power densities, computing
the module temperatures is just a function call to the ATMI library. The resulting temperature
is propagated to the SystemC side by the wrapper after the call to ATMI. For any SystemC
module, it is possible to provide a callback method that is called each time the temperature is set.
For example, the temperature sensor module defines a callback method that raises an interrupt
when the temperature reaches some thresholds (for a concrete example of sensor providing this
functionality, see the High/Low-Temperature Interrupt Enable bits of the IA32_THERM_INTERRUPT
Register on Intel Architecture [30]). The main issue is to estimate the average power density
consumed during the last step elapsed. This estimation is done in the new pwt_module class.
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while (true) {
wait(atmi_step_duration); // SystemC’s wait
for each module, compute its average power density during the last elapsed step.
atmi_simulator_step(atmi_instance, power_densities) // call ATMI
set module temperatures and call associated callbacks to trigger non-functional events

}

Figure 4 Basic algorithm of the ATMI wrapper.

In our model, the temperature transmitted to the SystemC modules, in particular to models of
the thermal sensors, is the temperature at the corresponding instant. If the actual sensor exposes
only a sampling of the temperature (e.g. the physical sensor samples temperature only every
second), then this sampling can be implemented in SystemC by the temperature sensor. Letting
the SystemC module chose the sampling rate makes the approach very flexible.

Each SystemC module that is mapped to an ATMI area must inherit from the pwt_module class.
This class stores several parameters, categorized following the classification given in Section 2.2.1
(fixed parameters: floorplan and technology dependent parameters; runtime parameters: voltage,
frequency, activity ratio).

In order to define frequency and power domains, we allow the existence of PWT modules
not mapped on the floorplan. Such modules only provide the voltage and frequency parameters,
which are forwarded to their children modules. Other methods are disabled; in particular, they
have no power densities. For example, the chip on Figure 3 has one DVFS (Dynamic Voltage
and Frequency Scaling) controller and a single power domain. So, in TLM, the model of the
DVFS controller is bound to the top module; the DVFS controller TLM module calls the methods
set_frequency and set_voltage of the top module, which in turn calls the set_frequency and
set_voltage methods of all its children PWT modules.

Given these parameters, the pwt_module class computes the power density, or more precisely,
its average value during the last step elapsed. The power consumption is computed as the sum of
the static and the dynamic power:

The static power is due to the leakage current, and it is proportional to the voltage and the
leakage current intensity. The intensity itself increases when the temperature increases; in the
current implementation, we use a linear approximation of the temperature effect, but a more
elaborated physical model would be easy to integrate in the tool.
The dynamic power corresponds to the cost of voltage changes in gates. It is proportional to
the frequency, to the number of gates involved (i.e., the activity ratio), and to the square of
the voltage. Moreover, it is proportional to a constant that depends on the capacitance per
gate and on the gate density.

In consequence, the general formula is of the form:

P = Pstatic + Pdynamic = V ×K1 × (1 +K2 × T ) + F × V 2 × α×K3,

where V is the voltage, T is the temperature, F is the frequency, α is the activity ratio, and Ki are
static parameters depending on the module area and on the synthesis technology. Because PWT
modules contain the general formula, which involves explicitly the frequency and the voltage, the
power model manages DVFS by construction. Indeed, other approaches [34] let model developers
provide the actual power value, using their own function that may or may not take into account
that the voltage or the frequency may change. If needed, a module that has a specific power
model can also redefine the method that computes its power density and use an arbitrary formula
written in C++.
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3.2 Setting the Activity Ratio
Using the approach we present in this section, the main task to extend a TLM model with power
consumption and temperature estimations is to set dynamically the activity ratio of each module.
The pwt_module class provides two ways to set this ratio (sc_time_stamp() is the SystemC
function returning the current simulated time):

1. level-based: change the activity level, until the next call
void set_activity(float ratio, sc_time now = sc_time_stamp())
Set the activity ratio starting from now and until another level is set.

2. action-based: add some extra-activity for a fixed duration
void add_activity(float ratio_increment,

unsigned nb_cycles,
sc_time now = sc_time_stamp())

Add some activity to the current level (more precisely, the level at date now), for a short
duration defined by a number of clock cycles.

In general, the first method is best suited for initiator modules whereas the second is better for
interconnects and target modules. For example, a processor TLM model will call the set_activity
method when it enters an idle state and when it becomes busy again. Using this method, we
get an activity-state based power model, as in [34]. If more accuracy is needed, one can develop
an instruction-based power model (like the one of [20]) on top of this API. The model would
use the second method and call add_activity for each instruction, with a ratio depending on
the instruction kind and the register values. Obviously, the second approach requires additional
manpower and will slow down the simulation.

Concerning interconnect and target modules (that receive transaction initiated by others, like
a memory component), the best solution is to call the add_activity method once per transaction.
In general, the ratio increment depends on the command (READ or WRITE) whereas the duration
(nb_cycles) depends on the transaction size. Note that it would be harder to use the activity-state
based method, because there is no local activity state (indeed, the activity depends on the external
initiators).

A naive implementation of the add_activity method would be to use two calls of the
set_activity method, as follow: remember the current activity level as current_ratio, set the
activity level to current_ratio + ratio_incr, increase the local date, and finally re-set the
activity to current_ratio. However, this implementation would not be reentrant, and pretty
slow. Reentrancy is mandatory for a bus or memory module: they can receive transactions from
several initiators whose non-functional effect overlap. On the contrary, our implementation of the
add_activity method is reentrant and fast.

The rationale for the parameter “sc_time now” of methods set_activity and add_activity
is to ensure the compatibility with temporal decoupling [53], when using the coding rules defined
in [1]. When temporally decoupled, the local date of a process is expressed as “sc_time_stamp() +
local_offset” (instead of “sc_time_stamp()”), allowing to advance the local time by executing
a low-cost “local_offset += T” instead of a costly “wait(T)”. This local offset is part of all
transactions, so it can be used by interconnects and target modules too. Consequently, to set the
activity ratio at the right date, the methods set_activity() and add_activity must be called
with the parameter now set to “sc_time_stamp() + local_offset”. Since this parameter has a
default value, it can be safely ignored for all processes that are not temporally decoupled.

The “now” parameter passed to the activity methods may be further in time than the next
ATMI step boundary. Indeed, some TLM modules modeled at a coarse-grained may simulate
a slice of time much longer than the ATMI time step before yielding back to the scheduler.



M. Moy, C. Helmstetter, T. Bouhadiba, and F. Maraninchi 03:13

Consequently, each PWT module contains a list of activity counters. The list head contains the
activity counter of the current ATMI step, and successive list elements store the activity of future
steps. The ATMI wrapper pops the front element once every step. The traffic model of [9] can be
implemented on top of this, but it is currently not part of the tool presented here.

3.3 Direct Memory Interface (DMI) Management
Motivated by simulation speed issues, some TLM modules use a technique called Direct Memory
Interface (DMI). The goal is to accelerate memory accesses. and the idea is to provide the initiator
(e.g., an ISS) with a pointer to the memory array. So, when accessing memory, the initiator will
directly use the memory pointer instead of generating a transaction. Given that a transaction
involves many indirect function calls plus routing in the interconnects, the speed gain is significant.
DMI is functionally correct but may bypass some side-effects, because the code related to timing
and power into the interconnects and the memory is no longer executed. For the timing issue, the
SystemC standard [1] suggests to provide the initiator with two durations: the read latency and
the write latency. Thus, the initiator can add the latency to its local offset when a memory access
is simulated. Because the latencies depend on the frequency, the DMI descriptor must be updated
every time the frequency is changed.

We use the same idea for power modeling. However, providing a single activity ratio increment
per transaction is not enough, since the activity increment must be added to each module involved
in the transaction. Indeed, if the additional activity was assigned to the initiator, then the initiator
temperature would be overestimated whereas the target components (e.g. bus and memory)
temperatures would be underestimated. Our solution is to add into the DMI descriptor a pointer
list of all PWT modules that are on the transaction path. Our DMI manager class provides a
method apply_side_effects(command, size) that increases the local time offset according to
the latency and call the add_activity method of all the PWT modules in the pointer list.

3.4 Graphical User Interface
We have developed a graphical user interface, providing basic simulations controls and some
monitoring features (see Figure 5). This GUI is implemented using the Qt framework, and run
in a POSIX thread distinct from the SystemC simulation. So, the SystemC simulation is slowed
down only when the GUI takes the main lock to update its values. Those value updates are done
ten times per second (wall-clock time).

On the control side, the GUI allows to pause the simulation (done by keeping the lock), or
to reduce the SystemC simulation speed (done by adding Unix usleep calls in the Posix thread
running the SystemC kernel).

For monitoring, the GUI provides the current temperatures as text values, a graph of the
floorplan where each module is coloured with respect to its temperature (from blue for cold, to red
for hot module). Additionally, a plot provides either the temperature or the power consumption
or the power density of each module depending on the time.

4 Thermal Analysis for Loosely Timed Models

4.1 Loosely Timed Models
Loose timing requires special attention. An obvious limitation of any power-state based model is
that if the timing is too imprecise, then a precise power analysis is not possible (as the power-state
model intrinsically needs timing to integrate the power values over time). Still, the timing can be
loose and be a reasonable approximation of reality.
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Figure 5 Graphical user interface.

In fine-grained models, the duration of a task execution is usually computed. For example, an
ISS is a way of computing a software task duration: the real binary (and thus the real algorithm)
is simulated instruction by instruction and memory access per memory access; the duration of the
task is then a sum of short durations corresponding to each instruction execution and memory
access. These short durations are defined in many modules: instruction cost in the ISS module
and memory access latencies and bandwidths in interconnect and target modules.

As opposed to this, loosely timed models can abstract durations completely and consider that
computations are done in zero-time, or use calibrated durations. This happens for example when
the algorithm used by the future hardware is still unknown, or when the simulated platform
uses an algorithm that is different from the hardware. For an image processing application, for
example, a coarse-grained model that considers an image as atomic can be calibrated with some
timing values close to the actual ones (e.g. considering that decoding one image takes X ms).
This estimated duration may possibly depend on some parameters, such as the image size.

Calibrated models cannot be very precise, as the actual performance can depend on interactions
that cannot be taken into account in calibration (e.g. conflicts on a shared bus). However, using
calibrated models is not less precise than using hand-written scenarios, which is a common practice
for power/thermal modeling in the industry. This section presents a set of techniques to write
approximate power and thermal models based on loosely timed functional models. We obviously
cannot recover information which is abstracted away by loose timing, but we avoid simulation
artifacts that would result from it.

In this section, we consider the case of coarse-grained modules; that is to say, a module which
contains abstract tasks whose duration is declared instead of computed. A typical example is an
hardware accelerator for graphical computation, such as image encoding or decoding. Such TLM
module models the functionality using an algorithm (such as the legacy code algorithm) which is
not the same as one used in the hardware.

The power consumption of a coarse-grained module can be defined easily by a discrete set of
activity states: for example one for idle and another for busy. However, because a coarse-grained
module performs memory accesses, it has an impact on memory and interconnect consumption
that must also be evaluated. Figure 6 shows a typical code for a coarse-grained module task.

More generally, the code is usually written as a sequence of computations, each of them being of
the form compute(); wait(...); commit(); . compute() is done in zero simulated time. wait(...)
lets the simulated time elapse. Its argument is the time the computation would take on the real
system. commit() is the functional effect of the computation, typically an interrupt or a transaction
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1 void compute ( ) { // SC_THREAD
2 whi le ( t rue ) {
3
4 wait ( s tart_event ) ; // wait f o r a new reque s t
5
6 in_data = read_block ( . . . ) ; // read a l l u s e f u l data ( e . g . , 1 image )
7 out_data = compute_task ( in_data ) ; // c a l l l egacy code
8 write_block ( out_data , . . . ) ; // wr i t e a l l new data
9 wait ( durat ion_task ) ; // wait the durat ion task

10 end_event . n o t i f y ( ) ; // no t i f y the c l i e n t that the r eque s t i s done
11
12 }
13 }

Figure 6 Example Code with Loose Timing.

to a control register. commit() is also called a synchronization point. More details can be found
in [15].

With a naive implementation, the read_block and write_block transactions are done at a
single SystemC time, thus creating an infinite peak of power consumption in the interconnect
and memory, followed by no additional consumption during duration_task. As a consequence,
in the model, the chip temperature will climb very fast and immediately fall back as fast. This
temperate peak may cross a threshold of the temperature sensors, thus generating an event for
the temperature manager. This event is an issue, because on the physical system there is likely no
such temperature peak, but instead a slow increase of the temperature spread among the whole
task execution.

Avoiding unrealistic peaks is relatively easy on the initiator’s side. The solution is to instrument
the complete compute(); wait(...); commit(); block of code. In the example of Figure 6 this
would mean adding calls to set_activity() at lines 3, 5 and 11.

4.2 Transactions from Coarse-Grained Modules
To illustrate the problems caused by loose timing, Figure 7 shows a possible execution of two
iterations of the loop. Vertical arrows represent transactions. The first line shows the transactions
that the actual system would perform. The second line shows how these transactions are simulated
on a loosely-timed model. In a naive model (Figure 7.(a)), the dynamic energy consumption of
the bus routing these transactions would be modeled at the simulated time when the transactions
are executed, hence we would get an instantaneous energy consumption at SystemC instants
(for clarity, the figure shows cumulative energy instead of power, which would be infinite). The
temperature model would therefore compute a peak that does not exist on the real system.

If the model uses a precise temporal decoupling, then the local dates of transactions can be
used instead of the global SystemC time. However, on a loosely timed system, this local clock
only provides a lower bound of the transaction start: the actual time of the transaction may be
at any time between the previous timing annotation and the next one, which is not known yet.
In the example of Figure 6, the TLM model has a clear read/compute/write separation, but the
actual system may use a pipelined algorithm where reads, computations and writes are interleaved.
This cannot be reflected by only adding annotations to the code. The best we can do is to assume
that transactions will be evenly distributed on the interval of time where they happen. This is
illustrated on Figure 7.(b): the analysis counts transactions over each interval of time, and when
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reaching a synchronization point, a frequency is computed, and this frequency is used instead of
individual transactions in the analysis.

We presented a first implementation of this principle in [9]. We describe below our new
implementation of this principle integrated in LIBTLMPWT, with an accurate management of
classical optimizations like DMI.

Firstly, interconnect and targets modules (mainly memory modules) must be able to recognize
such coarse-grained transactions. For this goal, we have defined a new extension type (following
the ASI TLM guidelines for ignorable extensions). When a module receives a transaction with
this extension, its behavior is changed as follow:

the code to add a delay to the initiator local date is skipped
the extra-activity due to transaction is stored until the end of access date is known.
the current module is registered to a delayed-access manager.

Secondly, when the task is done and its execution duration is known, the coarse grain module
informs the delayed-access manger, which in turn calls back each module currently storing delayed
accesses. Actually, this is done by adding a line
DelayedActivityManager::commit(task_duration) just before the statement
wait(duration_task). When interconnect and target modules are called back, they simply
spread the stored activity between the start of access and end of access date.

Additionally, the new extension for coarse-grained transactions allows to define a secondary
transaction size. The idea is that because the algorithm is not the real one, the access size in the
physical chip may be different from the one of the TLM platform. For a simple example, consider
a hardware module computing the next step of the Game of Life. In TLM, the implementation
will read then write the whole image. However, a hardware implementation will have to read some
pixel many times if it cannot buffer the whole image; the most naive implementation would even
read each pixel 9 times. On the write side, if the image is modified in place, then the hardware
may decide to write only pixels that change. Thanks to the secondary size provided with the
extension, the extra-activity can be computed on a better estimated size without changing the
functional model.

4.3 Interrupt Management
As explained in Section 4.1 and [15], a loosely-timed model can still be functionally faithful in
the presence of interrupts. For example, in Figure 6, in the execution depicted on Figure 7,
if an interrupt is received by the component executing compute at time 20, then in the real
system, the interrupt may abort any of read_block(), compute_task() or write_block(). In
the loosely-timed model, these 3 functions are executed in zero-time. The interrupt is received
during the call to wait(duration_task), and a check for pending interrupts is done after this
wait statement. The interrupt is therefore processed after the wait statement terminates. In
some sense, it is taken into account later than the real system, but the model is still faithful
because the interrupt is received before end_event.notify(), hence the functional effect of the
computation interrupted is not yet visible to other components. It is therefore acceptable to take
the interrupt into account at the next SystemC instant (at time 40 in our case) from the functional
point of view.

However, from the non-functional point of view, interrupts in loosely-timed models raise several
issues: even though we can manage them in a functionally faithful way, the timing of the SystemC
simulation does not match the one of the physical system. Consider a component executing
compute(); wait(50); commit(); starting at time t, to model a computation that takes 50 units
of time. Two cases are problematic:
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1. If the processor receives an interrupt at time t+ 20, and executes an Interrupt Service Routine
(ISR) isr() for 10 units of time at this point. The functional model executes compute() and
then isr(), but we need to model isr() as being executed in interval [t+ 20, t+ 30].

2. If the processor receives an interrupt at time t + 20 which aborts the computation, then
compute() is executed completely in the functional model, and only a part (20/50) of its
execution must be taken into account in the non-functional analysis. In other words, we do
not need to actually cancel the functional computation because its functional effect is not yet
visible, but we must not consider the power consumption of a computation that is not done in
the real system.

To solve issue 1, we consider ISR as a special-case of software execution. First, we need to
execute the ISR at the right point in time, hence checking for the presence of pending interrupt
after the wait statement is no longer acceptable. Our approach replaces the call to wait(time)
between a computation and its functional effect with a wait(event, time), that either completes
when enough simulated time has elapsed, or can be interrupted by an event triggered by an
interrupt. This way, the interrupt service routine can be executed at the right point it time. The
frequency of transactions due to the normal computation is kept unchanged, but is not taken into
account during the execution of the ISR.

To solve issue 2, we need to instrument the abortion in the embedded software, and when we
encounter a task abortion, we reset the frequency for the processor (technically, this is implemented
by instrumenting longjmp to write to a magic address that is caught by the SystemC model and
transmitted to the power-model). This is implemented in the tool presented in [9] but not yet in
LIBTLMPWT.

5 Cosimulation with an External Power and Temperature Solver

5.1 Cosimulation Interface
When using the non-functional solver as a black-box it is no longer possible to execute a SystemC
process for each of its internal steps, since we cannot know when the steps should take place. In
this case, another cosimulation strategy has to be applied.

We implemented a cosimulation interface, presented in details in [10], that allows running a
functional SystemC/TLM platform with power annotations with an external non-functional solver
running in a separate process. We did our experiments with wrappers around ATMI [38] and
Hotspot [28] as external solvers, but the same interface was used to connect to the industrial
tool Aceplorer. This interface is now used by the commercial extension AceTLMConnect [43] for
Aceplorer. A small case study using the industrial implementation is presented in [16].

The cosimulation interface uses a simple request/response protocol, using Thrift [46] for
interprocess communication. The principle is the following: the simulation starts on the SystemC
side, and SystemC’s time drives the simulation. From time to time, the SystemC program requests
a non-functional simulation on a time interval. The non-functional solver performs the simulation
and returns the relevant values at the end of the time interval. In some case, the non-functional
simulation may return early, because the temperature crossed a given threshold, and a SystemC
event can be generated at the time the threshold is crossed.

5.2 Strategies Using the Interface
The same interface can be used with multiple strategies. In the lockstep strategy (Figures 8 and 9),
the functional/non-functional synchronization is performed at the end of each SystemC simulated
instant. A non-functional simulation is requested for the time interval between the current instant
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Figure 8 lockstep cosimulation strategy (for clarity, simulated instants are represented with a non-null
width; boxes on the SystemC line correspond to simulated instants and boxes on the P/T solver line to
intervals between instants).
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Figure 9 lockstep cosimulation strategy with interrupt (IT).

and the expected next simulation instant. In case a non-functional event is triggered (Fig 9), the
non-functional simulation stops before the end of the requested time interval, and a SystemC
event is notified, which creates a SystemC instant during which the functional part can react (e.g.,
by triggering an emergency stop if the temperature is too high).

When one can guarantee that no non-functional event is possible (either because the hardware
sensors are only passive components and cannot trigger events, or because we know for sure
that the condition will never be met), another strategy is possible: the functional-ahead strategy,
illustrated in Figure 10. In this case, the SystemC side runs without launching the non-functional
simulation until an access to a sensor is performed. When this happens, a non-functional
simulation is requested up to the current SystemC instant. This strategy is less flexible, but
requires considerably less request/response round trips, hence can be faster (especially when
SystemC and the non-functional solvers run on different machines).

A parallel strategy is also presented in [10].

6 Experiments

6.1 Development Cost
For the development and the evaluation of the LIBTLMPWT approach, we have developed a
demonstration platform based on a small FPGA system. The main components are a processor
(MicroBlaze) and a VGA controller. There are two memories, one for instructions and the other
for data, plus the usual devices: timers, UART, interrupt controller, etc. Compared to the initial
FPGA system, we have added in the TLM model a temperature sensor and a DVFS controller.
The whole TLM model uses the blocking TLM interfaces of [1], with the generic payload plus an
ignorable extension for DMI configuration. We reuse some open-source TLM code from SoCLib [47]
and SimSoC [26].
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Figure 10 functional ahead strategy, in the absence of interrupt.

We have applied some classic optimizations in the TLM model, so that the base simulation
speed is similar to the simulation speed of an industrial TLM model. In particular, we use temporal
decoupling in all places where it is useful; the processor and VGA controller models use the Direct
Memory Interface mechanism. When the processor is busy, the simulation speed is around 50
MIPS (million instructions per second).

The TLM model without power and temperature counts 5000 lines of code, and uses some
general development kits counting in total 1400 lines of code. In this version, the temperature
sensor and the DVFS controller modules are included but they have no behavior.

For the instrumentation of the platform itself, we have added about 100 lines of code. Note
that this is quite small compared to the platform size, showing that once the tools and data are
available, instrumenting an existing TLM model for power and temperature estimations requires a
very little cost. One must provide the physical values used in the power and thermal model; this
calibration task is out of this paper scope.

The core classes we have developed for power and temperature modeling counts 700 lines of
code (not including the ATMI library, which is 2700 lines long). Additionally, the graphical user
interface counts close to 600 lines.

6.2 Simulation Speed Overhead
To evaluate the simulation speed, we use our demonstration platform and make it run a benchmark
application. In this benchmark, the processor is periodically computing: it waits one second and
then computes during about 0.8 seconds (SystemC time). The application computes the “game of
life”, waiting 1 second between images. Additionally, the VGA controller is active and loads the
image buffer 60 times per second. Between two consecutive reloads, the VGA controller remains
idle for a few milliseconds.

The first time the model is simulated, the ATMI library computes some data in advance in
order to accelerate the simulation itself. Those data are cached in a file for future simulations.
Modifying the floorplan or some technology dependent parameters requires to compute this file
again. This computation takes about two minutes.

Simulating 10 seconds (SystemC time) takes:

3.4 seconds (wall-clock time) for the initial functional TLM model
6.4 seconds with power and temperature estimations (6.6 seconds with GUI), assuming that
the ATMI cache file was ready.

So, the simulation duration overhead is about +88%. We consider that it is a significant but
acceptable overhead: the performance remain in the same order of magnitude, and it should be
noted that the LIBTLMPWT approach is compatible with the common TLM abstractions and
optimizations, which allowed gaining several orders of magnitude compared to lower-level models
like RTL.
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Table 1 Effect of the ATMI step duration in LIBTLMPWT.

ATMI simulation standard deviation (σ)
step duration processor VGA bus temp. sensor

0.25 ms 15.3 s (+139%) reference reference reference reference
0.5 ms 8.9 s (+39%) 0.01 ◦C 0.05 ◦C 0.09 ◦C 0.00 ◦C
1 ms 6.4 s (ref.) 0.03 ◦C 0.11 ◦C 0.12 ◦C 0.01 ◦C
2 ms 5.2 s (-19%) 0.06 ◦C 0.23 ◦C 0.15 ◦C 0.03 ◦C
4 ms 4.6 s (-28%) 0.13 ◦C 0.42 ◦C 0.19 ◦C 0.05 ◦C

For example, DMI would need to be disabled if we did not take it into account. As expected,
running the PWT simulation with DMI but without the extension is quick (≈5 seconds) but
incorrect: we have observed errors of more than 1 degree Celsius. If we disable DMI, then the
functional simulation consumes 9.1 seconds and the PWT simulation consumes 12.8 seconds. In
other words, without our extended DMI, the total overhead would be 9.4 seconds, i.e. +276% (5.7
seconds for disabling the DMI plus 3.7 seconds for power and temperature computations).

Looking at the profile obtained with callgrind+kcachegrind [54], we notice that there are
two performance-consuming spots: 1. computations internal to the ATMI library (≈28% of
total simulation time), 2. applications of transaction side effects when using DMI (≈12% of
total simulation time). The pwt_module class has been implemented with the optimization of
this second performance-consuming spot in mind. These numbers show that the performance
overhead comes mainly from the temperature simulation (about 2/3 of the overhead), not from
the interfacing (about 1/3 of the overhead).

Concerning the time spent in the ATMI library, the user may optimize it by adapting the
ATMI step duration. The values above are given for a step duration of one millisecond. As shown
by Table 1, the longer the ATMI step is, the faster the simulation, at the cost of a loss of accuracy.
The temperature error is higher in modules whose power density changes at a fast pace.

6.3 Applications

Using the “game of life” benchmark previously presented, we can observe that temperature plots
are as expected. Figure 11 shows those plots at different time scales. Looking at a short time
range, we see that the VGA temperature fluctuates with an amplitude slightly above 1 ◦C; as a
consequence, the temperature sensor fluctuates too, but with a smaller amplitude. On the second
plot, we see that the processor temperature fluctuates at a slower pace, since it is computing about
one second every two. Moreover, other module temperatures evolve according to the processor
temperature. Finally, the third plot shows that the whole system takes about 100 seconds to reach
its maximum temperature. It is one reason why simulators must be fast enough: several minutes
of SystemC time can be needed to observe the relevant behavior.

One possible application of our tool is to detect non-functional errors in embedded software,
such as polling a device register instead of using idle mode and interrupts. Figure 12 shows what
happens if the previous benchmark uses polling instead of interrupts. The functional behaviour is
exactly the same, but we immediately see that the temperatures keep increasing and that the real
chip would overheat. Note that the bus temperature is higher during polling than during frame
computation due to the high polling traffic. The bug is obvious with temperature analysis, even if
the analysis is imprecise. It would be much harder to find without it.

Another application is the development and validation of the voltage and frequency management.
One simple solution to avoid overheating is to switch between two modes: a default fast mode
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Figure 11 Temperature plots for the “game of life” benchmark, with different time scales.

temperature sensor

processor
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Figure 12 Variant of the “game of life” benchmark using polling.

where frequency and voltage are high, and a backup low-power mode where voltage and frequency
are low. The power manager (i.e., a part of the embedded operating system) programs the
interrupts of the temperature sensor module according to two thresholds: the high threshold is
used to avoid overheating and causes the switch to the low-power mode, whereas the low threshold
determines when to switch back to the fast mode. Testing this algorithm on a pure functional TLM
model is impossible (see discussion in Section 2.2.3). It would require at least a scenario-based
model, but in this case, temperature sensor interrupts would occur at unrealistic dates which
would make the test more difficult. On the contrary, using the extended TLM model and its GUI
allows to check easily the power manager’s behaviour, as shown on Figure 13. Again, note that
the simulation must be at least 20 seconds long to be useful, which shows that simulation speed
matters.

Such temperature management based on low and high thresholds has some drawbacks; one
is that the frequent temperature changes may raise the failure rate of the system [56]. Another
approach is to use a PID controller. We have implemented this approach in the embedded software
of our demonstration platform. As shown by Figure 14, we see that the PID-controlled temperature
curve is smoother than the previous threshold-managed temperature curve. The first plot shows a
simulation with a badly tuned PID controller, where the VGA controller temperature oscillations
are amplified instead of smoothed, meaning that the gain parameters are likely too high.
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Figure 13 Temperature management with low and high thresholds: the software manager toggles
between low and high power modes according to the temperature.
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Figure 14 Temperature management using a PID controller, with distinct gain parameters.

6.4 Influence of Loose Timing on Performance and Precision
This section describes cosimulation techniques implemented in the tool presented in [9, 10], but
not yet in LIBTLMPWT.

6.4.1 Granularity of the functional models
Figure 15 illustrates another experience with power consumption and temperature of the
MEMORY component. This experiment was done using the cosimulation approach presen-
ted in Section 4, distinct from LIBTLMPWT, hence the performance results are not directly
comparable with the previous sections. The functional behavior of the SoC is such that the memory
receives a lot of traffic in the first half of the simulation period represented, and nothing in the
second half. Fig. 15-(a) is the instruction-accurate simulation, on which the effect of this two-phase
behavior is clearly visible: the temperature increases because of high power consumption, and then
decreases slowly. Both Fig. 15-(b) and Fig. 15-(c) are obtained with a coarse-grained simulation,
but we can see that only (c) reproduces the profile of (a). The difference is the following: in (b),
the simulation is made in one big step (because there is no simulation instant in the middle), and
the power consumption is spread over the whole interval; in (c), the simulation is split into two
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Figure 15 The effect of coarse granularity on memory power consumption.

simulation intervals. What happens is that in (b) the functional and timed model itself is too
coarse. If the memory receives traffic in two well-differentiated patterns, it is probably because one
of the components has two distinct running modes that have been ignored in the model. It means
that the modeling of a component (like the software) can benefit from an explicit distinction
between running modes, even if the impact is not on the activity model of component itself, but
on the traffic model of another component.

6.4.2 Simulation speed
Table 2 is a summary of simulation speeds of the tool presented in [9, 10]. We distinguish the time
taken by the SystemC part (SC), the ATMI part, and the connection between them (between
parentheses is the number of exchanges between the simulators). The first line corresponds to an
instruction-accurate simulation, the second one to simulation where we execute 100 instructions
in a row, and the last one is the coarse-grained simulation based on logical synchronization points
and explicit purge statements. We observe a factor 7 between the first and the third ones. It is
also interesting to see that a lot can be gained on the side of the temperature simulator. ATMI
is a fixed-step simulator, and we may obtain better results with a variable-step simulator. Note
however that ATMI already uses a well optimized model, pre-computing the temperature response
to a pulse, and using a sophisticated optimization called event compression [38]. Moreover, ATMI
does not allow to ask for the evolution of temperature on time intervals smaller than 1µs. When
we execute the SystemC model one instruction at time, it represents a time interval of around
20 ns. It is useless to call ATMI for each of these small steps; a cache mechanism could be
implemented in the connection, to call ATMI only when several steps with a total of more than
1µs have been executed on the SystemC side.

6.4.3 Interrupt Management
In Section 4.3 we explained how to model the abortion of a computation due to an interrupt
faithfully with respect to power consumption. Figure 16 illustrates the effect of the method on
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Table 2 Execution times and contributions of the simulator parts, for simulating 0.5s of the system.

Time spent in
Total SC ATMI Connection Number of exchanges

1-inst. 1028s 48.8% 41.2% 11% 15.7E+6
100-inst. 185s 5.2% 94.5% 0.03% 0.15E+6
coarse-grained 139s 5% 95% ≈ 0% 128
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Figure 16 Modeling abortion.

MEMORY’s temperature and power, due to the traffic it receives. We use a variant of the
case-study where the power management policy just checks whether the temperature reaches
the upper threshold and reacts by canceling the current operation of the software; this results
in a much lower traffic on the memory. Fig. 16-(a) is the instruction-accurate simulation, which
shows a high power consumption before the interrupt, and then a much lower one. Fig. 16-(b) is
what we obtain with a coarse-grained simulation if we do not implement our method for modeling
abortion faithfully. Fig. 16-(c) is what we obtain if we do implement it: we correctly observe that
the temperature decreases when some functional behavior is aborted, resulting in a lower power
consumption on the memory.

7 Conclusion

We presented several methods for cosimulation of a functional SystemC/TLM model with a power
and a thermal model. LIBTLMPWT is a lightweight, integrated solution, that embeds ATMI as
a temperature solver. It is available publicly as free software [27]. The tool presented in [9, 10]
allows a cosimulation with an external solver, using inter-process communication to communicate
with it.

Obviously, none of these tools allows recovering precision that was lost by raising the level
of abstraction. If a component has a complex access pattern to a bus, and this pattern is not
modeled, then none of our techniques can accurately model it. This is not surprising, as this
would require guessing instead of modeling. Our contribution is, given a possibly loosely-timed
functional platform, to provide modeling tools to create a non-functional model that is as accurate
as it can be given the abstraction level of the functional platform.
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The validation of these models is a difficult task. Ideally, we should compare the result of the
models with a real system, but this is much harder than it seems. Measuring the temperature
precisely can be done only on a chip without its packaging, which cannot run at full speed without
overheating. This is a non-trivial task for silicon manufacturers, and clearly out of reach for an
academic laboratory. Power-consumption measurements of individual components would require
an instrumented version of the chip (with more pins than the actual system). Instead of validating
our models against the real system, we compared several models at several levels of abstraction,
considering the lower-level ones as the reference. Indeed, our contribution is not to provide power
and thermal models, but to cosimulate them with a SystemC/TLM model. In other words, we
assume the availability and accuracy of a non-functional model, and plug the input and output of
this model on a functional simulation.

We experimented on a small but representative platform containing both hardware IPs and a
processor. It would be interesting to experiment on a larger platform containing a large number of
hardware IPs and/or a large number of processors (like many-core embedded processors or high-end
general-purpose processors for data-centers where power and temperature are also important
concerns). We do not foresee any fundamental issue with our cosimulation techniques: both the
SystemC/TLM functional simulation and the power/thermal solvers we use are already used
industrially at very large scales, and the cosimulation itself adds only a small overhead.

Using ATMI limits us to 2D designs. We are currently extending the interface to support
Hotspot [28], which is able to manage 3D chips. It would be interesting to test other thermal
solvers such as 3D-ICE [48]. Also, we focused on the cosimulation scheme, but a more integrated
design-flow can be envisioned, where dedicated tools would be used for individual components,
and the result used in the generation of our model. This is currently easy in theory but partly
manual.

We are now working on extending the approach to support loose power and temperature
annotations: when the precise values are not known, allow specifying an interval instead of possible
values for each parameter.
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Abstract
The gang scheduling of parallel implicit-deadline
periodic task systems upon identical multiprocessor
platforms is considered. In this scheduling problem,
parallel tasks use several processors simultaneously.
We propose two DP-Fair (deadline partitioning) al-
gorithms that schedule all jobs in every interval of
time delimited by two subsequent deadlines. These
algorithms define a static schedule pattern that is
stretched at run-time in every interval of the DP-
Fair schedule. The first algorithm is based on linear
programming and is the first one to be proved op-

timal for the considered gang scheduling problem.
Furthermore, it runs in polynomial time for a fixed
number m of processors and an efficient implemen-
tation is fully detailed. The second algorithm is an
approximation algorithm based on a fixed-priority
rule that is competitive under resource augmen-
tation analysis in order to compute an optimal
schedule pattern. Precisely, its speedup factor is
bounded by (2 − 1/m). Both algorithms are also
evaluated through intensive numerical experiments.
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1 Introduction

We consider the preemptive scheduling of real-time tasks on identical multiprocessor platforms
(see [13]). We deal with parallel real-time tasks, the case where each job may be executed on
different processors simultaneously, i.e., we have job parallelism. Nowadays, the design of parallel
programs is common thanks to parallel programming paradigms like Message Passing Interface
(MPI [26, 28]) or Parallel Virtual Machine (PVM [40, 23]). Even better, sequential programs
can be parallelized using standards like OpenMP application programming interface (see [8] for
details).

Contributions. We define and prove correct a technique to schedule optimally periodic implicit
deadline rigid gang tasks (see Definition 1 for details) upon multiprocessors. The algorithm is based
on linear programming (LP) and runs in polynomial time for a fixed number m of processors. The
second proposed method is a fixed-task priority rule with a performance guarantee of (2− 1

m ) under
resource augmentation analysis. These algorithms are compared through numerical experiments.

Organization. Section 2 presents the studied scheduling problem and the related work. Section 3
presents basic results about DP-Fair scheduling of parallel tasks. Section 4 presents the LP-based
optimal method and its implementation. Section 5 presents a gang heuristic and its worst-case
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performance analysis under resource augmentation. Section 6 presents numerical results comparing
both methods on randomly generated task systems. Then, Section 7 concludes the paper and
presents some future work.

2 Model, Problem and Related Work

2.1 Parallel Task & Job Models
We deal with jobs and tasks which may be executed on different processors at the very same
instant, in which case we say that job (or task) parallelism is allowed. Various kinds of parallel
task models exist. Goossens et al. [25] adapted parallel computing terminology [7] to recurrent
(real-time) tasks and jobs as follows.

I Definition 1 ([25] Rigid, Moldable and Malleable Job). A job is said to be (i) rigid if the number
of processors assigned to this job is specified externally to the scheduler a priori, and does not
change throughout its execution; (ii) moldable if the number of processors assigned to this job
is determined by the scheduler, and does not change throughout its execution; (iii) malleable if
the number of processors assigned to this job can be changed by the scheduler during the job’s
execution.

A recurrent task is said to be rigid if all its jobs are rigid, and the number of processors
assigned to the jobs is specified externally to the scheduler; a recurrent task is said to be moldable
if all its jobs are moldable; malleable if all its jobs are malleable.

Additionally at task level the literature distinguishes between at least three kinds of parallelism:
Multithread [12, 32, 39, 38, 1]. Each task is sequence of phases (multiphase in the following),
each phase is composed of several threads, each thread requires a single processor for execution
and threads can be scheduled simultaneously [38]. A particular case is the Fork-Join (see
e.g. [36]) task model where the phases are an alternate sequence of sequential and parallel
segments; task begins as a single master thread that executes sequentially until it encounters
the first fork construct, where it splits into multiple parallel threads which synchronize/join on
their terminaison and so on.
Dag task model [2, 6, 34]. The model generalizes the fork-join model, each task is represented
as a directed acyclic graph, which is a set of precedence-constrained sequential jobs. Any group
of jobs that are not constrained may execute in parallel.
Gang [11, 4, 25, 30]. Each task corresponds to e× k rectangle where e is the execution time
requirement and k the number of required processors with the restriction: the k processors
must execute task in unison (i.e., at the exact same time). This model is very representative
to real world parallel applications where, at the submission time, users or scheduler select the
number of processors for the task [14, 16] and consequently the number of generated threads
corresponds to the number of used processors like MPI [41] and OpenMP [9] tools do. The
threads communicate each other, they must be ready to communicate at the same time which
imposes the synchronous threads execution.

2.2 Our Task/Job Model and Scheduling Problem
At job-level we consider the preemptive scheduling of parallel jobs on a multiprocessor platform
upon m identical processors. We will focus on the problem of scheduling a set of rigid gang parallel
jobs, each job Jj

def= (rj , vj , ej , dj) is characterized by a release time rj , a required number of
processors vj , an execution requirement ej and an absolute deadline dj . The job Jj must execute
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for ej time units over the interval [rj , dj) on vj processors. We consider the scheduling of rigid
jobs since vj is fixed externally to the scheduler.

Our main scheduling problem concerns periodic (and sporadic —see discussion Section 5.3)
preemptive hard real-time systems. Let τ def= {τ1, . . . , τn} denote a set of n periodic implicit-
deadline rigid gang parallel tasks. Each task τi

def= (vi, Ci, Ti) will generate an infinite number of
jobs, where the kth job of task τi is ((k− 1) ·Ti, vi, Ci, k ·Ti). In the following ui

def= Ci

Ti
denotes the

utilization factor of task τi. This utilization is not related to the number of required processors
(vi) this is an horizontal notion. The execution requirement of a job of τi corresponds to a Ci × vi

rectangle.

This Research. We study the scheduling of preemptive periodic implicit-deadline rigid gang
real-time tasks. We address the feasibility and the schedulability questions by designing an
optimal scheduler. The proposed approach exploits the deadline partitioning of the schedule.
Precisely, in every slice delimited by two subsequent deadlines in the schedule, a static schedule
pattern is stretched according to the slice length. Two algorithms are proposed to define such
a pattern. The first algorithm is based on linear programming and is the first one to be proved
optimal for the considered gang scheduling problem. Furthermore, it runs in polynomial time
for a fixed number m of processors and an efficient implementation is fully detailed. The second
algorithm is an approximation algorithm based on a fixed-priority rule that is competitive under
resource augmentation analysis for computing a static schedule pattern. Precisely, its speedup
factor is bounded by (2− 1/m). Both algorithms are also evaluated through intensive numerical
experiments.

For the sake of simplicity we consider periodic tasks and we assume that Ci is the exact
duration of the task τi. Consequently, we consider an offline scheduling problem. The discussion
of Section 5.3 extends the scope of our result to the scheduling of sporadic tasks with Ci as the
worst-case execution time.

2.3 Related Work
Optimal solutions. To the best of our knowledge there is a single work which provides an optimal
solution for the scheduling of recurrent hard real-time parallel computing: the work of Collette
et al. [11] which considers sporadic implicit-deadline malleable gang scheduling. The authors
provide an optimal scheduler and an exact feasibility/schedulability test. The work we report in
this document provides an optimal scheduler and an exact feasibility/schedulability test as well,
except we consider a more realistic parallel task model since our task are rigid jobs—the degree of
parallelism is specified at design time and does not change at run-time—while the authors of [11]
consider malleable jobs.

Non optimal solutions. The other contributions to the scheduling of recurrent hard real-time
parallel computing consider non optimal schedulers and schedulability tests (sufficient or exact).
[30] considers the EDF (Earliest Deadline First [35]) scheduler for rigid gang sporadic tasks and
proposes a sufficient schedulability test. [25, 4] consider FTP (Fixed Task Priority, such as Rate
Monotonic [35]) periodic gang scheduling and provide an exact/sufficient schedulability tests. [12]
considers FTP and periodic multithread tasks and proposes an exact schedulability test. [32]
consider Deadline Monotonic scheduling of fork-join tasks, they provide a competitive analysis for
that suboptimal scheduler. [39] considers EDF and FTP scheduling for multiphase multithread
periodic tasks and provides a task decomposition technique and a competitive analysis. [38]
considers optimal schedulers for sequential tasks (e.g., DP-Fair described Section 3.4), implicit
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deadline multiphase multithread recurrent tasks, for which the authors propose a decomposition
technique and a competitive analysis. More recent works [6, 34] consider DAG tasks model (which
generalizes fork-join model). The authors study the competitiveness of global EDF and global RM.

3 Basic Results

3.1 Hardness for arbitrary number of processors
Assuming that the number of processors is an input in the problem model, it is easy to show that
the preemptive Gang scheduling problem is equivalent to the Bin Packing problem. Such a result
was observed (without proof) for the non preemptive scheduling problem of parallel (Gang) tasks
having unit processing times [5]. Hereafter, we provide a basic proof sketch to clearly exhibit the
reducibility among both problems.

I Theorem 2. Preemptive Gang scheduling is NP-hard in the strong sense for problem instances
with an arbitrary number of processors.

Proof. (Sketch) We transform from Bin Packing [22]: Finite set A of items, a rational size
s(a) ∈ Q+ for each a ∈ A, a positive integer bin capacity B, and a positive integer K; is there a
partition A into disjoint A1, A2, . . . , AK such that the sum of the sizes of the items in each Ai is
no more than B?

Without loss of generality we assume that all s(a) have a common denominator and B is scaled
accordingly, we define a Gang scheduling instance as follow:

m = B processors,
each item a ∈ A is model as a unit-length task of period K, τa = (va, ea,K), such that ea = 1
and va = s(a).

The Bin Packing decision problem is equivalent to determine if there is a feasible schedule of period
K? (i.e., a schedule with no more than m processors are simultaneously used at any time). J

The previous transformation shows that preemptive Gang Scheduling with an arbitrary number
of processors contains the bin packing problem as a particular case (i.e., with all task execution
times equal to 1). It is also known that the Bin Packing problems can be solved in polynomial
time for any fixed B by exhaustive search [22]. Such a property will be also exploited for defining
our optimal polynomial time algorithm for scheduling periodic Gang real-time tasks.

3.2 Maximum Rectangle Utilization Bound

In our task model (see Section 2.2), the task utilization ui
def= Ci/Ti represents an horizontal

utilization. In this section we introduce the notion of total rectangle task set utilization which is
by definition

∑n
i=1

Ci×vi

Ti
.

The maximum rectangle utilization bound Ub of a scheduler guarantees that every system of
tasks whose total utilization is smaller than or equal to Ub will be correctly scheduled. Beyond
this utilization limit, and if the bound is said to be tight, then there exist systems of tasks which
are not schedulable.

First notice that, since our scheduling problem of parallel tasks is a generalization of the
popular scheduling problem of periodic sequential tasks, we have to report a negative result: the
maximum rectangle utilization bound is 1/m.

I Theorem 3. The maximum rectangle utilization bound for the scheduling of periodic Gang tasks
is 1/m.
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Figure 1 Non-predictability of gang FJP schedulers. Job 1 has the highest priority, job 3 has the lowest
one and job 2 in the middle, and they all arrive at time 0.

Proof. The result will be established using a simple parallel task set with two tasks1: τ1(1, 1, 1)
and τ2(m, ε, 1), where ε is an arbitrary small positive infinitesimal number. This system is trivially
infeasible and the total task rectangle utilization is 1/m. J

3.3 Scheduling Anomalies
We have to report a second negative result concerning our scheduling problem: FJP (Fixed Job
Priority, such as Earliest Deadline First [35]) and consequently FTP gang scheduling are not
predictable [25] 2. Here is an example task system, on 2 processors and three jobs3 (see Figure 1):

J1 = (0, 1, 3, 3), J2 = (0, 2, 1, 4), J3 = (0, 1, 2, 2) .

Using the priority assignment J1 > J2 > J3, Gang FJP schedules the set of jobs (J3 completes at
time-instant 2). Unfortunately, if the actual duration of J1 is 1, J2 will preempt J3 at time t = 1
and J3 will complete later, at time-instant 3. Then, J3 does not miss its deadline in the “worst
case” scenario, but misses it if J1 uses less than its worst case execution time C1. Thus, reducing
an execution time can delay the completion of another job.

3.4 DP-Fair Scheduling for Sequential Tasks
While this research concerns parallel tasks we will introduce a scheduling technique defined for
sequential tasks (in the next section —Section 3.5— we will show how to apply the very same
technique to gang tasks). Consequently, we assume in this section the scheduling of n sequential
and implicit-deadline tasks upon m identical processors. Each task τi

def= (Ci, Ti) is characterized
by a worst-case execution duration Ci and a period Ti. Seminal optimal multiprocessor scheduling
techniques were based on the notion of proportionate fairness, it is the case for instance of the PF
(Proportionate Fairness) scheduler [3]. This type of algorithm assumes that time is discrete.

The quantum-by-quantum construction of the scheduling is not necessary in order to define an
optimal algorithm [42, 20, 24]. DP (Deadline Partitioning) scheduling techniques do not decompose
the tasks into single-time unit (sub)-tasks. The construction of the scheduling is done over time
intervals delimited by two consecutive deadlines called blocks. In each block, every task receive a
workload that is proportional to its utilization so that the fairness property is satisfied at each
deadline in the schedule.

Let Lj be the length of the block j delimited by two subsequent task deadlines, every implicit
deadline periodic task τi receives an amount of processor equal to Lj × ui. Consequently, a task
τi has received an execution times equal to ui × Ti = Ci for each of its deadlines.

1 (vi, Ci, Ti)
2 a scheduling algorithm is predictable if reducing an execution requirement cannot increase the completion of

tasks.
3 (rj , vj , ej , dj)
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The previous algorithms assume that time is by its nature discrete: the times at which the
scheduler can be activated are integers (in other words correspond to the clock ticks of the
real-time operating system). Discrete time is by its nature a source of complexity in multiprocessor
scheduling and for this reason, algorithms which exploit the continuous nature of time have been
defined.

We will now detail the simplest algorithm in this category: the DP-Wrap algorithm.
The DP-Wrap algorithm is a very simple deadline fair algorithm which is optimal for tasks

with implicit deadlines [20]. Contrarily to the previous algorithms, DP-Wrap considers that the
time is continuous. The scheduling is broken down into blocks delimited by deadlines/periods.
The distribution of the tasks into each interval is equal to the length of the interval multiplied by
the utilization of the task, i.e., ui

def= Ci/Ti. Thus, in the interval [sj , sj+1), each task τi is given
Ci(j)

def= ui × (sj+1 − sj). Consequently, at each deadline, the tasks have received an execution
time equals to ui × Ti = Ci. The scheduling (distribution) in each block is done by McNaughton’s
algorithm, which has been proposed in 1959 [37].

In the next section, we show how to reuse the deadline partitioning technique in order to define
an optimal static gang scheduling algorithm.

3.5 DP-Fair and Gang Scheduling
The next result (Theorem 4) shows that concerning our parallel scheduling problem (gang
scheduling defined Section 2.2) we can, without loss of generality, consider DP-Fair scheduling,
i.e., schedule where the same pattern is replicated (and stretched) in each interval delimited by
deadline/period. In Section 4 we will define a technique to build such pattern optimally.

I Theorem 4. Every feasible parallel task set is schedulable with a DP-Fair schedule.

Proof. Assume we have a feasible schedule, then we show how to define a feasible DP-Fair schedule.
Since parallel tasks are strictly periodic and are simultaneously released, the whole schedule is
periodic and has a period equal to the hyperperiod. Within the hyperperiod H, every task is
executed for H

Ti
Ci = Hui. To define a DP-Fair schedule:

Schedule pattern: stretch the complete schedule within unit time slots.
Stretch the pattern accordingly in every block of the schedule.

The corresponding schedule is DP-Fair. At every block boundary t, every task τi, 1 ≤ i ≤ n

receives exactly t · ui. Hence, for every time instant t corresponding to a deadline of task τi (i.e.,
t = kTi) the task τi receives exactly kTiui = kCi and thus has been executed to completion by its
deadline. J

4 Optimal Pattern Definition

4.1 Research Method
Firstly, we will revisit a non real-time scheduling problem and its solution (the work of Błazewicz
et al. [5]) where the main goal is to minimize the schedule length of non recurrent rigid gang
jobs. We will show how that technique can be optimally adapted to our hard real-time scheduling
problem.

4.2 The work of Błazewicz et al. revisited
Principles. In [5] the authors consider the scheduling of n rigid gang jobs, each job Ji is
characterized by the couple (ui, vi), i.e., a duration ui and a required number of processors vj , all
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these jobs are released simultaneously at time origin. Upon an identical multiprocessor platform
the scheduling problem is to find a schedule which minimizes the schedule length, the first instant
where the jobs are completed or equivalently to minimize the makespan.

The authors present a polynomial time algorithm for a fixed number of processors m, based on
linear programming, for computing an optimal schedule in the general case. Particular cases are
also considered but not useful in our framework. Notice that the problem is NP-hard for arbitrary
number of processors (i.e., m is an input of the problem) [15].

The method decomposes the schedule as a sequence of slices. Remember, a feasible allocation
of jobs is the one that uses no more than m processors. Each slice σi is characterized by the set
Si of feasible jobs and the duration xi of their execution. The algorithm computes the length for
every feasible allocation of jobs. As a result, the slices having a positive length are sequenced in
arbitrary order. Moreover the method minimizes the

∑M
i=1 xi, i.e., the makespan to define an

optimal schedule.

I Definition 5 (Feasible allocation). A feasible allocation of jobs is a subset s of job indexes that
can be processed simultaneously on the platform:

∑
i∈s vi ≤ m. By definition we have a finite

number of different feasible allocation sets. In the following M is the number of different feasible
allocation sets. Thus the set of all feasible allocation subsets is denoted S = {S1, . . . , SM}.

I Example 6. For instance, consider three jobs J1, J2, J3 with v1 = 1, v2 = 2, v3 = 1, u1 = 3, u2 = 1
and u3 = 2. For m = 2 the feasible allocations are S1 = {1}, S2 = {2}, S3 = {3} (jobs can be
executed alone); S4 = {1, 3} (J1 and J3 can be executed in parallel). Remark that J2 cannot be
executed with J1 nor J2.

Notice that S has a cardinality of M def= |S| ≤
∑m

k=1
(

n
k

)
≤ (n)m. It is important to notice

that the number of subsets M (i.e., number of variables in the linear program) is in O(nm) that is
polynomial for fixed values of m.

Let Qj be the set of those subset indexes which contain job Jj . Let xi be the processing time
of the subset Si in the schedule and used to define variables in the linear program. The linear
program computes the schedule as a set of slices of length xi. Every value xi such that xi > 0
defines a slice in the schedule in which the jobs of Si are executed. Slices are executed in an
arbitrary order without any inserted delays between them. Hence, the computed makespan is∑M

i=1 xi.
The objective function is to minimize the makespan:

∑M
i=1 xi; and the linear program must

enforce that all jobs are completed. The corresponding constraint is:
∑

i∈Qj
xi = uj , j = 1 . . . n.

Hence, the schedule with the smallest length (i.e., makespan) is defined as follows:

Algorithm 1: Optimal Schedule Pattern construction by Linear Programming.

Minimize
∑M

i=1 xi

subject to
∑

i∈Qj
xi = uj j = 1 . . . n

A solution for Example 6 is x1 = 1 (duration of the execution of J1 only), x2 = 1 (duration of
the execution of J2 only), x3 = 0 and x4 = 2 (duration of the joint execution of J1 and J3) which
corresponds to the schedule of Figure 2.

In the previous linear program, there are: M variables and n constraints. It can be solved in
polynomial time using for instance Khachiyan’s algorithm [31]. This is pretty much what Błazewicz
et al. [5] did to solve optimally and polynomially their scheduling problem. We first show how
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Figure 2 A solution for Example 6.

that technique can be used to solve our hard real-time scheduling problem (Section 4.3). Then,
we will show how to speedup the resolution time by defining an efficient problem construction
before calling the LP solver (Section 4.4).

4.3 Minimizing the Makespan vs. Meeting Hard Real-time Deadline of
Recurrent Tasks

The next property establishes an equivalence between the Błazewicz et al. optimal solution and
an optimal scheduler for our real-time scheduling problem thanks to the DP-Fair scheduling
theory [33].

I Theorem 7. A periodic implicit deadline rigid gang scheduling system (vi, Ci, Ti)i=1···n is feasible
⇔ the set of synchronous jobs (ui, vi)i=1···n has a minimum makespan not larger than the unity.

Proof. ⇐ Assuming the makespan of the set of synchronous jobs (ui, vi)i=1···n is not larger than
the unity we have a schedule pattern which executes each task for a duration of ui in a unit-length
interval. Using deadline partitioning fairness theory (DP-Fairness, see [33, 20, 10, 18, 21, 19])
we can schedule our original periodic task set. The main idea of that kind of schedule is the
deadline partitioning of the timeline: the time is divided in slices bounded by two successive job
deadlines [33, 20]. All tasks are assigned a local execution time which is the length of the current
slice times the task utilization ui. As basically DP-Wrap [20] we use an identical pattern (the
solution of the LP) in each time slice, i.e., the unitary pattern is stretched according to the length
of the slice. Thanks to the DP-Fair theory, we know that for each time interval [kTi, (k+ 1)Ti) the
task τi executes during uiTi = Ci time units on vi processors simultaneously. Consequently, the
periodic gang task is feasibly scheduled.
⇒ We will show the contra-positive, i.e., assuming that all schedules of the synchronous job

set have a length larger than one. Since DP-Fair is optimal for periodic implicit-deadline systems
and since the technique of Błazewicz et al. determines the minimal makespan we can conclude
that it is necessary for the schedulability of periodic implicit-deadline tasks that in each slice the
active task τi executes for ui times the slice length. Hence, slices where all tasks are active (like
the first one in the synchronous case) cannot execute ui times the slice length since the solution
of the LP is larger than one, consequently (because DP-Fair is optimal), the periodic system is not
schedulable on m unit-speed processors. J

4.4 LP implementation issues
Efficient generation of the set of all feasible allocations S (Definition 5) is the main combinatorial
problem in the linear program construction (Algorithm 1) in order to setup the linear program
that will compute the optimal schedule pattern. Even if the size of the problem is polynomially
bounded for fixed values of m, the brute force definition of the set of all feasible allocations S
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Figure 3 Search tree with nodes defined by task indexes in subsets; black nodes are feasible subsets
whereas red nodes are infeasible subsets.

requires a huge amount of time for n > 20. This stage is the bottleneck of the approach since the
linear program is solved quickly as it will be shown in the experimental section.

A simple way to implement a Brute Force generation of all subsets of tasks is to represent
every feasible allocation by an integer in which the binary encoding represents the tasks selected
in a subset. There are 2n subsets of a set with n elements, exactly as there are 2n different ways
to write numbers with n bits. Let s denote such an integer, if ith binary digit is 1 in s, then it
indicates that task τi is in the feasible allocation represented by s. With such a binary encoding,
the brute force enumeration of all feasible allocations of n tasks simply consists in counting from
1 to 2n − 1 and defining subsets from the binary encoding. Subsets corresponding to feasible
allocations are those that do not use more than m processors.

Using the same binary encoding principles for feasible allocations, we define an efficient
generation using Depth First Search with lexicographic ordering of enumerated subsets. Tasks
are sorted in non increasing order of vi. As a consequence, vertices corresponding to infeasible
allocations are efficiently pruned. A branch in the search tree is pruned if the current vertex
in the tree corresponds to subset of tasks that use more than m processors. The search tree is
illustrated in Figure 3 for three tasks: {τ1, τ2, τ3} which respectively use 3, 2 and 1 processors.
The considered platform has 3 processors. Nodes define indexes of tasks in a subset. Black nodes
are feasible subsets whereas red ones are infeasible (i.e., requires more than 3 processors). During
the search, the node {123} is not defined since {12} is already infeasible (i.e., the branch is pruned
or fathomed). Using a Depth First Search, the search tree simply consists in the list of unexplored
subsets (i.e., encoded as one integer each) and its size is upper-bounded by O(n2) subset entries.
Our Matlab implementation of this algorithm, denoted DFSLex hereafter, is limited to 64 tasks
(i.e., due to Matlab 64-bit integers). Brute Force and DFSLex methods will be compared in the
section dedicated to numerical experiments. The performance of the LP for optimally solving
Gang scheduling problems will be also presented in Section 6.

In the next section, we propose an heuristic that avoids the previous combinatorial problem.
This heuristic has a performance guarantee in terms of resource augmentation (i.e., speedup
factor).

5 Gang heuristic

This section presents a scheduling heuristic for defining the schedule pattern. As for the optimal
solution presented in the previous section, we consider a DP-Fair schedule in which the pattern
will be stretched in every block delimited by two subsequent deadlines of tasks.

The heuristic algorithm is a fixed-task priority scheduling rule that runs in O(n logn) for an
arbitrary number of processors. We provide a resource augmentation analysis to compare its
worst-case performance against the optimal method.
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5.1 Fixed-Task Priority Scheduling gang-h
[29] presents an heuristic for minimizing the makespan of preemptive parallel jobs. We shall reuse
the basis of the algorithm for defining a fixed-task priority algorithm, denoted gang-h hereafter.
As in the previous section, the algorithm is used to define the pattern of tasks to schedule in every
time slot (i.e., block) of the DP-Fair schedule. As in the optimal method, the pattern is defined as
a unit-length schedule in which utilization factors of tasks play the role of execution requirements.
For each block in the schedule, the rule is simultaneously used to:

allocate the portion of each task to processors.
sequence tasks within the block.

gang-h is a fixed-task priority scheduling rule that works as follows [29]:
1. Priorities are assigned in non-increasing order of the number of requested processors (i.e.,

non-increasing order of vi); ties are broken arbitrarily.
2. Scheduling decisions are taken every time a job is released or completed. At such event, all tasks

are preempted and the priority list is used to allocate ready tasks to the processors greedily as
feasibly while the current job can be scheduled on the remaining available processors.

The complete algorithm is described in Algorithm 2. This algorithm considers synchronous
jobs and will be used to define the pattern of jobs to be scheduled in every block of the schedule
(as in the optimal algorithm).

5.2 Optimality under resource augmentation
The scheduling rule gang-h is obviously not optimal for minimizing the pattern makespan in our
DP-Fair approach. Nevertheless, we next prove that it is as powerful as an optimal algorithm if it is
allowed to use a faster processor than the optimal algorithm executed upon a unit-speed processor.
Such a performance guarantee quantifies the price being paid for using gang-h. Precisely, we
establish that the speedup factor is bounded by 2− 1/m. We first recall the speedup factor metric.

I Definition 8. (Speedup factor) A scheduling algorithm A has a speedup factor f , f ≥ 1, if it
can schedule any task set that can be scheduled on a given platform by an optimal algorithm,
provided that A is able to schedule the same task set upon a platform in which each processor is
f times as fast as the processors available to the optimal algorithm.

For proving the resource augmentation performance guarantee for our real-time scheduling
problem, we reuse the following results that establish the competitive ratio for the makespan
minimization problem.

I Lemma 9. (Theorem 3.1 in [29]) Let wL be the makespan computed by gang-h and w0 be the
optimal makespan, then:

wL ≤ (2− 1
m

)w0 (1)

The approximation bound of (2− 1/m) can be easily proved to be tight by using the same
task set that has been proposed in [27]: m2 −m + 1 jobs. This job set is defined by (m2 −m)
unit-length jobs and one job of length m. Every task uses exactly one processor. Since ties
are broken arbitrarily, assume that gang-h assigns the lowest priority to the job of length m.
Consequently, gang-h defines a schedule that first allocates all unit-length jobs to the m processors
and lastly the last job. This schedule is of length m − 1 + m = 2m − 1, whereas the optimal
makespan ism by allocating the long job to a dedicated processor and by scheduling the unit-length
jobs on m− 1 remaining processors.
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Algorithm 2: gang-h (synchronous jobs).
input :

n jobs Jj(uj , vj), 1 ≤ j ≤ n ;
m: number of processors;

output :
Slice lengths S(s), s = 1, 2, . . .;
Scheduled jobs j in slice s: Sched(s,j) ∈ {0, 1}, 1 ≤ j ≤ n ;

List=Sort(J1, . . . , Jn) ; /* Jobs are sorted in non increasing order of vj */
s = 0 ; /* Number of slices */
rj := uj ∀j = 1 · · ·n ; /* Job remaining execution times rj */
while ∃j, rj > 0, 1 ≤ j ≤ n do

/* create a new slice */
s = s+ 1 ; /* Number of slices */
K = m ; /* Remaining processors */
` =∞ ; /* Slice length upper bound */
Sched(s,j)=0 1 ≤ j ≤ n ; /* Empty Slice */
foreach j ∈ List do

/* For each job j in priority List */
if vj ≤ K then

/* the job j is schedulable in current slice */
Sched(s,j)=1;
` = min(`, rj); /* update slice length */
K = K − vj ; /* remaining processors */

end
end
S(s)=l; /* Slice length */
for j = 1 . . . n do

/* Update remaining execution times */
if Sched(s, j) then

rj = rj − `;
end

end
end

The following lemma states that gang-h always produces the same distribution of tasks among
identical processors whatever the platform speed.

I Lemma 10. Let P be the schedule pattern computed by gang-h on m unit-speed processors and
w be its makespan, then gang-h produces a pattern P ′ of length w/s if a platform is of speed s > 0.

Proof. All jobs in a pattern are simultaneously available at the beginning of the schedule. Thus,
scheduling decisions are only taken by gang-h when a job is completed. Using m speed-s processors
will stretch execution times to the value Ci/s for every task τi. Hence, the pattern is of length
w/s. J

I Theorem 11. gang-h has a speedup factor not exceeding (2− 1
m ).

Proof. Consider a task set τ on a platform Π defined by m unit-speed processors. Assume that τ
is feasible upon Π and let w0 be the length of the pattern computed by an optimal algorithm, then
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by Lemma 9, gang-h produces a pattern of length not exceeding (2− 1
m )w0 on Π. Now consider a

platform Π′ where each processor is of speed s = 2− 1
m . The task set corresponding to τ , denoted

τ ′, has an execution requirement defined by Ci/s for every tasks. By Lemma 10, the length of
the schedule defined by gang-h upon Π′ is not exceeding (2− 1

m )w0/s = w0. Hence, the pattern
defined by gang-h is feasible. J

Thus, a processor speedup of 2− 1/m is an upper bound on the price being paid for using the
presented gang heuristic for defining the schedule pattern to be stretched in every block of the
DP-Fair schedule.

5.3 Extending the scope of the results
For the sake of simplicity we considered implicit-deadline periodic tasks and we assumed that
Ci is the exact duration of the task τi. In this section we discuss straightforward extensions
(constrained-deadlines, asynchronous systems and Ci as the worst-case execution requirement)
and possible extensions which are left as future work (sporadic and arbitrary deadlines).

Constrained-deadlines. We considered in this work implicit-deadline rigid gang parallel tasks.
Constrained-deadline tasks are characterized by an additional parameters Di ≤ Ti the relative
deadline. Each constrained-deadline task τi

def= (vi, Ci, Ti, Di) will generate an infinite number of
jobs, where the kth job of task τi is ((k− 1) ·Ti, vi, Ci, (k− 1) ·Ti +Di). DP-Fair techniques can be
obviously extended for constrained-deadlines by considering the task density δi

def= Ci/Di instead
of task utilization. DP-Fair is not longer optimal for constrained-deadline and sequential tasks,
but if the makespan of gang jobs {(δi, vi) | i = 1, . . . , n} is not larger than the unity our method
schedule feasibly constrained-deadline gang tasks. Funk et al. extended for instance DP-Wrap for
constrained- deadlines [20].

Asynchronous periodic tasks. Asynchronous periodic tasks are characterized by an additional
parameters Oi the release time of the first job of τi. Each task τi

def= (vi, Ci, Ti, Oi) will generate
an infinite number of jobs, where the kth job of task τi is (Oi + (k − 1) · Ti, vi, Ci, Oi + k · Ti).
Once again the technique can be used for that asynchronous system: we define the pattern for
the synchronous job scenario and we apply the deadline partitioning method and stretching
accordingly that pattern.

Early completion. We assumed in this work that Ci is the exact duration of the task τi. Mean-
while, from applicative perspective this is incorrect, at design time we determine the worst-case
execution time (Ci is the WCET) for each task. At run-time the actual duration of any job of
τi can be smaller than Ci. Again DP-Fair techniques can be obviously extended for that case, a
task might not use all the capacity reserved for it, but because of scheduling anomalies reported
Section 3.3 we have to respect the stretched pattern, in other words it is forbidden to schedule
another task earlier.

Sporadic tasks. Sporadic tasks are quite similar to periodic tasks, the only difference being that
the period of a sporadic task denotes the minimum inter-arrival time instead of the exact one.
While Funk et al. show that handle arrivals within a time slice is fairly straightforward (see [20],
Section 6.) for sequential tasks we consider that extension to parallel gang tasks is no direct and
that extension is left as future work.
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6 Numerical experiments

Intensive numerical experiments have been performed using Matlab. The used LP solver is an
interior point method (i.e., solver linprog included in Matlab). Source codes of all algorithms and
experimental results are available at the project page4 including a wiki page for detailing the file
organization. We next detail the task set synthesis and the numerical results.

6.1 Task set synthesis
Input parameters for the task set synthesis are m, i.e., the number of processors in the platform,
its total utilization U , and the number of tasks n. Stafford’s algorithm is used for generating
utilization factors ui of gang tasks τ1, . . . τn to meet a total utilization of m×U . As shown in [17],
the method is suitable for task set synthesis for multiprocessor systems. The utilization factors
of tasks are picked up by Stafford’s algorithm in the interval [0.02,m]. The number of used
processors for every gang task is generated using uniformly distributed pseudo random integers
in the interval [1,m). We do not allow a task to simultaneously use m processors since such a
situation is not interesting from scheduling perspectives. Precisely, such tasks can be removed
from the optimization problem in order to compute an optimal pattern, and added afterwards in
the previously computed optimal pattern.

In DP-Fair scheduling, task individual periods and execution requirements are not useful since
between two subsequent deadlines, dj and dj+1, the execution requirement to be scheduled is
exactly (dj+1 − dj)× ui for every task τi, 1 ≤ i ≤ n. Furthermore, the presented algorithms build
up the pattern that will be stretched in every block in the DP-Fair schedule. The length of the
interval is basically set to one hundred to avoid small decimal numbers that can lead to numerical
problems while using a LP solver.

6.2 LP-based method evaluation
As previously mentioned, the optimal LP-based algorithm must handle two different combina-
torial problems: the feasible subsets construction stage and the optimization stage. From the
computational time point of view, the optimization stage is quite fast in comparison with the
construction of all feasible subsets (i.e., setting up the matrix of constraints).

Figure 4 presents the computation times of Brute Force v.s. Depth First Search with Lex-
icographic order (DFSLex) for this problem construction for m = 16. In the following plots,
every point corresponds to 1000 runs (i.e., simulation with replication factor equal to 1000). As
commonly observed, Brute Force is still manageable until n = 20, but cannot be used beyond
whereas the DFSLex algorithm runs quite efficiently. The drawback of the DFSLex algorithm
is that it is limited to 64 gang tasks due to the binary encoding of feasible subsets as 64-bit
integers. The DFSLex results for larger task sets are depicted in Figure 5. We also implement a
similar version of that algorithm relaxing the 64-bit constraint by using variable integer arithmetic
routines but it runs quite slowly in our Matlab implementation (e.g., it is as slow as the Brute
Force algorithm for small task sets). All these implementations are available in the project page.

Figure 6 depicts the resolution times of the optimal algorithm (with both stages) for several
numbers of processors and for global utilization equal to 50% and 90%. As depicted, the utilization
factor has a moderate influence on average resolution times. Problems become harder to solve when
first, the number of gang tasks increases, and second, when the number of processors increases;

4 http://www.lias-lab.fr/forge/projects/multiprocessorgangscheduling
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Figure 4 Brute Force v.s Depth First Search enumeration of feasible allocations in the linear program
OPT.
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Figure 5 Depth First Search enumeration of feasible allocations for larger task sets.

but require few seconds in the average. In both cases, the feasible subsets construction requires
an important amount of computations when the problem size increases.

6.3 Acceptance ratio

We compare the optimal algorithm (OPT) and the heuristic (gang-h) for computing a schedule
pattern according to the average acceptance ratio for a platform with 16 processors and varying
utilization factors. The used schedulability tests are Theorem 7 for the optimal algorithm and
its sufficient version for the heuristic (i.e., if (gang-h) generates a schedule pattern of length not
larger that 1, then the task set is schedulable). Figure 7 depicts the results for 20 and 40 tasks,
respectively. The replication factor during the simulation is set to 10000 (i.e., every point in
graphs is the average of 10000 results).

For the optimal algorithm, when the number of tasks increases in the experiment for m = 16
processors, then every task has relatively smaller individual utilization due to the task set synthesis
method. As a consequence, there are more feasible subsets and consequently more feasible
schedules. As depicted in Figure 7, the acceptance ratio for the optimal algorithm doubles for
U = 0.95 when the number of tasks doubles. Such a benefit is not observed for the gang heuristic
that achieves quite poor results when the total utilization becomes high.
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Figure 6 Resolution times of the LP-based optimal algorithm.

6.4 Average error
We also compare the optimal and heuristic algorithms according to the average error in comparison
with the length of the schedule pattern. Let OPT be the length of the pattern computed
by the optimal algorithm and UB be the corresponding upper bound computed by the gang
heuristic, the error is defined by: err = (UB− OPT)/OPT. Due to Theorem 11, we verify that:
OPT ≤ UB ≤ (2− 1

m )OPT. Hence, the error is bounded by err ≤ (1− 1/m).
We perform comparison of algorithms for several numbers of tasks and processors that are

depicted in Figure 8. As for the acceptance ratio, simulations for computing the average error
have been replicated 10000 times. In these graphs, the y-axis is delimited by the worst-case
error of (1− 1/m). First, the average error is not sensitive to the utilization factor but only to
the number of tasks. Precisely, the average ratio compare the schedule lengths of the patterns
computed by OPT and Gang-h. Varying utilization factors of synthetic task sets will define quite
similar pattern shapes that lead to quite similar average error. Second, when the number of tasks
increases, the average error also increases and but is still under half of the worst-case error.

7 Conclusion

In this paper we considered the preemptive scheduling of implicit-deadline periodic gang task
systems upon identical multiprocessors. We proposed two algorithms which define static patterns
that are stretched at run-time in a DP-Fair way. The first one is optimal and runs in polynomial
time for a fixed number of processors; the second one is a sub-optimal fixed-priority rule but it is
competitive under resource augmentation analysis. Precisely, the speedup factor of the heuristic is
bounded by (2− 1

m ). Our numerical experiments show that the optimal pattern can be computed
efficiently up to 60 tasks and ensures a high acceptance ratio when the number of tasks is not too
small. For larger systems (m >> 16 or n > 64), computing an optimal pattern becomes a hard
combinatorial problems. In these cases as for most hard combinatorial problems, we think that
heuristics (e.g., gang-h) must be used rather than an optimal algorithm. Concerning the proposed
gang heuristic, the experiments show that the acceptance ratio decreases quasi-linearly according
to the platform utilization factor, but the average error with respect to the optimal pattern length
is less than 40%.
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(a) Acceptance ratio for n = 20 (b) Acceptance ratio for n = 40

Figure 7 Acceptance ratio of the LP-based optimal algorithm and Gang Heuristic.

Future Work. Future work will concern the definition of a pattern schedule that aims to reduce
the number of preemptions. This latter problem seems to be hard to cope with but still significant
for allowing practical applications of real-time scheduling methods. As we said in the discussion
Section 5.3 the case of sporadic task is left as future work.
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Abstract
Real-time systems are reactive computer systems
that must produce their reaction to a stimulus
within given time bounds. A vital verification re-
quirement is to estimate the Worst-Case Execution
Time (WCET) of programs. These estimates are
then used to predict the timing behavior of the over-
all system. The execution time of a program heavily
depends on the underlying hardware, among which
cache has the biggest influence. Analyzing cache
behavior is very challenging due to the versatile

cache features and complex execution environment.
This article provides a survey on static cache anal-
ysis for real-time systems. We first present the
challenges and static analysis techniques for inde-
pendent programs with respect to different cache
features. Then, the discussion is extended to cache
analysis in complex execution environment, followed
by a survey of existing tools based on static tech-
niques for cache analysis. An outlook for future
research is provided at last.
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1 Introduction

Real-time embedded systems not only exist in industry domains, such as automotive electronics,
avionics, telecommunication, medical systems, etc., but are deeply immersed in our everyday life
due to the rapid progress of mobile and embedded technology. A real-time system should not only
provide logically correct functionality, but moreover, it must meet timing requirements as stated
in the system specification [21]. In hard real-time systems, such as aerospace systems, a timing
error may result in catastrophic consequences. A major task in real-time system verification is to
analyze the timing behavior of the system before deployment in order to guarantee that no timing
violation occurs at run time.

A real-time system is typically composed of many tasks that cooperate to provide the required
functionality. To verify the satisfaction of the timing requirements of the system, one must first
know how long each task (or program) may execute. However, this is not an easy problem, because
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Figure 1 The distribution of execution times of a program.

the execution time of a program may vary widely as a result of many complex factors, such as
data inputs, hardware features, execution contexts, etc. Among all the possible execution times
(represented by the yellow range in Figure 1), the minimum and the maximum are called the
Best-Case Execution Time (BCET) and the Worst-Case Execution Time (WCET), respectively.
The main objective of program-level timing analysis is to estimate the WCET [130], which is then
used in system-level timing analysis, such as a schedulability analysis [34, 115].

The common practice in industry has been, and partly still is, to measure the end-to-end
execution latency of a task [127], by sampling its executions in different scenarios (depicted as the
blue vertical lines in Figure 1). The maximal observed execution time increased by a safety margin
is used as the WCET estimate of the measured program. This approach is called dynamic timing
analysis in the real-time community. However, the worst case is not guaranteed to be covered by
measurements. Thus, the observed WCET is in general an underestimation of the actual WCET.
Analytical methods that cover all possible execution scenarios (without executing the analyzed
program) and provide safe upper bounds on the WCET are desirable for hard real-time systems.
They are usually called static timing analysis.

Unfortunately, such upper bounds cannot be easily estimated due to both the complexity of
the program itself and the uncertainty from the execution environment. The program may execute
different control flow paths depending on input, and these different paths may need different
execution times. The execution platform may exhibit a dependence of the execution time of
instructions on the execution state of the platform. This execution state consists of the occupancy
of the platform resources. For example, an instruction may exhibit very different execution
times depending on whether instruction or operand fetches hit or miss the cache. The execution
environment, finally, may interfere with a program’s execution by preempting its execution and
thereby increasing the program’s response time. Hence, these three factors all have an impact on
the program’s execution time.

Exhaustive exploration of the combined space of control flow paths and paths through the
architectural state space is infeasible due to the size of this space. A conservative abstraction
of the execution platform is typically used in static timing analysis to increase efficiency. This
abstraction may adversely lead to an overestimated WCET. Efforts have to be exerted to reduce
the overestimation as much as possible, to avoid the need to over-provision system resources.

All approaches to static timing analysis compute bounds on the execution times of a program
starting with bounds on the execution times of individual instructions occurring at points in
the program. Their execution times typically depend on the execution state of the platform.
Depending on this state, an instruction’s execution may suffer from timing accidents, which
may increase the execution time by their associated timing penalties. For example, a memory
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access may suffer from a cache miss, which increases its execution time by the cache miss penalty.
The actual execution state is the result of the execution history. Different control flow paths
through the program, in general, result in different execution states and may thus exhibit different
execution times. A classification of an occurrence of a memory access as a cache hit or a cache
miss must hold for all executions of this memory access.1

Static timing analyses determine an invariant for each program point that describes all possible
execution states when control reaches this program point. Such an invariant allows excluding
many timing accidents, such as cache misses, pipeline stalls, etc., and safely allow subtracting the
associated timing penalties from the worst-case upper bound on the execution times.

Among the hardware features to consider in timing analysis, caches have the biggest influence
on execution time [59]. A precise analysis of the cache behavior does therefore have a great impact
on the precision of the overall WCET estimation.

Cache is a small on-chip memory to bridge the speed gap between the processing unit and the
much slower off-chip memory by storing a portion of the content from main memory. If a data
request hits in the cache, it takes only very few processor cycles to deliver the data from the cache
to the processing unit; otherwise, in the case of a miss, the CPU has to fetch the data from main
memory, which nowadays consumes hundreds of processor cycles.

The role of cache analysis for WCET estimation is to predict the behavior of a program on
the platform’s caches. For example, cache analysis may provide a safe bound on the number of
cache hits or misses when a program executes on some given platform; it may also categorize the
accesses to memory blocks in programs as definite hits or misses.

In [130], WCET analysis techniques and tools are surveyed. Due to its importance in timing
analysis and its complexity, cache analysis alone deserves an in-depth discussion.

The rest of the article is organized as follows. First, we give background knowledge on WCET
estimation and caches in Sec. 2. Then, we present the problems and solutions for the intensively
researched LRU caches in Sec. 3. A survey of the results on non-LRU caches is provided in
Sec. 4. In Sec. 5, the discussions are extended to cache analysis in multi-tasking and multi-core
environments where programs interfere with each other on shared caches. A summary of WCET
analysis tools based on static cache analysis is given in Sec. 6. We present an outlook for future
research at last.

2 Background Knowledge

We first present an established static WCET analysis framework to exhibit its main work flow
and where cache analysis steps in. Then, the basic concepts on cache organization, behavior and
analysis are introduced.

2.1 A Classical WCET Analysis Framework
The objective of static timing analysis is to compute safe lower and upper bounds on the execution
times of programs. These are also called BCET and WCET estimates, respectively. The WCET is
observed in a particular execution scenario with some execution context, such as data input and
initial hardware state. Theoretically, the WCET is not computable; otherwise, one could solve the
halting problem. In this article, we assume that all real-time programs terminate so that their
WCET can be computed.

1 Note that this is a slight simplification to ease understanding. Later on we will explain why it may make
sense to partition sets of memory accesses by contexts. The distinction between the occurrence of a memory
access or an instruction and one, several, or all of their executions is of utmost importance.
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Figure 2 The separated path and cache analyses framework for WCET estimation.

Most static analyses are performed on the binary code rather than the source code of the
program, because the two need not have the same control flow due to compiler optimizations, and
the source code does not determine the precise location of instructions and program variables in
memory, which are needed for instruction- and data-cache analysis.

A naïve, straightforward analysis would enumerate all possible executions to find the largest
execution time. However, this method does not scale. Consider a loop with a conditional branch
inside. If we do not know whether or not the branch is taken in each iteration, the number of
program paths to be explored is exponential with respect to the number of loop iterations. To
tackle the complexity, the state-of-the-art analysis techniques adopt the framework in Figure 2.

The first step is to reconstruct the Control Flow Graph (CFG) of the program. A CFG is
a directed graph, with each vertex representing an instruction and each edge representing the
control flow. We say there is a program point right before each vertex in the following discussion.
A CFG typically has a single entry and a single exit corresponding to the start and the end of
the program. The analysis is then conducted on the CFG. In some work [93], WCET analysis is
conducted in a modular way on program functions to reduce analysis overhead.

This step is followed by a Value Analysis, which computes enclosing intervals for all potential
values of registers and local variables and also determines loop bounds. This is a more or less
standard Interval Analysis as invented by P. and R. Cousot [30]. The next step is to compute an
upper bound on the execution time of each instruction (Ci in Equation 1), which heavily depends
on the underlying hardware features, such as pipelines [69], branch predictors [18, 28] and caches.
Cache analysis is an important part of this step, which is often referred to as micro-architectural
analysis or low-level analysis.

With the above results, the final task is to find the execution path that exhibits the longest
execution time, typically referred to as WCET calculation. An established approach is the Implicit
Path Enumeration Technique (IPET) [71], the main idea of which is to transform the problem of
searching the worst-case execution path into searching the execution counts for each instruction
such that the execution time is the largest. This can be formally modeled as an integer linear
programming (ILP) problem, in which the execution time of a program is represented by the sum
of execution latencies of all instructions. Thus, the WCET can be obtained by maximizing the
execution time (the objective function of the ILP problem):

WCET = max

N∑
i=1

Ci ×Xi (1)
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In Equation (1), N refers to the total number of instructions, which is a constant obtained
from the CFG; Ci is the WCET bound for the ith instruction, which has been computed in the
third step; the variable Xi stands for the execution count of the ith instruction. Xi is subject to
constraints induced by the program structure. In the following, the variable di_j captures how
often the edge from instruction i to instruction j is taken. Then, Xi must be equal to both the
total execution counts of all its incoming edges and those of all outgoing edges2, which can be
expressed as follows.

∀i,Xi =
∑

all incoming edges
d∗_i =

∑
all outgoing edges

di_∗ (2)

Other program behavior can be constrained as well. For example, the loop iterations should
be bounded in advance either manually or by automatic analysis [49]. They can be modeled as
linear functions relating the execution counts of the loop body and the loop entry. All available
constraints are expressed in one ILP problem, whose maximal solution bounds the WCET from
above. To improve analysis efficiency, sequences of instructions (with no branch along the path)
are combined into basic blocks and represented by a single vertex in the CFG.

The key feature of this framework is the separation of micro-architectural analysis from WCET
calculation. In general, this approach is pessimistic. However, the sacrifice of precision is rewarded
by a significant improvement in analysis efficiency.

2.2 Cache Organization, Behavior and Analysis
Cache is a small, high-speed memory residing on the processor chip (shown in Figure 3) that
stores a copy of a portion of the instructions and/or data in main memory. Each access to the
cache results in either a hit or a miss. One can distinguish two types of cache misses. A cold miss
occurs when a data element, absent from the cache, is loaded for the first time. If the cache is full
and a cache miss occurs, a data element needs to be evicted. A replacement miss occurs when an
evicted element is reused. Cache hits are the result of memory reuse.

2.2.1 Cache Organization and Behavior
In most processors, a cache line (the unit for cache access) contains multiple data elements. An
access to one element causes the whole cache line to be loaded into the cache. As a result, a
following access to another element of the same cache line also results in a cache hit. Besides,
consecutive accesses to the same data element result in cache hits as well, an example of which is
the execution of a loop. The above two types of reuses are commonly referred to as spatial reuse
and temporal reuse, respectively, the pervasiveness of which is expressed by the well-known locality
principle.

2 For either the entry or the exit instruction, one can simply constraint the execution count to be exactly 1.
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Figure 4 Common cache replacement policies.

Some processors are equipped with two or more levels of caches, as a fine-grained trade-off
between cost and speed. The lowest level3 (namely L1 cache) is usually divided into a private
instruction cache and a private data cache, each of which is typically no larger than 32 KB and
has an access latency of 1− 2 cycles. If a memory access misses in the L1 cache, the L2 cache is
queried. The capacity of L2 caches may range from hundreds of KB to several MB, with an access
latency of around 10 cycles. In some high performance multi-core processors, an L3 cache may
also be deployed to further expand cache capacity. Misses in the last level cache trigger accesses to
the main memory via the off-chip memory bus, causing a delay in the order of hundreds of cycles.

Like other storage devices, addressing is an important feature of the cache design. Some
processors adopt the set-associative organization, in which the address space is partitioned into
independent sets. Every set has a fixed number of ways, each of which refers to a single cache
line in every cache set. The total number of ways within a cache set is called associativity. To
load a memory block, the processor first determines which cache set the block maps to. Then a
lookup into the target set is performed for a free cache way. If all the cache ways are occupied, a
replacement policy determines which old block to evict to make room for the new block. In this
article, we consider four common policies illustrated in Figure 4, assuming a 4-way cache set.

The least-recently-used (LRU) policy replaces the block that has been used least recently. The
illustration of LRU in Figure 4(a) is a first abstraction from the actual hardware implementation.
Each cache way in an LRU cache set is associated with a fixed age, which is received by the
block in the corresponding cache way. Figure 4(a) illustrates how the positions of the blocks are
reordered upon a cache hit and a cache miss.

However, most commercial processors do not employ LRU, because it requires complex hardware
implementation and further leads to higher power consumption. Non-LRU replacement policies,
such as First-In-First-Out (FIFO), Most-Recently-Used (MRU) and Pseudo-LRU (PLRU), are
adopted instead since they are simple to implement and still have similar average performance as
LRU [58].

Figure 4(b) shows how the FIFO replacement policy works. A cache hit does not change the
cache state. Upon a cache miss, all the memory blocks shift one position downwards, evicting the
block in the bottom cache way; then the new block is installed in the top-most cache way. Again,
this representation is an abstraction from the actual hardware implementation, which does not

3 A cache level is lower if it is closer to the processing unit; the highest level is typically called the last level.
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shift memory blocks from one cache line to another, but rather maintains a modulo-4 counter to
determine the next block to replace.

The MRU cache (shown in Figure 4(c)) maintains a bit for each cache way (called MRU-bit)
to approximate the recency of access. Bit 1 means the block was visited recently. Upon a hit, the
MRU-bit of the hit block is set to 1. Upon a miss, the top-most way with MRU-bit 0 is taken by
the new block, and its MRU-bit is set to 1. Eventually there is only one cache way with MRU-bit
0. When this way is visited—in the example the access to c—the MRU-bit is turned to 1, and all
the other MRU-bits are set to 0. This is called a global flip.

PLRU is a tree-based approximation of LRU (Figure 4(d)). It arranges the cache ways at
the leaves of a binary tree with k−1 bits, where k is the cache associativity. Bit 0 and 1 on the
branches indicate the left and the right subtrees, respectively. Following the bits downwards from
the root, the cache line to be replaced or refilled can be found. After an access (either hit or miss)
to a cache way, all tree bits along the path from it to the root are set to point away. It is possible
that a cache set contains invalid cache lines. We assume the tree-fill policy, by which the line to
be filled or replaced is always determined by the tree bits.

In most architectures, cache sets are completely independent of each other. This makes the
independent analysis of programs’ behavior on different cache sets possible. Throughout this
article, we focus on the cache behavior in one set, and may use cache to refer to a cache set to
simplify the presentation when appropriate.

2.2.2 Cache Analysis
The objective of cache analysis is to statically determine the cache behavior of a program. Its
results can be used for performance analysis and optimization. The results may be of several
types: one is the classification of individual memory accesses in a program as hits or misses. Such
a classification of memory accesses can be used in a cooperating pipeline analysis to determine
whether the pipeline may have to stall on an instruction or operand fetch. Another is a bound
on the number of cache loads in a segment of the program. This allows, under certain conditions,
just adding an accumulated penalty to the execution-time bound for memory accesses that could
be neither classified as cache hits or misses. The former type of cache analysis could be called a
classifying cache analysis, one instance of the latter, relevant for practice, is known as persistence
analysis.

A typical use of the results of a cache analysis in real-time systems is estimating the BCET and
WCET of programs. The bigger the percentage of hits that will happen during execution it can
predict, the tighter the WCET estimation is. On the other hand, predicting a higher percentage
of actual misses leads to tighter BCET estimation.

The designer of a cache analysis faces several questions: the first one is whether the analysis
is to be a classifying or a persistence analysis. The second question is by which method cache
behavior should be analyzed. Associated with the second question are the questions of the
granularity of the analysis and the representation of the cache behavior properties.

Let us illustrate this rather abstract discussion with the example of classifying cache analyses.
The most precise analysis would predict each executed memory access to be either a hit or a
miss—here it is vital to make the difference between an executed memory access and the occurrence
of an instruction involving a memory access in a program. We have assumed that all real-time
programs terminate. Hence, any program would execute only finitely many memory accesses, so
that such an analysis would in principle be possible. However, the corresponding analysis would, in
general, not scale. On the other end are cache analyses that would classify occurrences of memory
accesses as always hit or always miss, where always means for all executions of this occurrence of
the memory access. However, experience has shown that the actual execution times of memory
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accesses associated with one occurrence of a memory access may vary widely. This means that
just taking their upper bounds may largely overestimate the memory-access costs. Precise and
efficient analyses should attempt to classify subsets of executed memory accesses corresponding to
one occurrence, such that the accesses in the subsets have some homogeneous timing behavior.
The subsets would be characterized through control flow criteria, in the following called contexts.
The most important examples for contexts are different iterations of loops.

To approach the second question raised above, one needs to identify the information about
cache contents—in the following mostly called concrete cache states (CCS)—to be computed by a
classifying cache analysis. This information would provide answers to the question, are all memory
accesses belonging to this occurrence (in this context) hits or are they all misses? One solution
would be to collect at each program point the set S of all concrete cache states that are possible
when program control reaches this program point (in this context). Such an analysis would again
not scale. Instead, one can represent sets of concrete cache states by abstract cache states (ACS).
Each abstract cache state (compactly) represents a set of concrete cache states. As we will see
later, two types of such abstract cache states are of interest. Consider the set S of all concrete
cache states that are possible at a program point. An abstract Must cache state will represent the
information: which memory blocks will be in each of the possible concrete cache states in S. This
is obtained by some kind of intersection applied to the elements in S. Likewise, an abstract May
cache state will represent the information: which memory blocks may be in one of the concrete
cache states in S. This is obtained by some kind of union applied to the elements in S.

3 Analysis of LRU Caches

For decades, a majority of research on cache analysis has focused on caches with LRU replacement
strategy. In this section, we survey the main analysis techniques with an emphasis on the approach
based on Abstract Interpretation (AI) [38]. This technique is realized in the aiT tool of AbsInt
[57], which is widely used in industry. Since programs spend most of their execution time in loops,
a sub-section is dedicated to the analysis of the cache behavior in loops. The big picture on LRU
caches is completed with further discussions on data cache and multi-level cache analyses.

3.1 Abstract-Interpretation-Based Approaches
The first cache analysis based on abstract interpretation (AI) was proposed by Ferdinand and
Wilhelm in the 1990s [1, 38]. The overall approach works in two phases:
1. An AI-based cache analysis computes abstract cache states at all program points as part of a

fixed-point solution;
2. These abstract cache states are queried in order to classify memory accesses.

3.1.1 A Short Introduction to Abstract Interpretation
Abstract interpretation [30] is a static program analysis method based on a semantics of the
considered programming language. Instead of executing the program on the concrete domain of
values, it executes an abstracted version of the program on an abstract domain of descriptions of
values. In the case of cache analysis, the program abstraction only describes the memory-access
behavior of the program, i.e., it performs all memory accesses that the program would execute.
This abstracted program works on abstract cache states, which are descriptions of sets of concrete
cache states. One abstract cache state is associated with each program point. Whenever the
analysis encounters a memory access, it updates the abstract cache state in a way induced by the
update that the processor would perform on the concrete cache states. Whenever the control flow
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Figure 5 An example to show the v relation w.r.t. the Must domain.

of the program merges, e.g. at the end of a conditional or at the header of a loop, it combines the
incoming abstract cache states in a sound way.

Gary Kildall [64] has recognized that the abstract domains of typical data-flow analyses are
lattices, i.e., partially ordered sets where all subsets have least upper bounds. The partial order
reflects the relative information content of two lattice elements. By convention, elements lower in
the lattice represent more information than information higher in the lattice, i.e., an element a
below or equal to an element b in the lattice, a v b, contains no worse information than b. The
domain of abstract cache states together with a partial order reflecting the amount of knowledge
about cache contents, in this sense, also forms a lattice.

Consider two abstract Must cache states â and b̂ (as shown in Figure 5). Abstract cache state
â represents just one concrete cache state, containing memory blocks {u, x, y, z} with the ages 1,
2, 3, 4. Abstract cache state b̂ represents the set of concrete cache states with memory block u
having age 1, x having age at most 3, z having age at most 4, and possibly one more (unknown)
block at age 2, 3, or 4. â v b̂ means that all the concrete cache states represented by â are also
represented by b̂. In particular, this implies that all the memory blocks known to be contained
in the concrete cache states described by b̂, in the example above u, x, z, are also known to be
contained in the concrete cache states described by â. Furthermore, â additionally tells us that,
(1) block y is guaranteed to be in the cache while b̂ does not; (2) the age upper bound estimated
for block x in â is smaller than that in b̂. Clearly, the abstract cache state â contains better
information than b̂. As stated above, at control flow merge points cache analysis must combine
the incoming information in a sound way. The operation applied to the incoming abstract cache
states is the least upper bound, t, of the lattice. This is shown in Figure 6. As said above and
made more precise later, it is some form of intersection. It determines (the best) safe information
holding for all incoming paths.

The lowest element in the lattice of abstract cache states, ⊥, called bottom, describes the
empty set of concrete cache states. It is the initial analysis information at all program points but
program entry. If we do not have any information about the cache contents at program entry, the
highest lattice element, >, called top, is used as initial analysis information. It describes the set of
all concrete cache states, and thus the absence of information about cache contents.

The update functions are, in general, monotone, so that information, once computed, is not
lost again. A fixed-point iteration over the control flow graph of the program is guaranteed to
terminate and deliver the least fixed point as solution. Essential for termination is the finiteness
of the lattice.

Let us summarize this short introduction to AI by listing the main ingredients of a particular
abstract interpretation. The designer needs to choose or define an abstract domain, a lattice of
abstract values, which are descriptions of (sets of) concrete values. The partial order defines the
relative information content of two lattice elements. The least upper bound is the operation to join
abstract values flowing to a program node through different control flow graph edges. Abstract
update functions for an instruction reflect the instruction’s effect on the incoming abstract values.
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Table 1 Cache Hit/Miss Classification.

Classification Cache Access Behaviors Described Analysis
Always Hit (AH) Block is guaranteed to be in the cache upon each memory access Must
Always Miss (AM) Block is guaranteed not to be in the cache upon each memory access May
Not Classified (NC) Cannot be classified by any of the above classifications /

{ a } {  } { c, f } { d }

{ c } { e } { a } { d }

{  } {  } { a, c } { d }

Set intersection + Maximal ageAge 1 2 3 4

ĉ

c2
^

c1
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Figure 6 An example to demonstrate the Must join function.

3.1.2 Classification of Memory Accesses
Querying an abstract cache state, resulted from a cache analysis, for an accessed memory block
may yield qualitative properties as listed in Table 1. To determine whether the memory access to
m is always hit (AH), one simply checks the existence of m in the abstract Must cache reaching its
program point. Similarly, to determine whether the memory access to m is always miss (AM), it
suffices to know that m is not in the abstract may cache reaching its program point. If a memory
access can be neither classified as AH nor as AM, it is classified as NC. An NC classification can
have two reasons: (1) some of the executions of a memory access hit in the cache and others miss
in the cache, or (2) the analysis method overapproximates the set of concrete cache states and
thereby fails to deliver the correct classification. Research results show that these properties are
able to cover most access behaviors for LRU caches [38]. The classifications can then be expressed
as linear constraints on the execution cost of each instruction (basically each instruction generates
a single memory access) and later integrated into a WCET estimation. In architectures without
timing anomalies [22, 106], if the classification of a memory access is NC, it is safe to treat it as
AM. The properties AH and AM in Table 1 are explored by independent analyses, which are now
described in detail.

3.1.3 Must Analysis
The objective of a Must analysis is to compute a Must-ACS at each program point, which represents
the common cache contents in all possible executions leading to this program point. An age is
associated with each memory block in the Must-ACS, which is an upper bound of its ages in
all CCS. We use a graphical representation to show a Must-ACS, in which blocks are grouped
according to their ages, e.g., in Figure 6. The set of CCS represented by a given Must-ACS is
formally defined by the concretization function below, where c and ĉ denote concrete and abstract
cache states, respectively, and age(c,m) refers to m’s age in cache state c (applies to both concrete
and abstract states).

concMust(ĉ) = {c | ∀m ∈ ĉ : m ∈ c ∧ age(c,m) ≤ age(ĉ,m)} (3)

The Must-ACS at the program entry is initialized with > representing all concrete cache
states if the initial cache content is unknown; all other nodes are initialized with ⊥ representing
the empty set of concrete cache states. A fixed-point computation is employed to compute the
Must-ACS at each program point, during which two main operations over the Must-ACS are
involved.
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Figure 7 An example to demonstrate the Must update function.

A join function combines several Must-ACS into a single Must-ACS when the control flow
merges. The resulting Must-ACS takes the intersection of the sets of blocks in all the incoming
states and assigns to each block its maximal age from the incoming states, as shown in Figure 6.
An update function Û(ĉ, x) defines how an abstract state ĉ is changed due to an access to memory
block x, specifically, how the age of each block in the ACS is updated. Figure 7 shows an example.
A correct Must update function guarantees that the age of each block in the computed ACS is a
safe age upper bound for all possible represented CCS. For example in Figure 7, the age of d in ĉ
implies that there could be a CCS represented by ĉ, in which d has an age of 4, such as c2. By
loading x, we can no longer guarantee that d still stays in any resulting CCS. Thus, d has to be
removed from the computed abstract state ĉ′.

3.1.4 May Analysis
May analysis computes a May-ACS at each program point, which represents all potentially cached
contents in all possible executions leading to this program point. If block m does not exist in the
May-ACS at the reaching program point, we can guarantee the access to m is AM. Unlike the
Must-ACS, the age of each block in a May-ACS is the lower bound of its ages in all represented CCS,
as expressed by the May concretization function below, with the same notions as in function (3).

concMay(ĉ) = {c | ∀m ∈ c : m ∈ ĉ ∧ age(ĉ,m) ≤ age(c,m)} (4)

The May join function takes the union of the sets of blocks in all incoming May-ACS and
assigns each block the minimal age in all incoming states. The May update function is exemplified
in Figure 8, where ĉ is the May-ACS representing the concrete states c1 and c2. Take memory
block d for example. d’s age in the May-ACS is the minimum of those in c1 and c2. After the
access to x, d is evicted from c2. However, d still remains in the resulting May-ACS ĉ′, because ĉ′
must soundly represent the other resulting CCS c′1 in which d remains. To determine whether
the memory access to m is AM, it suffices to know that m is not in the May-ACS reaching its
program point. A block m is not in the final May-ACS at a program point because either m has
never been loaded or enough different blocks have been loaded to evict m from the cache. May
analysis does not directly help with tighter WCET estimations, however, predicting more misses
results in better estimations on BCET.

3.2 Improving Precision by Using Contexts
In practice, merely relying on classifying analyses, such as Must and May analyses, may still
largely overestimate the memory-access cost and thus the WCET. Methods to improve the
knowledge about the cache behavior are proposed by taking program structures into consideration,
in particular loops. The cache behavior of programs in loops is somewhat special: the first iteration
typically loads the contents into the cache; later iterations profit from the first iteration since
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c2'

c'̂

c1'

c2

c1

Age 1 2 3 4

x

Age 1 2 3 4

Figure 8 An example to demonstrate the May update function.
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Figure 9 The ideas of VIVU and multi-level Persistence analysis.

accesses to the cached contents are hits. The concrete state on return to the loop header may
thus be very different from that reaching the loop from the outside. This is also reflected in cache
analysis where the abstract state upon return from the first iteration may be very different from
that on the entrance to the loop. Naïvely applying the join function to these two abstract cache
states would produce very bad information about the cache behavior of the loop. In such cases, a
large percentage of the accesses to the memory blocks in the loop cannot be classified as either AH
or AM by the previously introduced Must and May analysis. However, there are two alternative
ways to tighten the WCET estimation. The first one exploits the above observation by virtually
unrolling each loop followed by a Must analysis. An access to a memory block that in the first
iteration would be classified as AM, and that in the other iterations would be classified as AH
would then be classified as FM (first miss). The other alternative would be to bound the number
of cache misses for all the accesses to a memory block within a certain program scope. These
two analysis techniques will be now introduced. Note that the first analysis still is a classifying
analysis for memory accesses, albeit with a new classification, FM, and the second is a bounding
analysis for memory blocks in a scope.

3.2.1 Virtual Inlining & Virtual Unrolling (VIVU)
VIVU [85] can be used to improve cache analysis precision for loops. The idea is to analyze the
first loop iteration separately from all other loop iterations. This is done by virtually unrolling
the first iteration of the loop body4, so as to distinguish the behavior between the two contexts.
Then, a Must analysis is applied to the program with the unrolled loop to find the AH memory

4 (1) The unrolling is called virtual since it is done by maintaining separate abstract cache states for the first
iteration and the remaining iterations (e.g., ĉ1 and ĉ′1 in Figure 9(b)). For ease of understanding, we use a
physically unrolled CFG to show the effects. (2) VIVU allows to unroll more than one iteration of the loop
since iterations other than the first may have vastly different behavior and thus execution times. Here we
assume only unrolling the first iteration to simplify presentation.
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Figure 10 Operations for Persistence analysis.

accesses in all but the first loop iterations. Figure 9(b) shows the results of unrolling the inner
loop of the program in Figure 9(a). In the new CFG, cf and co refer to the first and the other
iterations of the inner loop, respectively (similar for d). Assume the cache is 2-way associative.
Must analysis on the new CFG is able to classify co and do as AH, and thus c and d as FM.

3.2.2 Persistence Analysis

One can aim at the same analysis objective by a Persistence analysis. There are several possible
notions of persistence of memory blocks one could aim at. These are:
persistence execution causes at most one miss for the memory block,
first miss only the first access is a miss, all others are hits,
no eviction the block is never evicted after a possible miss.

For a memory block that is persistent in a program fragment, timing analysis can assume a
bound of one cache load for all accesses within that program fragment.

The first Persistence analysis was proposed by Mueller et al. [88, 89] for computing First Miss
classification of memory references. For set-associative caches, the basic idea of Mueller’s approach
is to check whether all conflicting instructions in a loop fit into the cache. Later, Ferdinand and
Wilhelm [38] proposed a Persistence analysis based on Abstract Interpretation. This analysis
employs abstract cache states, Per-ACS, as do the Must and May analyses. The fact that a block
has been visited and already evicted from the cache is modeled by assigning an age > to the block,
where > is larger than the cache associativity. The Per-ACS at each program point represents
the cache contents that are potentially visited and then guaranteed to remain in the cache. If a
memory block exists in the Per-ACS at the end of the scope, then one can guarantee that at most
one cache miss may occur for all the accesses to this block.

The concretization of a Per-ACS is a set of traces satisfying the persistence condition, i.e.,
at most one miss for each block with a non–> age in the Per-ACS. More precisely, a Per-ACS
captures upper bounds on the ages of memory blocks, assuming that they have already been
accessed at least once in the execution of the program.

Figure 10(a) gives an example for Persistence update. All blocks in Per-ACS ĉ are potentially
visited during program execution. By accessing x, d is no longer guaranteed to be in the cache
since it has age 4 in ĉ, which is maintained by putting d in the >-age line. Block f , already evicted
from the cache before accessing x, remains unchanged in the >-age line. The update function
for Persistence analysis mainly needs to guarantee the maximal age for each block in the ACS is
soundly maintained.

LITES



05:14 A Survey on Static Cache Analysis for Real-Time Systems

block VIVU block VIVU PER

bf

cf

df

NC bo AH FM

NC co NC FM

NC do NC FM

block VIVU block VIVU PER

bf

cf

df

AM bo AH NC

AM co NC NC

AM do NC NC

ef AM eo AH NC

(a) Multi-level Persistence outperforms VIVU (b) VIVU outperforms multi-level Persistence

a

b

c

e

d

a

b

c d

Figure 11 Comparing VIVU with multi-level Persistence analysis.

At a control flow merge point, several Per-ACS are merged by the join function, which takes
the union of the blocks in all the incoming Per-ACS and assigns each block the maximal age from
the incoming states, as shown in Figure 10(b). Intuitively, the set union operation guarantees the
resulting Per-ACS does not lose track of any potentially visited memory block; the maximal age
ensures that we can safely predict whether a block is definitely persistent after its first access.

The Persistence analysis by [38] was recently found to be unsafe, due to an error in the update
function, which may incorrectly underestimate the age of a block. The error was corrected by
Cullmann [31] and Huynh [62]. Several different ways were proposed to restrict the set of memory
blocks in a Per-ACS to the actual capacity of a cache set. The simplest way, yielding the least
precise results, marks all memory blocks in a Per-ACS as non-persistent, if the Per-ACS contains
more blocks than the associativity allows. Others check the number of conflicts between members
of the Per-ACS; Huynh’s analysis employs fixed-point computation to collect for each block m a
set of potentially conflicting blocks (blocks that are mapped to the same cache set with m and
thus may age m). If the total number of conflicting blocks is no larger than A− 1, where A is the
cache associativity, then one can safely draw the conclusion that m, once loaded, will persist in
the cache. A similar idea was also applied in the Persistence analysis [90] by Mueller. Cullmann
presents a number of similar persistence analyses [31]. The most precise of Cullmann’s analyses
relies on a May analysis to make correct decisions on age update.

3.2.3 Analysis Scope
A bounding analysis, such as the Persistence analysis, is designed to investigate cache behavior
within a program scope, in most cases a loop body. It is common for a program to have nested
loops, where a block in an inner loop also belongs to the outer loop. A natural question would be:
does the block have a different cache behavior for different loop levels? To distinguish a block’s
behavior, the relevant loop nest(s) (the inner loop, the outer loop, or both) is/are unrolled in the
VIVU approach. Multi-level approach were proposed by Mueller et al. [128] and Ballabriga and
Cassé [10]. Ballabriga and Cassé [10] apply the Persistence analysis of [38] on the relevant scope,
here specifically the relevant loop nest, to explore local cache behavior. Figure 9(c) illustrates
the basic idea. Persistence properties regarding different loop nests for a memory block can be
encoded as linear constraints (or other forms) and integrated into WCET computation for tighter
estimations.

3.2.4 Comparing VIVU and Persistence Analysis
Since both VIVU and Persistence analysis are able to bound cache misses for a program scope, a
straightforward question would be: which one is more precise? In fact, the two techniques are
generally incomparable. For the program in Figure 11(a), co and do cannot be classified as AH
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by Must analysis [38] of the VIVU approach, as neither co nor do is guaranteed to be accessed
in any loop iteration (they belong to two respective conditional branches). On the other hand,
multi-level Persistence analysis is successful in this example for c and d. In Figure 11(b), both bo
and eo can be classified as AH by VIVU. However, none of b, c, d or e can be classified as FM by
the multi-level Persistence analysis in the static cache simulation framework [90]. This is because
the Persistence analysis [90] counts the conflicting blocks in a loop (mapped to the same cache
set); if the number is larger than the cache associativity, none of the blocks in the loop can be
classified as FM. If, otherwise, a different Persistence domain is adopted in the multi-level analysis,
such as [31], b and e can be locally classified as persistent.

VIVU and Persistence analysis can also be compared in terms of analysis cost. On the one
hand, VIVU may result in a more expensive micro-architectural analysis, having to distinguish
multiple contexts. On the other hand, the results of Persistence analysis need to be encoded into
constraints during implicit path enumeration. The influence of the two effects on analysis times
has not yet been compared empirically.

3.3 Other Techniques

3.3.1 Static Cache Simulation (SCS)
There are essentially two approaches preceding AI-based approaches. Mueller et al. [88] developed
static cache simulation to categorize memory references as Always hit, First hit, First miss, or
Always miss. They were the first to propose to use abstract cache states (ACS), starting for
direct-mapped caches [88].

They later attempted to extend this approach to set-associative caches [89, 90, 128]. For
set-associative caches, abstract cache states are defined to hold potentially cached memory blocks
at all possible positions, i.e., ages. This results from using set union as join operation at control
flow merge points. They also give an update scheme for abstract cache states, which, unfortunately,
computes incorrect age lower bounds [89, 128]. The abstract cache states resulted after fixed-point
iteration are then used to derive Always hit, First hit, First miss, or Always miss categorizations.
It is far from trivial to derive Must information from information contained in their abstract cache
states. Spatial locality can be easily exploited. Beyond that there is no obvious way to compute
sound and precise Must information. In [90], Mueller employed dominator information in addition
to abstract cache states to compute correct Must information.

3.3.2 Cache State Transition Graphs (CSTGs)
Also before AI-based approaches, Li et al. presented a technique that uses Cache State Transition
Graphs (CSTGs) to model cache behavior [72]. A CSTG, built out of the CFG, models the
cache-state transitions for a given cache set. A vertex in the CSTG stands for a possible concrete
cache state, and each edge in the CSTG represents a possible transition from the source state to
the destination state due to a memory access in the program. Instead of exploring qualitative
properties, such as AH, AM and FM, the analysis tries to find a lower bound on cache hits for
each memory block. The bounds can be modeled as linear constraints and combined into the ILP
to obtain the WCET for the program. By explicitly enumerating the concrete cache states, the
CSTG approach can provide good analysis precision. However, it does not scale with program
size. Assume that there are M memory blocks mapped to each cache set with associativity K,
the number of states in an CSTG can be calculated by

∑K
i=0

M !
(M−i)! [72]. Note that the number

of linear constraints is of the same scale as the number of CSTG states. In practice, the analysis
efficiency is low due to the complexity of the resulting ILP problem.
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Figure 12 The analysis framework of McAiT.

3.3.3 Model-Checking-Based Methods
Model checking [26] is a powerful technique widely used in system-level timing analysis of real-time
systems. Timed automata [6] have been used to model the cache behavior of programs, and a
model checker has been employed to find the WCET. Existing work includes the McAiT tool [80],
the METAMOC approach [32], and Gustavsson et al.’s analysis [50]. These works use the model
checker (UPPAAL in their cases) as a black-box tool. They express the cache access behaviors of
a program by the modeling language of the model checker, and verify whether the WCET of the
program is bounded by a specified value as a reachability problem.

Figure 12 shows the architecture of the McAiT tool. McAiT first constructs the program
automaton out of the CFG, which fully simulates the behavior of the program, such as the control
flow and how the program accesses caches. For a given cache configuration, McAiT builds a timed
automaton to model each cache. The execution of an instruction causes the program automaton
to issue messages to the cache automaton via UPPAAL’s channel mechanism, and the cache
automaton updates the cache state accordingly. The timed automata models for both the program
and the cache are then explored using the UPPAAL model checker to find the WCET.

Essentially, the estimated WCET by a model checker is the actual WCET of the program,
since all the possible executions are explored. Cache hits and misses for each execution of memory
accesses are precisely reported. The major difference between this approach and the CSTG
approach is that the possible cache states are not explicitly modeled in the automaton, but rather
explored by the model checker. The main drawback of model-checking-based approaches is their
lack of scalability, since an exponential state space has to be explored.

3.4 Data Caches
Modern processors are typically equipped with data caches to improve the performance of data
accesses. Instructions are fetched from known addresses; so instruction fetching can be accurately
analyzed. In contrast, data accesses are less predictable [76, 123].

3.4.1 Main Challenges
Before predicting hits/misses for data accesses, the set of data addresses accessed by each instruction
needs to be determined, referred to as value analysis or address analysis [9, 129]. The threat to
precision is that an imprecise value analysis may not be able to eliminate memory accesses that
do not occur in a real execution. The problems are the following: Firstly, data manipulations
using redirectable pointers make it hard to statically determine the data items actually accessed.
Secondly, in the presence of dynamic data structures on the heap, the data addresses can only be
determined at run-time (due to this problem, dynamic data structures are typically avoided in hard
real-time systems). Lastly, value analysis may work with abstractions of memory addresses, such
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1  for (i = 0; i < N; i++)
2    for (k = 0; k < N; k++)
3      for (j = 0; j < N; j++)
4        C[j][i] += A[k][i] * B[j][k];

Figure 13 An example of matrix multiplication.
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Figure 14 Data cache analysis based on the pigeonhole principle.

as intervals. As a result, the address range they compute may be overapproximated. Considering
non-feasible data accesses in cache behavior analysis increases the probability of not being able to
classify memory accesses as cache hits or misses. In addition, a memory access without a precisely
determined address pollutes the information contained in an abstract data cache since the update
function has to be applied to all potential concrete addresses.

Besides that, data cache analysis is challenged by another problem: executing an instruction
may generate accesses to multiple data addresses. Figure 13 depicts a program with a matrix
multiplication, in which line 4 generates accesses to different matrix elements (in different loop
iterations). For this simple program, one can easily determine the data items accessed in each
loop iteration. But, in general, data accesses could be very unpredictable due to input dependence
of the array indexes. Consider accesses to array A[x][y]: if the values of x or y are not clear, one
has to conservatively assume that any address in the whole array could be accessed. Furthermore,
classifications of memory accesses as used for instruction-cache analysis (AH, AM, FM) may not
be sufficient to describe data cache behavior.

3.4.2 Analysis without Input Dependence

Early work, such as the Cache Miss Equation (CME) framework [39], focused on analyzing
programs with predictable data accesses. The underlying idea is to set up mathematical formulas
(Linear Diophantine equations specifically) to precisely capture both spatial and temporal memory
reuses by relating data addresses, loop induction variables and cache parameters. From the
solution of the equations, one can check if a memory block is evicted from the cache before it can
be reused. An upper bound on the number of misses can thus be obtained for WCET estimation.

However, only a small set of programs can be analyzed by the CME framework: (1) loops must
be rectangular loops and perfectly nested; (2) array subscript expressions and the bounds of the
loop index must be affine combinations of the enclosing loop indices; (3) no data/input-dependent
conditions may exist. The CME framework has been later extended to allow function calls [124],
conditionals only depending on the loop induction variables [124], and multiple loop nests [97].
Unfortunately, none of these methods can deal with input dependence. Clauss presented an
approach of solving cache miss equations through the mapping to Ehrhart polynomials [27].
Still, the complexity of solving these polynomials is high. Another approach is the Presburger
Arithmetic framework [23], which has similar restrictions and is computationally expensive.
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Figure 15 Ferdinand’s Persistence analysis for data caches.

3.4.3 Analysis with Input Dependence
Earlier research to handle input dependence focused on direct-mapped caches. Kim et al. proposed
an analysis method based on the pigeonhole principle [65]. Figure 14 shows 3 iterations in the
execution of a loop in which a, b, c, and d can be accessed. If in total 9 memory accesses are
generated, then at least 9 − 4 = 5 among them must be cache hits. The 4 cache misses are
cold misses. This work was later extended by Staschulat and Ernst to handle programs with
unpredictable input dependency [112], in which cache misses are bounded according to data access
types: (1) cache misses from predictable accesses are bounded by the pigeonhole principle; (2)
cache misses from unpredictable accesses are tracked down by a miss counter and expressed with
linear constraints. Unfortunately, these methods are still too restrictive. First, they only work for
direct-mapped caches. Second, the loops must fit into the cache to utilize the pigeonhole principle.
Essentially, these approaches correspond to simple Persistence analysis for the special case where
programs fits into the cache.

AI-based analysis techniques are extended to analyze set-associative data caches with input
dependency. Ferdinand extended the Persistence analysis [37] with a new update function to
handle multiple memory accesses by one instruction. The basic idea and its drawback can be
explained by the example in Figure 15.

Figure 15(a) gives the CFG of a loop in which p1 to p4 are program points. Note that each time
the instruction after p3 is executed, one of the blocks from {c, d, e} could be accessed. Figure 15(b)
shows the fixed-point iteration process, given a cache size of 3. The last column lτ of each abstract
state is used to collect the blocks that have been evicted from the cache (a common structure for
most Persistence abstract domains). On the transitions from p3 to p4, since it is not clear which
of the three blocks (or their combination) is actually accessed, they pessimistically assume that all
blocks in {c, d, e} could be accessed and cause other blocks to age. Thus, both a and b are evicted
from the cache (collected in lτ ). Moreover, since there is no knowledge on the access sequence of
c, d and e, they receive an age of 3 when they are brought into the cache state in the 1st iteration.
As a result, no cache hit can be predicted for this loop. As only one from c, d, e may be accessed
in every iteration, slightly better results would be possible with a different transfer function.

Sen and Srikant developed a Must analysis for data caches [110]. The analysis can be combined
with VIVU to discover the persistence property of data accesses. Despite some small differences,
the age manipulation in Sen’s Must analysis are similar to Ferdinand’s Persistence analysis [37],
and thus may lead to very pessimistic estimations.

Ferdinand’s and Sen’s analyses show that without modeling data access patterns, the abstract
domain has to do very conservative age maintenance. Again, for the program in Figure 15(a), if
by some means we know that the lifetime of c, d, and e do not overlap, then the analysis can be
improved. For example, if the loop iterates for 30 times, c is only accessed in iterations 1 to 10, d
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Figure 16 The separate analysis architecture.

only in iterations 11 to 20, and e only in iterations 21 to 30, then c, d and e cannot evict each
other in their lifetime. They are actually persistent (given a cache size of 3) once they are loaded
into the cache, since any of them can only be aged by a and b. Based on this observation, Huynh
et al. proposed scope-aware data cache analysis [62]. Each memory access is now associated with
a temporal scope to model its lifetime, as an augmentation to the traditional AI-based analysis. In
the update function, memory accesses that have no overlapping temporal scopes do not cause each
other to age. In consequence, some non-existing access conflicts are excluded, and more persistent
data accesses can be identified (such as c, d and e).

Hahn and Grund observe that cache analysis does not require knowledge of absolute addresses
of memory accesses. Instead, it is sufficient to know about the relation between the addresses
of different memory accesses: do they refer to the same cache block, a different cache block but
the same cache set, or different cache blocks in different cache sets? Based on this insight, they
developed relational cache analysis [51], which can classify accesses as cache hits even if the
absolute address of the access is unknown.

To summarize, input dependence makes data-cache analysis a challenge. The main causes are
imprecise address analysis and the inability to model and analyze data access patterns. Imprecision
of the results may indicate that two memory accesses compete for the same cache set, while in
reality they always go into different sets. The success of data cache analysis depends on whether
temporal and spatial locality of data accesses can be precisely captured and analyzed.

3.5 Multi-Level Caches
Most modern processors adopt a multi-level cache design. Upon a memory access, the processor
queries the memory hierarchy from the L1 cache down to main memory until the requested data or
instruction is found. Regardless of the number of levels, the highest level cache is generally much
faster than main memory, since the latter is accessed via the off-chip memory bus. To produce
precise WCET estimations, cache analysis should be conducted all the way to the highest level,
instead of merely on the L1 cache.

3.5.1 Separate vs. Integrated Approaches
Two major analysis frameworks for multi-level caches are the separate analysis, which analyzes
caches level by level, and the integrated analysis, which deals with the cache hierarchy as a whole.

The separate analysis framework was first proposed by Mueller [87] and refined by Hardy and
Puaut [55], who corrected a soundness problem. Figure 16 [55] shows the main work flow. In the
analysis of all but the L1 cache, a key information is whether a data request actually leads to
an access to this level. For example, if a memory access is predicted always hit at L1, then the

LITES



05:20 A Survey on Static Cache Analysis for Real-Time Systems

Table 2 Computing CAC for level L and memory block r [55].

CACr,L−1

CHMCr,L−1 AM AH FM NC

A A N U U
U U N U U
N N N N N

Input State: ACSin

N access to r

Update(ACSin, r) ACSin

Join function
Join(Update(ACSin, r), ACSin)

Output State: ACSout

A access to r

Figure 17 The update function for U access [55].

L2 cache will not be visited. An interface across cache levels, called Cache Access Classification
(CAC) is introduced to describe this information. The notion CACr,L denotes the access property
of block r to level L, which is evaluated to one of the following three cases:

N (Never): the access to r is never performed at level L;
A (Always): the access to r is always performed at level L;
U (Uncertain): the access to r at level L can neither be excluded nor predicted.

The CAC values for level L are computed from both the Cache Hit/Miss Classification (CHMC)
and the CAC for level L−1, which is shown in Table 2.

Trivially, if CACr,L−1 = A (or N), then the access to memory block r is always (or never)
considered in the analysis of level L. However, handling the U classification requires special
attention. In Mueller’s multi-level analysis [87], memory accesses with U classification are
"conservatively" treated as always access in the analysis of the current cache level. However, this
treatment is demonstrated to be unsafe [55], since it may underestimate block ages, and thus
incorrectly predict cache misses as hits. Hardy and Puaut corrected the problem by considering
both possibilities for the U accesses in the update function (shown in Figure 17), which guarantees
that the worst-case scenario is never missed.

However, Hardy and Puaut’s analysis may suffer from precision problems. Note that in the
above CAC computation, the FM classification is treated the same as NC, which means the
information obtained by Persistence analysis at level L− 1 is never leveraged in the analysis of
level L. Actually, a block classified as FM at level L−1 causes at most one access to level L on
its first access. Mueller in an earlier practice tried to solve this problem by unrolling the loop
bodies [87], but this approach does not scale.

The component-wise separate analysis has several advantages. First, the analyzer has the
flexibility to apply a different analysis method for each cache level, as long as the method produces
hit/miss classifications as the interface across adjacent levels. This is desirable for architectures
with different replacement policies for different cache levels, such as in the IBM Power 5 processor.
Second, the overall analysis is scalable as long as the adopted single-level analysis is scalable.

However, the separate analysis may be pessimistic due to imprecise transfer of cache access
information across cache levels. In contrast, integrated analysis [111] tries to build a holistic
abstract domain for all cache levels, aiming to collect the information lost by the separate analysis.
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Consider a Must join operation of a separate analysis with a 2-way L1 cache and a 4-way L2
cache, shown in Figure 18. SiLj represents the abstract state Si at Level j. Consider block x,
which appears in S1L2 on the left branch and in S2L1 on the right branch. By a separate analysis,
x does not appear in the joined state S3 of any level. If a subsequent access to x occurs, a cache
hit can not be predicted. However, by evaluating both levels together, it can be seen that x does
show up in every incoming path, so a subsequent access to x should be a cache hit, either in L1 or
in L2 depending on the execution history. This is to say, x is guaranteed in the cache hierarchy at
the joined program point. Unfortunately, this information is lost in the separate analysis.

Based on this observation, Sondag and Rajan introduced a new component called live cache
into the traditional abstract domains. At a join, a block is added to the live cache if it appears in
some cache level in every input cache state, as depicted by S3live5 in Figure 18. With live-cache
information, one can now safely predict that x at least hits in the L2 cache. As reported in [111],
the extra overhead by introducing live cache is acceptable for a 2-level cache hierarchy. However,
analysis overhead increases with the number of cache levels, since an independent live cache is
maintained for every pair of cache levels.

3.5.2 The Impact of Inclusiveness
The relationship between cache levels is a key design feature. In some processors, all data in
level L must be contained in level L+1. Such caches are called (strictly) inclusive caches. For
example in Figure 19, the access to e causes a to be evicted from L2, so a is forced to be removed
from L1 to guarantee inclusion. Inclusive caches are favored in multi-cores: any data update
in the shared L2 cache is automatically synchronized to the private L1 caches of all cores due
to inclusion enforcement, which also achieves data coherency. Other processors adopt exclusive
caches, in which data is guaranteed to be in at most one cache level. Exclusive caches are desirable
for resource-limited systems since there is no data duplication in the cache hierarchy. The type
adopted in previous discussions is called mainly-inclusive, which neither enforces inclusiveness nor
exclusiveness. Inclusive caches are harder to analyze than exclusive caches, because the update to
one cache level may cause further changes to both lower and higher cache levels. Such behavior
may preclude the separate analysis flow.

Hardy et al. adapted the separate analysis [55], originally designed for mainly-inclusive caches,
to both inclusive and exclusive caches [56]. The main idea is to first conduct an analysis assuming
a mainly-inclusive cache, and to then modify the CHMC results to guarantee that the effects of
cross-level cache updates are safely considered. For example in Figure 19, the analysis assuming

5 x has an older age in S1L2 than in S2L1. This is because Sondag’s analysis assumes the write back policy. If
x is evicted from the L1 cache, it is installed in the youngest position of the L2 cache. This means x can still
suffer another k − 1 evictions in L2, where k is the cache associativity. The age of a block in the live cache
describes how long it can stay in the whole cache hierarchy.
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Figure 19 Handling new behavior of inclusive and exclusive caches.

mainly-inclusive cache reports that a is AH at L1 but may be evicted from L2. To adapt this
result to an inclusive cache, one must consider the possibility that a can be removed from the L1
cache due to an update in the L2 cache. As a result, a’s CHMC at L1 is modified from AH to
NC. Similar problems exist in the May analysis as well. As a consequence to CAC computation,
accesses to all cache levels except L1 are changed to Uncertain (CACr,L=U for L≥2). All these
modifications severely degrade the analysis precision.

Sondag and Rajan extended their integrated analysis to both inclusive and exclusive caches [111].
The resulting update and join functions for inclusive caches are very complex since once a block
is accessed on some level L, the corresponding changes in other cache levels must be correctly
considered. Analysis of exclusive caches has similar problems. To summarize, the inter-dependent
updates among cache levels to enforce inclusion/exclusion brings new difficulties regardless of the
analysis framework.

3.5.3 The Impact of Write Operations
A write to the cache occurs when a data variable receives a new value. Two levels of policies
determine when and where to conduct the writing of data back to memory. The write-through
policy requires that the new value is updated synchronously both in the cache and in main memory.
In contrast, the write-back policy only marks the modified data as dirty, and performs the actual
update of memory only when the data is evicted from the cache. A write miss occurs if the data
to write are not in the cache. Under the write allocate policy, missed data are first loaded into the
cache, and then updated with the new value, resulting in a cache miss followed by a cache hit. For
the non-write allocate policy, the data are directly written to main memory, bypassing the caches.

The write-through policy is generally easy to handle in cache analysis, since data writes to
a certain cache level incur no change to other cache levels. However, for the write-back policy,
evicted dirty data are written to higher cache levels. Second, for the write allocate policy, a write
operation always causes cache accesses regardless of hit or miss, which makes no difference from
the read operation. However, for non-write allocate caches, a write miss never causes a cache
access, so one cannot simply assume that each write operation changes the cache state, as is the
case for reads. Like the inclusiveness enforcement, complex write operations cause cross-level
cache updates, which is a challenge to the analysis.

Hardy’s separate analysis framework has been extended to multi-level data caches by Lesage
et al. [67] and to multi-level unified caches by Chattopadhyay and Roychoudhury [24]. However,
both analyses assume a write-through policy. The abstract domains adopted in these methods are
not able to handle write-back. Sondag and Rajan modeled write-back behavior in their integrated
analysis [111]. It is shown that modeling write-back is easier by an integrated abstract domain,
but one still has to carefully distinguish possibly evicted blocks from definitely evicted blocks at any
level during the analysis to guarantee soundness. Definitely evicted blocks are identified from the
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May information in Sondag’s method. Due to the access uncertainty of possibly evicted blocks,
conservative update and join operations have to be employed, causing a loss in precision.

4 Analysis of Non-LRU Caches

In the past two decades, most research on cache analysis in the real-time domain was focused on
the LRU replacement policy. The analysis of non-LRU replacement policies, i.e., those widely
adopted in real-life processors, is still immature. In this section, we look into the challenges for
non-LRU analysis and survey existing techniques.

4.1 Why Are Non-LRU Replacement Policies Hard to Analyze
To answer this question, we explore why it is hard to design precise and efficient abstract domains
and the corresponding operations for non-LRU caches. We identify multiple challenges discussed
in the following paragraphs.

4.1.1 Unsuitability of AH, AM, and FM Classifications
Under LRU replacement most memory accesses can be classified as AH, AM, or FM. Are these
classifications equally suitable for non-LRU replacements? If not, what are alternatives that are
better suited to characterize other policies’ behavior?

Unfortunately, these classifications are not as suitable for non-LRU replacements as they are
for LRU. As shown in Guan et al.’s analysis [47], under FIFO replacement memory accesses may
exhibit alternative hit and miss behavior so that none of the traditional classifications (AH, AM
or FM) applies. Similarly, under MRU many cache accesses exhibit the K-Miss property [45]. An
access classified as K-Miss suffers several misses (bounded by K ≤ cache associativity) upon the
first few accesses, and then persists in the cache. This kind of persistence property, however, is
not captured by the FM classification. This demonstrates that one needs to better understand
the specific cache behavior under different policies to come up with proper classifications.

4.1.2 Irregular and Non-Monotone Cache Update Behavior
The abstract domains and the corresponding transfer functions are designed to compute cache
behavior invariants. An abstract domain is precise and efficient if (1) abstract states can compactly
represent many concrete states, while preserving the information required for classification, and
at the same time (2) transfer functions precisely capture the effect of a memory access on the
concrete cache states. For example in the AI-based analyses for LRU, the block age bounds in
the abstract states capture precisely the information required to classify blocks as cached or not.
Further, this information can be precisely maintained by the transfer functions due to LRU’s
regular cache update: a) whether or not a block’s age depends solely on its age relative to the
accessed block’s age. Upper and lower bounds (in Must and May analyses) on the ages of blocks
can be precisely updated due to the monotonicity of the operation, b) regardless of its previous
age, and whether it was cached or not, the accessed block is always assigned the youngest age.

Unfortunately, most non-LRU replacement policies do not possess such monotone behavior.
Take the FIFO replacement in Figure 4(b) for example. After a hit to d, d remains in the original
position and is immediately evicted by the next access to x. The fact that d is recently accessed
is not reflected by the update rules. An example of irregular behavior under MRU is shown in
Figure 4(c). After f is installed into the cache, a subsequent hit to c followed by a miss to e evicts
f out of the cache. However, block b, which is older than f , remains in the cache even after f is
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evicted. The problem of PLRU is shown in Figure 4(d). In the state before a is accessed, the
oldest block that will be evicted next is b. However, after a hit to a, the block to be evicted is
changed to d.

To build efficient abstract domains for such replacement policies is very difficult. For example,
in a Must analysis for FIFO [41], early determination of cache misses is helpful to better predict
cache hits later. However, a very complex May analysis has to be designed to determine miss
information as early as possible. For PLRU, a precise analysis must model the tree bits. The
Must analysis for PLRU [40] by Grund employs a far more complex abstract domain, compared
to LRU, to express information in the tree and predict cache hits.

4.1.3 The Influence of Initial States
Cache behavior heavily depends on execution history. In [104], it is shown that program per-
formance under non-LRU replacement policies are very sensitive to the initial cache state, i.e.,
what remains in the cache before a program starts. This presents a challenge to obtain precise
estimations. To illustrate the problem, assume currently m is accessed in a FIFO cache and we
want to precisely estimate m’s lifetime. There are many possible situations: Case 1: m hits, but
it has been in the cache for the longest time among the cached blocks, and thus it will be evicted
upon the next cache miss. Case 2: the access to m is a miss and due to first-in, first-out behavior
m will withstand another k− 1 (where k is cache associativity) cache misses without being evicted.
Obviously, m’s remaining “life expectancy” in the two cases is rather different. If no knowledge on
the initial cache states is available, a safe analysis (to predict hits) has to assume the worst case,
i.e., Case 1. To be more precise, one may try to distinguish Case 2 from Case 1 by investigating
whether the current access to m is a miss or not. Then, the analysis needs to know there are
enough cache misses to evict any previously accessed m out of the cache, which again relies on
the initial states. If a replacement policy can remove uncertainty from the initial states quickly, it
will be easier to analyze.

To analytically model the effects of unknown initial states, Reineke et al. proposed a metric,
evict, for a replacement policy [105], as listed in Table 36. Intuitively, the value of evict(k) tells us
after how long a sequence of pairwise different memory accesses, we can conclude that the cache
only contains blocks from the access sequence, or, in other words, how long a sequence of pairwise
different accesses is needed to evict all unknown cache contents from the cache.

The evict(k) results show that generally longer sequences have to be observed for non-LRU
replacement policies. This property directly corresponds to the achievable precision by a May
analysis to predict misses, and indirectly affects Must analysis, the precision of which partly
depends on how much May information can be obtained during the Must analysis [41]. Similarly,
the fill metric captures the number of pairwise different memory accesses required to reach a
single cache state independently of the initial cache state. As can be seen in Table 3, the gap
between LRU and other policies is even bigger for the fill metric.

The two metrics evict and fill discussed above relate to the precision of classifying analyses.
In other work, Reineke and Grund [104] determined how strongly the number of cache misses may
vary depending on the initial state, which is related to the precision of bounding analysis in the
presence of uncertainty about the initial state. Their analysis demonstrates that the number of
cache misses may vary strongly depending on the initial state under FIFO, PLRU, and MRU,
while it may not vary much under LRU replacement. Further, it is shown that the empty cache

6 Table 3 extracts the HM case for evict and fill with k > 2 from the full results in [105], where k is cache
associativity.
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Table 3 Predictability metrics [105].

Policy evict(k) fill(k)
LRU k k

FIFO 2k − 1 3k − 1
MRU 2k − 2 3k − 4
PLRU k

2 log2k + 1 k
2 log2k + k − 1

Table 4 Generalized predictability metrics [105].

Policy mls(k) = mls′(k) evict′(k)
LRU k k

FIFO 1 2k − 1
MRU 2 2k − 2
PLRU log2 k + 1 ∞

state is not necessarily the worst initial state for non-LRU policies. This presents severe problems
for measurement-based WCET analysis approaches.

4.2 Predicting Cache Hits
The more hits can be predicted, the better the WCET bound. Must and Persistence analyses
discussed earlier are used for this purpose. To predict a hit for a memory access to m, an analysis
needs to ensure m has not been evicted since its last access. Intuitively, the more pairwise different
blocks have been accessed since the last access to m, the higher the chance that m has been
evicted from the cache. To capture this information, we introduce the following definition:

I Definition 1 (Reuse Distance). Let p be a memory access sequence that ends with an access to
memory block m. The reuse distance7 of m, denoted by rdp(m), is the number of distinct blocks
accessed along p since the previous access to m in p.

The notion of reuse distance coincides with the ages of memory blocks that are used in the
analysis of LRU caches. For example, let p1 = 〈beabcda〉 and p2 = 〈abccdcccba〉, we have
rdp1(a) = rdp2(a) = 4. Due to branches or input-dependent memory accesses, there can be
multiple access sequences leading to the same access to block m in a program. So we define
the maximal reuse distance, denoted by r̂d(m), as the maximal value of rd(m) over all possible
memory access sequences leading to a particular access. We can evaluate analysis techniques by
the maximal reuse distances for which they can predict cache hits.

Reineke et al. explored the minimal life-span [105] for different replacement policies, which
is the minimal length of a sequence of pairwise different memory accesses necessary to evict a
block that has just been accessed from the cache. The minimal life-span values are given in the
mls(k) column of Table 4. A slight variation of mls(k) is mls′(k), which considers the minimal
number of pairwise different memory blocks required to evict a block that has just been accessed
from the cache. Notice, the slight difference between the two notions: mls(k) considers only
sequences consisting of pairwise different accesses, whereas mls′(k) allows multiple accesses to the

7 In the literature, this is also referred to as the (LRU) stack distance [86]. Also, note that the term reuse
distance is used ambiguously in the literature, sometimes referring to the number of accesses since the previous
access to m, and sometimes referring to the number of distinct blocks accessed since the previous access to m.
We follow the latter notion.
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Maximal Reuse Distance0 mls’(k) k

Level IIILevel IILevel I

evict’(k)

Figure 20 Levels to explore cache hits.
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Figure 21 Example programs.

same block. For all the considered policies, mls(k) is equal to mls′(k). The metric evict′, also
listed in Table 4, will be discussed in Sec. 4.3. The mls′(k) metric tells us how many of the most
recently accessed blocks are guaranteed to be in the cache. By this result, a Must analysis can be
constructed as follows: for any memory access to m, one can check if r̂d(m) ≤ mls′(k) holds for
the given replacement policy. If yes, the memory access to m is guaranteed to be a hit. We say
that such an analysis explores Level I, which is illustrated in Figure 20.

Notice that to predict cache hits, the Must analysis for LRU presented in Sec. 3.1 computes
upper bounds on the maximal reuse distances of memory blocks. Similarly, the May analysis
computes lower bounds on the minimal reuse distance of memory blocks to predict cache misses.
As the notion of reuse distances is replacement policy-independent, these LRU Must analysis can
thus safely be reused to predict hits for other policies, by relying on the policies value of mls′(k).

However, the mls′(k) values for non-LRU replacements are commonly small compared to cache
associativity k, because they consider worst-case scenarios. In practice, it is unlikely that the
worst case occurs at every program point. Thus, analyses tailored to a particular replacement
policy can often go beyond Level 1 in predicting hits.

For a program that can fit into the cache of size k, there is a strong intuition that each block
of the program eventually persists in the cache, i.e., after some misses, the remaining accesses
to each block are definitely cache hits. For such programs, the maximal reuse distance of any
access is no larger than k (Level II in Figure 20). This property is attractive as it enables an
efficient Persistence analysis that simply collects the set of different blocks accessed by a program.
However, such a Persistence analysis is not correct for every replacement policy: it works for LRU,
MRU and FIFO, but not for PLRU.

Figure 22 illustrates the cache state transitions when the loop in Figure 21(a) is executed,
alternating between the three branches in the loop body on a 4-way PLRU cache. Each time a
is accessed, the root bit points to the right subtree, so b, c, and d have to compete for the two
cache lines on the right. Even though the loop can fit into the 4-way cache set, only block a is
persistent. This example unveils a negative property of PLRU: it does not always make use of all
its capacity [14].

It is crucial to investigate what process a block may go through before it finally persists in the
cache. This is important to safely bound the number of misses that may occur.

For MRU, Guan et al.’s results [45] show that if for a block m, r̂d(m) ≤ k holds, m will
eventually persist in the cache. However, m may suffer more than one miss before reaching the
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Figure 22 An example that demonstrates that PLRU does not always use the cache’s entire capacity.
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Figure 23 Alternative hit and miss behavior on FIFO.

stable state. The result is strong in that bounds on the number of misses are determined for all
reuse distances in Level II for MRU. Consider the program in Figure 21(b): even if the program
cannot fit into a 4-way MRU cache, block a’s number of misses can be bounded by a constant
since r̂d(a) ≤ 4.

For FIFO replacement, Grund and Reineke [42] show that if a loop entirely fits into the cache,
each block suffers at most one miss and then persists in the cache8; otherwise, no guarantee is
given. Guan et al. further explored this problem, and found that if a block m satisfies r̂d(m) ≤ k,
then even though m is not eventually persistent, it is still guaranteed to enjoy cache hits, which
can be expressed by a bound on the number of misses that accesses to m may suffer [47]. For
example in Figure 21(b), r̂d(a) ≤ 4 holds for a 4-way FIFO cache. In the worst case, the loop
alternatively takes the two branches, and a may suffer cache misses repeatedly. To evict a from
the cache, both branches have to be taken, which causes a to enjoy a cache hit in the execution
of one of the branches (shown in Figure 23). It can be shown that a suffers at most b 1

2 · xc+ y

misses, where x is the execution count of a, and y is the total number of times the loop is entered.
The only analysis to predict hits for PLRU for maximal reuse distances in Level II is a Must

analysis proposed in [43]. The analysis presented is based on the following observation: to evict a
block with the fewest possible accesses to distinct memory blocks, the three bits (assuming an
associativity of 8) that are on the path from a cache line to the root of the tree need to be flipped
in a particular order, namely from the bottom to the top. This is illustrated in Figure 24 for
block m. Notice that flipping bits near the root before flipping all bits closer to the leaves does
not contribute to evicting m, as these bits will eventually be flipped back before evicting m. The
basic idea behind the analysis in [43] is to track two properties: a) the number of bits that already
point towards a block (counting from the leaf of the tree), and b) the so-called “sub-tree distance”
between pairs of blocks. The sub-tree distance between a and b captures which bits on the path
from a to the root an access to b may flip. By analyzing these key properties, it is sometimes
possible to predict that a block stays in the cache even if more than mls′PLRU (k) = log2 k + 1
other blocks have been accessed.

8 Note that blocks do not necessarily encounter their misses in the first loop iteration. It may take several
iterations for all the blocks to stabilize in the cache.
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Figure 24 A scenario in which block m is evicted with the minimal mls′(k) = log2 k + 1 accesses.
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Figure 25 Cache behavior under MRU in Level III.

To go beyond Level II means to explore whether blocks with maximal reuse distance larger
than k still have cache hits. One needs to first show that the above fact does occur for some
replacement policy, and second propose an analysis to discover the cache hits. Take MRU for
example, Figure 25 shows that even if we have r̂d(a) = r̂d(d) > 4 for a 4-way cache, accessing a
and d is always hit. But this phenomenon relies on the initial state at the entry of the loop. To
explore such behavior, the abstract domain must be able to preserve very detailed information on
cache states. This requirement makes it very hard to explore cache hits in Level III by abstract
analysis methods. The abstractions introduced by Grund and Reineke for FIFO [41] are in
principle able to predict Level III hits, however, they usually require a highly context-sensitive
analysis to do so. Level III ends at evict′(k), after which no more hits are possible.

4.3 Predicting Cache Misses
Predicting more misses tightens the estimated BCET, but it can also indirectly help with the
analyses for some non-LRU replacement policies to predict more hits [41]. A concrete example is the
case of FIFO explained in the discussion of the influence of initial states in Sec. 4.1. Furthermore,
for multi-level cache analysis, predicting more misses for level L reduces the uncertainty of
cache accesses on level L+ 1, which leads to more precise overall estimations. Lastly, in micro-
architectures with timing anomalies, if a memory access cannot be classified as a cache hit, both
the cache hit and the cache miss cases need to be explored. Predicting cache misses may in such
cases drastically reduce analysis times, as it allows to explore only the cache miss case.

To predict cache misses requires to show that memory blocks are not in the cache right before
they are being accessed. Thus a May analysis, i.e., an analysis that overapproximates cache
contents, is required to safely predict cache misses. May analyses can be constructed based
on a variation of the evict metric [105], which we denote by evict′. The difference between
evict and evict′ is the same as the difference between mls and mls′: any sequence s containing
evict′(k) distinct memory blocks is guaranteed to evict any prior cache contents not contained in
the sequence s. In contrast, evict refers only to sequences that never access the same memory
block twice. Values of evict′ for common policies are listed in Table 4. For example, for FIFO,
evict′(k) = 2k−1. This means that after accesses to 2k−1 pairwise different blocks, the cache
only contains elements from the accessed sequence. Then, the May analysis only needs to observe
a sequence with 2k−1 pairwise different blocks other than m precluding the current access to
m. On the other hand, for PLRU, evict′(k) =∞. In other words, there are sequences of memory
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accesses containing an arbitrary number of distinct memory blocks that do not evict all prior
cache contents. We have seen an example of such a sequence in the previous section, which is
illustrated in Figure 22.

May analyses based on evict′ can be constructed by determining lower bounds on the reuse
distances of memory blocks. The LRU May analysis presented in Sec. 3.1 does exactly that.

The evict metric suggests that less than evict(k) accesses to pairwise different memory blocks
do not allow to predict any misses, thereby constituting a limit on how much information a May
analysis can obtain. However, this conclusion is built on the assumptions that the initial state is
completely unknown, and that the access sequence consists of pairwise different memory accesses.
There is thus hope that by tailoring an abstract domain to a specific replacement policy, more
precise May analyses can be achieved. So far, such abstractions have only been built for the FIFO
replacement policy [40, 41]. Due to limited space, we only explain the main intuitions and the key
constituents of the two existing FIFO abstract domains.

Consider a 4-way FIFO cache and the access sequence x ◦ s ◦ x, where the first access to x is a
miss and installs x into the “first-in” cache way, and then a sequence s that does not contain x is
accessed followed by another access to x. To predict a miss for the second access to x, it suffices
to check whether either of the following two properties holds:

Property 1 : The accesses in s result in at least 4 misses;
Property 2 : Before the second access to x, every cache way is occupied by a memory block
from s.

The abstract domain proposed in [41], which we call FIFOα, checks Property 1. The key
information to be maintained in the abstract domain is the number of definite misses after the
first access to x, denoted by dm(x). When dm(x) reaches 4 during the analysis, one can predict
misses for a future access to x. To better maintain definite misses, the number of cache ways
covered by blocks accessed after the last access to x is maintained as auxiliary information.

A disadvantage of FIFOα is that it only starts to predict misses after 2k− 1 pairwise different
memory blocks have been accessed, which is in line with the evict metric. Therefore, Grund and
Reineke proposed another FIFO domain, which we denote by FIFOβ , so that cache misses can
be predicted even if fewer than 2k − 1 pairwise different blocks are accessed between two different
accesses to the same block [40, 42]. The domain FIFOβ checks Property 2 to predict cache misses.
For the above example, it explores if memory blocks accessed in sequence s eventually cover all
the 4 cache ways. The exploration is based on a more powerful result (Lemma 4 in [42]):

If a sequence s contains l distinct blocks, then l − k + 1 cache ways must be occupied by the
contents of s, regardless of the initial cache state.

Importantly, the effect of consecutive sequences adds up. For example, let s = s1 ◦ s2 =
〈a, b, c, d, e〉 ◦ 〈a, b, c, d, e〉. The accesses to s1 cover the 5−4+1=2 most-recently-used ways in the
cache set. Similarly, the accesses to s2 contribute another 5−4+1=2 to the covered positions.
Then we can guarantee that access to s finally covered all the 4 cache ways9. This means the
execution of s actually evicts x out of the cache and a miss on the second access to x can safely
be predicted.

So far, no May analysis is known for PLRU. For MRU the best known May analysis is based
on evict′. Precisely predicting misses for these two policies is still a challenge.

9 The effectiveness of this analysis depends on how a long sequence is partitioned. Grund has a systematic
method to explore different partitionings for optimization [40].
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4.4 The Relative Competitiveness Framework
Besides the above research, Reineke and Grund proposed the Relative Competitiveness frame-
work [103] that allows to translate analysis results for one replacement policy to another policy.
The promise is then to apply known LRU analyses to non-LRU caches.

A policy P is (k, c)-hit-competitive relative to policy Q if the number of cache hits hP (s)
of P on sequence s is bounded from below by the number of cache hits hQ(s) of Q as follows:
hP (s) ≥ k · hQ(s)− c. Similarly, a policy P is (k, c)-miss-competitive relative relative to policy Q
if the number of cache misses mP (s) of P on sequence s is bounded from above by the number of
cache misses mQ(s) of Q as follows: mP (s) ≤ k ·mQ(s) + c.

By monotonicity of the two inequalities, they can also be applied to lower bounds on the
number of hits and upper bounds on the number of misses: For example, given a lower bound on
the number of hits of Q using hit-competitiveness a lower bound on the number of hits of P can
be derived.

For (k, c) = (1, 0) the notions of (k, c)-hit- and miss-competitiveness coincide. In this case, P
“dominates” Q. In other words, P never incurs more misses than Q. In such a case we simply say
that P is (1, 0)-competitive relative to Q. Then, a Must analysis for Q is a valid Must analysis for
P ; conversely, a May Analysis for Q is a valid May Analysis for P .

In [103] it is shown how to automatically compute the best values for (k, c) such that policy P
is (k, c)-hit/miss-competitive relative to policy Q, for fixed associativities of the two policies.
Depending on the similarity of P and Q this computation scales to associativities between 8 and
256.

The most interesting cases are those in which either P or Q is LRU, as precise analyses for
LRU are known. Examples for hit-competitiveness results derived in this way are [101, 103]:

An 8-way FIFO cache is ( 1
2 ,

7
2 )-hit-competitive relative to an 8-way LRU cache.

An 8-way FIFO cache is ( 2
3 , 2)-hit-competitive relative to an 4-way LRU cache.

An 8-way PLRU cache is ( 1
2 ,

3
2 )-hit-competitive relative to an 6-way LRU cache.

An 8-way MRU cache is ( 2
3 ,

4
3 )-hit-competitive relative to a 4-way LRU cache.

To use this relation, assume 100 hits are predicted for a program on an 4-way LRU cache, then⌈ 2
3 × 100− 2

⌉
= 65 hits are guaranteed on an 8-way FIFO cache.

The metrics mls′(k) and evict′(k) are strongly related to (1, 0)-competitiveness relative to
LRU. In particular, let mls′P (k) and evict′P (k) denote the values of the two metrics under policy P .
Then, P is (1, 0)-competitive relative to LRU(mls′P (k)) and LRU(evict′P (k)) is (1, 0)-competitive
relative to P . For example:

LRU(2k − 1) is (1, 0)-competitive relative to FIFO(k).
LRU(2k − 2) is (1, 0)-competitive relative to MRU(k).
PLRU(k) is (1, 0)-competitive relative to LRU(log2 k + 1).

Cache analyses based on relative competitiveness can be pessimistic, because the relation holds
for any possible workload. Moreover, the framework provides bounds on hits (or misses) for the
whole program or alternatively program fragments rather than classifying independent memory
access, except for the case of (1, 0)-competitiveness. This makes it difficult to apply the approach
in multi-level cache analysis, or in integrated analyses considering both caches and pipelines.

5 Execution Environments

Discussions so far have focussed on analyzing an independent program. Cache analysis is severely
challenged in the presence of complex execution environment, such as multi-tasking systems
or shared-cache multi-cores, where extra time delay due to interference on caches from other
co-scheduled/running programs must be taken into account.
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Preempted Task : UCBi

Preempting Tasks : ECBhp(i)
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Response Time Analysis

Figure 26 The separate CRPD analysis framework.

5.1 Cache-Related Preemption Delay
An essential feature of real-time systems is preemption, which allows a higher priority task
to preempt a lower priority task so that the higher priority one meets its deadline. However,
preemptions may lead to extra cache misses: the execution of the preempting task may alter the
cache state, so that once resumed, the preempted task needs to bring data back into the cache
that was evicted as a consequence of the preemption. The extra delay due to cache reloading is
commonly referred to as the Cache-Related Preemption Delay (CRPD). Empirical results [74]
show that CRPD contributes significantly to the execution time, so it must be precisely estimated
to obtain tight estimations of response times. Furthermore, it has also been shown that with
CRPD, the synchronous release of all higher priority tasks does not represent the critical instance
of single-core preemptive scheduling [134]. Clearly, preemptions introduce a new dimension of
complexity into timing analysis.

The most intensively studied framework is separate CRPD analysis, in which the CRPD
is treated as a separate overhead rather than as a part of the WCET of the preempted task.
To bound the CRPD under LRU replacement, two approaches have been proposed, which are
illustrated in Figure 26:
1. By analyzing the preempted task [2, 66, 91, 119, 113]: Additional misses can only occur for

useful cache blocks (UCBs), i.e., blocks that may be cached and that may be reused later,
resulting in cache hits. For LRU, the number of such UCBs is a bound on the number of
additional misses due to preemptions. Static analyses have been proposed to safely approximate
the set of UCBs.

2. By analyzing the preempting task [91, 113, 119, 121]: The preempting task may only cause
additional cache misses in those cache sets that it modifies. Thus, analyses to compute
bounds on the number of evicting cache blocks (ECBs) have been developed. A memory
block is an ECB if it may be accessed during the preempting task’s execution. However, for
set-associative caches, approaches based purely on ECBs have so far been either imprecise [17]
or unsound [119], as shown in [17].

The CRPD is computed as the total time delay of all preemption-related cache misses. The final
step is to take into account the computed CRPD bounds in a schedulability analysis framework,
so that the Worst-Case Response Time (WCRT) of the preempted task can be obtained. All such
approaches assume timing compositionality [52] so that the cost of additional cache misses can be
accounted for separately.

5.1.1 Computing Useful and Evicting Cache Blocks
Since a preemption must happen before some instruction, here we first consider what happens at
a particular program point. Most existing work adopts the UCB definition in [66]. A cache block
m is useful at a given program point p, if:
1. m may be cached at p;
2. m may be reused at some program point reachable from p without being evicted along the

corresponding path.
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To determine memory blocks that satisfy Condition (1), one needs to collect the set of blocks
that may be cached by any possible program path from the starting point of the CFG to p,
referred to as Reaching Cache Blocks (RCBs) and denoted by RCBp. This corresponds to a May
analysis as discussed in Sec. 3.1. To determine memory blocks that satisfy Condition (2), a set
of Live Cache Blocks (LCBs), denoted by LCBp, is computed similarly to RCBp, however, by a
backward analysis. Then, an overapproximation of the set of useful cache blocks at point p, UCBp
is obtained by the intersection of RCBp and LCBp. A bound on the CRPD is then obtained by
taking the maximum size of UCBp over all program points.

For direct-mapped caches, two major techniques exist: set-based analysis [66] and state-based
analysis [91]. Both techniques rely on dataflow analyses to collect the RCBs and LCBs at each
program point. State-based analysis maintains all possible concrete cache states at a program
point. The analysis is precise, but does not scale to large programs. In contrast, set-based analysis
maintains one abstract state at each program point, which collects the set of all possible cached
blocks for each cache line. Staschulat and Ernst [113] proposed a scalable precision analysis that
presents a trade-off between the above two analyses. The main idea is to pose a bound on the
number of cache states maintained at each program point. Whenever the number of states goes
beyond the limit, cache states are merged.

Regarding the analysis of the preempting task, note that (a) what matters is the size of the
set of evicting cache blocks and not its actual contents, and (b) sizes that exceed the associativity
of the cache do not have to be distinguished, as they will evict all prior cache contents anyway.
For those reasons bounds on the number of ECBs can be obtained from bounds on the number of
reaching cache blocks at the end of program execution, i.e., RCBend.

5.1.2 CRPD Computation for Direct-Mapped Caches
For direct-mapped caches, the CRPD can be estimated by only considering the preempted task,
which pessimistically assumes that each UCB of the preempted task could be evicted by the
preempting task [66]. These techniques are classified as the UCB-Only approach by [4]. The CRPD
can also be computed by only considering the preempting tasks [20, 121], which assumes any ECB
of a preempting task may cause a preemption related cache miss (ECB-Only by [4]). Clearly, more
precise CRPD can be computed by evaluating both the preempting and the preempted tasks.
Specifically, the ECB-Only approaches have been improved by considering the preempted tasks,
resulting in the UCB-Union class [118]; similarly, the UCB-Only approaches have been extended
into the ECB-Union class [4].

Schedulability analysis needs to take the CRPD into account. Consider a widely adopted
schedulability analysis [7] shown in Equation (5), where Ri is the response time, Ci is the WCET
of a task, and Tj is the activation period. Equation (5) can be interpreted in the following way:
the preemption cost of task τi preempted by τj , denoted by γi,j , is seen as an extra part of the
execution time of the preempting task τj .

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri
Tj

⌉
(Cj + γi,j) . (5)

In the presence of nested preemptions, as shown in Figure 27, the response time of τ3 includes
both the indirect cost of τ1 preempting τ2 (γa) and the direct cost of τ2 preempting τ3 (γb). The
main problem is how to safely account for γa. Actually, γa can be considered in γ3,1. Note that
γa may be larger than γb, so a safe γ3,1 needs to account for the maximal cost of τ1 preempting
any lower priority task, however not lower than τ3. Note that the ECB-Only approaches do not
suffer from such nested preemption problems since they do not consider the preempted task.

A disadvantage of analyses by Equation (5) is: the worst-case delay γi,j is always assumed for
each preemption (τj preempting τi). As a result, some cache evictions can be included multiple
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Figure 27 An example of nested preemptions.
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Figure 28 An example of reordered misses.

times. To reduce this pessimism, other approaches [4, 114] adopted the schedulability test of
Equation (6) instead, which evaluates the total cost of multiple preemptions of τj preempting
τi as a whole. The computation of γstai,j differentiates preemption scenarios, and thus can avoid
unnecessary inclusion of cache evictions.

Ri = Ci +
∑

∀j∈hp(i)

(
⌈
Ri
Tj

⌉
Cj + γstai,j ) . (6)

Altmeyer et al. provided a detailed classification of different approaches to bound the CRPD
for direct-mapped caches and their relationship [4].

5.1.3 CRPD Computation for Set-Associative Caches
The computation of UCBs and ECBs can be solved by existing May analyses for set-associative
caches. The main challenge is how to precisely and safely compute the “intersection" between the
sets of UCBs and ECBs.

Let us first discuss a safety problem, given LRU replacement. Consider the case in Figure 28.
Blocks a, b, c and d are all useful blocks. A preemption installs x into the cache set and thereby
evicts a. The subsequent accesses of the preempted task to a, b, c and d are all cache misses even
though the preempting task only evicted one cache block. This illustrates that there are two
types of context-switch misses [17, 74]. The miss to a is a replaced miss, as a direct result of the
preemption. In contrast, the misses to b, c and d are an indirect result of reordering of blocks
by the LRU replacement policy. This example shows that even a single ECB can lead to a chain
of misses to multiple UCBs, which cannot happen for direct-mapped caches. An example of an
unsafe analysis is [118], which overlooked reordered misses.

One way to cope with this problem was proposed in [17]. As soon as there is a single ECB
that maps to a particular cache set, all the UCBs that map to the same cache set are assumed to
contribute to context-switch misses. This is obviously conservative, and it can be improved by
obtaining more detailed information about the useful cache blocks. This information is captured
by the notion of resilience introduced by [5].

The resilience res(m) of a useful cache block m is the amount of “disturbance”, i.e. its ECBs,
by a preempting task that the block may endure before becoming useless to the preempted task.
Consider a useful cache block m for an 8-way LRU cache in Figure 29, where all blocks are mapped
to the same cache set. The maximal age of m before its second access is 5. If the program is
preempted at any point between the two accesses to m, for example at program point p, m will
not be evicted from the cache as long as at most 3 ECBs from the preempting task map to the
same set. So m’s resilience is 3.
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Figure 29 The notion of resilience.

By computing lower bounds on the resilience of useful cache blocks, one can exclude many
cache misses compared with the conservative assumption in [17]. However, nested preemptions
must be very carefully handled. The ECBs from nested preempting tasks may accumulate to age
a useful block. In this case, the ECBs of all possible preempting tasks must be considered, which
may adversely introduce some pessimism.

The problem of reordered misses is rooted in LRU. A new policy called Selfish-LRU [102] has
been proposed to eliminate reordered misses. The idea is to first evict cache blocks that do not
belong to the currently active task.

For other replacement policies, such as FIFO and PLRU, the number of additional misses
can even be greater than the number of UCBs, the number of cache ways, and the number of
ECBs [17]. This makes it difficult to obtain precise CRPD bounds for these policies. An approach
based on relative competitiveness [103] was sketched in [17] that allows bounding the total misses
(intra- and inter-task misses) of a non-LRU policy from the results of LRU. Due to the generic
nature of the relative competitiveness framework, the analysis results can be imprecise.

5.1.4 Other Analyses

It has been observed [2] that some pessimism is introduced by independently computing bounds
on the CRPD and on the WCET. Consider the treatment of memory accesses to blocks that
have been classified as useful cache blocks during the WCET analysis. If such accesses cannot be
guaranteed to result in cache hits, a sound WCET analysis will also cover the cache miss case.
However, in that case, while a preemption-related cache miss may occur in reality, it has already
been accounted for in the computed WCET bound. Motivated by this observation, a notion of
definitely-cached UCBs has been proposed in [2], which excludes such blocks from the CRPD
computation. Excluding such blocks from the CRPD computation had previously been proposed
by Schneider [107] in what he calls the “isolated method”. This approach relies on a coupling of
WCET and CRPD analysis and may improve precision significantly.

Ramaprasad and Mueller [98, 100] presented an approach to response-time analysis for strictly-
periodic task sets under fixed-priority scheduling, taking into account the CRPD in data caches.
Due to their assumption of periodic tasks, they are able to simulate the scheduler during a
hyperperiod of the system. Taking into account BCET and WCET estimates they can then
accurately predict the number of preemptions, and to some extent even the preemption points
within each job, which are taken into account in the CRPD analysis. In addition to the restriction
to periodic task sets, this work shares the limitations of the data-cache analysis framework [97]
that it builds upon, i.e., neither input-dependent memory accesses nor input-dependent control
flows are supported. This approach was later extended to support a single non-preemptive region
within each task [99].

CRPD analysis under dynamic priority scheduling has also been studied [63, 79]. The difference
lies in the CRPD calculation for different schedulability tests of new scheduling policies. Lunniss
et al. [78] compared the effectiveness of fixed priority scheduling and EDF in the presence of
CRPD. Phavorin et al. [96] showed that common assumptions about optimality and sustainability
of scheduling algorithms do not hold anymore, once CRPD is taken into account.
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An alternative to bounding the cost of individual preemptions and taking this cost into account
within schedulability analysis is to conservatively account for all possible preemptions within
WCET analysis. This was first proposed by Schneider [107] in what he calls the “integrated
method”. The advantage of such an approach is that it can take into account overlapping of
memory latencies and computations in pipelined processors. This advantage, however, is usually
outweighed by overestimating the number of additional misses that may occur, as an unbounded
number of preemptions needs to be taken into account.

5.1.5 Limiting Preemptions
We have focused on approaches to bound the CRPD under fully-preemptive scheduling. Various
mechanisms exist to reduce the number of preemptions, and thereby also the overheads introduced
by preemptions. In the extreme case, tasks are scheduled non-preemptively, eliminating preemption
cost entirely. However, under non-preemptive scheduling, long-running lower priority tasks often
render task sets unschedulable. Prominent approaches that represent a compromise between
the extremes of fully-preemptive and non-preemptive scheduling are preemption thresholds [125],
cooperative scheduling [19], and floating non-preemptive regions [13].

Under fixed-priority scheduling with preemption thresholds, in addition to its priority, a task
is associated with a preemption threshold. When a task is running, it can only be preempted
by tasks whose priority is higher than the preemption threshold of the running task. This has
been shown to sometimes improve schedulability and reduce the number of preemptions [125].
Schedulability analysis taking into account CRPD under preemption thresholds [16] relies on
the same basic cache analysis concepts, i.e., UCBs and ECBs, as schedulability analyses under
standard fixed-priority preemptive scheduling.

Under cooperative scheduling, each task allows the scheduler to preempt it at fixed preemption
points, i.e., program locations at which it yields to the scheduler. Between preemption points, a
task is executed non-preemptively. This introduces lower-priority blocking time, which may reduce
schedulability, and requires analysis of the maximum blocking time [3]. The CRPD analyses
described above, based on UCBs, ECBs, and resilience can be applied to fixed preemption points
in a straightforward manner. A challenge is to select preemption points in a way that maximizes
a task set’s schedulability. Fewer preemption points may result in lower CRPD but may increase
the maximum blocking time. For programs consisting of straight-line code only, Bertogna et
al. [15] provided an algorithm to optimally select preemption points. They assumed that the
WCET is inflated accounting for preemptions at every preemption point by arbitrary preempting
tasks, rather than accounting for the effect of preemptions within response-time analysis based on
separate CRPD bounds.

In the floating non-preemptive region scheduling model [13], preemptions are limited as follows:
When the highest priority task is executing, and a job of a higher priority task is released, the
running job is not immediately preempted. Instead, a floating non-preemptive region of fixed
length Qi commences, where Qi may depend on the task τi currently running. The currently
running job is preempted after Qi time units, unless it completes before. Again, CRPD analyses
based on UCBs, ECBs, and resilience can be applied in this setting. However, as in the case of
fixed preemption points, it is also possible to derive WCET bounds for all tasks that hold under
the assumption that any two preemptions of a task are separated by at least Qi time units. Given
such WCET bounds, schedulability analyses do not need to further account for preemption costs.
Marinho et al. [83, 84] provided analyses to bound a task’s WCET including CRPD taking into
account the length of floating non-preemptive regions. Their algorithm consists of two phases:
1. First, a so-called preemption delay function f is computed. For any time t, f(t) is a bound on

the CRPD if the task is preempted after t time units. In order to compute f , they determine
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Figure 30 A common shared cache design in multi-cores.

a bound on the CRPD for each program point based on UCBs. Given lower and upper bounds
on the execution time of each basic block, they determine lower and upper bounds on when a
particular basic block may be running. Combining the two values yields f .

2. Then they incrementally determine based on f , one preemption at a time, the minimal progress
over time in the execution of a program, when it can be preempted each Qi time units.

If floating non-preemptive regions are short such an approach may be pessimistic as it does not
take into account how often and by which tasks a task may actually be preempted. On the other
hand, as in the “integrated method” of Schneider [107], it may take into account overlapping of
memory latencies and computations in pipelined processors. To our knowledge, the two approaches
have not been experimentally compared in the limited preemption context. This also applies to
Bertogna et al. [15].

A comprehensive survey of the literature on cache-related preemption delays is given by
Phavorin and Richard [95].

5.2 Shared Caches in Multi-Cores
Nowadays, multiple processing cores are deployed on a single die to fully exploit the real estate of
the processor chip and to achieve high performance with low power consumption. A commonality
among modern multi-core processors is the sharing of on-chip resources among multiple cores,
such as the last-level cache (Figure 30), so that each core can potentially make use of the entire
resource. However, tasks running in parallel on different cores compete for the shared resource,
resulting in inter-core conflicts, also referred to as inter-core interference. Due to this interference,
the execution time of a program now also depends on the resource-access behavior of the tasks
running in parallel [133].

Inter-core interference on a shared cache is different from inter-task interference due to
preemption. First, in a single-core preemptive system, a higher priority task does not suffer from
interference by a lower priority task, while in multi-core systems, all tasks running in parallel
on different cores interfere with each other independently of their priority level. Second, in a
single-core preemptive system, a task can only suffer from interference by preempting tasks a
small number of times, no more than the total number of releases of the higher priority tasks; in
contrast, on multi-cores, interference on a shared cache may come between any two consecutive
cache accesses of a task. Precisely analyzing all possible interleaving cache accesses on a shared
cache is notoriously difficult due to the huge number of cases to consider.

One approach is to extend the AI-based analysis to take into account the interference on the
shared cache [73]. The basic idea is similar to the resilience analysis in CRPD analysis. Assume
that two tasks, A and B, run in parallel and share a k-way L2 cache. To estimate A’s WCET,
multi-level analyses for A are first conducted without considering the interference from task B.
Then, a second step analyzes task B to see whether its interference could cause the blocks of A
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that are guaranteed to hit when A runs in isolation, to be evicted from the cache. Consider a
block m of A: its maximal age, age(m), in the cache can be extracted from a Must analysis. Then
task B is analyzed to determine a bound on the number of interfering memory blocks that map to
the same cache set as m , denoted byM. IfM≤ k−age(m) holds, m willl remain in the cache
even in the presence of B’s interference. Otherwise, m could be evicted from the cache due to B’s
execution, and its classification needs to be changed accordingly.

A major drawback of the above approach is that the timing of cache conflicts is not considered,
i.e., all potential cache conflicts computed from cache mapping are included. However, if by some
means we know that the lifetimes of two conflicting tasks (or cache accesses) do not overlap, some
cache conflicts can be safely excluded. This is a key property to tighten the estimations. Zhang
and Yan proposed a technique to exclude infeasible conflicts by exploring conflicting pairs of cache
accesses [135]. Liang et al. in [73] explore the overlapping of the lifetimes of co-running programs.
The timing of cache conflicts can also be precisely captured by model checking. Gustavsson et
al. used timed automata to model the behavior of programs on shared caches [50]. Infeasible
conflicts can be precisely excluded when the UPPAAL model checker explores the system model.
However, due to state space explosion, model checking based analysis can hardly scale beyond 2
cores. Another model checking based method was proposed in [132]. The SPIN model checker
was adopted to exclude the infeasible cache conflicts, but the models did not explore the exact
timing of the cache conflicts.

Another major analysis obstacle is that uncertainty, introduced by particular analysis technique
or inherent to a hardware feature, may be amplified in the presence of shared caches. For example,
in AI-based analyses, pessimistic age prediction makes the blocks of the interfered task less resilient;
similarly, pessimistic age prediction for the interfering task leads to an overestimated number
of conflicting blocks. Another source of uncertainty is the separation of cache behavior analysis
and path analysis [120], which adversely introduces “architecturally-infeasible” paths. Pruning
such infeasible paths can help to tighten WCET estimations. Banerjee et al. proposed a finer-
grained abstract domain, which associates path information into the traditional Must and May
abstract states to exclude non-existent cache states due to infeasible paths [12]. Chattopadhyay
and Roychoudhury proposed another technique that improves the prediction for NC blocks by
excluding infeasible paths using model checking [25]. Both techniques can be integrated into the
analysis framework of [73] to more precisely estimate shared cache interference.

Even with the above techniques, real-time system design still faces a problem: if the shared
cache is freely used, the worst-case performance of the tasks also degrades. Therefore, recent
research tried to employ mechanisms that provide temporal isolation on shared caches, which both
simplifies cache analysis and at the same time reduces the WCET. Cache partitioning [75, 116, 122]
partitions the cache space among tasks by controlling page allocation to completely avoid cache
conflicts among tasks on different cores. Cache locking [75, 116] locks the frequently used data
in the cache so that hit/miss behavior is totally predictable. Another approach [54] tries to
bypass the shared cache upon accesses to memory blocks with little reuse, which reduces cache
interference. The idea of bypassing [54] was later extended to shared data caches [68], in which
two heuristics are introduced to bypass indeterministic data references. On the system level, some
further issues have to be solved. In multi-tasking systems, different tasks may try to lock the
same cache segment, so scheduling of the lockings must be considered [126]. Regarding cache
partitioning, the partitions assigned to the tasks may overlap in cache space. A task can only
start execution if both the CPU and the cache partition are available. The schedulability tests
must consider both the CPU and the cache constraints [46]. However, partitioning and locking
have a side-effect of reducing the cache space available for each task. New techniques are expected
for more intelligent resource allocation and arbitration, so that the WCET of the tasks can
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Table 5 WCET analysis tools supporting static cache analysis.

Tools Instruction
Cache

Data
Cache

Multi-Level
Cache

Non-LRU
Cache CRPD Shared

Cache

aiT AI AI Pseudo-RR,
PLRU, FIFO

OTAWA AI,
ML-PER

Chronos Scope-
Aware

Separate
Framework

Heptane AI AI Separate
Framework

Separate
Analysis

WCA Model
Checking

FIFO

SWEET AI

METAMOC Model
Checking

Model
Checking

Round Robin

McAiT AI Separate
Framework

Model
Checking

Florida
State, NC
State,
Furman

University

SCS SCS, CME Separate
Framework

Separate
Analysis

Chalmers
University

Symbolic
Execution

Symbolic
Execution

be further reduced (Unlike the general-purpose computing domain [136], cache management in
real-time systems [82] optimizes the worst-case rather than the average-case performance.), and
the schedulability of the overall system is improved.

6 Static Analysis Tools

In the past decades, a number of WCET analysis tools have been developed in both industry and
academia. Table 5 lists the tools that support static cache analysis.

aiT [57] is the only static WCET analysis tool in routine use in industry. It has been qualified,
i.e., admitted to certification of time-critical avionics subsystems of several Airbus planes by the
European European Aviation Safety Agency (EASA) and has been used in their certification. It
is also used in other air and space companies in Europe, the United States, and China and in
German automotive OEMs and their suppliers. It uses the AI-based analyses [31, 38] for both
instruction and data caches. Besides LRU, the aiT tool can analyze three non-LRU replacement
policies: Pseudo-Round-Robin [58] as well as, PLRU and FIFO based on the analyses described
in [103] and [44].

The OTAWA tool [11] developed by the University of Toulouse, France, is an open framework for
WCET analysis. OTAWA provides instruction cache analysis based on abstract interpretation [38]
with the improvement of multi-level Persistence analysis [10].

Chronos [70] is a static WCET analysis tool from the National University of Singapore. It was
originally designed with a highlight on pipeline analysis using the SimpleScalar simulator. The
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latest version, Chronos 4.2, now supports the recent contributions of the group: scope-aware data
cache analysis [62] and unified cache analysis [24].

Heptane [60] is a static WCET analysis tool developed by IRISA, France. The highlight of the
tool is the separate analysis of multi-level caches [55]. It also support shared cache analysis by the
technique extended from AI-based analysis [54].

WCA [109] from Vienna University of Technology and DTU is a WCET analysis tool for a
Java processor, JOP [108], which uses method cache to store the instructions of a whole Java
method. A method is fully loaded into the cache upon invocation and enjoys cache hits during
its execution. On exit, the content of the caller function is reloaded into the method cache. The
method cache is organized like a fully-associative FIFO cache with N blocks. The tool uses model
checking to analyze the method cache, and it also provides a simple persistence analysis given
that a code region can fit into the cache.

SWEET [117] is a WCET analysis tool currently maintained by Mälardalen University of
Sweden. Although mainly focusing on flow analysis, it supports AI-based analysis for instruction
caches [38].

The METAMOC tool [33] from Aalborg University of Denmark employs model checking for
both instruction and data caches. It can analyze the round-robin replacement policy used by the
ARM920T processor.

McAiT [80] is a WCET analysis tool jointly developed by Uppsala University of Sweden and
Northeastern University of China. The tool supports L1 instruction cache analysis by the AI-based
approaches [31, 38], and shared L2 cache analysis by model checking.

Other research prototypes include a tool from Florida State, North Carolina State, and Furman
Universities, which adopts Static Cache Simulation [88] for both instruction and data cache
analysis, and also supports data cache analysis using cache miss equations [97]. Another prototype
from Chalmers University of Technology uses symbolic execution [77] for cache analysis.

The data provided in Table 5 might be imprecise, because the information can only be inferred
from the publications instead of the tools in some cases. More comprehensive knowledge on
existing WCET analysis tools can be found in [130] and the reports for the WCET Tool Challenge
in 2011 [53], 2008 [61] and 2006 [48].

7 Future Research Directions

WCET estimation is a key task in timing analysis of real-time systems. Since caches may
significantly affect execution time, the quality of cache analysis determines the precision of the
estimated WCET. This article surveys the main challenges and analysis techniques for vast cache
architectures. For decades, the LRU replacement policy has been well studied. The most valuable
asset is that a comprehensive understanding of cache behavior and cache analysis were established
by the ingenious researchers in related communities. Several future directions can be explored to
bridge the gap.

Evaluation and Comparison of Different Approaches. The reader of this survey may be disap-
pointed not to find evaluations and comparisons of the different methods for cache analysis. These
are indeed hard to find in literature and are therefore subject of future research.

One of the obstacles to fair evaluation is the difficulty to obtain industrial software for
experimentation; most industrial embedded software is not openly available. Another reason for
the non-existence of good experimental evaluations is the dominance of the Mälardalen Benchmark
Suite. The programs in this benchmark suite have a very special characteristic: They are small
and contain tiny loops. They start with long straight-line code sequences for the initialization of
the program variables. This alone makes them already problematic; the execution is independent
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of the values of the input variables. Measuring this one execution would suffice if execution times
were independent of the initial architectural state—which they often are not [104]. Analyzing
the cache performance using the programs from this benchmark should stress the cache; access
sequences without evictions do not provide any insights.

Analytical comparisons of the different approaches should, in principle, be possible. However,
they have not been performed. For instance, the abstract cache state in Mueller’s static cache
simulation [88, 90] is much like the abstract May cache in the abstract-interpretation-based
approach [37, 38]. Intuition says that the precision of May information as obtained by abstract
interpretation should therefore be the same as that obtained by static cache simulation. We would,
however, assume that Must information as obtained by abstract interpretation is more precise
than that obtained by static cache simulation since the computation of Must information from an
abstract May cache employs rather strong conditions to eliminate contents from the May cache
that cannot be guaranteed to be in all concrete caches.

Non-LRU Cache Analysis. Although LRU is highly predictable, it is practically more important
to analyze non-LRU replacement policies since they are actually adopted in real-life processors.
Must, May and Persistence analyses need to be established to fully characterize the cache behavior.
Currently, the missing pieces are Persistence analysis for FIFO, Must and May analyses for MRU,
Persistence and May analyses for PLRU. Furthermore, there are no techniques to analyze non-LRU
data caches and multi-level caches, which are actually required to cover the whole cache hierarchy.
For policies other than the above-mentioned ones, similar analysis targets should be fulfilled.
However, we still lack a systematic way to construct abstract analyses for new replacement policies.

Application of Cache Analysis in Other Domains. So far the use of cache analysis has mostly
been confined to WCET analysis. However, there is at least one more domain in which cache
analysis can deliver valuable insights, namely security. Side-channel attacks recover secret inputs
to programs from physical characteristics of the computation. Typical goals of such attacks are
the recovery of cryptographic keys and private information about users. Characteristics that
have been exploited for that purpose include execution time, cache behavior, memory and power
consumption, and electromagnetic radiation. Doychev et al. have demonstrated that static cache
analyses based on abstract interpretation can be used to derive guarantees on the amount of
information leaked to an attacker [35].

Design and Analysis of Timing-Predictable Embedded Systems. Preemption delay analysis
and multi-core shared cache analysis have to consider the interactions among tasks running
in parallel. It is commonly acknowledged that inter-core interference not only harms cache
analysis, but also degrades overall system performance. Academia has gradually come to a
consensus [8, 29, 122]: the solution to this problem should be to regulate both the hardware [92, 131]
and the software [36, 81, 94] so that the system behaves in a timely predictable manner. The
grand challenge is to obtain predictability without sacrificing the performance provided by future
powerful processors. Cache analysis will provide valuable insights to characterize tasks so that
good design decisions can be made in resource allocation and arbitration, such as cache partitioning
and cache-aware scheduling.

One important step in this direction would be to understand how timing compositionality [52]
can be achieved. Due to complex interactions between caches and other microarchitectural
components, such as branch predictors or out-of-order pipelines, provably sound WCET analyses
can currently only be achieved by analyzing all of these components together in an integrated
fashion. However, such an integrated approach is very unlikely to scale to multi-tasking systems
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or even to the parallel execution of multiple tasks on a multi-core processor. In these scenarios, to
limit analysis complexity, interference costs are better analyzed separately and then taken into
account during schedulability analysis. Timing compositionality has, however, not been formally
proven for models of any modern microarchitecture, leaving much of the recent work unapplicable
to real systems.
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