
Volume 6 | Issue 1 | May 2019

Vol. 6, Issue 1 ISSN 2199-2002 http://www.dagstuhl.de/lites

http://www.dagstuhl.de/lites

ISSN 2199-2002

Published online and open access by
the European Design and Automation Association
(EDAA) / EMbedded Systems Special Interest Group
(EMSIG) and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik GmbH, Dagstuhl Publishing, Saar-
brücken/Wadern, Germany.
Online available at
http://www.dagstuhl.de/dagpub/2199-2002.

Publication date
May 2019

Bibliographic information published by the Deutsche
Nationalbibliothek
The Deutsche Nationalbibliothek lists this publica-
tion in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at
http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons At-
tribution 3.0 Germany license (CC BY 3.0 DE): http:
//creativecommons.org/licenses/by/
3.0/de/deed.en.

In brief, this license authorizes each
and everybody to share (to copy,

distribute and transmit) the work under the follow-
ing conditions, without impairing or restricting the
authors’ moral rights:

Attribution: The work must be attributed to its
authors.

The copyright is retained by the corresponding au-
thors.

Digital Object Identifier
10.4230/LITES-v006-i001

Aims and Scope
LITES aims at the publication of high-quality schol-
arly articles, ensuring efficient submission, reviewing,
and publishing procedures. All articles are published
open access, i.e., accessible online without any costs.
The rights are retained by the author(s).

LITES publishes original articles on all aspects of em-
bedded computer systems, in particular: the design,
the implementation, the verification, and the testing
of embedded hardware and software systems; the
theoretical foundations; single-core, multi-processor,
and networked architectures and their energy con-
sumption and predictability properties; reliability
and fault tolerance; security properties; and on
applications in the avionics, the automotive, the
telecommunication, the medical, and the production
domains.

Editorial Board
Alan Burns (Editor-in-Chief)
Bashir Al Hashimi
Karl-Erik Arzen
Neil Audsley
Sanjoy Baruah
Samarjit Chakraborty
Marco di Natale
Martin Fränzle
Steve Goddard
Gernot Heiser
Axel Jantsch
Florence Maraninchi
Sang Lyul Min
Lothar Thiele
Virginie Wiels

Editorial Office
Michael Wagner (Managing Editor)
Jutka Gasiorowski (Editorial Assistance)
Dagmar Glaser (Editorial Assistance)
Thomas Schillo (Technical Assistance)

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
LITES, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
lites@dagstuhl.de
http://www.dagstuhl.de/lites

http://www.dagstuhl.de/lites
http://www.dagstuhl.de/dagpub/2199-2002
http://dnb.d-nb.de
http://creativecommons.org/licenses/by/3.0/de/deed.en
http://creativecommons.org/licenses/by/3.0/de/deed.en
http://creativecommons.org/licenses/by/3.0/de/deed.en
https://doi.org/10.4230/LITES-v006-i001
http://www.dagstuhl.de/lites

Contents

Local Planning Semantics: A Semantics for Distributed Real-Time Systems
Mahieddine Dellabani, Jacques Combaz, Saddek Bensalem, and Marius Bozga 1:1–1:27

Improving WCET Evaluation using Linear Relation Analysis
Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux, Erwan Jahier,
Nicolas Halbwachs, Fabienne Carrier, Mihail Asavoae, and Rémy Boutonnet 2:1–2:28

A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems
Robert I. Davis and Liliana Cucu-Grosjean . 3:1–3:60

A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems
Robert I. Davis and Liliana Cucu-Grosjean . 4:1–4:53

Elastic Scheduling for Parallel Real-Time Systems
James Orr, Chris Gill, Kunal Agrawal, Jing Li, and Sanjoy Baruah 5:1–5:14

Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lites
http://www.dagstuhl.de/en/about-dagstuhl/

Local Planning Semantics: A Semantics for
Distributed Real-Time Systems∗

Mahieddine Dellabani
University Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, 38000 Grenoble, France
mahieddine.dellabani@univ-grenoble-alpes.fr

Jacques Combaz
University Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, 38000 Grenoble, France
saddek.bensalem@univ-grenoble-alpes.fr

Saddek Bensalem
University Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, 38000 Grenoble, France
jacques.combaz@univ-grenoble-alpes.fr

Marius Bozga
University Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, 38000 Grenoble, France
marius.bozga@univ-grenoble-alpes.fr

Abstract
Design, implementation and verification of dis-
tributed real-time systems are acknowledged to be
very hard tasks. Such systems are prone to different
kinds of delay, such as execution time of actions
or communication delays implied by distributed
platforms. The latter increase considerably the
complexity of coordinating the parallel activities
of running components. Scheduling such systems
must cope with those delays by proposing execu-
tion strategies ensuring global consistency while
satisfying the imposed timing constraints. In this
paper, we investigate a formal model for such sys-
tems as compositions of timed automata subject
to multiparty interactions, and propose a seman-
tics aiming to overcome the communication delays

problem through anticipating the execution of in-
teractions. To be effective in a distributed context,
scheduling an interaction should rely on (as much
as possible) local information only, namely the state
of its participating components. However, as shown
in this paper these information is not always suffi-
cient and does not guarantee a safe execution of the
system as it may introduce deadlocks. Moreover,
delays may also affect the satisfaction of timing
constraints, which also corresponds to deadlocks
in the former model. Thus, we also explore meth-
ods for analyzing such deadlock situations and for
computing deadlock-free scheduling strategies when
possible.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory
Keywords and Phrases Distributed Real-Time Systems, Timed Automata, Formal Verification
Digital Object Identifier 10.4230/LITES.6.1.1
Received 2017-10-03 Accepted 2018-10-08 Published 2019-02-18

∗ This work has been supported by the European Union’s Horizon 2020 research and innovation programme
under grant agreement #730080.

© Mahieddine Dellabani, Jacques Combaz, Saddek Bensalem, and Marius Bozga;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 6, Issue 1, Article No. 1, pp. 01:1–01:27
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7437-2822
mailto:mahieddine.dellabani@univ-grenoble-alpes.fr
https://orcid.org/0000-0002-3968-3879
mailto:saddek.bensalem@univ-grenoble-alpes.fr
https://orcid.org/0000-0002-5753-2126
mailto:jacques.combaz@univ-grenoble-alpes.fr
https://orcid.org/0000-0003-4412-5684
mailto:marius.bozga@univ-grenoble-alpes.fr
https://doi.org/10.4230/LITES.6.1.1
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

01:2 LPS: a Semantics for Distributed Real-Time Systems

1 Introduction

Nowadays, real-time systems are ubiquitous in several application domains, and such an emergence
led to an increasing need of performance: resources, availability, concurrency, etc. This expansion
initiates a shift from the use of single processor based hardware platforms, to large sets of
interconnected and distributed computing nodes. Moreover, it prompts the birth of a new family
of systems known as Networked Embedded Systems, that are intrinsically distributed. Such an
evolution stems from an increase in complexity of real-time software embedded on such platforms
(e.g. electronic control in avionics and automotive domains [13]), and the need to integrate
formerly isolated systems [24] so that they can cooperate as well as share resources improving
thus functionality and reducing costs.

To deal with such complexity, the community of safety critical systems often restricts its scope
to predictable systems, which are represented with domain specific models (e.g. periodic tasks,
synchronous systems, time-deterministic systems) for which the range of possible executions is
small enough to be easily analyzed, allowing the pre-computation of optimal control strategies.
Networked Embedded Systems usually describe a set of real-time systems, distributed across several
platforms, and interacting through a network. Because of their adaptive behavior, the standard
practice when implementing such systems is not to rely on models for pre-computation of execution
strategies but rather to design systems dynamically adapting at runtime to the actual context of
execution. Such approaches, however, do not offer any formal guarantee of timeliness. Also, the
lack of a priori knowledge on system behavior leaves also little room for static optimization.

Model-based development is one promising approach in building distributed real-time systems.
First, an application model expressing a timed abstraction of the application behavior is built. This
abstraction is platform independent, meaning that it does not consider any hardware specification
such as communication delays or CPU(s) speed, which allows to: (i) model the system at early
stages without any knowledge of the target platform, and (ii) verify the obtained model against
some safety properties (functional requirements). Thereafter, the application source code, which
represents the actual implementation of the system on a given platform, is automatically generated
from the high level model. Then, the big challenge becomes how to verify the timing behavior of
the implementation, since a lot of assumptions drop such as atomic execution of actions or timeless
communication delays. In this paper, we propose a model-based approach aiming to mitigate the
communication delays of distributed platforms. In this approach, systems consist of components
represented as timed automata that may synchronize on particular actions to coordinate their
activities. We contribute to this research field by proposing a different semantics than the usual
semantics of timed automata. This semantics aims to distinguish between the decision dates for
executing interactions and their actual execution dates by introducing a notion of scheduling
on a semantics level. The idea behind this practice is to distinguish between the date at which
interactions are executed and the date at which the execution decisions are effectively made. This
will particularly help to anticipate the execution of interactions at least some delay beforehand,
corresponding to the actual worst estimation of communication delays of a given platform, which
will alleviate the effect of those delays on the system behavior.

This work is an extension of our work presented in [16]. We extend our previous work by
(1) defining a more mature and realistic semantics for planning interactions. Especially, we
introduce a lower bound horizon for planning interactions, that is, we impose at least a minimum
delay, representing communication delays, between the effective planning of an interaction and its
execution. In other words, immediate (timeless) planning is no longer allowed. Thereafter, we
show that by enforcing a minimum delay between interactions planning and their executions, we
may engender situational blocking situations that were nonexistent at first. We provide (2) a

M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:3

formal characterization of such blocking situations and (3) suggest an execution strategy aiming
to avoid the latter. Furthermore, (4) if no execution strategy guarantying safe executions can be
found, we propose an alternative method based on real-time controller synthesis approach as well
as a discussion comparing both approaches.

The rest of the paper is organized as follows. Section 2 gives preliminary definitions of timed
automata with respect to multiparty interactions as well as predicates definitions needed for the
rest of the paper. In Section 3, we present our extended local planning semantics, discuss its
relation with the usual timed automata semantics, and give sufficient conditions that formally
characterize its deadlock states. Then, Section 4 presents an execution strategy aiming to enforce
the correctness of the presented approach and find a deadlock free execution scenario when possible.
Additionally, Section 5 explains how the local planning semantics can be formalized as a real-time
controller synthesis problem and provide, thus, an alternative method for finding an execution
strategy for such semantics. We also highlight the key issues met during our reflection and discuss
important modeling points when using this technique. An implementation of the proposed is
approach is described in Section 6 along with experimental results conducted on real-life case
studies. Finally, the related works are presented in Section 7 and the conclusion given in Section 8.

2 Timed Systems and Properties

In the framework of the present paper, components are timed automata and systems are composi-
tions of timed automata with respect to multiparty interactions. The timed automata we use are
essentially the ones from [4], however, slightly adapted to embrace a uniform notation throughout
the paper.

Given a set of clock X , a clock constraint is an expression of the form:

c := true | x ∼ ct | x− y ∼ ct | c ∧ c | false,

with x, y ∈ X , ∼ ∈ {<,≤,=,≥, >} and ct ∈ Z. We denote by C(X) the set of clock constraints
over X .

I Definition 1 (Component). A component is a tuple B = (L, `0,A,X , T , tpc) where L is a finite
set of locations, `0 ∈ L is an initial location, A a finite set of actions, X is a finite set of clocks,
T ⊆ L× (A× C(X)× 2X)×L is a set of transitions labeled with an action, a guard, and a set of
clocks to be reset, and tpc : L → C(X) assigns a time progress condition tpc(`) to each location
` ∈ L. Notice that time progress conditions are backward closed, that is, they are restricted to
conjunctions of constraints of the form x ≤ ct.

Throughout the paper, we assume components that are deterministic timed automata, that
is, at a given location ` and for a given action a, there is at most one outgoing transition from
` labeled by a. Given a timed automaton (L, `0,A,X , T , tpc), we write ` a,g,r−−−→ `′ if there exists
a transition τ =

(
`, (a, g, r), `′

)
∈ T . We also denote by guard(a, `) the clock constraints of the

transition labeled by a and outgoing from ` if it exists, and false otherwise and we write:

guard(a, `) =
{
g, if ∃τ =

(
`, (a, g, r), `′

)
∈ T

false, otherwise

Before recalling the semantics of a component, we first fix some notations. Let V(X) be the set
of all clock valuation functions v : X → R≥0 and v0 be the clock valuation assigning zero to all
clocks. For a clock constraint c, c(v) is a boolean value corresponding to the evaluation of c on v.
For a valuation v ∈ V and for δ ∈ R≥0, v + δ is the valuation satisfying (v + δ)(x) = v(x) + δ for

LITES

01:4 LPS: a Semantics for Distributed Real-Time Systems

any x, while for a subset of clocks r, v[r] is the valuation obtained from v by resetting clocks of r,
i.e., v[r](x) = 0 for x ∈ r, v[r](x) = v(x) otherwise. We denote by c + δ the clock constraint c
shifted by δ, i.e. such that (c + δ)(v) iff c(v + δ). We also consider the classical backward and
forward operators [30] on clock constraints, i.e. (↙ c)(v) iff ∃δ ≥ 0 . c(v + δ) and (↗ c)(v) iff
∃δ ≥ 0 . c(v − δ). In what follows, we also use two variants of the backward operator considering
lower bounds l ∈ Z≥0 and upper bounds u ∈ Z≥0 ∪ {+∞}: (↙l c)(v) iff ∃δ ≥ l . c(v + δ) and
(↙u
l c)(v) iff ∃δ . l ≤ δ ≤ u ∧ c(v + δ).

I Definition 2 (Semantics). A component B = (L, `0,A,X , T , tpc) defines the labeled transition
system (LTS) (Q, q0,A ∪ R>0,→) where:

Q = L × V(X) denotes the states of B, q0 = (`0, v0) is the initial state.
→⊆ Q× (A ∪ R>0)×Q denotes the set of transitions between states according to the rules:

(`, v) a−→ (`′, v[r]) if ` a,g,r−−−→ `′ and g(v) and tpc(`′)(v[r]) (action step).
(`, v) δ−→ (`, v + δ) if tpc(`)(v + δ) for δ ∈ R>0 (time step).

A run % of B is an execution sequence that alternates action steps and time steps, that is:

% = q0σ0q1σ1q2 . . . , such that qi ∈ Q, qi
σi−→ qi+1, and i ∈ Z>0, σi ∈ A ∪ R>0.

We say that a state (`, v) is reachable if there is an execution sequence from the initial configuration
(`0, v0) leading to (`, v). In this paper, we always assume components with well formed guards,
that is, transitions ` a,g,r−−−→ `′ satisfy g(v)⇒ tpc(`)(v) ∧ tpc(`′)(v[r]) for any v ∈ V. This ensures
that the reachable states always satisfy the time progress conditions, i.e. if (`, v) is reachable then
we have tpc(`)(v). Consequently, the action step of Definition 2 can be simplified as:

(`, v) a−→ (`′, v[r]) if ` a,g,r−−−→ `′ and g(v)

Notice that the set of reachable states is in general infinite, but it can be partitioned into a finite
number of symbolic states [30, 7, 20]. A symbolic state is defined by a pair (`, ζ) where, ` is a
location of B, and ζ is a zone, i.e. a set of clock valuations defined by a clock constraint (as
defined in Definition 1). Efficient algorithms for computing symbolic states and operations on
zones are fully described in [7]. Given symbolic states {(`j , ζj)}j∈J of B, the predicate Reach(B)
characterizing the reachable states can be expressed as:

Reach(B) =
∨
j∈J

at(`j) ∧ ζj ,

where at(`j) is true on states whose location is `j , and clock constraint ζj is straightforwardly
applied to clock valuation functions of states.

We define the predicate Enabled(a) characterizing states (`, v) at which an action a is enabled,
i.e. such that (`, v) a−→ (`′, v′) for some (`′, v′). It can be formally written as:

Enabled(a) =
∨
`∈L

at(`) ∧ guard(a, `).

A state (`, v) is said urgent if time cannot progress from (`, v), that is, there is no δ ∈ R>0

such that (`, v) δ−→ (`, v′). Urgent states are characterized by the predicate:

Urgent(B) =
∨
`∈L

at(`) ∧ urg(`) (1)

where urg(`) is a clock constraint characterizing the valuations from which time cannot progress
with respect to the time progress condition of `, that is, it is defined by urg(`) =

∨m
i=1(xi ≥ cti) if

M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:5

tpc(`) =
m∧
i=1

xi ≤ cti. Notice that due to well-formed guards, an urgent reachable state satisfies

also (1) if inequalities xi ≥ cti on clocks are replaced by equalities xi = cti in the expression of
urg(`).

Following [31], we require that components or systems execute forever. This is referred to as
the requirement of progress which can be divided split into discrete and time progress captured
respectively by the notion of deadlocks and timelocks.

I Definition 3 (Deadlock and action-time-lock). We say that a state (`, v) of a component B
is deadlock if, with respect to its semantics, no action can be executed from (`, v) and from its
successors, that is:

Deadlock(B) = ¬
(
∃a ∈ A . (`, v) a−→ (`′, v′) ∨ ∃δ > 0 . (`, v) δ−→ (`, v + δ) a−→ (`′, v′)

)
.

Deadlock states are characterized by the following predicate:

Deadlock(B) = ¬
(∨
a∈A
↙
(
Enabled(a) ∧ tpc(`)

))
.

Because of well-formed guards this could be simplified into:

Deadlock(B) =
∧
a∈A
¬
(
↙ Enabled(a)

)
.

A deadlock (`, v) is called an action-time-lock when no interaction can execute nor time can
progress from (`, v), that is:

ActionT imeLock(B) = ¬
(
∃a ∈ A . (`, v) a−→ (`′, v′) ∨ ∃δ > 0 . (`, v) δ−→ (`, v + δ)

)
.

Action-time-lock states are characterized by the following predicate:

ActionT imeLock(B) =
(∧
a∈A
¬Enabled(a)

)
∧
(∨
`∈L

at(`) ∧ urg(`)
)
.

Deadlocks are situations from which a component is stuck at a given location without being able
to progress by executing an action, which must be avoided in reactive systems. Action-time-locks
are modeling errors and consist in deadlocks from which time cannot progress.

We denote by time(%, i) the total elapsed time until point i, that is,
∑
j<i σj such as σj ∈ R>0.

In the same way, time(%) represents the total elapsed time during %, and is defined to be the limit
of time(%, i) if the sequence converges and ∞ otherwise.

I Definition 4 (Zeno runs and Timelocks). Let % be an infinite run such that time(%) 6=∞. Such
a run violates the time progress requirements (only a finite number of events can occur in a finite
amount of time), and is called zeno. Given a component B, a state of B is timelock if all infinite
runs starting form that state are zeno.

In [31], it was shown that the class of timed automata in which 1 time unit is elapsed in every
structural loop, also known as strongly non-zeno, is non zeno. An interesting property of this
class is that it preserves non-zenoness under composability. Thus, checking the requirements of
progress of a given system will boil down to checking its deadlock freedom.

In our framework, components communicate by means of multiparty interactions. A multiparty
interaction is a rendez-vous synchronization between actions of a fixed subset of components.
It takes place only if all the participants agree to execute the corresponding actions. Given n

LITES

01:6 LPS: a Semantics for Distributed Real-Time Systems

components Bi, i = 1, . . . , n, with disjoint sets of actions Ai, an interaction is a subset of actions
α ⊆ ∪1≤i≤nAi containing at most one action per component, i.e. α ∩ Ai is either empty or a
singleton {ai}. That is, an interaction α can be put in the form {ai}i∈I with I ⊆ {1, . . . , n}
and ai ∈ Ai for all i ∈ I. We denote by part(α), the set of components participating in α, that
is, part(α) = {Bi}i∈I . We say that two interactions α and β are conflicting, denoted by α#β,
part(α) ∩ part(β) 6= ∅.

The semantics of a composition is interpreted at runtime by evaluating enabled interactions
based on current states of the system components. In a composition of n components Bi∈{1,...,n}
synchronizing through the interaction set γ, denoted by γ(B1, . . . , Bn), an action ai can execute
only as part of an interaction α such that ai ∈ α, that is, along with the execution of all other
actions aj ∈ α, which corresponds to the usual notion of multiparty interaction.

I Definition 5 (Standard Semantics of a Composition). Given a set of components {B1, . . . , Bn}
and an interaction set γ. The (standard) semantics of the composition S = γ(B1, . . . , Bn) w.r.t
the set of interactions γ, is the LTS (Qg, q0, γ ∪ R>0,→γ) where:

Qg = L × V(X) is the set of global states, where L = L1 × . . . × Ln and X =
⋃n
i=1 Xi. We

write a state q = (`, v) where ` = (`1, . . . , `n) ∈ L is a global location and v ∈ V(X) is a global
clock valuation. q0 = (`0, v0) is the initial state, where `0 = (`1

0, . . . , `
n
0) and v0 is the clock

valuation assigning 0 to all clocks.
→γ⊆ Q× (γ ∪ R>0)×Q is the set of labeled transitions defined by the rules:

(`, v) α−→γ (`′, v′) for α = {ai}i∈I ∈ γ, if ∀i ∈ I (`i, vi)
ai−→ (`′i, v′i) and ∀i /∈ I (`i, vi) = (`′i, v′i).

(`, v) δ−→γ (`, v + δ) for δ ∈ R>0 if ∀i ∈ {1, . . . , n} tpci(`i)(vi + δ) where vi denotes the
restriction of v to clocks Xi of Bi.

To simplify notations, predicates defined on individual components Bi are straightforwardly
interpreted on states (`, v) of a composition S = γ(B1, . . . , Bn) by considering the projection
(`i, vi) of (`, v) on Bi, which is such that ` = (`1, . . . , `n) and vi is restriction of v to clocks Xi of
Bi. For instance, at(`i) evaluates to true on (`, v) iff ` ∈ L1 × . . .×Li−1 × {`i} × Li+1 × . . .×Ln.
Similarly, clock constraints of components Bi are applied to clock valuation functions v of the
composition by restricting v to clocks Xi of Bi. This allows to write the predicate Enabled(α)
characterizing states (`, v) from which an interaction α = {ai}i∈I ∈ γ can be executed, i.e., such
that (`, v) α−→γ (`′, v′), as:

Enabled(α) =
∧
i∈I

Enabled(ai)

=
∧
i∈I

∨
`i∈Li

at(`i) ∧ guard(ai, `i)

=
∨
`∈L

`=(`1,...,`n)

at(`) ∧
∧
i∈I
ai∈α

guard(ai, `i).

Notice that the above formulation of Enabled(α) corresponds to locations enumeration of all
components participating in interaction α. In practice, we rather consider only a subset of
locations Lα ⊆ L, from which the execution of α is possible. This corresponds to

∏
i∈I |Lai |

possible configuration, where Lai ⊆ Li is a subset of locations from which there exists a transition
labeled by action ai ∈ α, and |Lai | denotes the cardinality of Lai , which is reasonably small in
pratical examples but can be (at the worst case) equal to

∏
i∈I |L|.

The definitions of run, reachable states, deadlocks and action-time-locks of components are also
trivially extended to composition of components. Deadlocks of a composition S = γ(B1, . . . , Bn)

M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:7

`1
0

`1
1

C

init0
z > 25

start0
z := 0

`2
0 `2

1

`2
2 x ≤ 30

T1

`2
3x ≤ 4

init1

start1
x := 0

process1
10 ≤ x ≤ 30, x := 0

end1
x ≤ 4

`3
1`3

0

`3
2 y ≤ 30

T2

`3
3y ≤ 4

init2

start2
y := 0

process2
10 ≤ y ≤ 30, y := 0

end2
y ≤ 4

`4
0

R

`4
1

take

free

init2 start2

end2process2

init1start1

end1 process1

take

free

init0 start0

α5α6

α1α2

α3α4

α7α8

Figure 1 Task Manager.

can be characterized as follows:

Deadlock(S) =
∨

`=(`1,...`n)∈L

at(`) ∧
[∧
α∈γ
¬ ↙

(
Enabled(α) ∧

∧
1≤i≤n

tpci(`i)
)]
, (2)

and action-time-locks by:

ActionT imeLock(S) =
(∧
α∈γ
¬Enabled(α)

)
∧
(∨

1≤i≤n

∨
`i∈Li

at(`i) ∧ urg(`i)
)
.

I Example 6 (Running Example). Let us consider as a running example the composition of four
components C, T1, T2, and R of Figure 1. Component C represents a controller that initializes then
releases tasks T1 and T2. Tasks use the shared resource R during their execution. To implement
such behavior, we consider the following interactions between C, R, and T1: α1 = {init0, init1},
α3 = {start0, start1}, α5 = {take, process1}, α7 = {free, end1}, and similar interactions α2,
α4, α6, α8 for task T2, as shown by connections on Figure 1. The controller is responsible for
firing the execution of each task. First, it non-deterministically initializes one of the two tasks,
i.e. executes α1 or α2, and then releases it through interaction α3 or α4. Tasks perform their
processing independently of the controller, after being granted an access to the shared resource
(α5 or α6). When finished, a task releases the resource (interactions α7 or α8) and goes back to
its initial location. An example of execution sequence of the system of Figure 1 is given below, in
which valuations v of clocks x, y, and z are represented as a tuples (v(x), v(y), v(z)):

((`1
0, `

2
0, `

3
0, `

4
0), (0, 0, 0)) 26−→γ ((`1

0, `
2
0, `

3
0, `

4
0), (26, 26, 26)) α1−→γ ((`1

1, `
2
1, `

3
0, `

4
0), (26, 26, 26)) α3−→γ

((`1
0, `

2
2, `

3
0, `

4
0), (0, 26, 0)) 10−→γ ((`1

0, `
2
2, `

3
0, `

4
0), (10, 36, 10)) α5−→γ ((`1

0, `
2
3, `

3
0, `

4
1), (0, 36, 10)) 2−→γ

((`1
0, `

2
3, `

3
0, `

4
1), (2, 38, 12)) α2−→γ ((`1

1, `
2
3, `

3
1, `

4
1), (2, 38, 12))

LITES

01:8 LPS: a Semantics for Distributed Real-Time Systems

3 Local Planning of Interactions

In the previous Section, we presented a timed automata model for representing timed systems with
multiparty interactions. The semantics of such model is based on the notion of global states, that
is, interactions executions are based not only on the state of participating components but on the
states of all components of the system. Conversely, a distributed system can be seen as a collection
of loosely coupled components that communicate with a scheduling layer [23, 29] which, based
on a partial view of the system, is responsible of taking decisions for interactions executions and
their effective execution dates. Additionally, high-level coordination primitives, such as multiparty
synchronizations (interactions) are rarely built-in primitives of distributed platforms. Hence,
their implementation on a distributed platform requires synchronization protocols responsible
for realizing synchronizations using simpler primitives such as point-to-point messages passing
as explained in [29]. This is classically implemented using one or more additional coordination
component(s) observing the system state and deciding on interactions execution, which adds on a
communication overhead not reflected by the semantics of Section 2.

This motivates the introduction of the local planning semantics. This semantics differs from
the standard semantics of timed automata in two main aspects: (i) interactions execution is based
only on partial state of the system, that is, based only on the state of components participating
in the considered interaction. Thus, it allows to decide locally without monitoring the entire
system. (ii) it distinguishes between the execution decision of an interaction (its planning), and
the execution itself. This distinction allows us to impose a delay between the planning of an
interaction and its execution. The latter is constrained by the (maximal) communication latency
induced by the execution platform, which is a parameter of the semantics. It is correct in the
sense that it refines (it is included in) the semantics of Section 2. However, being based on local
states, planning decisions are too permissive and may introduce deadlocks when they are not
compatible with the global state of the system.

3.1 Definition of the LPS
Let S = γ(B1, · · · , Bn) be a composition of components B1, . . . , Bn with disjoint set of locations,
actions and clocks. We define the predicate Plannable(α, δ) characterizing states (`, v) from which
an interaction α = {ai}i∈I ∈ γ is enabled in δ ∈ R≥0 units of time (if time progresses by δ units of
time), that is, such that Enabled(α) evaluates to true on state (`, v + δ). It is characterized by:

Plannable(α, δ) =
∨
`∈L

`=(`1,··· ,`n)

at(`) ∧
∧
i∈I
ai∈α

(
guard(ai, `i) + δ

)
(3)

Notice that for an interaction α the predicate Plannable(α, δ) depends only on states of components
of part(α), which motivates the following property.

I Property 7. Let (`, v) be a state of the composition S. For any interactions α, β ∈ γ such that,
(`, v) β−→γ (`′, v′) and part(α) ∩ part(β) = ∅, if Plannable(α, δ) holds at state (`, v) then it still
holds at state (`′, v′).

This property derives directly from the fact that executing an interaction β does not change the
states of components participating in an interaction α, provided that α and β have disjoint sets of
participating components, and thus, Plannable(α, δ) is not affected by the execution of β in this
case. In the following, we say that two interactions α and β conflicts when they have common
participating components, that is, when part(α) ∩ part(β) 6= ∅, and we write α#β. We denote by
conf(α) the set of interactions conflicting with α, that is, conf(α) = {β ∈ γ | α#β}.

M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:9

I Property 8. Let (`, v) and (`, v + δ′), with δ′ ∈ R>0 be two states of the composition S. For an
interaction α ∈ γ, if Plannable(α, δ) holds at state (`, v) then Plannable(α, δ − δ′) also holds at
any state (`, v + δ′) such that δ′ ≤ δ.

This property can be found directly by expressing the predicate 3 on state (`, v + δ′).
As previously explained, due to communication latencies induced by execution platforms we

assume that interactions cannot be planned in δ units of time if δ < hmin, where hmin ∈ Z≥0 is a
parameter representing the minimal planning horizon, which should represent the upper bound
communication latencies. Notice that for the sake of simplicity, we consider a global parameter
hmin but we could also assume different parameters for each interaction. Additionally, we also
consider upper bounds planning horizons hmax : γ → Z≥0 ∪ {+∞} for each interaction such that
for any α ∈ γ we have hmax(α) ≥ hmin. We denote by h∞max the upper planning horizon assigning
infinity to every hmax(α). A direct consequence of introducing the planning horizons is that every
interaction α can be planned only using a horizon δ satisfying hmin ≤ δ ≤ hmax(α), meaning that
every component B ∈ part(α) will be blocked for a duration between [hmin, hmax(α)]. Observe
that while hmin represents the worst case estimation of the communication delays for a given
platform, the parameters hmax(α) will be used later to find a strategy that avoids deadlocks by
restricting the amount of time components can be blocked for.

For an interaction α we define the predicate Plannable(α) characterizing states from which α
can be planned in a delay respecting the planning horizons hmin and hmax(α), that is:

Plannable(α)⇔ ∃δ ∈ R≥0 . hmin ≤ δ ≤ hmax(α) ∧ Plannable(α, δ),

It can be written equivalently as follows:

Plannable(α) =
∨
`∈L

`=(`1,··· ,`n)

at(`) ∧ ↙hmax(α)
hmin

(∧
i∈I
ai∈α

guard(ai, `i)
)

(4)

I Definition 9 (Plan). A plan π is a function π : γ → R≥0 ∪ {+∞} defining relative times
for executing interactions. An interaction α is planned to execute in π(α) time units only if
π(α) < +∞. Plans satisfy that for any two interactions α 6= β such that π(α) < +∞ and
π(β) < +∞, then the interactions α and β are not conflicting (i.e. ¬(α#β)).

We denote by π0 the plan assigning +∞ to every interaction of γ, that is, ∀α ∈ γ, π0(α) = +∞.
For a plan π, we consider its minimum value min(π) = min {π(α)|α ∈ γ}. We also denote
by conf (π) the set of interactions conflicting with the plan π, i.e. conf (π) = {α | ∃β#α.
π(β) < +∞}, and part(π) the set of components participating in interactions planned by π, i.e.
part(π) = {Bi | ∃α . π(α) < +∞ ∧ Bi ∈ part(α)}. Notice that since π stores relative times,
whenever time progresses by δ, the value π(α) assigned by π to an interaction α should be
decreased by δ until it reaches 0, meaning that α has to execute. We write π − δ to describe
the progress of time over the plan, that is, (π − δ)(α) = π(α) − δ for interactions α such that
π(α) < +∞. Similarly, π[α 7→ δ] assigns relative time δ to α, α /∈ conf(π), into existing plan π,
i.e. (π[α 7→ δ])(β) = δ for β = α, (π[α 7→ δ])(β) = π(β) otherwise.

I Definition 10 (Local Planning Semantics). Given a set of components {B1, · · · , Bn} and an
interaction set γ, we define the local planning semantics (LPS) of the composition γ(B1, · · · , Bn),
as the LTS (Qp, qp0 ,

∑
p,∼∼∼>γ) where:

Qp = L × V(X) × Π, where L is the set of global locations, V(X) is the set of global clock
valuation, and Π is the set of plans.

LITES

01:10 LPS: a Semantics for Distributed Real-Time Systems

∑
p = γ ∪ R>0 ∪ (γ × R≥0), where (γ × R≥0) defines the action of planning interactions of γ

and their relative times.
∼∼∼>γ ⊆ Qp ×

∑
p×Qp is the set of labeled transitions defined by the rules:

(`, v, π) ∼∼∼∼>
(α,δ)

γ (`, v, π[α 7→ δ]) for α ∈ γ, hmin ≤ δ ≤ hmax(α) and δ 6= +∞ if α /∈ conf (π)
and Plannable(α, δ) holds on (`, v, π).
(`, v, π) ∼∼∼>α γ (`′, v′, π[α 7→ +∞]) for α ∈ γ if π(α) = 0 and (`, v) α−→γ (`′, v′).
(`, v, π)∼∼∼>δ γ (`, v+δ, π−δ) for δ ≤ min(π), ` = (`1, . . . , `n), if tpci(`i)(v+δ) for components
Bi ∈ part(π) and tpci(`i)(v + δ + hmin) for components Bi /∈ part(π).

Remark that in the above definition as well as in what follows, predicates defined on states
(`, v) ∈ Qg = L × V(X) of the standard semantics are straightforwardly interpreted on states
(`, v, π) ∈ Qp considering the projection (`, v) of (`, v, π) on Qg.

States of the LPS do not include only locations and clock valuations, but also the relative
execution times of the planned interactions stored by π. Initially, no interaction is planned, that
is, initial states (`0, v0, π0) satisfy π0 = +∞. Planning an interaction α to be executed at a
relative time hmin ≤ δ ≤ hmax(α) corresponds to the operation π[α 7→ δ] on the plan, which can
only be done if α is not conflicting with the latter, and becomes enabled if time progresses by
δ (i.e. if Plannable(α, δ)). On the other hand, time progress not only updates clock values but
also the plan by decreasing the relative execution times of the planned interactions. To force
the execution of planned interactions when their relative execution times reach 0, time cannot
progress more than the closest relative execution times of the interactions (more than min(π)).
As for the standard semantics, time progress is limited by the time progress conditions of the
components, but with the following significant difference: Components Bi ∈ part(π) participating
in planned interactions behave as in the standard semantics, that is, time can progress until their
time progress conditions expire. For components Bi /∈ part(π), i.e., that are not participating
in planned interactions, we take into account the minimal delay hmin needed for planning and
then executing an interaction: in components Bi /∈ part(π) time can progress only up to hmin
time units before their time progress conditions expire. By doing so, we ensure that there always
remains enough time to plan interactions involving Bi /∈ part(π) , if they exist, and execute them
before their time progress conditions expire.

I Example 11. Let us consider the following execution sequence for example of Figure 1 under
the LPS with hmin = 2 and hmax = h∞max.

((`1
0, `

2
0, `

3
0, `

4
0), (0, 0, 0),+∞) ∼∼∼∼∼∼>

(α1,26)
γ((`1

0, `
2
0, `

3
0, `

4
0), (0, 0, 0), {α1 7→ 26}) ∼∼∼∼∼∼>

26
γ

((`1
0, `

2
0, `

3
0, `

4
0), (26, 26, 26), {α1 7→ 0}) ∼∼∼∼∼∼>

α1
γ((`1

1, `
2
1, `

3
0, `

4
0), (26, 26, 26),+∞) ∼∼∼∼∼∼>

(α3,2)
γ

((`1
1, `

2
1, `

3
0, `

4
0), (26, 26, 26), {α3 7→ 2}) ∼∼∼∼∼∼>

2
γ((`1

1, `
2
1, `

3
0, `

4
0), (28, 28, 28), {α3 7→ 0}) ∼∼∼∼∼∼>

α3
γ

((`1
0, `

2
2, `

3
0, `

4
0), (0, 28, 0),+∞) ∼∼∼∼∼∼>

(α2,26)
γ((`1

0, `
2
2, `

3
0, `

4
0), (0, 28, 0), {α2 7→ 26}) ∼∼∼∼∼∼>

26
γ

((`1
0, `

2
2, `

3
0, `

4
0), (26, 54, 26), {α2 7→ 0}) ∼∼∼∼∼∼>

α2
γ((`1

1, `
2
2, `

3
1, `

4
0), (26, 54, 26),+∞) ∼∼∼∼∼∼>

(α4,2)
γ

((`1
1, `

2
2, `

3
1, `

4
0), (26, 54, 26), {α4 7→ 2}) ∼∼∼∼∼∼>

2
γ((`1

1, `
2
2, `

3
1, `

4
0), (28, 56, 28), {α4 7→ 0}) ∼∼∼∼∼∼>

α4
γ

((`1
0, `

2
2, `

3
2, `

4
0), (28, 0, 0),+∞) ∼∼∼∼∼∼>

(α6,30)
γ

((`1
0, `

2
2, `

3
2, `

4
0), (28, 0, 0), {α6 7→ 30})

This execution sequence represents a path that alternates plan actions, time progress and execution
of some interactions, and leads to the action-time-lock state ((`1

0, `
2
2, `

3
2, `

4
0), (0, 0, 28), {α6 7→ 30}).

In fact, the time progress condition x ≤ 30 in component T1, imposes the planning of interaction
α7 at the latest hmin units of time before it becomes urgent. However, since interaction α6 was

M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:11

planned in 28 units of time, α7 cannot be planned since it is conflicting with α6. This execution
sequence shows that a given system action-time-locks under the local planning semantics , even if
it is deadlock-free in the standard semantics.

3.2 Properties of the LPS
We use weak simulation to compare models of the standard semantics and the local planning
semantics by considering the planning transitions unobservable. As shown in Example 11, the
LPS does not preserve the deadlock freedom property of our system. Nevertheless, the following
proves weak simulation relations between the two semantics.

I Lemma 12. Given a reachable state (`, v, π) of the LPS. If for α ∈ γ, π(α) < +∞ ⇒
Plannable(α, π(α)).

I Proposition 13. An interaction can execute from a state (`, v, π) in the LPS semantics only if
it can execute from (`, v) in the standard semantics, that is:

∀α ∈ γ.(`, v, π) ∼∼∼>α γ (`′, v′, π′)⇒ (`, v) α−→γ (`′, v′).

Proposition 13 is a consequence of Lemma 12: an interaction α can execute in the local
planning semantics only if π(α) = 0 (see Definition 9). That is, a state (`, v, π) of the LPS from
which α can execute satisfies Plannable(α, 0) or equivalently Enabled(α), which demonstrates that
α can execute from (`, v) in the standard semantics.

I Proposition 14. Time can progress by δ at a state (`, v, π) in the local planning semantics only
if time can progress by δ at (`, v) in the standard semantics, that is:

∀δ ∈ R>0.(`, v, π) ∼∼∼>δ γ (`′, v′, π′)⇒ (`, v) δ−→γ (`′, v′).

Proposition 14 is a direct consequence of the definition of time progress in the local planning
semantics which is a restriction of the one in the standard semantics.

I Corollary 15. If a state (`, v, π) is reachable in the local planning semantics, then the state (`, v)
is reachable in the standard semantics.

Corollary 15 is obtained from Propositions 13 and 14 and the fact that planning transitions
(labeled by (α, δ)) affect only the plan π in states (`, v, π) of the LPS.

I Definition 16 (Weak Simulation). A weak simulation over A = (QA, qA0

∑
∪{β},→A) and

B = (QB , qB0

∑
∪{β},→B), where β actions represent silent (unobservable) action, is a relation

R ⊆ QA ×QB such that:
∀(q, r) ∈ R, a ∈

∑
.q

a−→A q
′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r β∗aβ∗−−−−→B r′ and,

∀(q, r) ∈ R : q β−→A q
′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r β∗−→ r′.

B simulates A, denoted by A vR B, means that B can do everything A does.

The definition of weak simulation is based on the unobservability of β−transitions. In our case,
β−transitions corresponds to planning transitions. Let LTSg and LTSp be respectively the
underlying labeled transition system of the standard semantics and the local planning semantics
respectively.

I Corollary 17. LTSp vR LTSg with R = {((q, π); q) ∈ Qp ×Qg}.

LITES

01:12 LPS: a Semantics for Distributed Real-Time Systems

Corollary 17 corresponds to a notion of correctness of the local planning semantics: any
execution in the LPS corresponds to an execution in the standard semantics. In addition, if
interactions are allowed to be planned with relative execution times of 0 (i.e. hmin = 0) then
timeless planning of interactions becomes possible. Thus, the planning semantics simulates the
standards semantics in that case.

I Corollary 18. LTSg vR′ LTSp with R′ = {(q; (q, π)) ∈ Qg ×Qp | hmin = 0}.

However, this is no longer true in general if hmin > 0 which means that not all execution
sequences of the standard semantics are preserved by the local planning semantics.

I Corollary 19. If LTSg is zeno runs free then LTSp is too.

Corollary 19 states that the LPS does not introduce any zenoness behavior if the standard
semantics is free from the latter. It is a direct consequence of Corollary 17 and the fact that it is
not possible to have infinite sequences of planning transitions without interaction execution (γ is
finite and planning times are bounded).

I Proposition 20. If every reachable state of LTSg is not a deadlock, then a reachable state of
LTSp is not deadlock if and only if it is not an action-time-lock.

Proof of Propostion 20. We prove Proposition 20 by contradiction. Let us assume that the
system under the standard (resp. local planning) semantics is deadlock free (resp. action-time-
lock-free). Let (`, v, π) be a reachable deadlock state of the LPS. We have:

@σ ∈ γ ∪ (γ ×R≥0),∃δ. (`, v, π)∼∼∼>σ γ (`′, v′, π′)∨ (`, v, π)∼∼∼>δ γ (`, v+ δ, π− δ)∼∼∼>σ γ (`′, v′, π′)

We denote by wait(`, v, π) the set of allowed waiting times at state (`, v, π), that is:

wait(`, v, π) = {0} ∪ {δ ∈ R>0|(`, v, π) ∼∼∼>δ γ (`, v + δ, π − δ)}

We also put max(wait(`, v, π)) to denote the maximal waiting time at state (`, v, π). Notice that
max(wait(`, v, π)) may not be defined in some cases. In fact, we are not interested in its actual
existence but rather in the fact that it is bounded (< +∞) or not.

I Lemma 21. Let (`, v, π) be a reachable state of the local planning semantics. For k ∈ R≥0, such
that k = max(wait(`, v, π)), we have the following properties:
P1 If k < +∞ then (`, v, π) ∼∼∼>k γ (`, v + k, π − k) ∧ wait(`, v + k, π − k) = {0}
P2 If π 6= π0 then k ≤ min(π)

We distinguish 2 cases:

Case 1: no interaction is planned (i.e. π = π0)

By definition of the LPS, it is clear that for π = π0, there is no interaction to execute from (`, v, π)
or any of its successor (`, v + δ, π − δ).
1. wait(`, v, π) = {0}:

This means that time progress is not allowed at state (`, v, π). We also have @σ ∈ (γ ×
R≥0).(`, v, π) ∼∼∼>σ γ (`′, v′, π′) (deadlock assumption). We can conclude that (`, v, π) is a
reachable action-time-lock state, which contradicts the assumption that the system under the
local planning semantics is action-time-lock-free.

2. wait(`, v, π) 6= {0}:
a. max(wait(`, v, π)) = +∞:

M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:13

I Lemma 22. Let (`, v, π) be a reachable state of the local planning semantics . If ∀δ ∈
R>0. (`, v, π) ∼∼∼>δ γ (`, v + δ, π − δ) ∧ ¬Plannable(α) at (`, v, π), then we have ¬Enabled(α)
at (`, v + δ, π − δ) with δ ≥ hmin.
By P1 of Lemma 21 we can deduce that ∃δ ≥ hmin such that (`, v, π) ∼∼∼>δ γ (`, v + δ, π − δ).
We also have from the deadlock assumption and Lemma 22:

∧
α∈γ ¬Enabled(α). Finally,

since the state (`, v+ δ, π− δ) is reachable in the standard semantics, and by evaluating the
deadlock characterization 2 on state (`, v+ δ, π− δ), we can conclude that the system under
the standard semantics deadlocks, which contradicts the assumption of deadlock freedom of
the system under the standard semantics.

b. max(wait(`, v, π)) < +∞:
Considering that k = max(wait(`, v, π)), then we have by P1 of Lemma 21: (`, v, π) ∼∼∼>k γ

(`, v + k, π − k) ∧ wait(`, v + k, π − k) = {0}. Using the deadlock assumption we have:∧
α∈γ ¬Plannable(α) at state (`, v + k, π − k). Since the system cannot progress beyond

this state (wait(`, v + k, π − k) = {0}), we can conclude that (`, v + k, π − k) is a reachable
action-time-lock state, which contradicts the assumption that the system under the local
planning semantics is action-time-lock-free.

Case 2: at least an interaction is planned (i.e. π 6= π0)

Considering that k = max(wait(`, v, π)), since π 6= +∞, we have by 2 of Lemma 21: k < +∞∧k ≤
min π. Using the deadlock assumption we can infer that k < min π, since no execution is possible
from (`, v, π) or any of its successors. This means that (`, v+k, π−k) is a reachable action-time-lock
state, which contradicts the assumption that the system under the LPS is action-time-lock-free. J

4 Enforcing Deadlock-Free Planning

As explained in previous section, the local planning semantics is based on local conditions for
planning interactions and may exhibit deadlocks even when the system is deadlock-free with the
standard semantics. Such deadlocks are partly due to the fact that planning an interaction may
block, in addition to the participating components, extra components whose timing constraints are
not considered by these local conditions. In this section, we investigate simple execution strategies
that only restrict the horizon used for planning interactions with upper bounds. By reducing the
period of time during which components are blocked, they tend to remove deadlocks from the
reachable states. In what follows, we consider a composition of components S = γ(B1, · · · , Bn)
such that it is deadlock-free in the standard semantics.

I Corollary 23 (Sufficient Condition for Deadlock-freedom). If a reachable state of the planning
semantics is not an action-time-lock then it is not deadlock.

Corollary 23 is a direct consequence of Proposition 20. It affirms that for systems that are initially
deadlock-free under the standard semantics, it is sufficient to prove action-time-lock-freedom of
the LPS to prove its deadlock-freedom.

I Proposition 24. A reachable state (`, v, π) of the local planning semantics is an action-time-lock
if and only if:

π > 0 ∧
∧

α/∈conf(π)

¬Plannable(α) ∧
∨
`i∈Li

Bi /∈part(π)

at(`i) ∧ (urg(`i) + hmin).

The above proposition derives directly from the definition of action-time-locks on a state of the
local planning semantics. As shown in Example 11, the local planning semantics may introduce

LITES

01:14 LPS: a Semantics for Distributed Real-Time Systems

deadlocks. The source of deadlocks is twofold: (i) due to communication delays, consecutive
execution in a component are separated by at least hmin units of time which may be incompatible
with its timings constraints, and (ii) conditions for planning interactions are too permissive as
they only take into account timing constraints of participating components whereas they may
block additional components, namely the ones participating in conflicting interactions. In the rest
of the paper, we study how to generate planning strategies for preserving deadlock-freedom by
restricting the planning transitions of the LPS so that deadlock states become unreachable. Such
a strategy may not exist when timing constraints cannot accommodate with the communication
delays hmin.

From Corollary 23, action-time-lock-freedom is a sufficient condition for deadlock-freedom of
the LPS. By Proposition 24, a state (`, v, π) is an action-time-lock in the local planning semantics
if and only if no time progress is allowed nor planning or execution of interactions from (`, v, π),
that is:

π > 0 ∧
∧

α∈γ\conf(π)

¬Plannable(α) ∧
∨
`i∈Li

Bi /∈part(π)

at(`i) ∧ (urg(`i) + hmin).

The above predicate characterizes the fact that no interaction can be executed or planned, nor
time can progress in component Bi /∈ part(π). Consequently, we deduce that a necessary condition
of action-time-lock is the existence of a component Bi /∈ part(π) such that time cannot progress
in Bi and Bi cannot be planned in an interaction, that is:∧

α∈γ(Bi)\conf(π)

(
¬Plannable(α) ∧

∨
`i∈Li

at(`i) ∧ (urg(`i) + hmin)
)
.

where γ(Bi) denotes the subset of interactions in which Bi participates, that is, γ(Bi) = {β ∈
γ | Bi ∈ part(β)}. Notice that the above expression strongly depends on the plan π, which is
difficult to characterize in practice. The following theorem proposes sufficient plan-independent
condition characterizing action-time-lock states of the LPS .

I Theorem 25. Let φ be the following predicate:∨
1≤i≤n

[∨
`i∈Li

at(`i) ∧ (urg(`i) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

Plannable(β)
∼)]

.

where Plannable(β)
∼

is the predicate defined as follows:

Plannable(β)
∼

⇔∃δ > 0 . δ ≤ hmax(β) ∧ Plannable(β, δ).

We prove that a reachable action-time-lock state (`, v, π) satisfies φ.

Proof of Theorem 25. A reachable action-time-lock state of the LPS satisfies:

π > 0 ∧
∧

α∈γ(Bi)\conf(π)

(
¬Plannable(α) ∧

∨
`i∈Li

Bi /∈part(π)

at(`i) ∧ (urg(`i) + hmin)
)
.

In order to approximate the above formula, we distinguish two cases:

Case 1: no interaction is planned (i.e. π = π0)

From π = +∞ we deduce directly that there exists an urgent component Bi such that no
interaction α involving Bi can be planned, that is:∨

1≤i≤n

[∨
`i∈Li

at(`i) ∧ (urg(`i) + hmin) ∧
∧

α∈γ(Bi)

¬Plannable(α)
]
. (1)

M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:15

Case 2: at least an interaction is planned (i.e. π 6= π0)

In this case, there exists an urgent component Bi /∈ part(π) such that no interaction α involving
Bi can be planned, either because it conflicts with a planned interaction β (0 < π(β) < +∞) or
because Plannable(α) is not satisfied, that is ∃β ∈ π,∃Bi /∈ part(β) satisfying:

(0 < π(β) < +∞) ∧
∧

α∈γ(Bi)\conf(β)

¬Plannable(α) ∧
∨
`i∈Li

Bi /∈part(β)

at(`i) ∧ (urg(`i) + hmin).

or equivalently ∃β ∈ π,∃Bi /∈ part(β) satisfying:∨
`i∈Li

Bi /∈part(β)

at(`i) ∧(urg(`i)+hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α)∨

(
β ∈ conf (α)∧(0 < π(β) < +∞)

))
.

By noticing that we have the following implication between quantifiers ∃y,∀x.Q(x, y) =⇒
∀x, ∃y.Q(x, y), we can deduce that the above condition implies:∨

1≤i≤n

[∨
`i∈Li

at(`i) ∧ (urg(`i) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

0 < π(β) < +∞
)]
.

As π > 0, and if we consider only reachable action-time-locks, we have 0 < π(β) ≤ hmax(β),
and by Lemma 12 we have Plannable(β, π(β)). That is, β satisfies Plannable(β) in which the
lower bound hmin is replaced by the strict lower bound 0, i.e. Plannable(β)

∼
. Then, the above

expression becomes:∨
1≤i≤n

[∨
`i∈Li

at(`i) ∧ (urg(`i) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

Plannable(β)
∼)]

. (2)

By remarking that Expression 1 implies Expression 2, we can conclude that an action-time-lock
of the local planning semantics satisfies:∨

1≤i≤n

[∨
`i∈Li

at(`i) ∧ (urg(`i) + hmin) ∧
∧

α∈γ(Bi)

(
¬Plannable(α) ∨

∨
β∈conf (α)
Bi /∈part(β)

Plannable(β)
∼)]

. J

Notice that due to the monotony of φ on upper bound horizons, we obtain the following lemma:

I Lemma 26. If LTSp is action-time-lock free for the upper bound horizons function hmax, then
it is action-time-lock free for any upper bound horizon function h′max ≤ hmax.

In order to attest that planning interactions does not introduce deadlocks, we use an SMT
solver to check the satisfiability of φ. As explained earlier, a given system is deadlock-free under
the restricted LPS if Reach(LTSp) ∧ φ is unsatisfiable. Since Reach(LTSp) ⊆ Reach(LTSg)
(Corollary 17), we can verify the above on Reach(LTSg). Effectively, we do not compute
Reach(LTSg) to avoid the combinatorial explosion problem, inherent to composition of timed
automata. In fact, we rather build an over-approximation, Reach(LTSg)

∼
, of the latter, and use

it during our verification. Finding a strategy granting action-time-lock-freedom is based on the
idea of restricting the upper bound horizon function hmax. In fact, since hmin is a parameter that
is dependent of the communication latency of a given execution platform, it cannot be tuned.
Instead, initially for each interaction α ∈ γ, hmax(α) = +∞. Thereafter, due to the monotony
of φ (Lemma 26) on upper horizons, this parameter will be refined, that is, its maximum will
be decreased until finding a function hmax for which Reach(LTSg)

∼
∧ φ is unsatisfiable or until

reaching the upper horizon function hhmin
max for which hmax(α) = hmin for every α ∈ γ and such

that Reach(LTSg)
∼

∧ φ is satisfiable.

LITES

01:16 LPS: a Semantics for Distributed Real-Time Systems

5 Planning Semantics as Real-Time Controller Synthesis

In Section 5, we presented a method that provides execution strategies by restricting the upper
bounds planning horizon for each interaction. This strategy aims to preserve the deadlock-freedom
property of a given system under the local planning semantics without imposing further scheduling
constraints. This approach relies on the verification of a given expression on over-approximations
of the reachable states of the initial semantics. Thus, it may give false-positive results due to (i)
the nature of expression to check (sufficient condition) and (ii) the over-approximation of the
reachable states of the LPS using over-approximations of the reachable states of the standard
semantics (Corollary 17).

In such cases, an alternative is to tackle the problem as a real-time controller synthesis
problem. Real-time controller synthesis is a common method used to extract an execution strategy
from formal specifications satisfying certain properties. Usually, these properties express the
reachability (resp. non-reachability) of a set of winning states (resp. bad states). In case of
planning interactions with bounded horizons, the idea is to restrict the transition relation so that
all the remaining behaviors do not lead to states where a component is urgent and no possible
execution including this component may occur. This can be formalized as a reachability game for
a timed game automaton [12], where the main idea consists in trying to find an execution strategy
guaranteeing that a given set of namely bad states of the system are never reached.

In order to apply this approach, it is required to encode the planning of interactions and
their effects on the system, that is, (i) encode interactions planning as synchronizations between
components, (ii) reserve the components of the planned interactions until their chosen execution
date, i.e, keep track of the planned interactions and their execution dates, and (iii) characterize
the set of bad states. Thereafter, tools such as UPPAAL-Tiga [6] can be used to find an
execution strategy of the planning semantics avoiding the set of bad states, that is, deadlock
states. Expressing the planning problem as a real-time controller synthesis problem is not an easy
task. Hereinafter, we discuss the different issues met during the formalization process and provide
suggestions for solving them.

5.1 Planning Zones
From expression 4, we can see that the clocks values for planning an interaction α are calculated
at a global level, that is, by applying the ↙hmax(α)

hmin
on the conjunction of its participating actions

timing constraints. Notice that for a timing constraint g = g1 ∧ g2, we have:

↙hmin
hmin

g =↙hmin
hmin

(g1 ∧ g2) =⇒↙hmin
hmin

g1∧ ↙hmin
hmin

g2 (5)

The above expression bears out the fact that planning states must be encoded on the composition
of the system model and not on individual components. Particularly, expression 5 points out the
fact that encoding the planning on transitions of individual components will induce additional
behavior (↙hmin

hmin
(g1 ∧ g2) =⇒ ↙hmin

hmin
g1∧ ↙hmin

hmin
g2). This represents the first drawback of

this method since building the composition may be tedious especially for big scale systems.
Therefore, a simple solution to avoid computing the composition is to consider models with
interactions having timing constraints on up to one of their participating actions, that is, given
an interaction α = {ai}i∈I ∈ γ, we have gα = true or gα = gai , with gaj = true for j ∈ I, j 6= i.
In fact, considering interactions including up to one action with timing constraints, will allow to
encode the planning on individual components that, additionally to the defined synchronizations
(interactions), will also synchronize their planning actions.

The idea is to split each transition of the initial model into two transitions: (1) a planning
transition, followed by (2) an execution transition after the plan transition being performed.

M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:17

`1x ≤ k

`2

a, ga, ra

(a) Part of a timed automaton.

`1
x ≤ k − hmin

`a1xp ≤ hmin ∧ x ≤ k

`2

plana
↙hmin ga
xp := 0

a

xp = hmin
ra

(b) Planning encoding.

Figure 2 Planning as a Timed Automaton.

Time

gα

↙hmax(α)
hmin(α) gα

↙hmin(α) gα

↙hmin(α)+ε gα

↙hmin(α)+2ε gα

An interaction guard gα
and its planning intervals.

Time

gα

↙hmax(α)
hmin(α) gα

↙hmin(α) gα

↙hmin(α)+d gα

↙hmin(α)+2d gα

Discretized planning intervals for gα.

Figure 3 Discretizing Planning Horizons for Interaction.

For an interaction α ∈ γ, the choice of the planning horizon, that is, the duration for which
components participating in α will be blocked for until their execution, will be encoded on the
execution transition of the component whose action ai ∈ α and gα = gai . Otherwise, if gα = true
this choice is made arbitrarily. Consequently, this component will be equipped with a clock xp
that will be used to track the planning dates. Finally, time progress conditions must also be
translated to enforce planning at the latest hmin units of time before their expiry. Figure 2 depicts
an overview of such transformation for δ = hmin horizon:

5.2 Infinite Planning Transitions
Effectively, in order to encode the planning in timed automata, horizons values must be integer.
Moreover, due to the dense time nature of the planning intervals (relative planning date for each
interactionα are in [hmin, hmax(α)]), we end up with an infinity of plan transitions, especially when
not restricted upper bound planning horizons, i.e., hmax = h∞max. Consequently, the first thing to
do is to restrict for each interaction α ∈ γ the upper bound planning horizon hmax(α).Thereafter,
we propose to discretize the planning horizons in order to obtain finite values in Z>0 (Figure 3).
In what follows, we denote by Disc : γ −→ D the discretized horizon function defining for each
interaction its respective discretized planning horizons D ⊂ Z>0.

IDefinition 27 (Planning Timed Automaton). Given n timed components Bi = (Li, `i0,Ai, Ti,Xi, Ii)
synchronizing through the interaction set γ such that, for each interaction α ∈ γ, the guard of α
is equal to the guard of one of its included actions. We define the corresponding planning model
as the composition of the n timed automata Bpi = (Lpi , `0,Ai ∪ Pi, T pi ,Xi ∪ {x

p
i }, I

p
i), w.r.t the

LITES

01:18 LPS: a Semantics for Distributed Real-Time Systems

interaction set γ ∪ P, where:
Pi = ∪a∈Ai pa is the set of Planning Actions
P = {pα = {pai}i∈I |α ∈ γ ∧ α = {ai}i∈I} is the set of Planning Interactions
xpi is a Tracking Clock for interactions execution in each component
Lpi = (Li ∪ Lip) is the set of control locations, where Lip is the set of locations following
planning actions
T pi is such that for each (`i, ai, gi, ri, `′i) ∈ Ti, ai ∈ α and for each δ ∈ Disc(α):

if gα 6= true we have:

Planning transitions:

`i
pai ,true,∅
−−−−−−→ `ai , if g = true

`i
pai ,↙

δgi,r(xp
i

)
−−−−−−−−−−→ `δai , otherwise

Execution transitions:

`ai
a,true,ri−−−−−→ `′i, if g = true

`δai
a,ga∧xpi=δ,ri−−−−−−−−→ `′i, otherwise

where `a, `δai ∈ Lip .

if gα = true, we choose one action b ∈ α:

Planning transitions:

`i
pai ,true,∅
−−−−−−→ `ai , if a 6= b

`i
pai ,true,r(xp

i
)

−−−−−−−−−→ `δai , otherwise

Execution transitions:

`ai
ai,true,ri−−−−−−→ `′i, if a 6= b

`δai
ai,gi∧xpi=δ,ri−−−−−−−−−→ `′i, otherwise

Ipi is the set of Location Invariants , such that ∀`pi ∈ L
p
i , we have:

Ipi (`pi) =
{
tpc(`i)− hmin, if `pi = `i ∈ Li
xpi ≤ δ ∧ tpc(`i), if `pi = `δai ∈ Lip such that `i ∈ Li ∧ `i

pai−−→ `δai ,

For a composition γ(B1, · · · , Bn), let LTSp′ = (Qp′ , γ
′ ∪ R>0,−→γ′), where γ′ = γ ∪ P, be

the corresponding labeled transition system of its planning model under the standard semantics.

I Theorem 28. LTSp′ vR′ LTSg where R′ is the relation defined as follows: For qp = (`p, vp) ∈
Qp′ and qg = (`g, vg) ∈ Qg, such that (qp, qg) ∈ R′, we have:

`p = (`p1, · · · , `pn), `g = (`g1, · · · , `gn):

∀i ∈ {1, · · · , n}, `gi =
{
`pi , if `pi ∈ Li,
`i, if `pi ∈ Lip with `i

a,g,r−−−→ `pi ∈ T
p
i ∧ `i ∈ Li,

Notice that for the case where `pi ∈ Lip , `i is unique by construction of the planning model.
vg = equ(vp), where equ(vp) is the projection of vp on clocks of vg

Proof of Theorem 28. To prove that LTSp′ vR′ LTSg, we need to prove that:
1. ∀(qp, qg) ∈ R′, σ ∈ γ ∪ R>0 such that qp σ−→γ′ q

′p ⇒ ∃q′g.(q′p, q′g) ∈ R′ ∧ qg σ−→γ q
′g

2. ∀(qp, qg) ∈ R′, pα ∈ P such that qp pα−−→γ′ q
′p ⇒ (q′p, qg) ∈ R′

1. a. Suppose that (qp, qg) ∈ R′, σ = α ∈ γ and qp α−→γ′ q
′p with q′p = ((`′p1, · · · , `′

p
n), v′p). We

have: qp α−→γ′ q
′p ⇒ gα is true, and for α = {ai}i∈I , by construction of the planning

automaton, we have: `gi
ai,gi,ri−−−−−→ `′

g
i such that `′gi = `′

p
i . Moreover, since the same clocks are

reset by the execution of α in both models, we deduce that v′g = equ(v′p). By remarking
that the state of components not participating in α remains the same, we conclude that
∃q′g such that qg α−→γ q

′g ∧ (q′p, q′g) ∈ R′.

M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:19

(a) Controller Component. (b) Variable Component.

(c) Task Component.

Figure 4 Planning Automata for the Task Manager Example.

b. Suppose that (qp, qg) ∈ R′, σ ∈ R>0 and qp σ−→γ′ q
′p. For qpi = (`pi , v

p
i), we define Ig the set

of indexes such that `pi ∈ Li, and Ip the set of indexes such that `pi ∈ Lpi .
∀i ∈ Ig.`pi = `gi ∧q

p
i
σ−→ q′

p
i ⇒ qgi

σ−→ q′
g
i . This implication is a direct result of the planning

model definition since: σ ≤ I(`pi) ≤ tpc(`gi)− hmin.
∀i ∈ Ip.`gi = `i such that `pi ∈ Lip with `i

a,g,r−−−→ `pi ∈ T
p
i ∧ `i ∈ Li. Thus qpi

σ−→ q′
p
i ⇒

qgi
σ−→ q′

g
i , since I(`pi) =⇒ tpc(`gi).

We conclude that ∃q′g such that qg σ−→γ q
′g ∧ (q′p, q′g) ∈ R′.

2. Suppose that (qp, qg) ∈ R′ and qp pα−−→γ′ q
′p, with pα ∈ P and q′p = ((`′p1, · · · , `′

p
n), v′p). We

have: qp pα−−→γ′ q
′p ⇒ for α = {ai}i∈I `gi = `pi ∧ `

g
i

pai−−→ `′
p
i . Moreover, since planning actions

reset only the clocks xpi for tracking execution time, we can deduce that (q′p, qg) ∈ R′. J

Once interactions planning encoded, one last thing to do is to add the set of bad states to
each planning automaton (if needed) and find a strategy to avoid those states. Figure 4 depicts
the corresponding planning automata for example of Figure 1 with respect to Definition 27.
Locations suffixed by p, correspond to locations following planning actions, whereas locations
ending with err define the bad states, that is, states with urgent time progress condition(s) and
no possible execution removing the urgency. In this example, for each interaction α ∈ γ, we chose
D(α) = {1, 2}. Notice that for this example, we consider that all actions are controllable actions

LITES

01:20 LPS: a Semantics for Distributed Real-Time Systems

State: (Controller.l_1_p_1 Task(0).l_0 Task(1).l_1_p Task(2).l_3_p2
Task(3).l_0 Task(4).l_0 Task(5).l_0 Task(6).l_0 Task(7).l_0 Task(8).l_0
Task(9).l_0 Task(10).l_0 Task(11).l_0 Task(12).l_0 Task(13).l_0 Task(14).l_0
Task(15).l_0 Task(16).l_0 Task(17).l_0 Task(18).l_0 Task(19).l_0 Var.V_pe
) vlist[0]=2 vlist[1]=0 vlist[2]=0 vlist[3]=0 vlist[4]=0 vlist[5]=0
vlist[6]=0 vlist[7]=0 vlist[8]=0 vlist[9]=0 vlist[10]=0 vlist[11]=0
vlist[12]=0 vlist[13]=0 vlist[14]=0 vlist[15]=0 vlist[16]=0 vlist[17]=0
vlist[18]=0 vlist[19]=0 vlen=1 Controller.list[0]=1 Controller.list[1]=0
Controller.list[2]=0 Controller.list[3]=0 Controller.list[4]=0
Controller.list[5]=0 Controller.list[6]=0 Controller.list[7]=0
Controller.list[8]=0 Controller.list[9]=0 Controller.list[10]=0
Controller.list[11]=0 Controller.list[12]=0 Controller.list[13]=0
Controller.list[14]=0 Controller.list[15]=0 Controller.list[16]=0
Controller.list[17]=0 Controller.list[18]=0 Controller.list[19]=0
Controller.len=1
When you are in (Controller.zp==1 && Task(2).yp<=2), take transition
Controller.l_1_p_1-> Controller.l_0 { zp == 1 && 1 == front(), exec_run[1]!,
z := 0, dequeue() } Task(1).l_1_p->Task(1).l_2 { 1, exec_run[id]?, y := 0,
venqueue(id) } When you are in (Task(2).yp==2 && Controller.zp<=1), take
transition Task(2).l_3_p2-> Task(2).l_0 { yp == 2, exec_end[id]!, vdequeue()
} Var.V_pe->Var.V_ee { 2 == vfront(), exec_end[2]?, 1 }

Figure 5 Sample of the Output Strategy from UPPAAL-Tiga.

since it is a closed system in the sense that there is no interaction with the environment.
We performed the verification on the Task Manager examples with 20 tasks. The winning

condition being a safety condition: avoid all “err” locations. This was translated into the following
property:

control: A[] forall (i : int[0,N-1]) not (Task(i).l_2_err or Task(i).l_3_err) (6)

The property of interest was successfully verified. Additionally, we were also able to synthesize
all wining actions of all states using the command line of UPPAAL-Tiga. A sample of the
resulting output is provided below Figures 5. Notice that the average execution time1 for verifying
Property 6 is 0.1141 seconds (0.6534 seconds when requesting the generation of a strategy).

5.3 Discussion
In this section, we explained how the problem of planning interactions can be formalized into a
real-time controller synthesis approach. However, this approach has some drawbacks. In order
to encode planning of interactions in components as timed automata, this approach restricts its
scope to discretized horizon values which results in having less control over the planning dates
of interactions, and leads in case of a high number of discretized values, to an explosion in the
number of planning transitions. Unfortunately, we do not have an immediate solution for this
problem. In fact, it is user dependent since one user may just want to have a ASAP execution for
a given interaction, for instance because the components involved in this interaction are often

1 The experiments have been conducted on a HP machine with Ubuntu 16.04, an Intel® Core™i5-4300U processor
of frequency 1.90GHz×4, and 7.7GiB memory.

M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:21

requested, and in that case the practice will be to always plan with hmin. In other cases, the
user may want to plan an interaction with flexible amount time. Additionally, this approach
considers only a class of systems where interactions have timing constraints on up to one of their
participating components action. Otherwise, the planning should be encoded on the composition,
which represents a tedious work because of the state space explosion problem. Nevertheless, this
approach differs form the usual scheduler synthesis approach since it is not performed on the
regular semantics of timed automata. Particularly, here we are interested in avoiding bad states
of the planning semantics (states that verify the expression of Theorem 25). Consequently, unless
finding an automatic general method for generating such complex expression in the query language
accepted by such tools, and without ignoring that finding a strategy avoiding those states may be
hard in term of computational complexity, our real-time controller synthesis approach seems more
straightforward and much simpler but it comes with some feasibility restriction.

6 Implementation and Experiments

6.1 Implementation
For our experiments, we used the BIP framework [5] as a modeling language to define systems and
their synchronizations. BIP (Behavior, Interaction, Priority), is a component-based framework
with a rigorous semantics that allows to model systems as a set of atomic components coordinating
their behaviors through multiparty interactions. The BIP framework provides a rich set of tools
that allows to model, verify and execute systems. The BIP toolbox is structured in different
categories (see Figure 6):
1. This category includes translation of various language or modeling paradigm that allows the

automatic generation of BIP models as well as the front-end of the BIP compiler.
2. The middle-end of the BIP compiler consists of several modules that allows model transforma-

tion (from BIP to BIP) and performance optimization (flattening and distributed real-time
filter). Particularly, the distributed real-time filter provides an intermediate model transfor-
mation (Send/Receive transformation [29]) that aims to reduce the gap between high level
models and their actual implementations. Additionally, in association with the RTD-Finder
tool it provides analyses allowing performance evaluation [15] as well as the actual analyses
for the approach presented in Section 4. Note that the identity filter is the default filter that
given a BIP model return the same BIP model.

3. The BIP back-end consists of code generator that generates the actual C++ corresponding
to the actual BIP model yield by the middle-end. The engine based code generator produces
simulation code that incorporates the BIP simulation engine. The Distributed code generator
generates form Send/Receive models C++ code for distributed platform.

4. Verification of safety properties or properties allowing to tune a given system in order to obtain
better performances are achieved using the RTD-Finder [27] and the SBIP tools [26].
The proposed method has been implemented in the distributed real-time middle-end filter of

the BIP compiler. It aiming to generate information that could be used by the back-end during
the code generation phase. The presented approach requires a substantial knowledge of the system
model, since the satisfiability verification of Reach(LTSg)

∼
∧φ, needs a deep analysis of the system,

in order to generate the predicates used in the latter. The implementation takes as input a BIP
model and a horizon file specifying at least the lower bound horizon, that is, hmin. Since we
do not have a concrete execution platform, the choice of hmin was done relatively to the timing
constraints of the verified model, that is, we chose values of hmin that are always smaller than
upper bounds of any timing constraints appearing in the components of a given system. This
choice was motivated by the fact that deploying a system with timing constraints being of the
same order of magnitude than the communication delays of the target platform is unlikely to

LITES

01:22 LPS: a Semantics for Distributed Real-Time Systems

C nesC DOL Simulink Lustre BIP

Translation BIP Parser

Language Factory BIP Language

BIP Model

Identity
Filter

Flatenning
Filter

Distributed Real-Time
Filter

Distributed Code Generator

C++C++C++

ExecutableExecutableExecutable

Communication Primitives

Distributed Platform

Code Generator
(engine-base-simulation)

C++

Executable

Execution Engine

Platform

RTD-Finder

Verification

Property

4

Property

Verdict

Verdict

SBIP

Verification

Property Verdict

1

2

3

4

Figure 6 The BIP Toolbox.

happen. First, the front-end of the BIP compiler creates an abstract representation of the latter.
Thereafter, the distributed real-time filter performs a model analysis in order to construct the
predicates needed in φ, while keeping interactions upper horizons as free variables. In order to ease
the verification process and remove the back and forth process between the predicates generation
and their verification, we fully integrated the generation of the compositional invariants used by
the RTD-Finder tool in the middle-end. Finally, a Yices [17] file including system invariants and
the predicates approximating action-time-locks, is generated. The Yices solver checks then the
satisfiability of Reach(LTSg)
∼

∧ φ. If the result is unsatisfiable, then planning does not miss the
deadlines expressed by components time progress conditions. Otherwise, if the result is satisfiable,
Yices generates a counter-example. Since for each interaction hmin is a fixed value, and due to
the monotony of φ on hmax, the generated counter-example is used to find the maximal value of
hmax guaranteeing action-time-lock-freedom, and thus deadlock-freedom of the planning semantics.
This part is however done manually, and based on binary search algorithm.

M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:23

`1
0 `1

1

z ≤ 10

`1
2`1

3

z ≤ 10

approach0

z := 0

lower0
z = 10

exit0

z := 0

raise0
z = 10

`2
0 `2

1

y ≤ 5

`2
2`2

3

y ≤ 5

lower1

y := 0

down

y <= 5

raise1

y := 0

up

y <= 5

`3
0 `3

1

x ≤ 40

`3
2

x ≤ 50

approach1

x := 0

enter

30 ≤ x ≤ 40
exit1
x ≤ 50

lo
w
er

0
ra
is
e 0

a
p
p
ro
a
ch

0
ex
it

0

lo
w
er

1
ra
is
e 1

a
p
p
ro
a
ch

1
ex
it

1

α3α1

α4α2

Train GateController

Figure 7 Train Gate Controller.

6.2 Benchmarks
For the experiments, we chose three additional benchmarks:

Train Gate Controller

The train gate controller [4] is a system composed of: a controller, a gate and a train. Figure 7
gives an overview of the system and its interactions: The train informs the controller about his
position (w.r.t. to the crossing) through the interactions α1 (approach) and α2 (exit). On the other
hand, the controller lowers (α3) and raises (α4) the gate whenever the train enters, respectively
exits. Notice that actions {enter} of the train, and {up, down} of the gates are considered as
singleton interactions.

Firewire

The IEEE 1394 root contention protocol (firewire) [14] is a standard protocol for interconnecting
multimedia devices. It describes a serial bus used to transport digitized video and audio signals in
a network of multimedia equipments. Among the different protocols used in this system, we put
our interest in the leader election protocol called tree identify protocol. In this model, we consider
two nodes (devices) and their respective channels. In order to elect a leader, each node sends a
request via its respective channel asking its neighbor to be a parent. Once a neighbor receives a
parent request, it either sends an acknowledgment or detects a contention in the case where it
also sent a parent request. This contention is solved by assigning waiting times before the next
send requests. Figure 8 depicts the model for the node component.

Gear Controller

The gear controller system describes the control system responsible for the gear change inside a
vehicle. The used model encompasses formal models of the gear controller and its environment.
The whole system includes five components: an interface, a controller, a clutch, an engine a
gear-box and two global variables. In order to change the gear, the interface sends a signal to the
controller. Consequently, the controller interacts with the engine, the clutch and the gear-box to
achieve the gear change. The engine is responsible of either regulating the torque or synchronizing
the speed. On the other hand, the gear-box sets the gear between some fixed bounds, whereas,
the clutch is used whenever the engine is not able to function properly (under difficult driving
conditions, for instance). The case study was initially designed by UPPAAL [25] and has been
translated to BIP.

LITES

01:24 LPS: a Semantics for Distributed Real-Time Systems

`0

x ≤ 4

`1x ≤ 167`2 x ≤ 85

`3

`4

x ≤ 4

`5

`6`7

slowx :=
0

fa
st

x
:=

0

wa
it

159
≤ x
≤ 167wait

76 ≤
x ≤ 85

rcv_req
x := 0

rc
v_
re
q

x
:=

0
snd_

req
x
<=

4

rcv
_ac

ksnd_ack

con
ten

tion

x
:=

0

slavex := 0
lea
de
r

x :=
0

rc
v_
re
q

x
:=

0

Figure 8 Timed Automaton for a Node.

Table 1 Detailed Results of the Task Manager Experiments.

hmin hmax(α1), hmax(α2) hmax(α3), hmax(α4) hmax(α5), hmax(α6) hmax(α7), hmax(α8)
4 +∞ +∞ 9 +∞
3 +∞ +∞ 8 +∞
2 +∞ +∞ 7 +∞
1 +∞ +∞ 6 +∞

6.3 Results

Table 1 depicts the values hmax for each interaction of the running example, obtained while
fixing hmin. Notice that the symmetry of the system implies the same hmax for interactions
αi, αi+1, i ∈ {1, 3, 5, 7}. By remarking that location `2

3 (resp. `3
3) has a time progress condition

x ≤ 4 (resp. y ≤ 4), and by observing that the clock x is reset on the transition leading to this
location, we can conclude that planning the system with hmin > 4 will lead to an action-time-lock.
Particularly, in Example 11, for hmin = 2 interaction α6 was planned with a horizon δ = 8, and
consequently, leads to a action-time-lock state. Our method detects such cases and thus, finds that
the maximum horizon for this interaction is 7. Likewise, the hmax for interactions α2, α4 and α8
(resp. α1, α3 and α7) is found to be unbounded (+∞).

Table 2 summarizes the experiments obtained on the benchmarks stated above, where n is
the number of components, nbtpc the number of time progress conditions that will be verified
against action-time-lock freedom and max hmin the maximum value of hmin for which the system is
action-time-lock-free in the planning semantics. Additionally, the column hmax indicates whether
a restriction on the upper horizons is required to avoid deadlocks. Finally, texec gives an overview
of the execution time including both the invariants generation and the verification time.

As shown in table 1, the task manager model has a maximal hmin value of 4 TU and requires a
restriction on the upper horizons for interactions α5 and α6. In the same way, we found that the
train gate controller, the firewire and the train gate controller models have respectively maximal
hmin value of 4 TU, 5 TU and 130 TU. However, they do not require any restriction on the upper
horizons values of their interactions.

M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:25

Table 2 Experiments Results.

Model n nbtpc max hmin hmax texec(s)
Task Manager 4 4 4 B 0.11

Train Gate Controller 3 6 4 +∞ 0.16
Firewire 4 10 5 +∞ 3.03

Gear Controller 5 19 130 +∞ 4.65

7 Related Work

Timed automata are high-level representations which are useful for modeling, specifying and
analyzing system behavior [4]. They rely on mathematical abstractions such as real-valued clocks,
instantaneous executions and communications, which are no longer valid at implementation level.
Following model-based design approaches, a valid question is how to derive implementations from
timed automata? This problem has already been addressed for centralized execution platforms.
More specifically, Abdellatif et al. [1] shows how to take into account execution times and provides
sufficient conditions for an implementation to be robust with respect to execution times. [3] and
[32] studied the preservation of properties when introducing various sources of delays and digital
(discrete) clocks in the implementations, to represent realistic executions on the hardware platform.
[21, 22] takes a different approach than [3, 32] by trying to actively counteract the effect of delays
in the generated code so as to meet properties.

In the context of distributed platforms, existing implementation frameworks [18, 9, 19, 11]
for real-time applications are restricted to time-deterministic systems, which is a strictly less
expressive than timed automata as explained in [1]. They also consider much simpler coordination
mechanisms than multiparty interactions proposed in this paper. The generation of distributed
implementations from components subject to multiparty (nary) interactions has been extensively
studied in the untimed context [10, 8], and more recently for timed systems under the assumption
of non-decreasing deadlines in [28]. The principle is to transform multiparty interactions into
coordination mechanisms using simpler primitives such as asynchronous point-to-point messages, so
that they can be mapped directly on communication mechanisms offered by distributed platforms.
We contribute to this research field by considering in addition delays between the decision to
execute an interaction and its actual execution. They are due to the transmission delays between
the component responsible for such a decision and the components involved in the interaction,
and may have a huge impact in the satisfaction of timing constraints in real-time systems. Indeed,
such delays may introduce behavioral flaws (e.g. deadlocks) when dealing with arbitrary timing
constraints (i.e. no restriction to the non-decreasing deadlines case), as shown in [16]. Our
contribution consists in (i) the introduction of a semantics based on partial states of the system
components and that includes a complete formalization of the effect of the delays in this context,
and (ii) practical means for enforcing system correctness in their presence. This paper is an
extension of the work presented in [16]. The semantics proposed in [16] allows to choose arbitrary
(i.e. non-negative) delays between decisions and executions, which is not realistic. We improve [16]
by restricting such delays with respect to lower bounds representing worst-case estimates of
communication delays. We also updated accordingly the underlying semantics by restricting the
progress of time as well as the sufficient conditions for system correctness presented in [16]. As
explained in [16], they can be used in some cases to derive simple execution strategies achieving
correctness. When our method is not applicable (i.e. the sufficient conditions cannot be met), an
alternative method could be to use existing frameworks for control synthesis in timed automata.
However, as we explained in this paper the problem addressed here cannot be fully expressed
in these frameworks [6, 2], and had to be simplified by a discretization step. Moreover, when
applicable our method remains faster than this alternative.

LITES

01:26 LPS: a Semantics for Distributed Real-Time Systems

8 Conclusion and Future Work

We presented a local planning semantics for scheduling real-time systems in a distributed context.
The proposed approach intends to mitigate the effect of communication delays through planning
interactions ahead. A sufficient deadlock-freedom condition has been proved, a compositional
verification method for checking action-time-lock-freedom was provided, and a simple execution
strategy, based on restricting upper bounds horizons planning of interactions, has been presented.
Additionally, a formalization of the planning problem as a real-time controller synthesis approach
has been provided. This work shows how to express the planning semantics as timed game
automata and highlights the encountered issues met during the formalization.

This approach opens a number of directions for future work. In case of action-time-locks of
the planning semantics, a first idea consists to study their origins and derive a refinement method
for models in order to take into account the communication delays. Another interesting direction
is the characterization of the reachable states of the planning semantics. Instead of using an
over-approximation of systems reachable states under the standard semantics, a more accurate
approach could be to define a method for deriving invariants w.r.t the local planning semantics.
Finally, an interesting idea is to investigate how scheduler(s) can benefit from the information
provided by the presented method in order to optimize their scheduling policy.

References
1 Tesnim Abdellatif, Jacques Combaz, and Joseph

Sifakis. Model-based implementation of real-time
applications. In Proceedings of the 10th Inter-
national conference on Embedded software, EM-
SOFT 2010, Scottsdale, Arizona, USA, October
24-29, 2010, pages 229–238, 2010. doi:10.1145/
1879021.1879052.

2 Karine Altisen, Gregor Gößler, and Joseph Sifakis.
Scheduler Modeling Based on the Controller Syn-
thesis Paradigm. Real-Time Systems, 23(1-2):55–
84, 2002. doi:10.1023/A:1015346419267.

3 Karine Altisen and Stavros Tripakis. Implementa-
tion of Timed Automata: An Issue of Semantics
or Modeling? In Formal Modeling and Analy-
sis of Timed Systems, Third International Confer-
ence, FORMATS 2005, Uppsala, Sweden, Septem-
ber 26-28, 2005, Proceedings, pages 273–288, 2005.
doi:10.1007/11603009_21.

4 Rajeev Alur and David L. Dill. A Theory of Timed
Automata. Theor. Comput. Sci., 126(2):183–235,
1994. doi:10.1016/0304-3975(94)90010-8.

5 Ananda Basu, Laurent Mounier, Marc Poulhiès,
Jacques Pulou, and Joseph Sifakis. Using BIP for
Modeling and Verification of Networked Systems –
A Case Study on TinyOS-based Networks. In Sixth
IEEE International Symposium on Network Com-
puting and Applications (NCA 2007), 12 - 14 July
2007, Cambridge, MA, USA, pages 257–260, 2007.
doi:10.1109/NCA.2007.52.

6 Gerd Behrmann, Agnès Cougnard, Alexandre
David, Emmanuel Fleury, Kim Guldstrand Larsen,
and Didier Lime. UPPAAL-Tiga: Time for Play-
ing Games! In Computer Aided Verification, 19th
International Conference, CAV 2007, Berlin, Ger-
many, July 3-7, 2007, Proceedings, pages 121–125,
2007. doi:10.1007/978-3-540-73368-3_14.

7 Johan Bengtsson and Wang Yi. On Clock Differ-
ence Constraints and Termination in Reachability

Analysis of Timed Automata. In Formal Methods
and Software Engineering, 5th International Con-
ference on Formal Engineering Methods, ICFEM
2003, Singapore, November 5-7, 2003, Proceed-
ings, pages 491–503, 2003. doi:10.1007/978-3-
540-39893-6_28.

8 Saddek Bensalem, Marius Bozga, Jean Quilbeuf,
and Joseph Sifakis. Optimized distributed im-
plementation of multiparty interactions with ob-
servation. In Proceedings of the 2nd edition on
Programming systems, languages and applications
based on actors, agents, and decentralized con-
trol abstractions, AGERE! 2012, October 21-22,
2012, Tucson, Arizona, USA, pages 71–82, 2012.
doi:10.1145/2414639.2414649.

9 Gérard Berry and Georges Gonthier. The Esterel
Synchronous Programming Language: Design, Se-
mantics, Implementation. Sci. Comput. Program.,
19(2):87–152, 1992. doi:10.1016/0167-6423(92)
90005-V.

10 Borzoo Bonakdarpour, Marius Bozga, and Jean
Quilbeuf. Model-based implementation of dis-
tributed systems with priorities. Design Autom.
for Emb. Sys., 17(2):251–276, 2013. doi:10.1007/
s10617-012-9091-0.

11 Sylvain Camier, Damien Chabrol, Vincent David,
and Christophe Aussaguès. OASIS formal ap-
proach for distributed safety-critical real-time sys-
tem design. In ISoLA 2007, Workshop On Leverag-
ing Applications of Formal Methods, Verification
and Validation, Poitiers-Futuroscope, France, De-
cember 12-14, 2007, pages 167–178, 2007. URL:
http://editions-rnti.fr/?inprocid=1000543.

12 Franck Cassez, Alexandre David, Emmanuel
Fleury, Kim Guldstrand Larsen, and Didier Lime.
Efficient On-the-Fly Algorithms for the Analysis
of Timed Games. In CONCUR 2005 - Con-
currency Theory, 16th International Conference,

http://dx.doi.org/10.1145/1879021.1879052
http://dx.doi.org/10.1145/1879021.1879052
http://dx.doi.org/10.1023/A:1015346419267
http://dx.doi.org/10.1007/11603009_21
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1109/NCA.2007.52
http://dx.doi.org/10.1007/978-3-540-73368-3_14
http://dx.doi.org/10.1007/978-3-540-39893-6_28
http://dx.doi.org/10.1007/978-3-540-39893-6_28
http://dx.doi.org/10.1145/2414639.2414649
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1007/s10617-012-9091-0
http://dx.doi.org/10.1007/s10617-012-9091-0
http://editions-rnti.fr/?inprocid=1000543

M. Dellabani, J. Combaz, S. Bensalem, and M. Bozga 01:27

CONCUR 2005, San Francisco, CA, USA, Au-
gust 23-26, 2005, Proceedings, pages 66–80, 2005.
doi:10.1007/11539452_9.

13 Robert N. Charette. This Car Runs on Code. IEEE
Spectrum, 2009.

14 Conrado Daws, Marta Z. Kwiatkowska, and
Gethin Norman. Automatic verification of the
IEEE 1394 root contention protocol with KRO-
NOS and PRISM. STTT, 5(2-3):221–236, 2004.
doi:10.1007/s10009-003-0118-5.

15 Mahieddine Dellabani, Jacques Combaz, Saddek
Bensalem, and Marius Bozga. Knowledge Based
Optimization for Distributed Real-Time Systems.
In 24th Asia-Pacific Software Engineering Confer-
ence, APSEC 2017, Nanjing, China, December 4-
8, 2017, pages 751–756, 2017. doi:10.1109/APSEC.
2017.106.

16 Mahieddine Dellabani, Jacques Combaz, Marius
Bozga, and Saddek Bensalem. Local Planning of
Multiparty Interactions with Bounded Horizons.
In FM 2016: Formal Methods - 21st Interna-
tional Symposium, Limassol, Cyprus, November 9-
11, 2016, Proceedings, pages 199–216, 2016. doi:
10.1007/978-3-319-48989-6_13.

17 Bruno Dutertre and Leonardo de Moura. The
Yices SMT solver. Technical report, SRI Interna-
tional, 2006.

18 Nicolas Halbwachs, Fabienne Lagnier, and
Christophe Ratel. Programming and Veri-
fying Real-Time Systems by Means of the
Synchronous Data-Flow Language LUSTRE.
IEEE Trans. Software Eng., 18(9):785–793, 1992.
doi:10.1109/32.159839.

19 Thomas A. Henzinger, Benjamin Horowitz, and
Christoph M. Kirsch. Giotto: a time-triggered lan-
guage for embedded programming. Proceedings of
the IEEE, 91(1):84–99, 2003.

20 Thomas A. Henzinger, Xavier Nicollin, Joseph
Sifakis, and Sergio Yovine. Symbolic Model
Checking for Real-Time Systems. Inf. Comput.,
111(2):193–244, 1994. doi:10.1006/inco.1994.
1045.

21 BaekGyu Kim, Lu Feng, Linh T. X. Phan, Oleg
Sokolsky, and Insup Lee. Platform-specific tim-
ing verification framework in model-based imple-
mentation. In Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Ex-
hibition, DATE 2015, Grenoble, France, March
9-13, 2015, pages 235–240, 2015. URL: http:
//dl.acm.org/citation.cfm?id=2755804.

22 BaekGyu Kim, Lu Feng, Oleg Sokolsky, and In-
sup Lee. Platform-Specific Code Generation from
Platform-Independent Timed Models. In 2015
IEEE Real-Time Systems Symposium, RTSS 2015,
San Antonio, Texas, USA, December 1-4, 2015,
pages 75–86, 2015. doi:10.1109/RTSS.2015.15.

23 Christos Kloukinas and Sergio Yovine. A model-
based approach for multiple QoS in scheduling:
from models to implementation. Autom. Softw.
Eng., 18(1):5–38, 2011. doi:10.1007/s10515-010-
0074-8.

24 Hermann Kopetz. An Integrated Architecture for
Dependable Embedded Systems. In 23rd Interna-
tional Symposium on Reliable Distributed Systems

(SRDS 2004), 18-20 October 2004, Florianpolis,
Brazil, pages 160–161, 2004. doi:10.1109/RELDIS.
2004.1353016.

25 Magnus Lindahl, Paul Pettersson, and Wang Yi.
Formal Design and Analysis of a Gear Controller.
In Tools and Algorithms for Construction and
Analysis of Systems, 4th International Conference,
TACAS ’98, Held as Part of the European Joint
Conferences on the Theory and Practice of Soft-
ware, ETAPS’98, Lisbon, Portugal, March 28 -
April 4, 1998, Proceedings, pages 281–297, 1998.
doi:10.1007/BFb0054178.

26 Braham Lotfi Mediouni, Ayoub Nouri, Marius
Bozga, Mahieddine Dellabani, Jacques Combaz,
Axel Legay, and Saddek Bensalem. SBIP 2.0: Sta-
tistical Model Checking Stochastic Real-time Sys-
tems. Technical Report TR-2018-5, Verimag Re-
search Report, 2018.

27 Souha Ben Rayana, Marius Bozga, Saddek Ben-
salem, and Jacques Combaz. RTD-Finder: A
Tool for Compositional Verification of Real-Time
Component-Based Systems. In Tools and Algo-
rithms for the Construction and Analysis of Sys-
tems - 22nd International Conference, TACAS
2016, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings, pages 394–406, 2016. doi:10.
1007/978-3-662-49674-9_23.

28 Ahlem Triki. Distributed Implementations of
Timed Component-based Systems. (Implémenta-
tions distribuées des systèmes temps-réel à base de
composants). PhD thesis, Grenoble Alpes Univer-
sity, France, 2015. URL: https://tel.archives-
ouvertes.fr/tel-01169720.

29 Ahlem Triki, Borzoo Bonakdarpour, Jacques
Combaz, and Saddek Bensalem. Automated
Conflict-Free Concurrent Implementation of
Timed Component-Based Models. In NASA
Formal Methods - 7th International Sympo-
sium, NFM 2015, Pasadena, CA, USA, April
27-29, 2015, Proceedings, pages 359–374, 2015.
doi:10.1007/978-3-319-17524-9_25.

30 Stavros Tripakis. L’analyse formelle des sys-
tèmes temporisés en pratique. (The Formal Anal-
ysis of Timed Systems in Practice). PhD the-
sis, Joseph Fourier University, Grenoble, France,
1998. URL: https://tel.archives-ouvertes.fr/
tel-00004907.

31 Stavros Tripakis. Verifying Progress in Timed
Systems. In Formal Methods for Real-Time and
Probabilistic Systems, 5th International AMAST
Workshop, ARTS’99, Bamberg, Germany, May 26-
28, 1999. Proceedings, pages 299–314, 1999. doi:
10.1007/3-540-48778-6_18.

32 Martin De Wulf, Laurent Doyen, and Jean-
François Raskin. Almost ASAP Semantics: From
Timed Models to Timed Implementations. In Hy-
brid Systems: Computation and Control, 7th In-
ternational Workshop, HSCC 2004, Philadelphia,
PA, USA, March 25-27, 2004, Proceedings, pages
296–310, 2004. doi:10.1007/978-3-540-24743-2_
20.

LITES

http://dx.doi.org/10.1007/11539452_9
http://dx.doi.org/10.1007/s10009-003-0118-5
http://dx.doi.org/10.1109/APSEC.2017.106
http://dx.doi.org/10.1109/APSEC.2017.106
http://dx.doi.org/10.1007/978-3-319-48989-6_13
http://dx.doi.org/10.1007/978-3-319-48989-6_13
http://dx.doi.org/10.1109/32.159839
http://dx.doi.org/10.1006/inco.1994.1045
http://dx.doi.org/10.1006/inco.1994.1045
http://dl.acm.org/citation.cfm?id=2755804
http://dl.acm.org/citation.cfm?id=2755804
http://dx.doi.org/10.1109/RTSS.2015.15
http://dx.doi.org/10.1007/s10515-010-0074-8
http://dx.doi.org/10.1007/s10515-010-0074-8
http://dx.doi.org/10.1109/RELDIS.2004.1353016
http://dx.doi.org/10.1109/RELDIS.2004.1353016
http://dx.doi.org/10.1007/BFb0054178
http://dx.doi.org/10.1007/978-3-662-49674-9_23
http://dx.doi.org/10.1007/978-3-662-49674-9_23
https://tel.archives-ouvertes.fr/tel-01169720
https://tel.archives-ouvertes.fr/tel-01169720
http://dx.doi.org/10.1007/978-3-319-17524-9_25
https://tel.archives-ouvertes.fr/tel-00004907
https://tel.archives-ouvertes.fr/tel-00004907
http://dx.doi.org/10.1007/3-540-48778-6_18
http://dx.doi.org/10.1007/3-540-48778-6_18
http://dx.doi.org/10.1007/978-3-540-24743-2_20
http://dx.doi.org/10.1007/978-3-540-24743-2_20

Improving WCET Evaluation using Linear Relation
Analysis∗

Pascal Raymond
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Pascal.Raymond@univ-grenoble-alpes.fr

Claire Maiza
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Claire.Maiza@univ-grenoble-alpes.fr

Catherine Parent-Vigouroux
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Catherine.Parent-Vigouroux@univ-grenoble-alpes.fr

Erwan Jahier
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Erwan.Jahier@univ-grenoble-alpes.fr

Nicolas Halbwachs
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Nicolas.Halbwachs@univ-grenoble-alpes.fr

Fabienne Carrier
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Fabienne.Carrier@univ-grenoble-alpes.fr

Mihail Asavoae
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Mihail.Asavoae@univ-grenoble-alpes.fr

Rémy Boutonnet
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes),
VERIMAG, Grenoble, France
Rémy.Boutonnet@univ-grenoble-alpes.fr

Abstract
The precision of a worst case execution time
(WCET) evaluation tool on a given program is
highly dependent on how the tool is able to detect
and discard semantically infeasible executions of
the program. In this paper, we propose to use the
classical abstract interpretation-based method of
linear relation analysis to discover and exploit re-
lations between execution paths. For this purpose,

we add auxiliary variables (counters) to the pro-
gram to trace its execution paths. The results are
easily incorporated in the classical workflow of a
WCET evaluator, when the evaluator is based on
the popular implicit path enumeration technique.
We use existing tools – a WCET evaluator and a
linear relation analyzer – to build and experiment
a prototype implementation of this idea.

∗ This work is supported by the French research fundation (ANR) as part of the W-SEPT project (ANR-12-
INSE-0001)

© Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux, Erwan Jahier, Nicolas Halbwachs,
Fabienne Carrier, Mihail Asavoae, and Rémy Boutonnet;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 6, Issue 1, Article No. 2, pp. 02:1–02:28
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3876-9125
mailto:Pascal.Raymond@univ-grenoble-alpes.fr
https://orcid.org/0000-0002-5977-6685
mailto:Claire.Maiza@univ-grenoble-alpes.fr
https://orcid.org/0000-0003-0594-8274
mailto:Catherine.Parent-Vigouroux@univ-grenoble-alpes.fr
https://orcid.org/0000-0002-3042-1565
mailto:Erwan.Jahier@univ-grenoble-alpes.fr
https://orcid.org/0000-0002-1426-7967
mailto:Nicolas.Halbwachs@univ-grenoble-alpes.fr
mailto:Fabienne.Carrier@univ-grenoble-alpes.fr
mailto:Mihail.Asavoae@univ-grenoble-alpes.fr
https://orcid.org/0000-0003-4761-5566
mailto:R�my.Boutonnet@univ-grenoble-alpes.fr
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

02:2 Improving WCET Evaluation using Linear Relation Analysis

2012 ACM Subject Classification Software and its engineering → Real-time systems software
Keywords and Phrases Worst Case Execution Time estimation, Infeasible Execution Paths, Abstract
Interpretation
Digital Object Identifier 10.4230/LITES.6.1.2
Received 2017-12-12 Accepted 2018-11-19 Published 2019-02-18

1 Introduction

The computation of a precise and safe approximation of the worst case execution time (WCET) of
programs on a given architecture is an important step in the design of hard real-time systems [41].
It is part of the validation of the design, and a prerequisite for tasks scheduling. In this computation,
over-approximation is mainly due to pessimistic abstraction of (1) complex hardware mechanisms
(caches, pipeline) and (2) the program semantics (loop bounds, infeasible executions). Taking into
account the target execution platform is, by far, the most difficult problem. It has been largely
studied in the literature and remarkable tools exist, both in the academia [5, 27, 29] and in the
industry [40].

In this paper, we specifically address the problem of taking into account the program semantics.
The objective is to extract semantic properties that make some executions infeasible, and to exploit
these properties in an existing WCET evaluator. It is generally admitted that such properties are
easier to analyze on high-level code – e.g., C programs – than on binary, even if semantic analysis
of executable code has been explored [3, 4, 36]. WCET evaluation is performed on object code
in order to be able to take into account the execution architecture. This raises the problem of
traceability between the source and the object code.

The most popular approach to evaluate the WCET is called implicit path enumeration technique
(IPET) [28]. A micro-architectural analysis provides an evaluation of the duration of each basic
block of the object-code control-flow graph. The WCET is then expressed as the solution of
an integer linear programming problem (ILP) where the variables are the number of times each
basic block is traversed during an execution. Relations between these variables come from the
control-flow graph (flow equations) and from semantic “flow facts”, including at least loop bounds.
Indeed, each loop in the program should have a constant bound to guarantee that the execution
time is finite; such bounds may be provided by the user, or discovered by program analysis.

Hence, the IPET-based evaluation takes into account semantic properties expressed as linear
constraints on counters. A natural idea is then to combine it with a semantic analysis devoted to
the discovery of invariant linear relations. Polyhedra-based abstract interpretation [2, 8, 17, 20],
also called linear relation analysis (LRA), is such an analysis. It is able to associate with each
control point of a sequential program a system of linear inequalities (whose set of solutions is a
convex polyhedron) satisfied by the numerical variables at this control point in any execution of
the program.

Our proposal consists in applying LRA to a copy of the source program enriched with counter
variables, and translate the obtained relations between counters into constraints to be added to
the ILP. Let us illustrate this proposal with a simple example.

https://doi.org/10.4230/LITES.6.1.2

P. Raymond et al. 02:3

x = 0; i = 0;
while (i < 100) {

if (x < 10) {
...

}
if (c) {

...
x++;

}
i++;

}

(a) initial program

x = 0; i = 0

i < 100?
T

F

x<10?T

c?

F

i++

b0

b1

b2

b4

b6

x++
. . .

. . .

F

T

b3

b5

(b) control flow graph

x = 0; i = 0; α= 0; β= 0; γ= 0;
while (i < 100) {α++;

if (x < 10) {β++;
...

}
if (c) {γ++;

...
x++;

}
i++;

}

(c) instrumented program

Figure 1 Instrumenting an example program with counters.

1.1 An example
Consider the program fragment of Figure 1.a with its control-flow graph (Fig. 1.b). Let us add
counters α, β, γ to the main basic blocks as done in the instrumented program Figure 1.c. These
counters are initialized to 0 and incremented in their corresponding block. An LRA analysis of
this instrumented program automatically discovers that the following relations are satisfied at the
end of the program:

α = i = 100 , γ = x , β + γ ≤ 110 , γ ≥ 0 , β ≥ 0

The inequality α = 100 gives the exact bound of the loop. More interestingly, β + γ ≤ 110 means
that there are at most 10 iterations of the loop where both blocks b3 and b5 are executed.

Assume the object code has the same control structure as the C program, i.e., the basic
blocks of their control flow graphs are in an one-to-one correspondence. The standard WCET
evaluation computes pessimistic execution times (say ti, i = 0..6) of the basic blocks (bi, i = 0..6),
and constructs the following ILP, where ni (resp., ei,j) denotes the number of occurrences of the
basic block bi (resp., the edge from bi to bj) in an execution of the program:

wcet = max
6∑

i=0
ni.ti , with the constraints



n0 = 1 , e0,1 = n0
n1 = e0,1 + e6,1 , e1,2 + 1 = n1
n2 = e1,2 , e2,3 + e2,4 = n2
n3 = e2,3 , e3,4 = n3
n4 = e2,4 + e3,4 , e4,5 + e4,6 = n4
n5 = e4,5 , e5,6 = n5
n6 = e4,6 + e5,6 , e6,1 = n6


If we are able to maintain the correspondence between basic blocks in the source and the object

code, i.e., to associate our counters α, β, γ with the variables of the ILP (n2, n3, n5 respectively),
we can add to the ILP the corresponding constraints: n2 = 100, n3 + n5 ≤ 110, which is likely to
reduce the maximum value of the objective function1.

1 In fact, for this simple example, the results can be computed symbolically: concerning the standard evaluation,
if the number of iterations in the loop (= 100) is given as a flow fact, the result will be t0 + 101t1 + 100(t2 +
t3 + t4 + t5 + t6). Taking the additional constraint into account, we get t0 + 101t1 + 100(t2 + t4 + t6) +
100 max(t3, t5) + 10 min(t3, t5) thus improving the previous result by 90 min(t3, t5).

LITES

02:4 Improving WCET Evaluation using Linear Relation Analysis

1.2 Contents of the paper
In Section 2, we focus on some available tools, and experiment their semantics awareness on some
simple examples. Two recent papers were dedicated to the state of the art related to semantic
analyses for WCET estimation and infeasible path detection [1, 10]. Section 2.3 presents some
more recent publications.

Our proposal consists in combining existing techniques, namely IPET-based WCET analysis
and Linear Relation Analysis, recalled in Section 3, together with the specific tools that we used
in our implementation. In Section 4, we explain how the counters are added and related to ILP
counters thanks to debugging information provided by the compiler. Our implementation of
the method is used to validate the approach on two existing benchmarks. We also investigated
the robustness of the approach in presence of compiler optimizations. These experiments are
summarized in Section 5. We conclude with the discussion of possible future work.

2 Existing tools

We have experimented with some existing tools, to evaluate their ability to discover and exploit
semantic properties. Four tools have been considered, all of which go through similar steps:
1. extracting a control-flow graph from the object code,
2. performing a set of micro-architectural analyses to obtain execution times for each basic blocks,
3. using IPET to compute a safe WCET.

We compare these tools with respect to their capabilities to extract semantic properties to cut
infeasible paths.

2.1 The tools
2.1.1 The Chronos Timing Analyzer
Chronos [27] is an academic tool developed at National University of Singapore. It takes as input
a C program, performs limited data-flow analysis at C source code level to determine loop bounds,
and requests the user to provide this information when it fails. The semantic analysis in Chronos
uses a pattern-based method to detect infeasible paths [39]. The so-called two-phase technique
addresses infeasibility from a conflicting pairs point of view. In the first phase, an analysis detects
some conflicts that capture the fact that two branches can not be taken along the same path. In
the second phase, each conflicting pair relation is encoded into an ILP constraint.

2.1.2 The Swedish Timing Analyzer
SWEET2 [29] is a research toolbox developed at Mälardalen Real-Time Research Center (MRTC).
The main objective of SWEET is flow analysis, which computes flow-facts, i.e., information about
loop bounds and infeasible paths in the program. The main technique to discover flow-facts is
abstract execution [16]. Abstract execution is a form of context-sensitive abstract interpretation,
because it uses a symbolic execution to produce context information for each loop iteration and
function call. Instead of using the fixpoint engine of abstract interpretation, abstract execution
executes the program in the abstract domain, merging the execution paths at certain points in
the program. SWEET does not support LRA. It currently implements only the abstract domain
of intervals.

2 www.mrtc.mdh.se/projects/wcet

www.mrtc.mdh.se/projects/wcet

P. Raymond et al. 02:5

2.1.3 AbsInt - The aiT Tool
Developed by AbsInt3, aiT is the main industrial product for WCET analysis. It consists of a set
of binary executables analyzers, which take the intrinsic cache and pipeline behavior into account.
Concerning semantic analysis, aiT uses a value analysis based on intervals [13] to compute safe
ranges of values for the program variables. aiT uses this information to determine loop bounds
and detect infeasible paths. The approach towards computing loop bounds is not general, but it
handles loop patterns. In order to gain precision, aiT pre-processes each loop by transforming
its body into a function, in order to expose the iteration contexts. The key element in this
transformation is to identify the loop index and to set it as a function parameter. Then, an
interval analysis computes the ranges for all the loop variables. The loop transformation is based
on loop patterns, which depend on the particularities of the architecture (e.g., parameter order)
or on the loop structure (e.g., for-loops, triangular-loops, branch conditions). aiT is able to detect
infeasible paths using the results of the value analysis, like conditions made infeasible because of
the computed intervals.

2.1.4 oRange, the flow fact analyzer of OTAWA
OTAWA [5] is an academic toolbox, developed at IRIT (University of Toulouse), designed as
a generic framework to develop static analyses for WCET computation. Although OTAWA
implements several approaches to WCET computation, the one based on IPET is the most mature.
OTAWA relies on an auxiliary tool, called oRange [9], to compute loop bounds. oRange analyses
C code. As a first phase, oRange detects loop indices and constructs a normal form: a symbolic
expression of the bound independently of the call context. In a second phase, by an abstract
execution, a syntactic tree is built in function of a full or partial call context. It combines loop
bounds and conditional expressions as numeric or symbolic expressions. Finally, the tree is
computed in the full context in order to produce a file in the specific flow-facts format FFX [42].

2.2 Some experiments
In order to evaluate the capabilities of these tools to detect infeasible paths, we have applied each
of them to programs containing various situations of semantic infeasibility. These situations are
given in Figure 2:

Example 1 is a case where simple pattern-based method may fail, since constant propagation
is needed.
Example 2 may be a problem for pattern-based methods for finding iteration numbers, since
the apparent index x is modified.
Example 3 is our introductory example of §1.1.
Example 4 is a fragment of code generated by the SCADE4 compiler, from a design manipulating
arrays. On one hand, the loops are exited from inside, which complicates the evaluation of
iteration numbers. On the other hand, the third loop is unreachable because of some non-trivial
arithmetic conditions.

Table 1 summarizes the results of the tools on these examples. On Example 1, Chronos is
unable to detect dead code5. Example 2 is correctly analyzed only by SWEET, because it unrolls

3 AbsInt GmbH www.absint.com/ait/
4 www.esterel-technologies.com/products/scade-suite
5 We used the available version of Chronos. Some additional work has been done that complement the infeasible
path analysis [6, 37], which is not part of the available version.

LITES

www.absint.com/ait/
www.esterel-technologies.com/products/scade-suite

02:6 Improving WCET Evaluation using Linear Relation Analysis

y = 2 ; x = y ;
if (x>3){// unreachable

...
}

Example 1

x = 0 ;
while (x<10){

...
if (C1) {

x = ...
...

}
x++ ;
// iteration nbr. may be 6= 10

}

Example 2

see example §1.1
Example 3

max_i = 3 ; s1 = 0;
for (i=0 ; i<10 ; i++) {

s1 = s1 + t[i] ;
// each t[i] assumed to be >5
x = i+1 ;
if (!(i<max_i)) break ;
// intended for 4 iterations

}
int s2 = s1 ;
if (x < 6)

for (i=0 ; i<10 ; i++){
s2 = s2+2 ;
if (!(i<5)) break ;
// intended for 6 iterations

}
int f = 0 ;
if (2*s1 < s2)

// unreachable, since s1>20 and s2=s1+10
for (i=0 ; i<10 ; i++){

f = f+2 ;
if (!(i<4)) break ;

}

Example 4

Figure 2 Various cases of semantic infeasibilities.

Table 1 Results of tools on programs of Figure 2.

Chronos SWEET oRange aiT
Example 1 - X X X

Example 2 - X - -
Example 3 - - - -
Example 4

nbr. 1st loop - 4 10 4
nbr. 2nd loop - 5 10 5
dead code - - - X

loops. None of the tools is able to find the property of Example 3. On Example 4, Chronos
requires manual annotations for loop bounds; oRange estimates that both loops are iterated 10
times; SWEET and aiT find the exact loop bounds; only aiT detects dead code.

In this paper, we propose a method and a tool-chain that is able to discover the infeasible
paths of these 4 examples, namely, infeasible paths that depend on a semantic analysis and that
may concern distant program points.

2.3 Other approaches
An extended state of the art related to semantic analyses for WCET estimation can be found
in [1] and a general survey of infeasible path detection in [10]. We complement them with some
more recent publications.

Several recent works make use of SMT solvers [23, 37]. The idea is to ask the solver if
the worst-case path obtained by the ILP solver is feasible. Whenever the path is infeasible, a
corresponding constraint is added to the ILP. As in our approach, adding constraints does not
always mean that the WCET is refined (2 paths may have the same WCET). In [18], the whole

P. Raymond et al. 02:7

path analysis is done through SMT solving instead of ILP: infeasible path analysis and worst-case
path analysis are merged in one step. Path execution time is expressed as an SMT problem, and
the question asked is no longer “is this path feasible?”, but “is there a feasible path longer than
K?”, where K is a given constant (which is adjusted, e.g., by binary search). In [32, 35], a similar
approach is taken, by asking this question to a bounded model checker.

3 Used techniques and tools

This section presents the existing techniques and tools used in our prototype: OTAWA implements
the classical IPET-based WCET evaluation, and PAGAI performs Linear Relation Analyis.

3.1 WCET evaluation with OTAWA
The WCET estimation work-flow (Figure 3) involves a compiler, a Linear Program solver, and
two tools from the OTAWA toolbox: oRange and owcet.

Compilation: the source C code is compiled by a third party tool; for this experiment, we use
a cross compiler from the GNU Compiler Collection (arm-elf-gcc 4.4.2), but other compilers
can be used, provided that it produces ELF code (Executable and Linkable Format), with
debugging information in DWARF format.
oRange is a data flow analyzing tool, dedicated to the discovery of loop bounds. Bounds are
stored in the OTAWA flow facts format (FFX).
owcet is the OTAWA command dedicated to the WCET evaluation. The main steps of this
tool, not detailed in Figure 3, are:

the construction of the control-flow graph (CFG) of the object code; during the construction,
and thanks to debugging information, basic blocks (BB) are associated (if possible) to lines
in the source program; thanks to this correspondence, the loop bounds computed by oRange
are translated into control flow constraints in the CFG. The annotated CFG can be dumped
in a file, allowing other tools to exploit it.
the micro-architectural analysis, which associates a local WCET estimation with each BB
of the CFG.
the construction of the Integer Linear Programming (ILP) system; as in the introduction
example (§1.1) the resulting system gathers (1) structural constraints (CFG structure), (2)
loop bounds constraints (from oRange flow facts) (3) the objective function to be maximized
(sum of BB counters weighted by their local WCET).

ILP solver: the ILP system is then solved by a third-party tool; OTAWA integrates and uses
LP_SOLVE6 (any other equivalent tool can be used).

3.2 Linear Relation Analysis with PAGAI
3.2.1 Principles of LRA
Linear Relation Analysis [8] is a classical program analysis, based on abstract interpretation [7]. It
is able to discover, at each control point of a sequential program, a conjunction of linear relations
(equalities and inequalities) invariantly satisfied by the numerical variables at this point. Classical
algorithms are used to propagate linear systems over the statements of the program. Several
causes may result in information loss:

6 web.mit.edu/lpsolve/doc

LITES

web.mit.edu/lpsolve/doc

02:8 Improving WCET Evaluation using Linear Relation Analysis

LP solver

Compiler
(arm-gcc)

Flow facts
(loop bounds) bin

ILP system

WCET est.

C

OTAWA
(owcet)

OTAWA
(oRange)

CFG dump
(with line/BB mapping)

Figure 3 Otawa WCET estimation work-flow.

the analysis safely ignores non-linear expressions in assignments and tests;
the analysis performs a convex hull at control path junctions, instead of propagating the
disjunction of incoming information. It means that the propagated value is the most precise
conjunction of linear relations implied by both incoming systems;
to avoid infinite propagation along loops, the classical widening-narrowing method is applied
to guess a safe approximation of the limit. Note that, unlike in symbolic execution [23] or
SMT methods [18], loops are not unrolled.

3.2.2 Applying LRA to our example
We do not detail further the techniques applied in LRA, and refer the reader to the bibliography.
We just show the main steps of the analysis of our example of Figure 1. Let us consider the control
point at the entry of the while loop. The first step of the analysis straightforwardly computes the
first iterate:

x = i = α = β = γ = 0

Its propagation through the loop body provides, with a convex hull at the end of the conditional:

i = α = β = 1 , x = γ , 0 ≤ γ ≤ 1

Now a convex hull with the first iterate gives the second iterate at the entry of the loop:

i = α = β , 0 ≤ α ≤ 1 , x = γ , 0 ≤ γ ≤ α

Instead of continuing the iterations, a first widening/narrowing step is performed (using “lookahead
widening” [14]), which provides:

i = α = β , x = γ , 0 ≤ γ ≤ α ≤ 100 , γ ≤ 10

Now, the “else” branch of the test x<10 becomes feasible, and a second widening/narrowing step
is performed, providing:

i = α , x = γ , β + γ ≤ α+ 10 , β ≤ α , γ ≤ α ≤ 100

P. Raymond et al. 02:9

which is found invariant after one more propagation. Propagated to the end of the program, it
becomes:

i = α = 100 , x = γ ≤ 100 , β + γ ≤ 110

3.2.3 LRA and loop bounds
It may happen, like in the previous example, that LRA discovers a bound to a loop counter, thus
providing an essential information for WCET evaluation. However, finding loop bounds is not our
main goal in this work, as the method is intrinsically unable to discover non linear relations, which
drastically limits its capability to find loop bounds. As a matter of fact, in presence of nested loops,
the number of executions of the body of the innermost loop is not linear in the constants of the
program. For instance, in the program fragment “ for(i=0;i<n;i++){for(j=i;j<n;j++){...}}”
the number of executions of the body of the innermost loop is n(n+ 1)/2, which cannot be found
by LRA.

The LRA method must then be used together with some other method able to bound nested
loops. We can use existing tools such as oRange that comes with OTAWA, or more basically
user-given bounds, given as pragmas in the code.

There exist also approaches based on polyhedra manipulation to find loop bounds, such as
the one proposed in [38, 30]: it consists in building a polyhedral upper approximation P of the
iteration domain, i.e., the set of possible valuations of loop counters (in the previous example,
P = {(i, j) | 0 ≤ i ≤ j ≤ n − 1}). Under realistic assumptions concerning the determinism
of the program, the number of executions of the innermost loop is bounded by the number of
integer points in P , and algorithms are available to compute this number. Notice that LRA can
be combined with this approach, since it can discover linear invariants reducing the iteration
domain, thus improving the precision of the result. Notice also that LRA can deal with parameters
(symbolic bounds, like n in our example), an issue specifically addressed by [38].

3.2.4 The PAGAI prototype analyzer
Several tools performing LRA are available ([2, 12, 19, 20] to cite a few). Here, we use the PAGAI
prototype analyzer, which implements the basic LRA together with recent improvements like
“lookahead widening” [14] and SMT-based “path focusing” [19]. PAGAI analyses LLVM code [24]
produced from a C program (thanks to Clang7), and is able to return discovered properties at
the C level. PAGAI may be used with other abstract domains than general linear systems – like
octagons [33] – thanks to the common interface APRON [21].

4 Adding and tracing counters

4.1 The proposed workflow
Figure 4 shows the proposed workflow for the experiment. It involves two existing components:
timing analysis with OTAWA (left) and program analysis with PAGAI (right). Two new tools
have been developed to complete the workflow: a front-end (top, Instrumentation), which produces
the input for the analyzers (OTAWA and PAGAI), and a back-end (ILP translation & merge),
which gathers the results into a more constrained ILP system, and obtains a possibly enhanced
WCET estimation.

7 http://clang.llvm.org/

LITES

http://clang.llvm.org/

02:10 Improving WCET Evaluation using Linear Relation Analysis

LP solver

LP solver

instrumentation

C
(original)

counter/line
mapping

(§Fig.3)
OTAWA work-flow

line/BB
mapping

ILP system 2

ref. C
+counters

Linear Relation Analyis
(PAGAI)

counter
constraints

ILP constraints
translation & merge

ILP system 1

ref. C

WCET est. 1

WCET est. 2

Figure 4 Instrumentation and analysis workflow.

These tools are detailed in this section. We illustrate the successive steps of the method by
detailing the processing of an example program, called lcdnum.c, extracted from TacleBench
programs suite [15]. The main program is given in Figure 5. It calls a function num_to_lcd, the
execution time of which is taken into account by OTAWA.

4.2 Instrumented program version

The goal of the front-end (“instrumentation”, Figure 4, top) is to produce, from the original C
code, a reference C program. Some semantics preserving transformations of the source code are
necessary or advisable, in order to use properly the analyzers, and trace the information between
them.

Some transformations are purely lexical, and do not change the program structure: because
the standard ELF/DWARF traceability mechanism is line-based, line breaks are introduced to
isolate each atomic statements on its own line.
Some transformations that modify the control structure are necessary because of the limitation
of the analyzers. For instance, a single-return statement per function is mandatory for exploiting
the results of PAGAI: this unique control point is the place where counter invariants actually
express properties on the whole execution of the function. Other transformations are required
because of the limitation of both OTAWA and PAGAI: the control structure (CFG) must
be statically known, which forbids dynamic computation of program pointers. In particular,
“switch/case” statements must be rewritten into a static control structure based on “if” and
“goto” statements.
Another transformation is desirable in our case: the current version of PAGAI does not handle
inter-procedural analysis. In order to exploit the plain capacity of this tool to find invariants,
a light-weight solution is to inline function calls at the source level. This transformation is

P. Raymond et al. 02:11

indeed hardly admissible in real-life, but it must be seen here as a “trick” to reach our goal
(study the ability of LRA to detect infeasible executions).

The front-end produces the reference C code in two flavors.
The reference C code with counters (Figure 4, right) is instrumented with auxiliary counters,
in the same manner as in the introductory example (§ 1.1). The present version introduces a
counter for each sequential block in the program control flow. However, some strategy could
be used to reduce the number of counters by targeting blocks that are more likely to have an
influence [43].
The reference C code without counters (Figure 4, left) is the same code, where all lines
related the counters (declaration, initialization and incrementation) have been commented
out. This method ensures a semantic equivalence between the programs analyzed by OTAWA
and PAGAI: since they only differ on the side-effect-free local variables, these programs are
naturally input/output equivalent. Moreover, at least at the source level, the two programs
are also structurally equivalent: a block in the reference C code is executed if and only if the
corresponding block (marked with a counter c) is executed in the reference C program with
counters. This property becomes false in general at the binary level, since the C compiler may
modify the control structure: this well-know problem of traceability is discussed later.
An auxiliary file is generated, that contains the mapping between each counter and its
corresponding source line in the reference C code.

I Example 1. Applied to our example program (Figure 5), our instrumentation front-end calls
the C preprocessor, eliminates the multiple returns and switches (only within num_to_lcd, not
shown), and produces the reference C programs. The first one (without counters) is shown on
Figure 6; the second (not shown) is exactly the same with uncommented lines involving counters.
An auxiliary file (not shown) simply lists the pairs “counter/line” (e.g., (cptr_main_1,144),
(cptr_main_2, 147)).

The first version is provided to OTAWA. Loop bounds computation by oRange is optional,
which allows us to check if PAGAI is able to find them on its own. OTAWA calls the gcc
compiler (here with -O0 optimization level), builds the CFG of the object code, performs the
micro-architectural analysis, and builds the ILP problem.

PAGAI is applied to the second version of the program, and returns the following invariants:

-10+cptr_main_2 = 0
-10+cptr_main_4 = 0
5-cptr_main_3 >= 0

The first equation finds the exact loop bound (which may also be found by oRange). The
second equation is structural (from the shape of the source CFG, cptr_main_2 and cptr_main_4
are equal). The third property is new, and expresses, in particular, that the function num_to_lcd
is called at most 5 times.

4.3 Tracing back the counters
The back-end (“ILP constraints translation & merge”, Figure 4, bottom) gathers the information
coming form OTAWA and PAGAI:

Thanks to the counter/C-line mapping provided by the front-end, and the C-line/binary-
BB mapping provided by OTAWA (through the ELF/DWARF information), a counter/BB
mapping is built. Note that this mapping is partial, and deliberately pessimistic: depending
on the compilation process, it may happen that a counter is associated either to zero or to

LITES

02:12 Improving WCET Evaluation using Linear Relation Analysis

unsigned char num_to_lcd(unsigned char a) ;

volatile unsigned char IN = 120;
volatile unsigned char OUT;
int main(void) {

int i;
unsigned char a;
for(i=0; i< 10; i++) {

a = IN;
if(i<5) {

a = a &0x0F;
OUT = num_to_lcd(a);

}
}
return 0;

}

Figure 5 The initial lcdnum.c program.

133 int main(void) {
134 int i ;
135 unsigned char a ;
136 unsigned char tmp ;
137 int __retres4 ;
138 //int cptr_main_1 = 0;
139 //int cptr_main_2 = 0;
140 //int cptr_main_3 = 0;
141 //int cptr_main_4 = 0;
142 //int cptr_main_5 = 0;
143 //cptr_main_1 ++; #line 144
144 i = 0;
145 while (i < 10) {
146 //cptr_main_2 ++; #line 147
147 a = (unsigned char)IN;
148 if (i < 5) {
149 //cptr_main_3 ++; #line 150
150 a = (unsigned char)((int)a & 15);
151 tmp = num_to_lcd(a);
152 OUT = (unsigned char volatile)tmp;
153 }
154 //cptr_main_4 ++; #line 155
155 i ++;
156 }
157 //cptr_main_5 ++; #158
158 __retres4 = 0;
159 return (__retres4);
160 }

Figure 6 The reference lcdnum.c program.

Table 2 Mapping between counters and blocks.

line number(s) block(s) reliable counter
136,144 1 yes cptr_main_1
145 1;2 no
147;148 4 yes cptr_main_2
150;151;152 5 yes cptr_main_3
155 6 yes cptr_main_4
158;159;160 3 yes cptr_main_5

P. Raymond et al. 02:13

several binary basic blocks. In this case, the counter is simply ignored: only counters that are
associated to one single BB are retained.

I Example 1 (cont.). Table 2 shows the mapping between counters and blocks that is built
by our back-end.

The linear constraints on the retained counters are then translated literally into linear con-
straints on BB, and added to the basic ILP system provided by OTAWA.

I Example 1 (cont.). The translation of the constraints discovered by PAGAI is the following:
x4_main = 10;
x6_main = 10;
x5_main <= 5;

At last, both systems are solved and the corresponding estimations can be compared.

I Example 1 (cont.). After a second call to LP_SOLVE, the final result is printed:
Estimation WITHOUT PAGAI: 1540
Estimation WITH PAGAI: 945

4.4 Traceability and optimization
In our framework, traceability is the ability to relate execution paths in the binary code (bin.
CFG) to execution paths in the source code (source CFG).

Some optimizations performed by the compiler may strongly modify the control structure and
thus alter traceability: loop unrolling, block replication, out-of-order execution. This is why most
of the related works assume no compiler optimization to guarantee a perfect matching between
the two CFGs.

However forbidding optimization is not satisfactory in real-time domains, where execution
times have to be predictable, but also short. For a standard compiler like gcc, the observed
speed-up between no optimization (-O0 option) and a standard level of optimization (-O1) is
around two.

The most satisfactory solution would be a compiler that provides a precise traceability even
in case of CFG optimization. Some work has been done to design and/or adapt the compilation
process for this purpose, for instance [26, 31, 22].

Unfortunately, off-the-shelf standard compilers such as gcc hardly provide a precise and reliable
information in case of CFG optimization. The idea is then to use the compiler options in order to
forbid (as far as possible) CFG transformations, but still allow other optimizations, in particular
those that concern data management.

The gcc compiler proposes numerous options to control optimizations, but there hardly exists
a comprehensive and exhaustive description of their effects and inter-dependencies. For this
experiment, we have empirically defined a customized level (called CO in the sequel). We started
from the standard -O1 level, and removed about 20 individual optimizations using the -fno
directive (see appendix B). We cannot guarantee that this customized level will preserve the CFG
for all programs, but the method is safe: as explained in Section 4.3, a counter (and then a source
code line) that is not associated to exactly one basic block of the binary code is simply ignored.
As a consequence, the only risk is to lose information that would have made the WCET estimation
tighter. Note that this statement suppose that the gcc debugging information is reliable, which is
indeed unprovable, but empirically reasonable.

LITES

02:14 Improving WCET Evaluation using Linear Relation Analysis

I Example 2. When applying the CO method to our running example, we get 100% traceability.
As a consequence, the interesting counter property (5-cptr_main_3 >= 0) can still be translated
into a BB constraint (x11_main <= 5;) leading to the final result:
Estimation WITHOUT PAGAI: 641
Estimation WITH PAGAI: 421

On this example, we observe that code optimization leads to an initial WCET estimation 2.4x
smaller (641 vs 1540). The traceability is preserved and the improvement due to the counter
analysis is of the same order (34.3% vs 38.6%).

5 Experiments

5.1 Benchmarks
We tested our approach on programs from the TacleBench [11], a set of C programs widely used in
the WCET community. 8 A first check has been made to retain only purely sequential programs
that compile “out of the box”: 53 applications of the 58 in the TacleBench9

For each program, we try to estimate the WCET of all functions appearing in the code,
including the top-level one (main). For each function, inner function calls are recursively inlined at
the C level (see Section 4.2). Recursive functions are rejected during this step, and not considered
for WCET analysis.

Our goal is to study the influence of our counter-based method (Fig. 4) on a classical estima-
tion (Fig. 3). A prerequisite is therefore that a reference estimation exists; hence the programs
for which the basic WCET estimation fails are not selected. The OTAWA estimation may fails
because of unsupported programming features (pointer arithmetics), or because the analysis does
not terminates before a chosen timeout (2 hours).

After this initial selection, 589 functions (out of 639) from the 53 programs of the TacleBench
suite are retained.

5.2 Experimental setup
The proposed framework as presented on Fig. 4 has numerous parameters (C code instrumenta-
tion, linear analysis tuning, compiler optimization etc.) leading to a combinatorial numbers of
possibilities. For this systematic experiment, we focus only on two kinds of parameters: those
that influence the precision of linear analysis, and those that influence the traceability. The other
parameters are fixed once and for all as follows:
OTAWA hardware model: our goal is not to bench or “stress” OTAWA in terms of hardware.

We only want it to give an initial IPET system in which we will insert flow facts discovered
via LRA. In order to maximize the number of test benches for which OTAWA gives an initial
ILP in reasonable time, we consider a very simple, cache-free, ARM-based architecture.

Misc. CFG transformations: some CFG transformations are necessary, due to limitations of
OTAWA (switch statements not supported) and /or PAGAI (multiple return statements). This
transformations are performed using the CIL library [34].

Inlining: because the current version of PAGAI has limited support for inter-procedural analysis,
function calls are systematically inlined. This transformation is also implemented using the
CIL library. This method improves the precision of the analysis, but makes the analysis much
more costly in time and memory.

8 The material necessary for reproducing the experiment is freely available at https://gricad-gitlab.univ-
grenoble-alpes.fr/verimag/reproducible-research/LRA4w7.

9 The 5 missing applications are OS and/or architecture dependent.

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/LRA4w7
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/LRA4w7

P. Raymond et al. 02:15

Terminates

86.4%

Fails

13.6%

Facts found

58.9%

New facts

45.5%

WCET enhanced

12.9%

(a) polyhedra domain

Terminates

88.1%

Fails

11.9%

Facts found

62.5%

New facts

46.7%

WCET enhanced

13.9%

(b) octagon domain

Figure 7 LRA analysis statistics on 589 functions, for the two relational abstract domains.

Loop bounds: as explained in 3.2.3, our method is intrinsically unable to bound nested loops,
so a complementary method is necessary to find loop bounds. For this purpose, we can use
oRange, but it appears that the CFG transformations performed using CIL strongly alters its
performance10. In order to maximize the size of the benchmark we thus systematically exploit,
when available, the user pragmas given in source code. Nevertheless, we made a complementary
experiment, without using pragmas nor oRange, in order to identify the cases where LRA is
sufficient to bound the execution time.

5.3 Lessons learnt

This section presents the lessons learnt form the experiment, by focusing on several points:
the ability of the linear analysis to discover “flow facts”, and hopefully to enhance the WCET
estimation; the influence of the abstract domain on the analysis; the ability of linear analysis to
discover loop bounds, and finally the influence of compiler optimizations on traceablity.

5.3.1 Linear analysis and flow facts discovery

When traceability allows it, the constraints discovered by linear analysis are directly translated
into flow facts giving information on the (im)possible execution paths. These flow facts may be
useless if they are redundant with the structural constraints, otherwise they are new facts, giving
non trivial information on the execution paths. However, even new facts can be useless if they do
not concern the worst case execution path. A utility has been developed to check whether the
facts discovered by LRA analysis are new or not. Each fact is checked by adding its negation to
the set of structural constraints: the fact is redundant if and only if the system becomes infeasible.

Figure 7 gives statistic on the behavior of the LRA method, for the two relational domains
(octagon and polyhedra). Let us focus on the polyhedra case first (a). The PAGAI tool terminates
for 509 cases out of 589 (86.4%); for the missing cases (13.6%), it runs out of resources in memory
or time. Flow facts are found in 347 cases, and at least one fact is new for 268 ones; finally, new
facts lead to a WCET improvement for 76 cases. Statistics are similar for the octagon domain,
except that it terminates more often: this explains why the WCET is enhanced more often with
octagons, even if this domain is less precise.

10The CIL tool normalizes the code by using only unbounded while and break statements, that are badly handled
by oRange. However oRange performs well for the original programs, made of human-written for loops.

LITES

02:16 Improving WCET Evaluation using Linear Relation Analysis

Figure 8 WCET improvement and analysis time depending on abstract domains (b=box, o=octagons,
p=polyhedra).

Table 3 Some WCET improvement results (full table page 24).

Initial Box Octagons Polyhedra
Ref WCET ∆ Impt Time ∆ Impt Time ∆ Impt Time
cr.2 227K 111K 48.7 <1s 111K 48.7 4s 111K 48.7 1s

md.13 2648 0 0.0 <1s 1920 72.5 <1s 1920 72.5 <1s
gs.9 6934 0 0.0 1s 738 10.6 4m 4428 63.8 29m
an.0 466M 0 0.0 4s 4M 0.8 7m 115M 24.6 1m
mp.9 52M 27M 51.1 56m - - - - - -
md.14 51K 0 0.0 2m 5K 10.4 21m - - -
md.5 13M 0 0.0 2m - - - 3M 21.0 35m

A possible conclusion is that LRA, when it works, is actually good at finding non redundant
semantic facts (more than half of the time, when it terminates), but that those facts do not
necessarily lead to a WCET improvement (about 15% of the termination cases).

5.3.2 Abstract domains

The main goal of the experiment is to observe the influence of the linear analysis on the WCET
estimation. The linear analysis performed by PAGAI is parameterized by the choice of an abstract
domain to represent the possible values of the counters. Two domains proposed by PAGAI are
relational, and thus are likely to express relations between our counters and the original variables
in the programs:

The polyhedra domain is the most precise since it can handle any linear relation, and its
algorithmic cost is exponential in the worst case.
The octagon domain handles intervals and bounded pairwise sums or differences. It is less
precise, but has a polynomial cost in the worst case: O(n3) in time, and O(n2) in space.

P. Raymond et al. 02:17

To be exhaustive, we also consider the domain box, which handles only intervals. Since this
domain is non-relational, it is intrinsically unable to relate our additional counters to the program
variables. The flow facts that can be discovered with the box domain are thus limited (basically,
counters stuck down to zero, which correspond to dead code).

The WCET estimation is improved by at least one domain for 90 functions. The gain ranges
from negligible (0.1%) to interesting (around 10%) or even huge (more than 50%). We limit here
the comments to the cases where the enhancement is greater 0.8%. The detailed results for these
60 cases are given in appendix (table 6, page 24), and a selection of typical cases is given in table 3.

The experiment gives some interesting information:
The interest of the box domain is very limited: it is an indirect way of performing constant
propagation and dead code “pruning”. Most of the time it gives no improvement (42 out of 60,
e.g., md.13, gs.9). However, since it is the cheapest domain, it may give results when other
domains fail (6 times, e.g., mp.9).
When both octagons and polyhedra terminate, they often give the same result (34 out of 60
cases, e.g., cr.2, md.13). However there are some cases (12 out of 60, e.g., gs.9), where the
expressiveness of polyhedra is actually useful (constraint involving 3 or more variables, and
pairwise relations with non unit coefficients).
In compliance with the theoretical complexity, octagons may terminates while polyhedra fails
(7 cases, e.g., md.14). Nevertheless, there is also one case where octagons fail while polyhedra
works (md.5). This is due to the fact that the cost of octagons is almost always cubic in the
number of variables, while the exponential cost of polyhedra is rarely reached in practice.

5.3.3 Loop bounds

LRA is intrinsically limited to the discovery of single loop bounds (cf. 3.2.3). We made a
complementary experiment to check if and when LRA actually finds such loops. For this experiment,
we only consider the short-list of programs from Table 6 where PAGAI terminates when using a
relational domain (octagon or polyhedra); as a matter of fact, using the box domain is irrelevant
since it can’t find any loop bound other than 0.

For these 54 programs, we have:
computed the loop level, which is maximal depth of nested loops appearing in the program (0:
no loop at all, 1: only single loops, 2 or more: nested loops);
launched our tool without using oRange nor user-pragmas. The LRA analysis is performed
twice: with the octagon and the polyhedra domain, and we keep only the best result.

Table 7 (page 25) lists the results; the column “pagai” simply indicates if the analysis give a
bounded WCET, since the WCET value is, in this case, the same as the one in Table 6.

There are 10 test cases that are loop-free, and thus with no bounds to found. There are 25
programs with only single loops (level=1); these are the cases where PAGAI is supposed to find
bounds, and it actually does it for most of the cases (19 out of 25). In fact, PAGAI finds the
bounds for all loops that are semantically guarded by a counter condition, that is, for loops or
equivalent. The cases where PAGAI does not find bounds are those where the loop is guarded by
a points-to condition (e.g., while (*p++)).

We expected PAGAI not to bound any program with a loop level greater than 1, which is the
case except for one program (ex.2). In fact this example is a “false counter-example”: the loop
depth is syntactically 2, but the inner-loop appears in a branch which is never executed. The loop
depth is then semantically 1.

LITES

02:18 Improving WCET Evaluation using Linear Relation Analysis

Table 4 Impact of compiler optimizations on WCET and LRA

O0 CO
Initial Best Best Opt. Initial Best Best Traceability

Ref WCET WCET Impt speedup WCET WCET Impt

md.13 2648 728 72.5 3.3x 791 215 72.8 100% of 2
an.0 466M 351M 24.6 3.0x 157M 116M 25.9 100% of 44
cr.2 227K 116K 48.7 2.3x 97K 50K 48.7 41% of 24
md.5 13M 10M 21.0 3.4x 4M 3M 15.0 80% of 40
ex.2 278K 224K 19.2 1.3x 218K 218K 0.0 46% of 13

5.3.4 Optimization level and traceability

The main focus of this work is the influence of linear analysis on the precision of the WCET
estimation. Nevertheless, since analysis is performed at the C level, the problem of the traceability
between the C and the binary code must be considered. Forbidding any optimization is not
an option in real-time domain. We argue that a well-chosen set of optimizations can lead to a
reasonable compromise between traceability and program speed-up.

For all functions that give some enhancement on the non-optimized code, we run the experiments
using the custom optimization (CO) level defined in 4.4. Since the counter analysis is completely
independent to the compilation method, the linear relations found are the same, and the ability
to enhance the WCET estimation is only due to traceability.

The detailed results of this experiment are given in appendix (table 8, page 26), and a selection
of typical cases is given in table 4. The table gathers the results obtained with the non-optimized
binary code O0, and the optimized one CO. For each optimization level, the table gives:

the Initial WCET, in CPU cycles, computed by OTAWA,

the Best WCET, enhanced thanks to the properties discovered with PAGAI, with some abstract
domain,

the corresponding Improvement percentage.
The table also shows the Optimization speed-up, which is the ratio between the initial O0 and the
initial CO estimation, i.e., it measures the gain obtained just because of the compilation, before
applying the counter method. Finally, for CO compilation, the table gives an information on the
Traceability: the percentage of counters introduced for LRA at C level, that are actually associated
to some basic block, at binary level. Traceability in the O0 mode is not shown in the table as it is
always 100%.

The interesting information given by the experiment are:

Even if the CO level is very limited (subset of O1 level, and a fortiori of O2), it generates a
fairly optimized code: the speed-up is mostly between 2x and 4x.

In most of the cases (53 out of 60) traceability is 100%, and one can observe an enhancement due
to LRA similar to the one obtained with O0 code. Indeed, this improvement is obtained on the
CO initial WCET, which is already much smaller than the one obtained for the non-optimized
code (e.g., md.13, an.0).

In some cases, traceability is partly lost, but remain sufficient to enhance the estimation (4
cases, e.g., cr.2, md.5).

Finally, for 3 cases, partial traceability leads to no enhancement (e.g., ex.2).

P. Raymond et al. 02:19

6 Conclusion and future work

Linear Relation Analysis is a powerful technique to discover invariant linear relations between
numerical variables of a program. On the other hand, the classical evaluation of WCET using
Implicit Path Enumeration Technique is based on expressing the WCET as the solution of an
Integer Linear Program, the variables of which are counters associated with the basic blocks of the
program. So, the idea of adding these counters as auxiliary variables in the program, and using
the results of LRA as semantic flow-facts to be added to the ILP, is rather natural. Our goal, in
this paper, was to conduct a light-weight experiment – by combining existing tools – to evaluate
the benefits of the approach. Secondarily, such an experiment raised the question of traceability,
since semantic flow-facts are discovered on the source program, while the WCET is evaluated on
the executable code. The conclusion of this experiment on public benchmarks is manyfold:

LRA finds new semantic facts in many examples (46%), but many of these new facts do
not influence the evaluated WCET. However, the WCET is improved on a significant subset
(almost 14%) of the examples, and the improvement is often interesting.
the traceability problems can be safely dealt with, using the debugging information provided
by the compiler; this is the case even in the presence of strong compiling optimizations, as
long as these optimizations do not modify too much the control structure of the program.

This work could be continued in several directions.
It would be interesting to limit the number of counters, as the cost of LRA can be exponential
in the number of variables. Of course, counters which are structurally related by flow equations
can be saved, but their cost is low in polyhedra computations (they are linked to each other by
equations). An appealing idea would be to introduce counters on the branches of a conditional,
only when these branches appear to have strongly different execution times, a measure that is
roughly available after the micro-architectural analysis [43].
Existing LRA analyzers (like PAGAI) are generally not inter-procedural, which forced us to
inline the procedures in our experiments. An inter-procedural version of LRA must be studied
to solve this problem. The relational nature of LRA is surely an advantage, since a procedure
can be associated a summary as an input-output relation. Summaries of called procedures can
then be used in the caller, in a bottom-up fashion.
Traceability is still a concern, which would benefit from a better cooperation of the compiler [25].

References
1 Mihail Asavoae, Claire Maiza, and Pascal Ray-

mond. Program Semantics in Model-Based WCET
Analysis: A State of the Art Perspective. In
13th International Workshop on Worst-Case Exe-
cution Time Analysis, WCET 2013, July 9, 2013,
Paris, France, volume 30 of OASICS, pages 32–
41. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2013.

2 Roberto Bagnara, Elisa Ricci, Enea Zaffanella, and
Patricia M. Hill. Possibly Not Closed Convex Poly-
hedra and the Parma Polyhedra Library. In M. V.
Hermenegildo and G. Puebla, editors, 9th Inter-
national Symposium on Static Analysis, SAS’02,
Madrid, Spain, September 2002. LNCS 2477. doi:
10.1007/3-540-45789-5_17.

3 Gogul Balakrishnan and Thomas W. Reps. DI-
VINE: DIscovering variables IN executables. In
Verification, Model Checking, and Abstract Inter-
pretation, VMCAI 2007, pages 1–28, Nice, France,
January 2007.

4 Gogul Balakrishnan, Thomas W. Reps, David Mel-
ski, and Tim Teitelbaum. WYSINWYX: what you
see is not what you execute. In Verified Software:
Theories, Tools, Experiments, VSTTE 2005, pages
202–213, Zurich, Switzerland, October 2005.

5 Clément Ballabriga, Hugues Cassé, Christine
Rochange, and Pascal Sainrat. OTAWA: An open
toolbox for adaptive WCET analysis. In SEUS,
2010.

6 Duc-Hiep Chu, Joxan Jaffar, and Rasool
Maghareh. Precise Cache Timing Analysis
via Symbolic Execution. In 2016 IEEE Real-
Time and Embedded Technology and Applications
Symposium (RTAS), pages 1–12, 2016.

7 Patrick Cousot and Radia Cousot. Abstract inter-
pretation: a unified lattice model for static analy-
sis of programs by construction or approximation
of fixpoints. In 4th ACM Symposium on Principles
of Programming Languages, POPL’77, Los Ange-
les, January 1977.

LITES

http://dx.doi.org/10.1007/3-540-45789-5_17
http://dx.doi.org/10.1007/3-540-45789-5_17

02:20 Improving WCET Evaluation using Linear Relation Analysis

8 Patrick Cousot and Nicolas Halbwachs. Automatic
discovery of linear restraints among variables of a
program. In 5th ACM Symposium on Principles of
Programming Languages, POPL’78, Tucson (Ari-
zona), January 1978.

9 Marianne de Michiel, Armelle Bonenfant, Hugues
Cassé, and Pascal Sainrat. Static loop bound anal-
ysis of C programs based on flow analysis and ab-
stract interpretation. In IEEE Int’l Conf. on Em-
bedded and Real-Time Computing Systems and Ap-
plications (RTCSA), 2008.

10 Sun Ding, Hee Beng Kuan Tan, and Kaiping Liu.
A Survey of Infeasible Path Detection. In Proceed-
ings of the 7th International Conference on Eval-
uation of Novel Approaches to Software Engineer-
ing (ENASE 2012), Wroclaw, Poland, 29-30 June,
2012., pages 43–52, 2012.

11 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx,
Björn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo
Sorensen, Peter Wägemann, and Simon We-
gener. TACLeBench: A Benchmark Collection to
Support Worst-Case Execution Time Research.
In 16th International Workshop on Worst-Case
Execution Time Analysis, WCET 2016, July 5,
2016, Toulouse, France, pages 2:1–2:10, 2016.

12 Paul Feautrier and Laure Gonnord. Accelerated In-
variant Generation for C Programs with Aspic and
C2fsm. In Tools for Automatic Program AnalysiS
(TAPAS), Perpignan, France, September 2010.

13 Christian Ferdinand, Florian Martin, Christoph
Cullmann, Marc Schlickling, Ingmar Stein,
Stephan Thesing, and Reinhold Heckmann. New
Developments in WCET Analysis. In Program
Analysis and Compilation, pages 12–52, 2006.

14 Denis Gopan and Thomas Reps. Lookahead widen-
ing. In CAV’06, Seattle, 2006.

15 Jan Gustafsson, Adam Betts, Andreas Ermedahl,
and Björn Lisper. The Mälardalen WCET Bench-
marks: Past, Present And Future. In Proc. of
WCET, pages 136–146, 2010.

16 Jan Gustafsson, Andreas Ermedahl, Christer Sand-
berg, and Björn Lisper. Automatic Derivation of
Loop Bounds and Infeasible Paths for WCET Anal-
ysis Using Abstract Execution. In RTSS, 2006.

17 Nicolas Halbwachs, Yann-Eric Proy, and Patrick
Roumanoff. Verification of real-time systems using
linear relation analysis. Formal Methods in System
Design, 11(2):157–185, August 1997.

18 Julien Henry, Mihail Asavoae, David Monniaux,
and Claire Maiza. How to compute worst-case ex-
ecution time by optimization modulo theory and
a clever encoding of program semantics. In SIG-
PLAN/SIGBED Conference on Languages, Com-
pilers and Tools for Embedded Systems 2014,
LCTES ’14, pages 43–52, June 2014.

19 Julien Henry, David Monniaux, and Matthieu Moy.
PAGAI: A Path Sensitive Static Analyser. Electr.
Notes Theor. Comput. Sci., 289:15–25, 2012.

20 François Irigoin, Pierre Jouvelot, and Rémy Trio-
let. Semantical Interprocedural parallelization: An
overview of the PIPS Project. In ACM Int. Conf.
on Supercomputing, ICS’91, Köln, 1991.

21 Bertrand Jeannet and Antoine Miné. Apron: A
Library of Numerical Abstract Domains for Static
Analysis. In Computer Aided Verification (CAV

2009), Grenoble, France, pages 661–667, June
2009.

22 Raimund Kirner, Peter Puschner, and Adrian
Prantl. Transforming flow information during code
optimization for timing analysis. Journal on Real-
Time Systems, 45(1-2), 2010.

23 Jens Knoop, Laura Kovács, and Jakob Zwirch-
mayr. WCET squeezing: on-demand feasibility
refinement for proven precise WCET-bounds. In
Proceedings of the 21st International Conference
on Real-Time Networks and Systems, pages 161–
170. ACM, 2013.

24 Chris Lattner and Vikram Adve. LLVM: a com-
pilation framework fopr lifelong program analysis
& transformation. In CGO’04, pages 75–86, Wash-
ington, DC, August 2004. IEEE Computer Society.

25 Hanbing Li, Isabelle Puaut, and Erven Ro-
hou. Traceability of Flow Information: Reconcil-
ing Compiler Optimizations and WCET Estima-
tion. In 22nd International Conference on Real-
Time Networks and Systems, RTNS’14, Versailles,
France, October 8-10, 2014, 2014.

26 Hanbing Li, Isabelle Puaut, and Erven Rohou.
Tracing Flow Information for Tighter WCET Es-
timation: Application to Vectorization. In 21st
IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications,
page 10, Hong-Kong, China, August 2015. URL:
https://hal.inria.fr/hal-01177902.

27 Xianfeng Li, Liang Yun, Tulika Mitra, and Abhik
Roychoudhury. Chronos: A timing analyzer for
embedded software. Sci. Comput. Program., 69(1-
3):56–67, 2007.

28 Yau-Tsun Steven Li and Sharad Malik. Per-
formance analysis of embedded software using
implicit path enumeration. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and
Systems, 16(12), 1997.

29 Björn Lisper. SWEET – a tool for WCET flow
analysis. In 6th International Symposium On
Leveraging Applications of Formal Methods, Veri-
fication and Validation (ISOLA), October 2014.

30 Paul Lokuciejewski, Daniel Cordes, Heiko Falk,
and Peter Marwedel. A Fast and Precise Static
Loop Analysis Based on Abstract Interpretation,
Program Slicing and Polytope Models. In Proceed-
ings of the CGO 2009, The Seventh International
Symposium on Code Generation and Optimization,
pages 136–146, Seattle, Washington, USA, March
2009.

31 Paul Lokuciejewski and Peter Marwedel. Worst-
Case Execution Time Aware Compilation Tech-
niques for Real-Time Systems. Springer, 2011.
doi:10.1007/978-90-481-9929-7.

32 Ravindra Metta, Martin Becker, Prasad Bokil,
Samarjit Chakraborty, and R. Venkatesh. TIC: a
scalable model checking based approach to WCET
estimation. In Proceedings of the 17th ACM SIG-
PLAN/SIGBED Conference on Languages, Com-
pilers, Tools, and Theory for Embedded Systems,
LCTES 2016, Santa Barbara, CA, USA, June
13 - 14, 2016, pages 72–81, 2016. doi:10.1145/
2907950.2907961.

33 Antoine Miné. The Octagon Abstract Domain. In
Proceedings of the Eighth Working Conference on

https://hal.inria.fr/hal-01177902
http://dx.doi.org/10.1007/978-90-481-9929-7
http://dx.doi.org/10.1145/2907950.2907961
http://dx.doi.org/10.1145/2907950.2907961

P. Raymond et al. 02:21

Reverse Engineering, WCRE’01, Stuttgart, Ger-
many, October 2-5, 2001, page 310, 2001. doi:
10.1109/WCRE.2001.957836.

34 George C. Necula, Scott McPeak, Shree P. Rahul,
and Westley Weimer. CIL: Intermediate Language
and Tools for Analysis and Transformation of C
Programs. In R. Nigel Horspool, editor, Compiler
Construction, pages 213–228, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg.

35 Pascal Raymond, Claire Maiza, Catherine Parent-
Vigouroux, Fabienne Carrier, and Mihail Asavoae.
Timing analysis enhancement for synchronous pro-
gram. Real-Time Systems, pages 1–29, 2015.

36 Jordy Ruiz and Hugues Cassé. Using SMT Solv-
ing for the Lookup of Infeasible Paths in Bi-
nary Programs (regular paper). In Workshop on
Worst-Case Execution Time Analysis, Lund, Swe-
den, 07/07/2015, pages 95–104. OASICs, Dagstuhl
Publishing, July 2015.

37 Thomas Sewell, Felix Kam, and Gernot Heiser.
Complete, High-Assurance Determination of Loop
Bounds and Infeasible Paths for WCET Analysis.
In 2016 IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), Vienna,
Austria, April 11-14, 2016, pages 185–195, 2016.
doi:10.1109/RTAS.2016.7461326.

38 Björn Lisper Stefan Bygde, Andreas Ermedahl. An
Efficient Algorithm for Parametric WCET Calcu-
lation. Journal of Systems Architecture, 57(6):614–
624, May 2011.

39 Vivy Suhendra, Tulika Mitra, Abhik Roychoud-
hury, and Ting Chen. Efficient detection and ex-

ploitation of infeasible paths for software timing
analysis. In DAC, pages 358–363, 2006.

40 Stephan Thesing, Jean Souyris, Reinhold Heck-
mann, Famantanantsoa Randimbivololona, Marc
Langenbach, Reinhard Wilhelm, and Christian Fer-
dinand. An Abstract Interpretation-Based Timing
Validation of Hard Real-Time Avionics Software.
In DSN, pages 625–632, 2003.

41 Reinhard Wilhelm, Jakob Engblom, Andreas Er-
medahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter Puschner, Jan Staschulat,
and Per Stenström. The worst-case execution-time
problem - overview of methods and survey of tools.
ACM Trans. Embedded Comput. Syst. (TECS),
7(3), 2008.

42 Jakob Zwirchmayr, Armelle Bonenfant, Marianne
de Michiel, Hugues Cassé, Laura Kovács, and Jens
Knoop. FFX: A portable WCET annotation lan-
guage (regular paper). In International Confer-
ence on Real-Time and Network Systems (RTNS),
Pont-à-Mousson, 08/11/2012-09/11/2012, pages
91–100, November 2012.

43 Jakob Zwirchmayr, Pascal Sotin, Armelle Bonen-
fant, Denis Claraz, and Philippe Cuenot. Identify-
ing Relevant Parameters to Improve WCET Anal-
ysis (regular paper). In Workshop on Worst-Case
Execution Time Analysis, Madrid, 08/07/2014,
pages 91–100. OASICs, Dagstuhl Publishing, July
2014.

LITES

http://dx.doi.org/10.1109/WCRE.2001.957836
http://dx.doi.org/10.1109/WCRE.2001.957836
http://dx.doi.org/10.1109/RTAS.2016.7461326

02:22 Improving WCET Evaluation using Linear Relation Analysis

A Experiment Results

The material necessary for reproducing the experiment presented here is freely available at https:
//gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/LRA4w7.

Experiment was performed on 589 individual C functions extracted from the TACLeBench [11].
An improvement of the WCET estimation is observed for 90 functions (15% of the cases). This
section details the results for the 60 cases where the improvement is greater than 0.8%.

Table 5 contains label definitions to ease and shorten the reference to the bench functions:
the label (column 1), the source folder in the TACLeBench (column 2), and the function name
(column 3).

Table 6 contains the experiment results using the gcc -O0 compilation level. The first column
holds the function label, and the second one holds the initial WCET estimation computed by
OTAWA. The remaining columns hold information related to the improvement obtained (or not)
with Linear relation analysis, using 3 different abstract domains: boxes (intervals), octagons
and polyhedra. For each domain, the table gives the improvement in number of cycles (∆) and
percentage (Impt), and the time necessary to perform the LRA with PAGAI11. Numbers in bold
highlight the best improvements among various methods (box, octagons, polyhedra). Empty cells
(’-’) mean that the corresponding case triggered the 2 hours timeout set for the experiment.

Table 7 gives information on the ability of PAGAI to discover loop bounds ; to obtain this
table, the experiments are re-played without the help of any external method (neither oRange
nor the user-given pragmas). For each program, the table gives its loop level (maximal depth of
nested loops) and indicates wheter PAGAI finds a bounded WCET or not.

Finally, table 8 aims at observing the impact of compiler optimization on WCET estimation in
general, and our method in particular. We consider two optimization levels: the standard -O0 (no
optimization at all), and the ad hoc customized -O1 level (designed to limit CFG transformation
and maximize traceability). Since the LRA analysis is performed at the C level, the flow facts
discovered are the same whatever is the optimization level. A lack of improvement in the case of
optimized code is then necessarily due to an “imperfect” traceability.

The first group of columns recalls the results optained with -O0; it only gives the best result,
obtained for some abstract domain (refer to Table 6 for details). The second group gives information
on the optimized code:

the initial WCET estimation given by OTAWA, together with the corresponding speed-up
factor which indicates how “faster” is the optimized code compared to the non-optimized one;
the best WCET estimation (together with the improvement percentage) optained using PAGAI;
the traceability ratio indicates how many counters introduced by our method are actually
associated to some basic block in the binary code. With a traceability of 100%, we expect
to observe an improvement percentage of the same order than the one obtained on the non-
optimized code. Note that the traceability with the non-optimized code is not given since it is
always 100%.

11Results obtained on an Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00GHz

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/LRA4w7
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/LRA4w7

P. Raymond et al. 02:23

Table 5 TacleBench functions Reference Labels.

Ref Directory Function Names
ad.6 sequential/adpcm_dec adpcm_dec_logsch
ad.7 sequential/adpcm_dec adpcm_dec_logscl
ad.14 sequential/adpcm_dec adpcm_dec_uppol2
ae.7 sequential/adpcm_enc adpcm_enc_logsch
ae.8 sequential/adpcm_enc adpcm_enc_logscl
ae.10 sequential/adpcm_enc adpcm_enc_quantl
ae.16 sequential/adpcm_enc adpcm_enc_uppol2
am.12 sequential/ammunition ammunition_bit_string_set
am.17 sequential/ammunition ammunition_divide_unsigned_integer
am.18 sequential/ammunition ammunition_divide_unsigned_integer_without_overflow
am.47 sequential/ammunition ammunition_multiply_integer
am.49 sequential/ammunition ammunition_multiply_unsigned_integer
am.50 sequential/ammunition ammunition_multiply_unsigned_integer_without_overflow
am.68 sequential/ammunition ammunition_unsigned_integer_remainder
an.0 sequential/anagram anagram_AddWords
an.2 sequential/anagram anagram_BuildWord
an.8 sequential/anagram anagram_init
an.14 sequential/anagram anagram_ReadDict
an.15 sequential/anagram anagram_Reset
an.16 sequential/anagram anagram_return
bs.0 kernel/bsort bsort_BubbleSort
bs.3 kernel/bsort bsort_main
bs.4 kernel/bsort bsort_return
bs.5 kernel/bsort main
cr.2 crc main
du.2 test/duff duff_init
du.5 test/duff main
ex.2 expint main
gd.4 sequential/gsm_dec gsm_dec_Coefficients_0_12
gd.5 sequential/gsm_dec gsm_dec_Coefficients_13_26
gd.6 sequential/gsm_dec gsm_dec_Coefficients_27_39
gd.11 sequential/gsm_dec gsm_dec_Decoding_of_the_coded_Log_Area_Ratios
gd.16 sequential/gsm_dec gsm_dec_Postprocessing
ge.11 sequential/gsm_encode Gsm_Preprocess
ge.13 sequential/gsm_encode Gsm_Short_Term_Analysis_Filter
gs.2 sequential/g723_enc g723_enc_fmult
gs.8 sequential/g723_enc g723_enc_predictor_pole
gs.9 sequential/g723_enc g723_enc_predictor_zero
gs.10 sequential/g723_enc g723_enc_quan
gs.11 sequential/g723_enc g723_enc_quantize
gs.16 sequential/g723_enc g723_enc_update
hd.1 sequential/h264_dec h264_dec_init
lc.0 lcdnum main
li.3 app/lift lift_controller
li.7 app/lift lift_ctrl_set_vals
md.3 kernel/md5 md5_final
md.5 kernel/md5 md5_InitRandomStruct
md.13 kernel/md5 md5_R_RandomInit
md.14 kernel/md5 md5_R_RandomUpdate
md.15 kernel/md5 md5_transform
md.16 kernel/md5 md5_update
mp.9 sequential/mpeg2 mpeg2_frame_estimate
mp.11 sequential/mpeg2 mpeg2_fullsearch
sh.2 kernel/sha sha_final
sm.0 sequential/statemate main
sm.1 sequential/statemate statemate_FH_DU
sm.2 sequential/statemate statemate_generic_BLOCK_ERKENNUNG_CTRL
sm.3 sequential/statemate statemate_generic_EINKLEMMSCHUTZ_CTRL
sm.4 sequential/statemate statemate_generic_FH_TUERMODUL_CTRL
sm.8 sequential/statemate statemate_main

LITES

02:24 Improving WCET Evaluation using Linear Relation Analysis

Table 6 How LRA can improve the estimated WCET of TacleBench.

Initial Box Octagons Polyhedra
Ref WCET ∆ Impt Time ∆ Impt Time ∆ Impt Time
md.13 2648 0 0.0 <1s 1920 72.5 <1s 1920 72.5 <1s
an.15 173K 0 0.0 <1s 121K 69.9 1s 121K 69.9 <1s
gs.2 1105 0 0.0 <1s 738 66.7 9s 738 66.7 4s
hd.1 2092K 0 0.0 <1s 1371K 65.5 <1s 1371K 65.5 <1s
gs.8 2268 0 0.0 <1s 1476 65.0 1m 1476 65.0 1m
gs.9 6934 0 0.0 1s 738 10.6 4m 4428 63.8 29m
du.2 19K 0 0.0 <1s 12K 60.1 <1s 12K 60.1 <1s
du.5 22K 0 0.0 <1s 12K 53.8 <1s 12K 53.8 <1s
mp.9 52M 27M 51.1 56m - - - - - -
mp.11 10M 5M 51.1 2m - - - - - -
cr.2 227K 111K 48.7 <1s 111K 48.7 4s 111K 48.7 1s
lc.0 1540 0 0.0 <1s 595 38.6 <1s 595 38.6 <1s

md.15 8600 0 0.0 <1s 2304 26.7 <1s 2304 26.7 <1s
an.2 235K 0 0.0 <1s 58K 24.8 16s 58K 24.8 2s
an.0 466M 0 0.0 4s 4M 0.8 7m 115M 24.6 1m
md.5 13M 0 0.0 2m - - - 3M 21.0 35m
ex.2 278K 1K 0.1 4s 28K 9.9 23s 53K 19.2 6s
sm.3 87 16 18.3 <1s 16 18.3 <1s 16 18.3 <1s
md.3 34K 0 0.0 18s 6K 17.2 6m 6K 18.2 31m
md.16 13K 0 0.0 7s 2K 17.7 19s 2K 17.7 10s
sm.0 268K 46K 17.1 16s - - - - - -
gs.10 942 0 0.0 <1s 126 13.3 1s 126 13.3 <1s
am.47 3649 0 0.0 13m 76 2.0 14m 485 13.2 14m
gs.11 2020 0 0.0 1s 252 12.4 17s 252 12.4 4s
md.14 51K 0 0.0 2m 5K 10.4 21m - - -
sm.4 595 62 10.4 3s 62 10.4 2m 62 10.4 72m
li.7 1088 0 0.0 <1s 102 9.3 2s 102 9.3 <1s
gs.16 3760 0 0.0 7s 254 6.7 63m - - -
ad.6 66 0 0.0 <1s 4 6.0 <1s 4 6.0 <1s
ae.7 66 0 0.0 <1s 4 6.0 <1s 4 6.0 <1s
ad.7 67 0 0.0 <1s 4 5.9 <1s 4 5.9 <1s
ae.8 67 0 0.0 <1s 4 5.9 <1s 4 5.9 <1s
sm.1 266K 14K 5.1 21s - - - - - -
sm.8 266K 14K 5.1 26s - - - - - -
an.16 530 0 0.0 <1s 25 4.7 <1s 25 4.7 <1s
am.50 2251 0 0.0 15m 76 3.3 15m 95 4.2 15m
am.49 2281 0 0.0 9m 76 3.3 14m 95 4.1 12m
sm.2 248 10 4.0 <1s 10 4.0 1s 10 4.0 1s
bs.4 5580 0 0.0 <1s 196 3.5 <1s 196 3.5 <1s
am.12 468 0 0.0 12m 16 3.4 12m 16 3.4 12m
ad.14 120 0 0.0 <1s 4 3.3 <1s 4 3.3 <1s
ae.16 120 0 0.0 <1s 4 3.3 <1s 4 3.3 <1s
li.3 3405 0 0.0 11s 102 2.9 47m - - -
ae.10 1473 0 0.0 <1s 33 2.2 <1s 33 2.2 <1s
ge.11 47K 0.16K 0.3 1s 1K 2.0 1m 1K 2.0 16s
am.68 12K 0 0.0 10m 0.15K 1.3 73m - - -
gd.16 23K 0.32K 1.3 <1s 0.32K 1.3 2s 0.32K 1.3 <1s
gd.4 1333 16 1.2 1s 16 1.2 6s 16 1.2 1s
gd.6 1333 16 1.2 <1s 16 1.2 3s 16 1.2 <1s
sh.2 25K 0.31K 1.2 6s 0.31K 1.2 3m 0.31K 1.2 1m
an.8 3079K 0 0.0 <1s 0 0.0 7s 34K 1.1 1s
an.14 3079K 0 0.0 <1s 0 0.0 5s 34K 1.1 1s
gd.11 1420 16 1.1 1s 16 1.1 35m - - -
ge.13 727K 8K 1.0 1m - - - - - -
bs.0 1045K 0 0.0 <1s 0 0.0 2s 10K 0.9 <1s
bs.3 1045K 0 0.0 <1s 0 0.0 1s 10K 0.9 <1s
bs.5 1053K 0 0.0 <1s 0.20K 0.0 7s 10K 0.9 1s
gd.5 837 8 0.9 <1s 8 0.9 1s 8 0.9 <1s
am.17 8930 0 0.0 9m 76 0.8 20m - - -
am.18 8901 0 0.0 11m 76 0.8 20m - - -

P. Raymond et al. 02:25

Table 7 Loop bounds discovery, using PAGAI without the help of oRange nor the user-given bounds.
This experiment is performed for the 54 cases from Table 6 where PAGAI terminates with either octagons
or polyhedra ; the box domain is unable to find loop bounds and is not considered here. Within this
test set, 10 programs contain no loop and are thus trivially bounded (adVI, adVII, adXIV, aeVII, aeVIII,
aeXVI, gdXI, smII, smIII, smIV). For the remaining programs, first column gives the depth of nested
loops and column two indicates if PAGAI gives a bounded (i.e., finite) WCET estimation. The WCET
value is not given: it corresponds to the best PAGAI estimation in Table 6. The “paradoxal” result for
ex.2 (loop depth 2 and bounded) is due to the fact that PAGAI “bounds” the inner-loop to 0 (i.e., the
loop appears in a infeasible branch).

loop depth PAGAI
ae.10 1 bounds
bs.4 1 bounds
gd.4 1 bounds
gd.5 1 bounds
gd.6 1 bounds
gd.16 1 bounds
ge.11 1 bounds
gs.2 1 bounds
gs.8 1 bounds
gs.16 1 bounds
lc.0 1 bounds
li.7 1 bounds

md.15 1 bounds
du.2 1 bounds
du.5 1 bounds
hd.1 1 bounds
md.13 1 bounds
an.15 1 bounds
an.16 1 bounds
am.12 1 >
an.2 1 >
gs.10 1 >
gs.11 1 >
li.3 1 >
sh.2 1 >

loop depth PAGAI
ex.2 2 bounds
am.47 2 >
am.49 2 >
am.50 2 >
an.8 2 >
an.14 2 >
bs.0 2 >
bs.3 2 >
bs.3 2 >
cr.2 2 >
gs.9 2 >
md.3 2 >
md.14 2 >
md.16 2 >
am.17 3 >
am.18 3 >
am.68 3 >
an.0 3 >
md.5 4 >

LITES

02:26 Improving WCET Evaluation using Linear Relation Analysis

Table 8 Observing the impact of compilation levels on LRA.

O0 CO
Initial Best Best Opt. Initial Best Best Traceability

Ref WCET WCET Impt speedup WCET WCET Impt

md.13 2648 728 72.5 3.3x 791 215 72.8 100% of 2
an.15 173K 52K 69.9 3.0x 58K 17K 69.9 100% of 6
gs.2 1105 367 66.7 2.3x 479 171 64.3 100% of 14
hd.1 2092K 721K 65.5 2.1x 1019K 350K 65.6 100% of 4
gs.8 2268 792 65.0 2.4x 963 347 63.9 100% of 28
gs.9 6934 2506 63.8 2.4x 2910 1062 63.5 100% of 28
du.2 19K 8K 60.1 2.3x 8K 3K 64.0 100% of 2
du.5 22K 10K 53.8 2.4x 9K 4K 59.3 100% of 3
mp.9 52M 25M 51.1 4.6x 11M 11M 0.0 79% of 890
mp.11 10M 5M 51.1 4.6x 2M 2M 0.0 79% of 178
cr.2 227K 116K 48.7 2.3x 97K 50K 48.7 41% of 24
lc.0 1540 945 38.6 2.4x 641 421 34.3 100% of 4

md.15 8600 6296 26.7 2.8x 3064 2200 28.1 100% of 2
an.2 235K 176K 24.8 2.9x 80K 59K 25.9 100% of 21
an.0 466M 351M 24.6 3.0x 157M 116M 25.9 100% of 44
md.5 13M 10M 21.0 3.4x 4M 3M 15.0 80% of 40
ex.2 278K 224K 19.2 1.3x 218K 218K 0.0 46% of 13
sm.3 87 71 18.3 1.1x 78 59 24.3 100% of 5
md.3 34K 28K 18.2 2.7x 13K 10K 17.1 100% of 23
md.16 13K 11K 17.7 2.6x 5K 4K 17.2 100% of 10
sm.0 268K 222K 17.1 1.1x 237K 193K 18.8 100% of 108
gs.10 942 816 13.3 2.5x 381 325 14.6 100% of 4
am.47 3649 3164 13.2 2.6x 1417 1282 9.5 100% of 26
gs.11 2020 1768 12.4 2.4x 830 718 13.4 100% of 11
md.14 51K 46K 10.4 2.7x 19K 17K 10.8 97% of 37
sm.4 595 533 10.4 1.1x 547 493 9.8 100% of 42
li.7 1088 986 9.3 2.1x 516 468 9.3 100% of 9
gs.16 3760 3506 6.7 2.3x 1653 1539 6.8 100% of 69
ad.6 66 62 6.0 3.0x 22 20 9.0 100% of 3
ae.7 66 62 6.0 3.0x 22 20 9.0 100% of 3
ad.7 67 63 5.9 2.9x 23 21 8.6 100% of 3
ae.8 67 63 5.9 2.9x 23 21 8.6 100% of 3
sm.1 266K 252K 5.1 1.1x 237K 224K 5.1 100% of 97
sm.8 266K 252K 5.1 1.1x 237K 224K 5.1 100% of 96
an.16 530 505 4.7 1.7x 316 299 5.3 100% of 3
am.50 2251 2156 4.2 2.6x 860 823 4.3 100% of 8
am.49 2281 2186 4.1 2.6x 865 839 3.0 100% of 9
sm.2 248 238 4.0 1.1x 230 220 4.3 100% of 11
bs.4 5580 5384 3.5 1.9x 2883 2687 6.7 100% of 5
am.12 468 452 3.4 2.6x 181 177 2.2 100% of 13
ad.14 120 116 3.3 2.6x 46 44 4.3 100% of 8
ae.16 120 116 3.3 2.6x 46 44 4.3 100% of 8
li.3 3405 3303 2.9 1.6x 2093 2045 2.2 100% of 57
ae.10 1473 1440 2.2 2.1x 706 690 2.2 100% of 6
ge.11 47K 46K 2.0 2.5x 19K 18K 5.0 100% of 24
am.68 12K 12K 1.3 1.2x 9K 9K 0.5 100% of 52
gd.16 23K 23K 1.3 2.3x 10K 10K 3.1 100% of 12
gd.4 1333 1317 1.2 2.4x 553 537 2.8 100% of 12
gd.6 1333 1317 1.2 2.4x 553 537 2.8 100% of 12
sh.2 25K 24K 1.2 2.2x 11K 11K 0.9 76% of 39
an.8 3079K 3045K 1.1 2.3x 1333K 1310K 1.7 100% of 14
an.14 3079K 3045K 1.1 2.3x 1333K 1310K 1.7 100% of 15
gd.11 1420 1404 1.1 2.4x 601 585 2.6 100% of 121
ge.13 727K 719K 1.0 1.9x 377K 369K 2.0 100% of 289
bs.0 1045K 1035K 0.9 2.7x 389K 385K 0.9 100% of 6
bs.3 1045K 1035K 0.9 2.7x 389K 385K 0.9 100% of 5
bs.5 1053K 1043K 0.9 2.7x 393K 389K 1.0 100% of 10
gd.5 837 829 0.9 2.5x 337 329 2.3 100% of 7
am.17 8930 8854 0.8 1.1x 8431 8405 0.3 100% of 36
am.18 8901 8825 0.8 1.1x 8426 8400 0.3 100% of 36

P. Raymond et al. 02:27

B Compiler optimization level

Options controlling optimizations are numerous and may vary a lot depending on the targeted
processor and the compiler version. Options listed here are for the compiler used for our experiment
(arm-elf-gcc (GCC) 4.4.2), with no guarantee that they apply directly to other compilers.
Ensuring the coherence of a set of optimizations is technically hard, this is why we start with
a predefined level of optimization (-O1) and remove optimizations that may modify the control
structure (using the corresponding -fno flag). To select the options, we just rely on the user
manual: we remove any optimization that mention a possible influence on the control structure or
that may affect the precision of the debugging information (i.e. the association instruction/source
line).

Loop transformations may drastically change the structure of the program, and are thus
forbidden.

-fno-loop-block \
-fno-loop-interchange \
-fno-loop-strip-mine \
-fno-move-loop-invariants \
-fno-reschedule-modulo-scheduled-loops \
-fno-unroll-loops \
-fno-unroll-all-loops \
-fno-unsafe-loop-optimizations \

Miscelaneous CFG transformations concern dead code elimination, inlining, branch
removal, block reordering etc.

-fno-dce \
-fno-dse \
-fno-guess-branch-probability \
-fno-inline-small-functions \
-fno-crossjumping \
-fno-if-conversion \
-fno-if-conversion2 \
-fno-jump-tables \
-fno-reorder-blocks \
-fno-reorder-blocks-and-partition \
-fno-unswitch-loops \

SSA tree optimizations and misc. global optimizations have an indirect influence in
the control structure, by removing, regrouping or re-ordering instructions. They also affect the
precision of the debugging information (dwarf) which is the only information we have to relate
the binary and the source code.

-fno-tree-builtin-call-dce \
-fno-tree-ccp \
-fno-tree-ch \
-fno-tree-copyrename \
-fno-tree-dce \
-fno-tree-dominator-opts \
-fno-tree-dse \
-fno-tree-fre \

LITES

02:28 Improving WCET Evaluation using Linear Relation Analysis

-fno-tree-loop-distribution \
-fno-tree-loop-im \
-fno-tree-loop-ivcanon \
-fno-tree-loop-linear \
-fno-tree-loop-optimize \
-fno-tree-sra \
-fno-tree-ter \
-fno-auto-inc-dec \
-fno-cprop-registers \
-fno-defer-pop \
-fno-ipa-pure-const \
-fno-ipa-reference \
-fno-merge-constants\
-fno-split-wide-types \
-fno-unit-at-a-time \

A Survey of Probabilistic Timing Analysis Techniques
for Real-Time Systems

Robert I. Davis
University of York, UK and Inria, France
rob.davis@york.ac.uk

Liliana Cucu-Grosjean
Inria, France
liliana.cucu@inria.fr

Abstract
This survey covers probabilistic timing analysis
techniques for real-time systems. It reviews and
critiques the key results in the field from its ori-
gins in 2000 to the latest research published up
to the end of August 2018. The survey provides
a taxonomy of the different methods used, and a
classification of existing research. A detailed review
is provided covering the main subject areas: static

probabilistic timing analysis, measurement-based
probabilistic timing analysis, and hybrid methods.
In addition, research on supporting mechanisms
and techniques, case studies, and evaluations is also
reviewed. The survey concludes by identifying open
issues, key challenges and possible directions for
future research.

2012 ACM Subject Classification Software and its engineering → Software organization and properties,
Software and its engineering → Software functional properties, Software and its engineering → Real-time
schedulability, Computer systems organization → Real-time systems
Keywords and Phrases Probabilistic, real-time, timing analysis
Digital Object Identifier 10.4230/LITES-v006-i001-a003
Received 2018-01-04 Accepted 2019-02-26 Published 2019-05-14

1 Introduction

Systems are characterised as real-time if, as well as meeting functional requirements, they are
required to meet timing requirements. Real-time systems may be further classified as hard real-
time, where failure to meet their timing requirements constitutes a failure of the system; or soft
real-time, where such failure leads only to a degraded quality of service. Today, both hard and soft
real-time systems are found in many diverse application areas including; automotive, aerospace,
medical systems, robotics, and consumer electronics.

Real-time systems are typically implemented via a set of programs, also referred to as tasks,
which are executed on a recurring basis. The programs used in a real-time system have a functional
behaviour, and also a timing behaviour. The functional behaviour of a given run of a program
depends on the input state, which comprises a set of values for the input variables, and a set of
values for the software state variables (which are related to the values of the input variables used
on previous runs). The input state affects the path taken through the code, and the values of
the outputs produced. Typically programs have a functional behaviour which is deterministic, in
other words, given the exact same inputs they will produce the exact same outputs. Functional
behaviour may also be non-deterministic, for example in a randomised search the same input state
may lead to different outputs depending on the behaviour of a random number generator. In this
survey we are mainly concerned with the timing behaviour of programs that have deterministic
functionality.

© Robert I. Davis and Liliana Cucu-Grosjean;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 6, Issue 1, Article No. 3, pp. 03:1–03:60
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5772-0928
mailto:rob.davis@york.ac.uk
mailto:liliana.cucu@inria.fr
https://doi.org/10.4230/LITES-v006-i001-a003
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

03:2 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

In keeping with the majority of the work on program timing behaviour, in the following we
consider programs that are run without interruption or preemption and without any interference
from other programs that could be running on the same or different processor cores (i.e. no
multi-threading and no cross-core interference). We return to this point in the conclusions.

The timing behaviour of a program with deterministic functionality depends on both the
input state, and the initial values of hardware state variables, referred to as the hardware state.
Examples of hardware state variables include the contents of internal buffers, pipelines, caches,
scratchpads, and certain register values. While the hardware state may affect the timing behaviour
of the program, it has no effect on the functional behaviour. A hardware platform is referred
to as time-predictable if it always takes the same amount of time to execute a deterministic
program when starting from the same input state and the same hardware state. By contrast, a
time-randomised hardware platform may take a variable amount of time to execute such a program
when starting from the same input state and hardware state, due to the behaviour of underlying
random elements in the hardware1.

1.1 Conventional Timing Analysis Techniques
Understanding the timing behaviour of each program is fundamental to verifying the timing
requirements of a real-time system. Key to this is timing analysis, which seeks to characterise the
amount of time that each program can take to execute on the given hardware platform. Typically,
this is done by upper bounding or estimating the Worst-Case Execution Time.

I Definition 1. The Worst-Case Execution Time (WCET) of a program is an upper bound on
the execution time of that program for any valid input state and initial hardware state (i.e. the
WCET is an upper bound on the execution time for any single run of the program, and there is at
least one run of the program that can realise the WCET).

The methods traditionally used for timing analysis can be classified into three main categories:
Static Analysis: These methods do not execute the program on the actual hardware or on a
simulator. Rather they analyse the code for the program and some annotations (providing
information about input values), along with an abstract model of the hardware. Typically
static analysis proceeds in three steps. First, control flow analysis is used to derive constraints
on feasible paths, including loop bounds. Second, micro-architectural analysis is used to
provide an over-approximation of the program execution on the feasible paths, accounting
for the behaviour of hardware features such as pipelines and caches. Third, path analysis
uses integer linear programming (ILP) to combine the results of control flow analysis and
micro-architectural analysis, and so derive an upper bound on the WCET of the program.
To derive an upper bound on the WCET static analysis has to determine properties relating
to the dynamic behaviour of the program without actually executing it. In practice, it may
not be possible to precisely determine all of these properties due to issues of tractability and
decidability. For example determining the precise cache contents at a given program point
may not be possible when there is a dependency on the input values. Properties which cannot
be precisely determined must be conservatively approximated to ensure that the computed
WCET remains a valid upper bound; however, such approximations may lead to significant
pessimism. For advanced hardware platforms, there are two main challenges for static analysis
methods. Firstly, obtaining and validating all of the information necessary to build an accurate

1 Note here the basic random elements in the hardware (e.g. a random number generator) are not considered to
be part of the hardware state.

R. I. Davis and L. Cucu-Grosjean 03:3

model of the hardware components that impact program execution times. Secondly, modelling
those components and their interactions without substantial loss of precision in the derived
WCET upper bound.
Dynamic or Measurement-Based Analysis: These methods derive an estimate of the WCET
by running the program on the actual hardware or on a cycle-accurate timing simulator.
A measurement protocol provides test vectors (sets of input values) and initial hardware
configurations that are used to exercise a subset of the possible paths through the code, as
well as the possible hardware states that may affect the timing behaviour2. The execution
times for multiple runs of the program are collected and the maximum observed execution time
recorded. This value may be used as a (lower bound) estimate of the WCET, or alternatively,
an engineering margin (e.g. 20%) may be added to give an estimate of the WCET. This
margin comes from industrial practice and engineering judgement [129]; however, there is no
guarantee that it results in an upper bound on the actual WCET. For complex programs
and advanced hardware platforms, the two main challenges for measurement-based analysis
methods both involve designing an appropriate measurement protocol. Firstly, if it were known
which values for the input variables and software state variables would lead to the WCET,
then the measurement protocol could ensure that those values were present in the test vectors
used; however, typically these values are not known and cannot easily be derived. Secondly, it
may not be known, or easy to derive, which initial hardware states will lead to the WCET;
it may also be difficult to force the hardware into a particular initial state. Nevertheless,
measurement-based analysis is commonly used in industry and may give engineers a useful
perspective on the timing behaviour of a program.
Hybrid Analysis: These methods combine elements of both static analysis and measurement-
based analysis. For example, a hybrid approach may record the maximum observed execution
time for short sub-paths through the code, and then combine these values using information
obtained via static analysis of the program’s structure (e.g. the control flow graph) to estimate
the WCET. The aim of hybrid analysis is to overcome the disadvantages of both static and
dynamic methods. By measuring execution times for short sub-paths through the code, hybrid
methods avoid the need for a model of the hardware, which may be difficult to obtain and to
validate. By using static analysis techniques to determine the control flow graph, the problem
of having to find input values that exercise the worst-case path is ameliorated. Instead, the
measurement protocol can focus on ensuring that measurements are obtained for all sub-paths,
i.e. structural coverage, which is far simpler to achieve than full path coverage. Nevertheless,
hybrid methods still inherit many of the challenges of measurement-based methods. On
advanced hardware (e.g. with pipelines and caches) the execution time of a sub-path may be
dependent on the execution history, and hence on the previous sub-paths that were executed.
This exacerbates the problem of composing the overall WCET estimate from observations
for individual sub-paths, and may degrade the precision of that estimate. In general, today’s
hybrid methods cannot guarantee to upper bound the WCET; however, the estimates they
produce may be more accurate than those based on measurements alone.

During the past two decades, the hardware platforms used, or proposed for use, in real-time
systems have become increasingly more complex. Architectures include advanced hardware
acceleration features such as pipelines, branch prediction, out-of-order execution, caches, write-
buffers, scratchpads, and multiple levels of memory hierarchy. These advances, along with
increasing software complexity, greatly exacerbate the timing analysis problem. Most acceleration

2 Exercising all possible paths and initial hardware states is often impractical.

LITES

03:4 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

features are designed to optimise average-case rather than worst-case behaviour and can result in
significant variability in execution times. This is making it increasingly difficult, if not impossible,
to obtain tight WCET estimates3 from conventional static timing analysis methods that seek to
provide an upper bound on the WCET. Further, increases in software and hardware complexity
make it difficult to design measurement protocols capable of ensuring that the worst-case path(s)
through the code are exercised, and that the worst-case hardware states are encountered when using
measurement-based and hybrid analyses. (Appendix A provides further discussion of measurement
protocols).

1.2 Probabilistic Timing Analysis Techniques
Probabilistic timing analysis4 differs from traditional approaches in that it lifts the characterisation
of the timing behaviour of a program from the consideration of a single run, to the consideration
of a repeating sequence of many runs, referred to as a scenario, and hence lifts the results from
a scalar value (the WCET) to a probability distribution (the pWCET distribution, defined in
Section 2.1). Traditional timing analysis methods aim to tightly upper bound the execution time
that could occur for a single run of a program out of all possible runs. Similarly, probabilistic
timing analysis methods aim to tightly upper bound the distribution of execution times that could
potentially occur for some scenario of operation, out of all possible scenarios of operation.

Research into probabilistic timing analysis can be classified into five main categories. This
classification forms the basis for the main sections of this survey. Note, for ease of reference we
have numbered these categories below, starting at 3, to match the section of survey.
3. Static Probabilistic Timing Analysis (SPTA): Similar to traditional static analyses, SPTA

methods do not execute the program on the actual hardware or on a simulator. Instead they
analyse the code for the program and information about input values, along with an abstract
model of the hardware behaviour. The difference is that SPTA methods account for some form
of random behaviour in either the hardware, the software, or the environment (i.e. the inputs)
by using probability distributions, and therefore construct an upper bound on the pWCET
distribution rather than a upper bound on the WCET. In common with traditional static
analyses, SPTA methods have to determine properties relating to the dynamic behaviour of
the program without actually executing it. Here, the conservative approximation of properties
which cannot be precisely determined (e.g. cache states in a random replacement cache) may
lead to significant pessimism in the estimated pWCET distribution. The two main challenges
for SPTA methods are obtaining and validating the information necessary to build an accurate
model of the hardware components; and modelling those components and their interactions
without substantial loss of precision in the upper bound pWCET distribution derived.

4. Measurement-Based Probabilistic Timing Analysis (MBPTA): Today, most of the current
MBPTA methods use Extreme Value Theory (EVT) to make a statistical estimate of the
pWCET distribution of a program. This estimate is based on a sample of execution time
observations obtained by executing the program on the hardware or a cycle accurate simulator
according to a measurement protocol. The measurement protocol samples some scenario(s) of
operation, i.e. it executes the program multiple times according to a set of feasible input states
and initial hardware states. As with traditional measurement-based analysis methods, the

3 By a tight WCET estimate we mean one that is relatively close to the actual WCET, for example perhaps no
more than 10-20% larger.

4 In this survey, we adopt the widely used term “probabilistic timing analysis” noting that it can easily be
misinterpreted. To clarify, while the results produced are expressed in terms of probability distributions, the
analysis methods themselves are deterministic in the sense of always producing the same results from the
same inputs, unlike for example randomised search techniques.

R. I. Davis and L. Cucu-Grosjean 03:5

main challenge for MBPTA methods involves designing an appropriate measurement protocol.
In particular, in order for the estimated pWCET distribution derived by EVT to be valid for
a future scenario of operation, then the sample of input states and hardware states used for
analysis must be representative of those that will occur during that future scenario of operation.
An important issue here is that there may not be a single sample of input states and hardware
states that is representative of all possible future scenarios of operation.

5. Hybrid Probabilistic Timing Analysis (HyPTA): These methods combine in some way both
statistical and analytical approaches. For example by taking measurements at the level of basic
blocks or sub-paths, and then composing the results (i.e. the estimated pWCET distributions
for the sub-paths) using structural information obtained from static analysis of the code.

6. Enabling mechanisms: These mechanisms aim to facilitate the use of one or other of the above
analysis methods.

7. Evaluation: Case studies, benchmarks, and metrics, which aim to evaluate the efficiency,
effectiveness, and applicability of probabilistic timing analysis methods.

0

5

10

15

20

25

30

N
um

be
r o

f p
ub

lic
at

io
ns

Publication Date

7 Case Studies, Benchmarks and Evaluation

6 Enabling Mechanisms and Techniques

5 Hybrid Techniques for Probabilistic Timing Analysis (HyPTA)

4 Measurement-Based Probabilistic Timing Analysis (MBPTA)

3 Static Probabilistic Timing Analysis (SPTA)

Figure 1 Intensity of research in the different categories corresponding to Sections 3 to 7 of this survey.

The research in these categories is summarised by authors and citations in Table 1. Note the
sub-categories correspond to the subsections of this survey.

It is interesting to note how research in the different categories has progressed over time.
Figure 1 illustrates the number of papers reviewed in each of the main categories covered by this
survey that have been published during 2-year time intervals from 1999 to 2018. (This figure is
best viewed online in colour). A number of observations can be drawn from Figure 1. Firstly,
the volume of research into probabilistic timing analysis was relatively flat until around 2008

LITES

03:6 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

Table 1 Summary of publications from different authors in the categories described in the main sections
and subsections of this survey.

3 Static Probabilistic Timing Analysis (SPTA)
3.1 SPTA based on Probabilities from Inputs
David and Puaut [35], Liang and Mitra [86]
3.2 SPTA based on Probabilities from Faults
Hofig [62], Hardy and Puaut [58, 59], Chen et al. [31, 29]
3.3 SPTA based on Probabilities from Random Replacement Caches
Quinones et al. [106], Burns and Griffin [23], Cazorla et al. [26], Davis et al. [39], Altmeyer and Davis [7],
Altmeyer et al. [6], Griffin et al. [52], Lesage et al. [83, 82], Chen and Beltrame [28], Chen et al. [30]

4 Measurement-Based Probabilistic Timing Analysis (MBPTA)
4.1 EVT and i.i.d. observations
Burns and Edgar [22], Edgar and Burns [45], Hansen et al. [57], Griffin and Burns [51], Lu et al. [89, 90],
Cucu-Grosjean et al. [34]
4.2 EVT and observations with dependences
Melani et al. [93], Santinelli et al. [112], Berezovskyi et al. [16, 15], Guet et al. [53, 54], Fedotova et al. [47],
Lima and Bate [87]
4.3 EVT and representativity
Lima et al. [88], Maxim et al. [92], Santinelli et al. [110], Santinelli and Guo [111], Guet et al. [55], Abella
et al. [3], Milutinovic et al. [101]

5 Hybrid Techniques for Probabilistic Timing Analysis (HyPTA)
5.1 HyPTA and the Path Coverage Problem
Bernat et al. [19, 18, 17], Kosmidis et al. [70], Ziccardi et al. [136]

6 Enabling Mechanisms and Techniques
6.1 Caches and Hardware Random Placement
Kosmidis et al. [68, 69, 67], Slijepcevic et al. [120], Anwar et al. [9], Hernandez et al. [61], Trillia et al. [127],
Benedicte et al. [11]
6.2 Caches and Software Random Placement
Kosmidis et al. [72, 73, 71, 78]
6.3 Cache Risk Patterns with Random Placement
Abella et al. [4], Benedicte et al. [13, 14], Milutinovic et al. [98, 99, 97, 100]
6.4 Buffers, Buses and other Resources
Slijepcevic et al. [119], Cazorla et al. [27], Kosmidis et al. [74], Jalle et al. [65], Panic et al. [102], Agirre et
al. [5], Hernandez et al. [60], Slijepcevic et al. [117, 118], Benedicte et al. [12]

7 Case Studies, Benchmarks and Evaluation
7.1 Critiques
Reineke [108], Mezzetti et al. [96], Stephenson et al. [123], Gil et al. [49]
7.2 Case Studies and Evaluation
Santos et al. [113], Kosmidis et al. [75, 77], Abella et al. [2], Wartel et al. [129, 128], Lesage et al. [85],
Mezzetti et al. [94], Fernandez et al. [48], Cros et al. [33] Diaz et al. [43], Silva et al. [116], Reghenzani et
al. [107]

R. I. Davis and L. Cucu-Grosjean 03:7

and then increased rapidly in the decade from 2010. Inline with this the number of publications
on the main theme of measurement-based probabilistic timing analysis (Section 4) has steadily
increased since 2009/2010. Work on static probabilistic timing analysis (Section 3) peaked during
the period 2013–2016, coinciding with research effort on the EU Proxima project5. Also, as a
result of that project, there was a significant peak in research on enabling techniques aimed at
facilitating the use of MBPTA (Section 6). More recently, in 2017/2018, the focus has been on
extending MBPTA to more complex systems and exploring the effectiveness of the approach via
case studies and benchmarks (Section 7).

Before moving to the sections of this survey which review the literature, we first discuss (in
Section 2) fundamental concepts and methods relating to probabilistic timing analysis.

Note that conventional timing analysis techniques aimed at providing an upper bound on the
WCET value as the solution to the timing analysis problem are outside of the scope of this survey,
they are reviewed in detail by Wilhelm et al. [133].

2 Fundamental Concepts and Methods

The term probabilistic real-time systems is used to refer to real-time systems where one or more of
the parameters, such as program execution times, are modelled by random variables. Although a
parameter is described (i.e. modelled) by a random variable, this does not necessarily mean that
the actual parameter itself exhibits random behaviour or that there is necessarily any underlying
random element to the system that determines its behaviour. The actual behaviour of the
parameter may depend on complex and unknown or uncertain behaviours of the overall system. As
an example, the outcome of a coin toss can be modelled as a random variable with heads and tails
each having a probability of 0.5 of occurring, assuming that the coin is fair. However, the actually
process of tossing a coin does not actually have a random element to it. The outcome could in
theory be predicted to a high degree of accuracy if there were sufficiently precise information
available about the initial state and the complex behaviour and evolution of the overall physical
processes involved. There are however many useful results that can be obtained by modelling the
outcome of a coin toss as a random variable. The same is true of the analysis of probabilistic
real-time systems.

In this section, we first discuss a fundamental and often misunderstood concept in probabilistic
timing analysis, probabilistic Worst-Case Execution Time (pWCET) distributions. The remainder
of the section then provides an outline of the two main approaches to obtaining pWCET distribu-
tions, Static Probabilistic Timing Analysis (SPTA) and Measurement-Based Probabilistic Timing
Analysis (MBPTA).

2.1 probabilistic Worst-Case Execution Time (pWCET)
The term probabilistic Worst-Case Execution Time (pWCET) distribution has been used widely
in the literature, with a number of different definitions given. Below, we provide an overarching
definition of the term. (We use calligraphic characters, such as X , to denote random variables).

I Definition 2. The probabilistic Worst-Case Execution Time (pWCET) distribution for a program
is the least upper bound, in the sense of the greater than or equal to operator � (defined below),
on the execution time distribution of the program for every valid scenario of operation, where
a scenario of operation is defined as an infinitely repeating sequence of input states and initial
hardware states that characterise a feasible way in which recurrent execution of the program may
occur.

5 http://www.proxima-project.eu/

LITES

http://www.proxima-project.eu/

03:8 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

I Definition 3. (From Diaz et al. [44]) The probability distribution of a random variable X is
greater than or equal to (i.e. upper bounds) that of another random variable Y (denoted by X � Y)
if the Cumulative Distribution Function (CDF) of X is never above that of Y, or alternatively,
the 1-CDF of X is never below that of Y.

Graphically, Definition 2 means that the 1 - CDF of the pWCET distribution is never below
that of the execution time distribution for any scenario of operation. Hence the 1 - CDF or
exceedance funtion of the pWCET distribution may be used to determine an upper bound on the
probability p that the execution time of a randomly selected run of the program will exceed an
execution time budget x, for any chosen value of x. This upper bound is valid for any feasible
scenario of operation.

Figure 2 Exceedance function or 1-CDF for the pWCET distribution of a program, and also execution
time distributions for specific scenarios of operation.

Figure 2 illustrates the execution time distributions of a number of different scenarios of
operation (solid lines), the precise pWCET distribution (red dashed line) which is the least upper
bound (i.e. the point-wise maxima of the 1 - CDF) for all of these distributions, and also some
arbitrary upper bound pWCET distribution (red dotted line) which is a pessimistic estimate of
the precise pWCET. Also shown (on the y-axis) is an upper bound p on the probability that any
randomly selected run of the program will have an execution time that exceeds x (on the x-axis).
The value x is referred to as the pWCET estimate at a probability of exceedance of p. (More
formally, the least upper bound pWCET distribution is given by supθ∈Θ F̄θ, where F̄θ is the 1 -
CDF for scenario of operation θ, and Θ is the space of all valid scenarios of operation).

Note that the greater than or equal to relation � between two random variables does not
provide a total order, i.e. for two random variables X and Z it is possible that X � Z and Z � X.
Hence the precise pWCET distribution may not correspond to the execution time distribution for
any specific scenario. This can be seen in Figure 2, considering the execution time distributions
X , Y and Z. It is the case that X � Y , but X � Z and Z � X. By contrast, as the greater than
or equal to relation for scalars (≥) does provide a total order, the precise WCET does correspond
to the execution time for some specific run of the program.

R. I. Davis and L. Cucu-Grosjean 03:9

The WCET upper bounds all possible execution times for a program, independent of any
particular run of the program. Similarly, the pWCET distribution upper bounds all possible
execution time distributions for a program, independent of any particular scenario of operation.

We note that the term pWCET is open to misinterpretation and is often misunderstood. To
clarify, it does not refer to the probability distribution of the worst-case execution time, since the
WCET is a single value. Rather informally, following Definition 2, the pWCET may be thought of
as the “worst-case” (in the sense of upper bound) probability distribution of the execution time
for any scenario of operation.

Below, we provide some simple hypothetical examples that illustrate the meaning of the
pWCET distribution.

Consider a program A running on time-randomised hardware. Further, assume that the
program has two paths which may be selected based on the value of an input variable. The
discrete probability distributions X and Y of the execution time of each path may be described
by probability mass functions as follows:

X =
(

10 20 30 40
0.4 0.3 0.2 0.1

)
Y =

(
20 30 40 50
0.8 0.15 0.04 0.01

)
Indicating, among other things, that there is a probability of 0.1 that the execution time of the
first path is 40 and a probability of 0.01 that the execution time of the second path is 50.

The Complementary Cumulative Distribution Function (1-CDF) or Exceedance Function defined
as F̄X (x) = P (X > x) is given by:

F̄X =
(

0 10 20 30 40
1 0.6 0.3 0.1 0

)
F̄Y =

(
0 10 20 30 40 50
1 1 0.2 0.05 0.01 0

)
The precise pWCET distribution for the two paths can be found by taking the point-wise

maxima of their exceedance functions. Hence:

pWCET =
(

0 10 20 30 40 50
1 1 0.3 0.1 0.01 0

)
Note that the above pWCET distribution is precise on the assumption that repeatedly executing

one path or the other or any combination of them is a valid scenario of operation, otherwise it
may be that it is an upper bound rather than the precise pWCET.

Observe that the program has a WCET of 50, which equates to the last value in the pWCET
distribution (where the 1-CDF becomes zero). The pWCET distribution gives more nuanced
information than this single value, as it upper bounds the probability of occurrence of the extreme
execution time values (e.g. 30, 40, and 50) that occur rarely and form the tail of the distribution.

Execution on time-randomised hardware is not the only way in which a non-degenerate6
pWCET distribution can arise. As an alternative, consider another program B that implements
a software state machine with four states and hence four paths that runs on time-predictable
hardware. Here the main factor which affects the execution time is the path taken, which is
determined by the value of the software state variable. For this program, all valid scenarios of
operation involve the software state variable cycling through its four possible values in order, and
hence the four possible paths executing in order on any four consecutive runs of the program.
Further, assume that there is a small variability in the execution time of each path depending
on the value of some input variable, which may take any value on any run. Hence the execution

6 A degenerate distribution has only a single value.

LITES

03:10 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

times of the different paths are 10± 2, 20± 2, 30± 2, and 40± 2, each with a probability of 0.25.
For this program, the pWCET distribution valid for any scenario of operation is:

pWCET =
(

0 12 22 32 42
1 0.75 0.5 0.25 0

)
Finally, consider a program C which again runs on time-predictable hardware. This program

has an input variable v which may take one of four values selecting one of four different paths.
The execution times of the paths are 10, 20, 30, and 40. Further, we are given some additional
information about all the valid scenarios of operation, over a large number of runs of the program,
the first 3 input values occur with the same probability, while the 4th is a fault condition that
occurs at most 1% of the time. The pWCET distribution is as follows:

pWCET =
(

0 10 20 30 40
1 0.67 0.34 0.01 0

)
We note that in all three examples, the pWCET distribution upper bounds the execution time

distribution for a randomly selected run of the program in any scenario of operation. However,
it is not always the case that the pWCET distribution is probabilistically independent of the
value realised for the execution time of previous runs of the program. For example in the case of
program B, the pWCET distribution does not provide a valid upper bound on the execution time
distribution of the program conditional on specific execution times having occurred for previous
runs. (If the previous execution time of the program was 30, then the execution time of the current
run has a probability of 1 of exceeding 32, since the state variable will increment by 1 and the
longest path will be selected with an execution time of 40± 2). Further, in the case of program C,
although the fault condition may occur only 1% of the time, there may well be a cluster of faults.
Hence for programs B and C, it is not valid to compose the pWCET distributions using basic
convolution to obtain a bound on the interference (total execution time) of two or more runs of
the program. This has implications for how the pWCET distribution may be used in probabilistic
schedulability analysis, which are discussed in the companion survey on that topic [38].

I Definition 4. Two random variables X and Y are probabilistically independent if they describe
two events such that knowledge of whether one event did or did not occur does not change the
probability that the other event occurs. Stated otherwise, the joint probability is equal to the
product of their probabilities P ({X = x} ∩ {Y = y}) = P (X = x) · P (Y = y). (In this context,
the events are the execution times of runs of the program taking certain values).

We note that while the above simple examples are useful to illustrate the concept of a pWCET
distribution, in practice the exceedance probabilities of interest are very small, typically in the
range 10−4 to 10−15. These probabilities derive from the acceptable failure rate per hour of
operation for the application considered. (Note, the relationship between failure rates per hour of
operation and probabilities of timing failure depend on various factors considered in fault tree
analysis, including any mitigations and recovery mechanisms that may be applied in the event of
a timing failure [50], see the companion survey [38] for further discussion).

It is interesting to consider the use and interpretation of the pWCET distribution for a
program. Let us assume that the program will be run repeatedly a potentially unbounded number
of times, and that a fixed execution time budget of x applies to each run. Further, we assume
that this budget is enforced by the operating system, and therefore that any run of the program
which has not completed within an execution time of x is terminated and assumed to have failed.
The pWCET distribution provides the following information (by reading off the probability of
exceedance p associated with the execution time budget x, see Figure 2):

R. I. Davis and L. Cucu-Grosjean 03:11

(i) An upper bound p on the probability (with a long-run frequency interpretation) equating to
the number of runs expected to exceed the execution time budget x divided by the total
number of runs in a long (tending to infinite) time interval.

(ii) An upper bound p on the probability that the execution time budget x will be exceeded
on a randomly selected run. (This is broadly equivalent to the above long-run frequency
interpretation).

Contrast this with the binary information provided by the WCET. If x is greater than or equal
to the WCET, then we can expect the budget to never be exceeded. However, if x is less than
the WCET, then we expect the budget to be exceeded on some runs, but we have no information
on how frequently this may occur. Hard real-time systems in many application domains can in
practice tolerate a small number of consecutive failures of a program to meet its execution time
budget, but cannot tolerate long black-out periods when every run fails to complete within its
budget. The problem of reconciling requirements on the length of potential black-out periods and
a probabilistic treatment of execution times has, as far as we are aware, received little attention in
the literature. We note that calculation of the probability of such black-out periods occurring
requires information about the dependences (or independence) of the pWCET distributions for
consecutive runs of the program. This topic is discussed further in the companion survey on
probabilistic schedulability analysis [38].

We note that some researchers have interpreted the pWCET distribution as giving the
probability or confidence (1−p) that the WCET does not exceed some value x. This interpretation
can be confusing, since the meaning of the WCET is normally taken to be the largest possible
execution time that could be realised on any single run of the program, as in Definition 1. Instead,
in line with Definition 2 and (i) above, we view the 1 - CDF of the pWCET distribution as
providing, for any chosen value x for the execution time budget, an associated upper bound
probability p (with a long-run frequency interpretation) equating to the number of runs of the
program expected to exceed the execution time budget x divided by the total number of runs of
the program in a long time interval.

2.2 Overview of Static Probabilistic Timing Analysis (SPTA)
The aim of Static Probabilistic Timing Analysis (SPTA) methods is to construct an upper bound
on the pWCET distribution of a program by applying static analysis techniques to the code of the
program (supplemented by information about input values) along with an abstract model of the
hardware behaviour. Typically, a precise analysis is not possible due to issues of tractability, and
thus over-approximations are made which may lead to pessimism in the upper bound pWCET
distribution computed. For static analysis to produce a non-degenerate pWCET distribution there
has to be some part of the system or its environment that contributes random or probabilistic
timing behaviour.

SPTA methods for programs running on time-randomised hardware (e.g. with a random
replacement cache) effectively consider each path through the code. For each path, these methods
construct a pWCET distribution that upper bounds the probability distribution of the execution
time for that path, considering all possible initial hardware states and all possible input states
that cause execution of the path. For simple hardware, it is sufficient to consider an empty
cache (the worst-case hardware state) and a single input state that drives the path, since there
is no difference in execution times for different inputs that select the same path. Nevertheless,
significant approximations need to be made in the analysis, since the problem of determining the
possible cache states and their probabilities at each program point is intractable. The upper bound
pWCET distributions for every path are then combined using an envelope function (taking the
point-wise maxima over the 1-CDFs) to determine an upper bound on the pWCET distribution

LITES

03:12 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

for the program that is valid independent of the path taken. (More sophisticated SPTA methods
analyse sub-paths and use appropriate join operations at path convergence to compute tighter
upper bounds on the pWCET distribution of the program). While the results provide a valid upper
bound on the pWCET distribution, they are not necessarily tight even for simple architectures.

Note that SPTA methods typically do not explicitly consider different valid scenarios of
operation, but rather they effectively assume that any scenario (sequence of input states and
hardware states) could occur, and thus over-approximate.

2.3 Overview of Measurement-Based Probabilistic Timing
Analysis (MBPTA)

The aim of Measurement-Based Probabilistic Timing Analysis methods is to make a statistical
estimate of the pWCET distribution of a program. This estimate is derived from a sample of
execution time observations obtained by executing the program on the hardware or on a cycle
accurate simulator according to an appropriate measurement protocol. The measurement protocol
executes the program multiple times according to some sequence(s) of feasible input states and
initial hardware states, thus sampling one or more possible scenarios of operation.

Provided that the sample of execution time observations passes appropriate statistical tests (see
below), then Extreme Value Theory (EVT) can be used to derive a statistical estimate of the
probability distribution of the extreme values7 of the execution time distribution for the program,
i.e. to estimate the pWCET distribution. By modelling the shape of the distribution of the extreme
execution times EVT is able to predict the probability of occurrence of execution time values that
exceed any that have been observed.

Early results in Extreme Value Theory required the sample of observations used to be inde-
pendent and identically distributed (i.i.d.); however, later work by Leadbetter [81] showed that
EVT can also be applied in the more general case of a series of observations which are stationary,
but are not necessarily independent. Both i.i.d. and stationary properties can be checked using
appropriate statistical tests.

I Definition 5. A sequence of random variables (i.e. a series of observations) are independent
and identically distributed (i.i.d.) if they are mutually independent (see Definition 4) and each
random variable has the same probability distribution as the others.

I Definition 6. A sequence of random variables (i.e. a series of observations) is stationary if
the joint probability distribution does not change when shifted in time, and hence the mean and
variance do not change over time.

We note that simple software state machines that produce a cyclically repeating behaviour
typically result in a stationary series of execution time observations.

In order for the estimated pWCET distribution derived by EVT to be valid for a future
scenario of operation, then the sample of input states and initial hardware states used for analysis
must be representative of those that will occur during that scenario.

I Definition 7. A sample of input states and initial hardware states used for analysis is repres-
entative of the population of states that may occur during a future scenario of operation if the
property of interest (i.e. the pWCET distribution) derived from the sample of states used for
analysis matches or upper bounds the property that would be obtained from the population of
states that occur during the scenario of operation.

7 By extreme values we mean large values towards the tail of the distribution, which have a small probability of
occurrence.

R. I. Davis and L. Cucu-Grosjean 03:13

I Definition 8. As determined by MBPTA, the estimated pWCET distribution for an entire
program (or path through a program) is a statistical estimate of the probability distribution of the
extreme values of the execution time of that program (or path), valid for any future scenarios of
operation that are properly represented by the sample of input states and initial hardware states
used in the analysis.

Ideally, MBPTA would provide a pWCET distribution which is valid for any of the many
possible scenarios of operation; however, an important issue here is that there may not be one
single distribution of input states and hardware states that is representative of all possible future
scenarios of operation. This issue of representativity is a key open problem in research on the
practical use of MBPTA.

The difficulty in ensuring representativity can be ameliorated by taking steps to make regions
of the input state space equivalent in terms of execution time behaviour, similarly regions of the
hardware state space. As a simple example, a floating point operation may have a variable latency
that depends on the values of it operands; however, if a hardware test mode is used whereby the
floating point operation always takes the same worst-case latency regardless of these values, then
any arbitrary values can be chosen, and they will be representative (as far as execution times
are concerned) of any other possible values in the input state space. Similarly, a fully associative
random replacement cache can make many, but not necessarily all, patterns of accesses to data at
different memory locations have equivalent execution time behaviour. Unfortunately, these steps
typically require modifications to the hardware used. The problem of representativity is most
acute for COTS (Common Off The Shelf) hardware. In particular, it is challenging to ensure
representativity with hardware that has complex deterministic behaviour based on substantial
state and history dependency. Examples include LRU/PLRU caches, and caches with a write-back
behaviour. Here, the latency of instructions that access memory can vary significantly based on
the specific history of prior execution, i.e. the specific sequence of addresses accessed. Further, it
is hard to determine which regions of the input state space are equivalent in terms of execution
time behaviour. This makes it very difficult to ensure that the input data used is representative .

Two EVT theorems and associated methods have been employed in the literature on MBPTA:
the Block Maxima method based on the Fisher-Tippett-Gnedenko theorem, and the Peaks-over-
Threshold (PoT) method based on Pickands-Balkema-de Haan theorem (see the books by Coles [32]
and Embrechts et al. [46] for details of these theorems).

The Block Maxima method can be summarised as follows:
Obtain a sample of execution time observations using an appropriate measurement protocol.
Check, via appropriate statistical tests, that the execution time observations collected are
analysable using EVT.
Divide the sample into blocks of a fixed size, and take the maximum value for each block. (Note,
in practice only the maxima of the blocks need be independent for the theory to apply, not
necessarily all of the sample data).
Fit a Generalised Extreme Value (GEV) distribution to the maxima. This will be a reversed
Weibull, Gumbel, or Frechet distribution, depending on the shape parameter. (Alternatively
fit a GEV with the shape parameter fixed to zero i.e. a Gumbel distribution).
Check the goodness of fit between the maxima and the fitted GEV (e.g. using quantile plots).
The GEV distribution obtained for the extreme values estimates the pWCET distribution.

The Peaks-over-Threshold method can be similarly summarised as follows:
Obtain execution time observations using an appropriate measurement protocol.
Check, via appropriate statistical tests, that the execution time observations collected are
analysable using EVT.

LITES

03:14 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

Choose a suitable threshold, and select the values that exceed the threshold. Note that
de-clustering8 may be required for data that is not independent.
Fit a Generalised Pareto Distribution (GPD) to the excesses over the threshold.
Check the goodness of fit between the peak values selected and the fitted GPD (e.g. using
quantile plots).
The GPD distribution obtained for the extreme values estimates the pWCET distribution.

There are two main ways of applying MBPTA, referred to as per-path and per-program:
1. Per-path: MBPTA is applied at the level of paths. A measurement protocol is used to exercise

all feasible paths, then the execution time observations are divided into separate samples
according to the path that was executed. EVT is then used to estimate the pWCET distribution
for each path. The pWCET distribution for the program as a whole is then estimated by
taking an upper bound (an envelope or point wise maxima on the 1 - CDFs) over the set of
pWCET estimates for all paths.

2. Per-program: MBPTA is applied at the level of the program. A measurement protocol is again
used to exercise all paths. In this case, all of the execution time observations are grouped
together into a single sample. EVT is then applied to that sample, thus estimating directly
the pWCET distribution for the program.

There are a number of advantages and disadvantages to the per-path and per-program
approaches for MBPTA. Recall that the execution time observations analysed using EVT must be
identically distributed, which can be checked using appropriate statistical tests. In the per-program
case, these tests can fail if the execution times from different paths come from quite different
distributions. The independent distribution (i.d.) tests could also fail in the case of observations
for an individual path; however, for this to happen there must be significant differences in the
execution time distributions obtained for the same path with different input states. This is less
likely in practice, although it may still happen.

With the per-path approach, issues of representativity arise only at the level of paths, whereas
the per-program approach raises issues of representativity at the program level. With the per-path
approach, it is sufficient that the sample of input states and initial hardware states used to
generate execution time observations for a given path are representative of the input states and
hardware states for that path that could occur during operation. For example, for relatively simple
time-randomised hardware it may be possible to obtain a single representative input state for each
path by resetting the hardware on each run to obtain worst-case initial conditions (e.g. an empty
cache). For more complex hardware, it becomes more difficult to ensure that the input states and
initial hardware states used in the analysis of an individual path are representative; nevertheless,
the problem is somewhat simpler than in the per-program case.

With the per-program approach, the frequency at which different paths are exercised in the
observations used for analysis can impact the pWCET distribution obtained. For example if a
path with large execution times is exercised much more frequently during operation than it was
during analysis, then the pWCET distribution obtained during analysis may not be valid for
that behaviour. Since the sample of input states used during analysis was not representative, the
pWCET distribution obtained may be optimistic.

Despite the above disadvantages, the per-program approach may be preferable in practice, since
it does not require the user to separate out the execution time observations on a per-path basis.

8 De-clustering typically involves using only the single maximum value in any group of continuous observations
that exceeds the threshold.

R. I. Davis and L. Cucu-Grosjean 03:15

Further, the per-path approach loses information about the ordering and dependences between
execution time observations, which may be relevant to obtaining a tight pWCET distribution.

In seeking to employ EVT, there are two questions to consider: First, are the samples of
observations obtained for input into EVT representative of the future scenarios of operation that
can occur once the system is deployed? If the answer to this question is “no”, then any results
produced (e.g. estimated pWCET distributions) cannot be trusted to describe the behaviour of the
deployed system. Secondly, can the particular EVT method chosen be applied to the observations?
This question can be answered by applying appropriate statistical tests (e.g. checking for i.i.d.,
goodness-of-fit etc.). It is important to note that an answer “yes” to this second question does not
necessarily imply that the results produced provide a sound9 description of the behaviour of the
deployed system. They may only provide a sound description of its behaviour in precisely those
scenarios used for analysis, i.e. used to produce the observations. Representativity is essential to
extend the results obtained via EVT to the actual operation of the system.

3 Static Probabilistic Timing Analysis (SPTA)

In this section, we review analytical approaches to determining pWCETs distributions, commonly
referred to as Static Probabilistic Timing Analysis (SPTA). These methods construct an upper
bound on the pWCET distribution of a program by applying static analysis techniques to the
code of the program along with an abstract model of the hardware behaviour. In order for static
analysis to produce a (non-degenerate) pWCET distribution there has to be some part of the
system or its environment that contributes variability in terms of random or probabilistic timing
behaviour. Examples include: (i) probabilities of certain inputs occurring, (ii) probabilities of
faults occurring, (iii) time-randomised hardware behaviour, such as the use of random replacement
caches. In the following subsections, we review the research on SPTA relating to each of these
factors.

3.1 SPTA based on Probabilities from Inputs
Initial work on SPTA considered the probability of different input values occurring, or different
conditional branches being taken in the code.

The first work in this area by David and Puaut [35] in 2004 assumed that the input variables
are independent and have a known probability distribution in terms of the values that they can
take. In this work, a tree-based static analysis is used to compute the execution time of each path
and the probability that it will be taken. This generates a probability distribution for the execution
time of the program, not considering hardware effects. The method has exponential complexity,
which depends strongly on the external variables. The main drawback is the requirement for
the input variables to be independent, which is unlikely to be the case in practice. Further the
probability distribution for each input variable must be known.

In 2008, Liang and Mitra [86] analysed the effects of cache on the probability distribution
of the execution times of a program, assuming that probabilities of conditional branches and
statistical information about loop bounds are provided. They introduce the concept of probabilistic
cache states to capture the probability distribution of different cache contents at each program
point, and an appropriate join function for combining these states. The analysis computes the
cache miss probability at each program point enabling the effects of the cache to be included in

9 In this survey, we use the adjective sound to indicate a description, an analysis, or a probability distribution
that provides information about the system that is not optimistic with respect to its timing behaviour. Thus
the information provided may be precise, or it may be pessimistic.

LITES

03:16 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

an estimation of the execution time distribution of the program. Aside from issues of tractability,
the main difficulty with this approach is the assumption that values for the probability of taking
different conditional branches can be provided, and the implicit assumption that these values are
path independent, which they may not be.

3.2 SPTA based on Probabilities from Faults
Systems may exhibit probabilistic behaviour due to the occurrence of faults, either external to
the microprocessor, for example due to sensor failures, or internal to it, for example due to faulty
cache lines.

The initial work in this area by Hofig [62] in 2012 introduced a methodology for Failure-
Dependent Timing Analysis. This combines static WCET analysis of the code with probabilities
propagated from a safety analysis model. Thus a set of WCET bounds are obtained that are
associated with particular situations, for example a combination of sensor failures, and probabilities
that those situations will occur. These values can then be used to determine a valid WCET at any
given acceptable deadline miss probability. The work assumes that sensor failures are independent.
The authors argue that when failures are dependent then this dependence can be captured in the
safety analysis resulting in revised probabilities for the different situations considered.

In 2013, Hardy and Puaut [58] presented a SPTA for systems with deterministic instruction
caches in the presence of randomly occurring permanent faults affecting the RAM cells that
implement the cache lines. This method first computes the WCET assuming no faults, and then
determines an upper bound on the probabilistic timing penalty due to the additional fault induced
cache misses. The timing penalty is derived independently for each cache set, and the results
combined to obtain the overall penalty. The motivation for this work is that as microprocessor
technology scales decrease so the probability of permanent RAM cell failures will increase. A
journal extension by the same authors [59] examines the scalability of the method to larger cache
sizes, and also covers the effect of different values for the failure probability of memory cells,
reflecting different technology scales.

More recently in 2016, Chen et al. [31] presented a SPTA for systems with a random replacement
cache subject to both transient and permanent faults. This approach uses a Markov Chain model
to capture the evolution of cache states and their probabilities. The cache states are modified
taking account of the impact of faults, and hence the resulting pWCET distributions obtained
reflect the fault rates specified as well as the random replacement policy of the cache. The
evaluation shows that the method produces tight bounds with respect to simulation results. The
cache assumed is however only 2-way, hence it is not clear whether the method scales to larger
cache associativities. In a subsequent paper, also in 2016, Chen et al. [29] addressed an issue with
their previous work whereby increasing permanent fault rates substantially degrades the pWCET.
In this work they compare the previous rule-based detection mechanism with a more complex
method that uses Dynamic Hidden Markov Model detection. The former is simple to implement,
but the latter is significantly more effective, providing better pWCET estimates for high fault
rates.

3.3 SPTA based on Probabilities from Random Replacement Caches
Caches are small fast memories used to bridge the speed difference between the processor and
main memory. Access times to cache can be in the region of 10 to 100 times faster than accesses
to main memory, thus cache often has a significant impact on the execution time of programs.
Much of the work on SPTA (and indeed MBPTA) has focussed on caches that use a random
replacement policy. Before reviewing this work, we outline some fundamentals about caches and
their operation.

R. I. Davis and L. Cucu-Grosjean 03:17

Main memory, used to store both instructions (the program) and data, is logically divided up
into memory blocks, which may be cached in cache lines of the same size. When the processor
requests a memory block, the cache logic has to determine whether the block already resides in
the cache, a cache hit, or not, a cache miss. To facilitate efficient look-up each memory block can
typically only be stored in a small number of cache lines referred to as a cache set. The number
of cache lines or ways in a cache set gives the associativity of the cache. A cache with N -ways
in a single set is referred to as fully-associative, meaning a memory block can map to any cache
line. At the other extreme, a cache with N sets each of 1-way is referred to as direct-mapped;
here each memory block maps to exactly one cache line. With set-associative and direct mapped
caches, a placement policy is used to determine the cache set that each memory block maps to.
The most common policy is modulo placement which uses the least significant bits of the block
number to determine the cache set. Since caches are usually much smaller than main memory, a
replacement policy is used to decide which memory block (i.e. cache line in the set) to replace
in the event of a cache miss. Replacement policies include Least Recently Used (LRU), Pseudo
LRU (PLRU), FIFO, and Random Replacement. Early work by Smith and Goodman [121, 122] in
1983 considered FIFO, LRU, and random replacement caches, concluding that the performance of
random replacement is superior to FIFO and LRU, when the number of memory blocks accessed
in a loop exceeds the size of the cache. LRU is superior when it does not.

The origins of SPTA for systems with random replacement caches can be traced to initial work by
Quinones et al. [106] and Cazorla et al. [26] which provided a simple analysis restricted to single-path
programs. Subsequently, Davis and Altmeyer and their co-authors Griffin and Lesage developed
more sophisticated and precise analysis that also covers multi-path programs [39, 7, 6, 52, 83, 82].

The early work of Quinones et al. [106] in 2009 explored, via simulation, the performance of
caches with a random replacement policy compared to LRU. The evaluation involves programs
with a number of functions (greater than the cache associativity) called from within a loop. The
different cases explored correspond to different memory layouts for the functions. Here, a small
number of layouts result in pathological access patterns (referred to as cache risk patterns [95])
where, assuming LRU replacement, each function evicts the instructions for the next function
from the cache. The simulation results show that random replacement has better performance
than LRU in these cases, and lower variability in performance over the range of memory layouts
explored. Further, when the code is too large to fit in the cache, then LRU has relatively poor
performance, with random replacement providing better cache hit rates and less variability across
different layouts. The authors suggest a simple method of statically computing the probability of
pathological behaviour in the case of a random replacement cache; however, this formulation was
later shown to be optimistic (i.e. unsound) by Davis et al. [39], since random replacement does
not eliminate all of the dependences on access history.

In 2011, Burns and Griffin [23] explored the idea of predictability as an emergent behaviour.
They show that if components are designed to exhibit independent random behaviour, then
an execution time budget with a low probability of failure can be estimated that is not much
greater than the average execution time. Their experiments examine hypothetical programs made
up of instructions with execution times that are independent and identically distributed (i.i.d).
The execution of each instruction is assumed to take either 1 cycle (representing a cache hit) or
10 cycles (representing a cache miss), with a 10% probability of the latter. Thus the average
execution time of an instruction is 1.9 cycles. The authors found that for programs of more than
105 instructions, the execution time budget at an exceedance probability of 10−9 was only a few
percent larger than the average execution time. They note, however, that current hardware does
not result in instructions with random execution times.

LITES

03:18 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

A simple SPTA for caches with an evict-on-access10 random replacement policy based on
reuse distances was presented by Cazorla et al. [26] in 2013. This analysis upper bounds the
probability of a miss on each access in a way that is independent of the execution history, thus
enabling the distributions for each access to be combined using basic convolution to produce a
pWCET distribution for the execution of a trace of instructions, i.e. a single path through the
program. Comparisons are made with analysis for a LRU cache, showing that random replacement
is less sensitive to missing information. Reineke [108] later observed that the formula given for a
random replacement cache reduces to zero whenever the re-use distance is equal to or exceeds
the cache associativity. Hence, in a like-for-like comparison, analysis for LRU strictly dominates
that for random replacement presented in this paper. We conclude that the results given by
Cazorla et al. are somewhat misleading; they are an artefact of the difference in associativity
rather than a difference in replacement policy, since 2-, 4-, and 8-way LRU caches are compared to
a fully-associative random replacement cache. We note; however, that when more precise analysis
of a random replacement cache is used there are some circumstances when it can outperform
state-of-the-art analysis for LRU, as shown by Altmeyer et al. [6] in 2015.

In 2013, Davis et al. [39] introduced a SPTA technique based on re-use distances that is
applicable to random replacement caches that use an evict-on-miss policy11. This dominates the
earlier analysis of Cazorla et al. [26] which assumes evict-on-access. The authors show that it
is essential that any analysis providing probability distributions per instruction that are then
convolved to form a pWCET distribution for the program must provide distributions for each
instruction that are independent of the pattern of previous hits or misses, otherwise the analysis
risks being unsound (i.e. optimistic). The authors extend their analysis to cover multi-path
programs and the effect of preemptions. By taking a simplified view of preemption, effectively
considering that it flushes the cache, they derive analysis that bounds the maximum impact of
multiple preemptions on a program and show how computation of probabilistic cache related
preemption delays (pCRPD) can be integrated into SPTA. We note that although the analysis
is presented for fully associative caches, it is also applicable to set-associative caches, since each
cache set operates independently.

Subsequently in 2014, Altmeyer and Davis [7] introduced effective and scalable techniques for
the SPTA of single path programs assuming random replacement caches that use the evict-on-miss
policy. They show that formulae previously published by Quinones et al. [106] and Kosmidis
et al. [68] for the probability of a cache hit can produce results that are optimistic and hence
unsound when used to compute pWCET distributions. In contrast, the formula given by Davis et
al. [39] is shown to be optimal with respect to the limited information it uses (reuse distances and
cache associativity), in the sense that no improvements can be made without requiring additional
information. The authors also introduce an improved technique based on the concept of cache
contention which relates to the number of cache accesses within the reuse distance of a memory
block that have already been considered as potentially being a cache hit. An exhaustive approach
is also derived that computes exact probabilities for cache hits and cache misses, but is intractable.
They then combine the exhaustive approach focussing on a small number of the most relevant
memory blocks with the cache contention approach for the remaining memory blocks.

Altmeyer et al. [6] extended their earlier work [7] in a journal publication in 2015. In this
paper, they introduce a new formula for the probability of a cache hit based on stack distance,
correct an error in the formulation of basic cache contention, and provide an alternative cache

10The evict-on-access random replacement policy evicts a randomly chosen cache line whenever an access is
made to the cache, irrespective of whether that access is a cache hit or a cache miss.

11The evict-on-miss random replacement policy evicts a randomly chosen cache line whenever an access is made
to the cache and that access is a cache miss.

R. I. Davis and L. Cucu-Grosjean 03:19

contention approach based on the simulation of a feasible evolution of the cache contents. Both
cache contention approaches are formally proven correct, and are shown to be incomparable with
the new stack distance approach. They also present an alternative more powerful heuristic for
selecting relevant memory blocks, with blocks no longer considered as relevant once they are no
longer used. This improves accuracy, while ensuring that the analysis remains tractable. The
evaluation shows that the cache contention techniques improve upon simple methods that rely on
reuse distance or stack distance, and that the combined approach with 4 to 12 relevant memory
blocks makes further substantial improvements in precision. Specific comparisons with LRU show
that the simple reuse distance and stack distance approaches are always outperformed, in fact
dominated, by analysis for LRU. In contrast, the sophisticated combined analyses for random
replacement caches are incomparable with those for LRU. LRU is more effective when the number
of memory blocks accessed in a loop does not exceed the associativity of the cache, whereas
random replacement is more effective when they do.

In 2014, Griffin et al. [52] applied lossy compression techniques to the problem of SPTA
for random replacement caches. They built upon the exhaustive collecting semantics approach
developed by Altmeyer and Davis [7], exploiting three opportunities to improve runtime while
trading off some precision: (i) memory block compression, (ii) cache state compression, and (iii)
history compression. Two methods of memory block compression were considered. The first
excludes memory blocks with a hit probability below some threshold, while the second excludes
those with a forward reuse distance that exceeds a given threshold. Both cache state and history
compression are applied via the use of fixed precision fractions. The lossy compression techniques
are highly parameterisable enabling a trade-off between precision and runtime. Further, the
runtime is linear in the length of the address trace, compared to quadratic complexity for the
combined technique derived by Altmeyer and Davis [7].

An effective SPTA for multi-path programs assuming a random replacement cache was developed
by Lesage et al. [83] in 2015. This work adapts the cache contention and collecting semantics
approach derived by Altmeyer and Davis [7] to the multi-path case. It also introduces a conservative
join function which provides a sound over-approximation of the possible cache contents and pWCET
distribution on path convergence. The analysis makes use of the control-flow graph. It first unrolls
loops, since this allows both the cache contention and collecting semantics to be performed
as simple forward traversals of the control-flow graph. Approximation of the incoming cache
states on path convergence, via the conservative join operator, keeps the analysis tractable. The
distributions obtained via the cache contention and collecting semantics are then combined using
convolution. The main analysis technique is supplemented by worst-case execution path expansion.
This method uses the concept of path inclusion to determine when one path includes another,
necessarily resulting in a larger pWCET distribution. This enables the included path to be
removed from the analysis. This concept simplifies the analysis of loops, since only the maximum
number of loop iterations need be considered. The evaluation shows that this multi-path SPTA
reduces the number of misses predicted for complex control flows by a factor of 3 compared to
the simple path merging approach proposed earlier by Davis et al. [39]. Incomparability between
analysis for LRU and sophisticated analysis for random replacement caches is also demonstrated
on multi-path programs. The authors also investigate the runtime of their methods, showing
that it is tractable with 4-12 relevant memory blocks. To reduce the runtime for long programs
they also consider splitting such programs into Single Entry Single Exit regions12 which can be
analysed separately, with the pessimistic assumption of an empty cache at the start of each region.
This approach is shown to be effective, permitting the use of more relevant memory blocks and

12An idea first suggested by Pasdeloup [104].

LITES

03:20 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

hence in some cases improving precision. In a journal extension, Lesage et al. [82] incorporate
advances in SPTA techniques for single path programs into the analysis framework for multi-path
programs.

In 2017, Chen and Beltrame [28] derived a SPTA for single path programs running on a system
with an evict-on-miss random replacement set-associative cache. They use a non-homogeneous
Markov chain to model the states of the system. For each step (i.e. memory access in the trace
of the program), the method computes a state occurrence probability vector for the cache and
a transition matrix which determines how the state vector is transformed. The computational
complexity of the basic method increases as a polynomial with a large exponent given by the
number of memory addresses. To contain the complexity and make the approach tractable, the
authors adapt the method as follows. For the first n addresses, the state space is constructed using
the Markov chain method as described above. Then when a new memory address is accessed that
is not in the current state, another memory address that is part of the state and is either not used
in the future, or has the longest time until it is used in the future, is discarded. This is a form
of lossy compression that ensures the number of states does not increase further. The authors
show how the method can be adapted to write-back data caches, and compare its performance
with the SPTA method of Altmeyer at al. [6]. The evaluation shows that the adaptive Markov
chain method provides improved performance, with the geometric mean of the execution times at
an appropriate probability of exceedance reduced by 11% for the set of Mälardalen benchmarks
studied. The runtime of the two methods is shown to be similar.

Also in 2017, Chen et al. [30] developed a SPTA for random replacement caches with a detection
mechanism for permanent faults. The detection mechanism periodically checks the cache for
faulty blocks and disables them. The analysis builds upon the combined approach of Altmeyer et
al. [6]. The authors derive formula for two operating modes: with and without fault detection
turned on. By combining these two modes, the method provides timing analysis accounting for
the integrated fault detection. The experimental evaluation provides a comparison with simulation
for the Mälardalen benchmarks, assuming a 2-way, 1 KByte instruction cache, with 16 byte cache
lines, and a permanent fault rate that equates to a mean time between failures of 5 years. Other
experiments consider higher fault rates, larger cache lines and a 4-way cache. The results show that
when sufficient relevant blocks are used, SPTA provides results that are close to those obtained
via simulation.

3.4 Summary and Perspectives
Static Probabilistic Timing Analysis (SPTA) for systems using random replacement caches has
matured considerably since its origins in the work of Quinones et al. [106]. State-of-the-art
techniques by Altmeyer et al. [6], Chen and Beltrame [28] and Lesage et al [83, 82] provide
effective analysis for single and multi-path programs respectively on systems using set-associative
or fully-associative random replacement caches. This analysis is however limited to systems with
single-level private caches. As far as we are aware SPTA techniques have not yet been developed
for multi-level caches or for multi-core systems where the cache is shared between cores. A
preliminary discussion of these open problems can be found in the work of Lesage et al. [84] and
Davis et al. [40] respectively.

4 Measurement-Based Probabilistic Timing Analysis (MBPTA)

In this section, we review Measurement-Based Probabilistic Timing Analysis (MBPTA) methods.
These methods use statistical techniques based on Extreme Value Theory (EVT) to derive an
estimate of the pWCET distribution of a program from a sample of execution time observations.

R. I. Davis and L. Cucu-Grosjean 03:21

These observations are obtained by executing the program on the hardware or a cycle accurate
simulator under a measurement protocol. The measurement protocol executes the program
multiple times according to a set of test vectors and initial hardware states, thus sampling one or
more possible scenarios of operation.

Whether or not useful results can be determined using MBPTA methods depends crucially on
the sample of execution time observations obtained and their properties. Early work in this area
required execution time observations to be independent and identically distributed (i.i.d.). Later
work relaxed this assumption, but still required that the sequence of execution time observations
exhibit stationarity and weak dependences. Further, the results are only valid for future scenarios
of operation for which the sample of observations is representative (see Section 2.3).

In the following subsections, we review: (i) early research into MBPTA that requires execution
time observations to be i.i.d., (ii) subsequent research that relaxes the i.i.d. assumption, (iii)
research which focusses on issues of representativity.

4.1 EVT and i.i.d. observations
In this section, we review early work on MBPTA based on the application of Extreme Value
Theory that assumes the execution time observations are i.i.d. This work began with a number of
papers by Burns and co-authors Edgar and Griffin [22, 45, 51], and culminated with the work of
Cucu-Grosjean et al. [34] which inspired a substantial body of subsequent research into MBPTA.

In 2000, Burns and Edgar [22] introduced the use of EVT (the Fisher-Tippett-Gnedenko
theorem) in modelling the maxima of a distribution of program execution times. They motivate
the work by noting that advanced processor architectures make it prohibitively complex or
pessimistic to estimate WCETs using traditional static analysis techniques. The following year,
Edgar and Burns [45] introduced the statistical estimation of the pWCET distribution for a task.
They use measurements of task execution times to build a statistical model. These observations
are assumed to be independent, obtained over a range of environmental conditions, and of sufficient
number for generalisations to be applied. The method they propose involves fitting a Gumbel
distribution directly to the observations, using a χ-squared test to determine the scale and location
parameters. Such direct fitting is however not strictly correct, since the distribution is used to
model the maxima of subsets of values, not all of the values themselves, as noted by Hansen et
al. [57]. Further, there are also issues in using a χ-squared test, which is not well suited to this
purpose, as noted by Cucu-Grosjean et al. [34]. The authors show that if all tasks are executed
with execution time budgets that must sum to some fixed total, then the optimal setting for the
budgets achieves that total with an equal probability of each task exceeding its budget.

In 2009, Hansen et al. [57] considered the use of EVT to estimate pWCET distributions with
an appropriate level of confidence. They correct a key issue in the work of Edgar and Burns [45]
by using the Block Maxima method. Here the observations of execution times are first grouped
into blocks, then the maximum value is taken for each block. The Gumbel distribution is then
fitted to the distribution of the block maxima, with a χ-squared test used to determine goodness
of fit. The experimental evaluation presented involves over 100 tasks running on a commercial
PowerPC-based device using the VxWorks operating system. The block size is initially set to
100, and doubled repeatedly if the χ-squared test does not indicate a sufficiently good fit. (We
note that this doubling may have been sufficient to capture stationarity in the observations, see
the later work of Santinelli et al. [112]). The Gumbel parameters were obtained by using linear
regression on a QQ-plot. The results produced using EVT were validated against additional
measurements (over 2 million in the case of one task reported upon in detail). These results show
that the EVT method provides a much better estimate of the extreme values with respect to
subsequent observations, than simply taking the maximum observed value and assuming that it is

LITES

03:22 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

the WCET. Nevertheless, there were some tasks where the rate at which execution times (captured
during the validation stage) exceeded some large value was greater than the exceedance probability
predicted by the Gumbel distribution, i.e. the pWCET distribution was optimistic.

The use of EVT to model the extreme execution times of programs was considered by Griffin
and Burns [51] in 2010. They provide a critique, discussing a number of issues that need to be
addressed in order for the results produced to be sound. These include issues relating to the
use of upper bounds (e.g. Gumbel distribution) that are continuous when the possible execution
times of a program may have large discrete steps, and the need for the observations used to be
independent and identically distributed (i.i.d). They describe various ways in which observations
may be dependent (e.g. via internal state such as cache contents, and also via external factors
such as input variables that are affected by the previous outputs of the system leading to a
history dependence). They also note that different paths through the program lead to different
execution time distributions, and hence issues arise with the assumption that all the observations
are identically distributed. Some possible solutions are suggested, such as shifting the 1 - CDF of
the continuous distribution so that it upper bounds its discrete counterpart at all execution time
values, including those that cannot actually be obtained. Possible solutions to issues with the
i.i.d. assumption include resetting the system state between observations, and determining the
set of potential worst-case paths by some other means, and then analysing each of those paths
separately, i.e the per-path approach (discussed in Section 2.3).

In 2011, Lu et al. [89, 90] examined issues with the application of EVT highlighted by Griffin
and Burns [51]. They address the requirement that the observations must be i.i.d. They note that
a Gumbel distribution should not be directly fitted to the observations as done by Edgar and
Burns [45], since the Gumbel (and other EV distributions) are intended to model distributions of
the maxima (or minima) of a large number of random variables. Instead, the authors propose
the use of Simple Random Sampling in terms of randomising program inputs, and dividing
observations into groups of N sets, each of m observations, and only using the largest of the m
observations in each set, i.e. the Block Maxima method. We note that Simple Random Sampling
may break dependences in the observations with the potentially for pWCET estimates to then be
optimistic. (The authors give no proof that re-sampling the observations in this way ensures a
sound, i.e. pessimistic result).

In a seminal paper published in 2012, Cucu-Grosjean et al. [34] introduced a statistically sound
method of applying EVT to probabilistic timing analysis, referred to in the paper as Measurement-
Based Probabilistic Timing Analysis (MBPTA). This method uses end-to-end execution time
measurements obtained from the system during testing. For the method to be applicable, the
observations must be i.i.d. Statistical tests (two sample Kolmogorov-Simirnov test, and Runs
test) are used to check that this is the case. The Block Maxima method is used to group the
observations, and the Exponential Tail test is used to check if the distribution of the maxima
fits the Generalised Extreme Value (GEV) distribution, in particular, a Gumbel distribution.
The method also proposes an approach for determining the number of observations required for
each program path. In applying MBPTA to multi-path programs, the authors note that path
coverage is required, otherwise the requirements for i.i.d. observations would be broken, and give
an example of how the results could be unsound in this case. With full path coverage; however,
the method appears to be relatively insensitive to the number of observations on each path,
provided there are sufficient of them. The authors further note that for the i.i.d. property to
be preserved for multi-path programs, either the inputs can be selected randomly when making
measurements and the observations grouped sequentially, or testing can be done with all possible
inputs and then observations selected via random sampling without replacement when performing
the grouping into blocks. We note that this may bias the block maxima towards the worst-case,

R. I. Davis and L. Cucu-Grosjean 03:23

since if high execution times are grouped, random sampling may increase the likelihood that
a block contains a high value. This can potentially result in both pessimism and optimism in
the pWCET distribution, since it changes the shape of the distribution of the block maxima.
The authors evaluate the method for both single-path and multi-path programs running on a
simulated microprocessor with a random replacement cache. Comparisons against the simple
SPTA method of Cazorla et al. [26] show that the pWCET distribution obtained via MBPTA
typically overestimates that derived via SPTA by 3-15% at small probabilities. We note that since
later work by Altmeyer et al. [6] shows that the SPTA method described by Cazorla et al. [26]
typically produces results that have substantial pessimism, substantive conclusions cannot be
drawn about the absolute accuracy of the MBPTA method from these comparisons.

4.2 EVT and observations with dependences
The initial work on MBPTA by Cucu-Grosjean et al. [34] in 2012 resulted in increased interest in
this area of research. Subsequent developments have focussed on relaxing the i.i.d. assumption
and thus facilitating analysis of systems where execution time observations exhibit dependences.
Much of the work in this area emanates from Santinelli and his co-authors Melani, Berezovskyi,
and Guet [93, 112, 16, 53, 54]. They leverage early work by Leadbetter et al. [81] in 1978 and
Hsing [63] in 1991 showing that EVT can be applied to stationary and weakly dependent time
series.

In 2013, Melani et al. [93] investigated the use of statistical methods based on EVT when
execution time observations show dependences on some other event in the system. For example
preemptive rather than non-preemptive scheduling, or different preempting tasks that either
heavily load the processor or the cache. They suggest a characterisation of dependences by
effectively shifting, by an amount ∆, the pWCET distribution for a program as obtained in
isolation. Evaluation shows that this method is effective for code from the Maladarlen benchmark
suite [56] running on an Intel Xeon processor with 3 levels of cache. A small shift, compared to
the overall execution time, is sufficient to account for the effect of the events which the execution
times are dependent on. We note that shifting the pWCET distribution in this way equates to
adding a fixed overhead to account for the extra interference due to preemption and scheduling.

The case for applying EVT when there are dependences between observations was examined by
Santinelli et al. [112] in 2014. They note the prior work by Leadbetter et al. [81] and investigate
less constraining hypotheses than independence such as stationarity and extremal dependence. To
verify stationarity, autocorrelation is computed using lag plots. Experimental evaluation on an
Intel Xeon processor with four cores (per socket) and 3 levels of cache shows that there is sufficient
execution time variability for EVT to be applied. Observations from multi-path code exhibit
stationarity, but pass the tests required in order for EVT to be applied. This indicates that the
use of time-randomised hardware (e.g. random replacement caches) is not necessary in order to
apply EVT. They also discuss dependence between extreme samples. This can be depicted using
an extremogram (described by Davis and Mikosch [36]), which shows whether extreme samples are
correlated in terms of their separation, i.e. whether they are clustered, or distributed throughout
the trace of observations. Further, the authors examine the effect on the pWCET distributions
of choosing different values for the size of the blocks in the Block Maxima method and different
thresholds in the Peaks-Over-Threshold (PoT) method. Significant sensitivity is demonstrated to
these values, with a degradation in performance at larger block sizes. It is not clear whether this
is because the total number of samples is kept constant and thus the larger block sizes equate to
too few blocks. Similarly, using too high a threshold (equating to the 98 percentile) results in
a very large pWCET estimation. Again it may be that too few samples remain. We note that
while this work provides useful insight into the importance of appropriate parameter selection, no
guidance is given on how such parameters should be selected to achieve accurate results.

LITES

03:24 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

In 2014, Berezovskyi et al. [16] investigated the use of MBPTA techniques based on EVT to
estimate the pWCET of CUDA kernels running on an NVIDIA GPU. They discuss the use of the
Generalised Extreme Value (GEV) distribution, and developments that show that independence of
observations is not necessary for the application of EVT. They note the prior work by Leadbetter
et al. [81] and Hsing [63] and recount theorems relating to EVT for sequences with long range
independence and extremal independence [81], and note that randomness is not sufficient in itself
to show independence in these cases. Further, the Runs test previously used by Cucu-Grosjean et
al. [34] does not suffice; rather time series13 tests based on auto-regression and autocorrelation
are needed. The authors suggest the use of lag plots to determine autocorrelation. They use
autocorrelation tests together with the notion of stationarity to quantify statistical independence.
They also use an autoregressive model to determine the stationarity of a trace of observations.
The Ljung-Box test is used to look for correlations between lags. Finally, extremeograms are
used to estimate dependence at the extreme values. The evaluation uses a Kepler GK104 GPU.
Tests on the trace of observations for the GPU computations show them to be independent. By
contrast, the observations of the execution times including data transfer to and from the host
processor are not independent, but they are stationary. Here, the Runs test would have concluded
independence; however, in fact there is a strong stationary relationship, but since this does not
reflect as dependence in the extreme observations, EVT can still be applied.

In 2016, Guet et al. [53] proposed a logical work-flow (embedded in a tool called DIAGXTRM)
that checks the applicability of EVT for the pWCET estimation problem. This work discusses
Pickands-Balkema-de Haan Theorem [105], the Generalised Pareto Distribution (GPD), and the
Peaks-Over-Threshold (PoT) method. The authors again note the prior work by Leadbetter et
al. [81] showing that EVT is applicable in the more general stationary case without independence.
Here, the hypotheses to check on the trace of observations are (i) stationarity, (ii) short range
dependence, (iii) local independence of the peaks, and (iv) that the empirical peaks over the
threshold follow a GPD. The efficiency of the proposed logical work-flow is likely affected by the
relation between theses hypotheses, which are not independent. Moreover, the authors motivate the
introduction of the hypothesis of stationarity based on the impossibility of checking the identically
distributed hypothesis when the bounds on the execution time of a program have unknown
probability distributions. Here, we note that the arguments are not correctly used as stationarity
is an alternative to the hypothesis of statistical independence, rather than an alternative to the
identically distributed hypothesis, further EVT is itself applied only to those cases where the
measurements follow unknown probability distributions. To evaluate stationarity, the authors
use the Kwiatowski–Philips–Schmit–Shin (KPSS) test. Further, the Brock–Dechert–Scheinkman
test is used to evaluate short range dependence, by examining the correlation between different
sub-sequences of the same length. The reliability of EVT also depends on the independence
of extreme observations. Here, the Extreme Index (see Embrechts et al. [46]) is used to give
the probability that peaks are far enough apart to be considered independent, as opposed to
constituting a burst relating to a single rare event. The threshold selection in the PoT method
is a source of uncertainty, since different thresholds may lead to different pWCET estimates.
Reviews of threshold selection methods by Scarrott and MacDonald [114] show that there is no
recognised systematic process for selection. The authors therefore propose an approach that
aims to provide an appropriate tail sample. They evaluate their approach using execution time
measurements obtained from an Intel Xeon processor with 4 cores and 3 levels of cache. Code from
the Maladarlen benchmark suite is run in various configurations including isolation, alternately
with a program that makes heavy use of the cache, and with that program running on the other

13The time series here is the observations of execution times in the order in which they were made.

R. I. Davis and L. Cucu-Grosjean 03:25

cores. All the traces of observations were found to be stationary with high confidence. Short range
and extreme independence was also verified. Note, Berezovskyi et al. [15] later applied the PoT
approach proposed by in this paper to the NVIDIA Kepler GK104 GPU system that they had
previously investigated using the Block Maxima method [16].

Later in 2016, Guet et al. [54] investigated using measurement based probabilistic analysis
to estimate the number of cache misses for programs running on a COTS multi-core processor
with two Intel Xeon E5620 sockets, using 3 levels of deterministic PLRU caches, with the first two
levels private to each core and the last level shared by cores on the same socket. Their aim was to
estimate the worst-case number of cache misses for programs under different configurations: (i)
isolation, (ii) on a single core alternating with another program on the same core, (iii) on one
core with another program executing simultaneously on a different core, and (iv) combining (ii)
and (iii). (Note, the other program makes a large number of memory accesses). The authors
applied EVT to the problem using the Block Maxima method. They note that the observations
of cache misses are unlikely to be independent, nevertheless, they show that the observations
for most of the programs examined from the Mälardalen benchmark suite exhibited stationarity
and/or extremal independence and so can be analysed using EVT.

In 2017, Fedotova et al. [47] applied the PoT method of EVT to estimate the upper bound values
for a timer acquisition task. This involves setting two consecutive timers using the HighPerTimer
library and calculating the time difference between them. The platform used runs the standard
Linux kernel on ARM Cortex-A5 hardware. The authors discuss how the choice of threshold to
use in the PoT method is a compromise between precision and bias, and make use of two graphical
approaches for threshold selection: (i) mean residual life, which plots the mean excess against
the threshold, and (ii) parameter stability, which plots the shape and modified scale parameters
of the GPD against the threshold. Using these methods, they select an appropriate threshold
which obtains 24 extreme values from the trace. They show that both Gumbell and Frechet
distributions fit the data and compute pWCET estimates with various probabilities of exceedance
for both cases. Due to the different shape parameters for the two distributions, these pWCET
estimates exhibit large differences e.g. 7.7ms v. 5900ms at a probability of exceedance of 10−9.
These large differences raise questions about the variability of results that can be obtained from
the same data, and hence the confidence in them. We note that 10−9 represents a large amount
of extrapolation from the sampled data, with the pWCET estimates much closer together at a
probability of exceedance of 10−7 (2.5ms v. 11.3ms).

Also in 2017, Lima and Bate [87] proposed a technique called IESTA (Indirect Estimation in
Statistical Time Analysis) to support the application of EVT without the need for hardware or
software randomisation. The basic idea is to add a randomised component (e.g. from a normal
distribution with values in the range [a, b]) to the set of execution time observations. This
additional component removes some of the discreteness from the original distribution, and makes
the new values more likely to pass the statistical tests required for the application of EVT. Once
the random component has been added to the observations, then the maxima are sampled, using
either PoT or Block Maxima methods, and the pWCET estimated by fitting to a GEV distribution.
Goodness-of-fit tests indicate if the estimate is a close match to the empirical distribution of the
maxima or peaks over the threshold. If it is not, then the dispersal of the random component can
be increased, which makes it more likely that EVT can be applied and the goodness-of-fit tests
passed. The authors explore two benchmarks, one from the Mälardalen benchmark suite where
EVT could not be applied even with time-randomised hardware, and a second using data from an
aircraft control application from Rolls-Royce running on entirely time-predictable hardware. The
latter has significant dependences between execution times, as shown in autocorrelation plots with
lags of up to 40. For both benchmarks, the IESTA method is able to add a random component

LITES

03:26 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

enabling EVT to be applied. Both the random padding and a high threshold selection help make
it unlikely that dependences appear in the sample of the maxima. The evaluation shows that even
when the dispersal of the random component is large, then the increased pessimism in the analysis
remains small (i.e only a few percent). It remains an open question whether this method may
result in optimistic pWCET estimations.

4.3 EVT and representativity
Representativity is a fundamental issue in applying statistical methods (i.e. MBPTA) to estimate
the pWCET distribution of a program. The problem is that the results obtained are only valid
for those scenarios of operation for which the sample of observations used in the analysis is
representative (see Section 2.3). Often it may not be possible to devise a measurement protocol
that provides a single sample of observations that is representative of all possible future scenarios
of operation. Research considering the problems of representativity are reviewed below.

In 2016, Lima et al. [88] took a careful look at the use of EVT in determining pWCET bounds
for programs running on both time-predictable (deterministic) and time-randomised architec-
tures (i.e. with random replacement caches). They point out that execution time observations
depend on the probability distribution describing how often different input values occur. Thus
there may not be a single distribution that describes the execution time behaviour. The authors
therefore introduced the concept of a weak pWCET which is valid for a particular distribution D(τi)
describing the frequency of occurrence of input values. This raises the problem of representativity
of input data. A simple experimental example shows how the estimated pWCET distribution
produced depends on the distribution of input values, and hence that if the input data distribution
used for analysis does not match that occurring during operation of the system, then the results
obtained may be unsound. Applying uniformly distributed input values during analysis may also
result in poor or unsound estimates. The authors note that in some cases it is not possible to
estimate a reliable Generalised Extreme Value (GEV) model and they cite appropriate extreme
value condition tests that can be used to determine if this is the case. They show that the GEV
distribution should be used rather than assuming a specific distribution (e.g. Gumbel). The models
determined for various experiments belong to all three classes of EV distribution (reversed Weibull,
Gumbel, and Frechet) not just Gumbel. There were also cases where the models belonged to none
of them and EVT could not be used to provide sound results. The experimental results reported
in this work also show that EVT can be successfully applied on time-predictable platforms, thus
indicating that hardware randomisation is not necessary for the application of EVT. They also
found that hardware randomisation is also not in general sufficient to ensure that EVT can be
applied. Random replacement caches that were either too large or too small were observed to
make estimation of the pWCET distribution either harder or not possible at all.

Issues of reproducibility and representativity with respect to MBPTA methods were discussed
by Maxim et al. [92] in 2016. They consider two separate steps: (i) the measurement protocol,
i.e. obtaining execution time observations and (ii) the method used to estimate the pWCET
distribution. They note that to be useful, the estimation method must be reproducible in the
sense that it must provide, within a close approximation, the same pWCET distribution, given
the same set of observations. Further, the measurement protocol must also be reproducible, in
the sense that the two sets of observations that it provides for two different uses of the method,
starting from the same conditions (processor state, external inputs etc.) must result in the same or
sufficiently close pWCET distributions. The authors also consider representativity. They note that
a measurement protocol is representative if there is some value of k (the number of observations)
for which taking any larger number of observations results in a pWCET distribution that closely
approximates the distribution that would be obtained if the whole domain of possible observations

R. I. Davis and L. Cucu-Grosjean 03:27

were considered. In other words after k observations the method converges on a sound pWCET
distribution. The properties of reproducibility and representativity are shown to be mandatory
for convergence and hence required for any MBPTA method intended for use in practice. How to
obtain these properties is; however, left as an open issue.

MBPTA techniques were revisited by Santinelli et al. [110] in 2017. In this work, they apply
EVT to a case study comprising traces of observations from various example systems using
both time-randomised and time-predictable hardware. They discuss the validity of EVT with
respect to different execution conditions (similar to the issues of representativity raised by Lima
et al. [88]) and suggest two ways of integrating all possible execution conditions into EVT: (i)
trace merging and (ii) the use of an envelope (i.e. upper bounding the results for each separate
execution condition). We note that it is not clear whether trace merging always produces valid
results. The authors further propose a reliability measure based on the confidence levels of each
of the hypotheses. They show that confidence is lower if the distribution is artificially forced
to fit a Gumbel distribution rather than obtaining the best fit for the shape parameter. They
also discuss how to choose the threshold in the PoT method, suggesting that a threshold should
be selected that maximises confidence in the matching hypothesis with the largest amount of
independent peaks.

In 2017, Santinelli and Guo [111] proposed a probabilistic representation framework, modelling
tasks via multiple pWCET distributions. They noted that the pWCET distributions obtained via
EVT strongly depend on the execution conditions used for analysis. These execution conditions
describe aspects such as the environment, inputs, task mapping, presence of faults etc. The authors
therefore propose describing each task via a Worst-Case Set which is a collection of pWCET
distributions obtained via EVT for different execution conditions. They note that the number of
different execution conditions is finite, and a partial ordering may be possible between some of
them, indicating dominance relationships (in the sense of the greater than or equal to operator �
defined by Diaz et al. [44]). They note that enumerating all possible execution conditions is a
complex problem (since there may be very many of them); however, tasks could be represented by
pWCET distributions which bound those for collections of execution conditions with incomparable
pWCET distributions. The authors propose the use of their model for mixed criticality systems,
with different execution conditions for different criticality levels, and for systems with and without
faults.

The problems of applying EVT when execution time observations have a mixture distribution,
resulting in a step-like curve on an exceedance (1 - CDF) graph, were discussed by Abella et al. [3]
in 2017. (Note, mixture distributions can occur as a result of caches that employ random placement,
discussed in Sections 6.1 and 6.2). In this case, it is important that sufficient observations are
obtained and that the threshold (PoT method) or block size (Block Maxima method) is set
appropriately, such that sufficient values from the actual tail of the distribution are passed
to EVT, as opposed to including too many values from other parts of the distribution. The
authors present a method for selecting the observations required and suitable EVT parameters.
First, they argue that in real-time systems, programs have finite execution times and so heavy
tailed GEV/GPD distributions may be discarded. Further, since somewhat pessimistic pWCET
estimates are acceptable, but optimistic estimates are not, they argue that it is sufficient to
consider distributions with exponential tails (i.e. Gumbel distributions) as a bound for all potential
light-tailed distributions. They propose a method of determining appropriate parameters based
on considering the Coefficient of Variation (CV) of the residual distribution, i.e. the distribution
of the excess over the threshold in the PoT method. (Note, the CV is given by the standard
deviation of a distribution divided by its mean). The method employs a plot of the CV versus the
number of samples over the threshold to find a suitable number of samples in the tail distribution,
for which the assumption of an exponential tail is not rejected by statistical tests and the CV

LITES

03:28 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

is closest to 1, implying an exponential tail. The approach is evaluated using a number of
the EEMBC benchmarks, but considering only single paths. Execution time observations are
obtained by making runs in isolation on a cycle accurate simulator for the Cobham Gaisler Next
Generation Multicore Processor (NGMP) with modifications such that all caches use random
placement and random replacement (see Section 6). The CV-plots show that in some cases 2000
or 3000 observations are required, compared to the default of 1000. Comparison with empirical
distributions for 107 runs (generated on a large compute cluster) show that the pWCET estimates
are 1% to 25.8% larger than the maximum observed values at a probability of exceedance of 10−7.

In 2017, Milutinovic et al. [101] discussed issues relating to representativity with respect to
the use of MBPTA in an industrial context. They argue, citing the above work of Abella et al. [3],
that for real-time programs (with a finite but unknown WCET and non-degenerate behaviour) it
is sound to fit a Gumbel distribution, since for this class of program using a Gumbel distribution
may result in an over-estimate at probabilities of exceedance that are of interest, but not an
under-estimate. Further, the authors point out, as was done by Griffin and Burns [51] in 2010,
that taking observations from multiple paths as input into MBPTA (i.e. the per-program approach,
see Section 2.3) may produce untrustworthy results. The problem being that the observations may
no longer be identically distributed (particularly if the different paths are quite distinct modes of
operation), and also the frequency of occurrence of the different paths may not match that which
occurs during operation. The authors give a concrete example of this problem which shows that
combining observations for two paths from a simplified European Train Control System can result
in a pWCET distribution which is below the pWCET distribution for either path considered
alone. (We note that no comparison is made to the empirical distribution, so it is unclear if any
of the three pWCET distributions are actually under-estimates). The authors suggest that the
per-path approach (see Section 2.3) can be used instead to provide a solution.

Also in 2017, Guet et al. [55] considered two issues relating to representativity. First, how
traces of observations are handled when there are dependencies between execution times. In
this case, the authors show that re-sampling the traces of observations can reduce the degree
of dependency which is apparent and this may in turn result in lower pWCET estimates which
can be unsound (i.e. optimistic). Secondly, they consider the use of EVT with multi-mode tasks,
where different modes of operation have distinct execution time distributions. Here, they show
via examples that combining all of the observations into a single sample (i.e. covering all modes)
can result in cases where either EVT cannot be applied, or it can result in unsound pWCET
estimates. They infer that it is necessary to apply EVT to each mode separately and then form an
envelope upper bounding the pWCET distributions for each mode to provide an overall pWCET
distribution that is sound.

4.4 Summary and Perspectives
MBPTA methods have matured considerably since the early work of Burns and Edgar [22, 45].
In particular, we note the work of Cucu-Grosjean et al. [34] which spawned a large number of
subsequent publications on supporting mechanisms and techniques (see section 6), and prompted
further research into the application of EVT to the probabilistic timing analysis problem. The
recent state-of-the-art has shown that time-randomised architectures (e.g. with random replacement
caches) are neither sufficient nor necessary for the application of MBPTA methods [112, 88, 87].
Further, EVT can be applied when there are dependences between the observed execution times,
provided that the series of observations exhibits stationarity and/or extremal independence [112,
16, 53, 54]. These are useful advances, since industry has a strong preference for methods that can
be applied to Common-Off-The-Shelf (COTS) processors, rather than requiring specific (custom)
hardware architectures. We note however, that there are significant hazards in applying MBPTA

R. I. Davis and L. Cucu-Grosjean 03:29

methods. If potential sources of significant execution time variability do not exhibit this variability
during analysis, i.e. such variation does not appear in the observations, then they will not
be accounted for in the estimated pWCET distribution produced, which may as a result be
optimistic (i.e. unsound).

A major open issue that remains is the problem of representativity. It is essential that the
measurement protocol is representative of the future scenarios of operation that could occur in
practice. In general this requires suitable coverage of the different input states, hardware states,
and the worst-case path(s) through the program. While worst-case path coverage may be possible
for relatively simple and well structured programs in domains such as aerospace, in general, the
problem of identifying and exercising the worst-case path(s) cannot be left to the user. Research
aiming at a solution to this problem is reviewed in Section 5.

The main rationale for using time-randomised hardware (e.g. random replacement caches,
random permutation buses etc.) as well as software time-randomisation techniques (e.g. random
placement) is to make it easier to provide an argument that the measurement protocol used during
analysis is representative of the scenarios of operation that could occur in future. These enabling
mechanisms and techniques are reviewed in Section 6.

We note that there remains significant scope for work on the application of EVT to the problem
of estimating pWCET distributions. Currently, there are differing views on whether it is sufficient
to assume that any program in a real-time system will have an execution time distribution which
can be modelled as having a light or exponential tail, and hence a Gumbel distribution can be
used as suggested by Abella et al. [3], or whether it is necessary to fit to a GEV distribution, since
the execution time of some programs may exhibit heavy tails as shown by Lima et al. [88]. There
has also been little work on the reproducibility of the method: whether small changes in the set of
observations may propagate to large differences in the resulting pWCET distributions, and thus
on how far the pWCET distributions can realistically be extrapolated to very low probabilities
e.g. 10−9, 10−12, 10−15 and so on, while retaining confidence in the results.

5 Hybrid Techniques for Probabilistic Timing Analysis (HyPTA)

A number of researchers have sought to combine the advantages of static analysis and measurement
based methods. The main advantage of measurement-based methods is that measurements record
the precise timing behaviour of the real system, whereas static analysis relies on a model of that
behaviour. For advanced processors, obtaining a precise model or even one that does not introduce
significant pessimism may be very difficult. The main disadvantage of measurement-based methods
is the difficulty in covering the worst-case behaviour, including covering the worst-case path(s)
through the code. The MBPTA methods based on EVT provide a pWCET distribution which
estimates the extreme execution time behaviour of future scenarios of operation, sample(s) of
which were exercised during an analysis phase. It is however up to the user to provide the necessary
input vectors to test all relevant paths, including the worst-case path. Typically, neither manually
determining the worst-case path, nor obtaining full path coverage are feasible in practice for
complex programs. Further, as shown by Lesage et al. [85], the analysis rapidly becomes optimistic
when some paths are omitted. In this section, we review hybrid methods which seek to address
this problem of path coverage.

5.1 HyPTA and the Path Coverage Problem
In a series of papers from 2002–2005, Bernat et al. [19, 18, 17] addressed the problem of path
coverage in measurement-based execution time analysis by reducing it to the much simpler problem
of basic block (i.e. statement) coverage. In these works, the authors introduce the concept of

LITES

03:30 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

Execution Time Profiles (ETPs) used to represent the relative frequencies of execution times for
basic blocks of a program. They also provide a timing scheme for constructs such as conditionals
and loops, and an algebra for combining independent ETPs to provide an ETP for the whole
program. For sequential combination, this involves using the basic convolution operator. Further,
they point out the importance of accounting for dependences between basic blocks when combining
ETPs otherwise unsound results could be obtained. Potential sources of dependence include:
low-level hardware features such as caches and pipelines, and high-level path dependences. They
suggest using biased convolution14 to account for unknown dependences. (We note that Ivers and
Ernst [64] later showed that biased convolution is insufficient to produce a distribution that results
in the worst-case exceedance probability for every possible value of the execution time budget). A
tool set is described by Bernat et al. [18] that implements the mechanisms described above. The
main components are: instrumentation, trace generation, trace analysis, structural analysis, and
timing program generation. This tool set was the precursor and prototype for the RapiTime tool
from Rapita Systems15. Later in 2005, Bernat et al. [17] examined the problem of combining the
ETPs for two basic blocks of code A and B when there are dependences between them. Here, the
authors propose applying copulas (representing the dependences) to the marginal (i.e. separate)
distributions of A and B to obtain the joint distribution.

In 2014, Kosmidis et al. [70] introduced the idea of Path Upper Bounding (PUB) for time-
randomised hardware with a random replacement cache. With PUB, the program is modified so
that it retains the same functionality, but has the same timing behaviour for every path, and that
timing behaviour upper bounds that of the original program. PUB inspects each conditional in the
program recursively and adds accesses such that all sub-paths of a particular conditional contain
the same set of accesses. Once PUB has been applied, then the modified program is subject to
MBPTA, with no particular attention needed to the input vectors used or the paths exercised, since
all will result in a timing behaviour that upper bounds that of the original program. Evaluation,
using the EEMBC benchmarks, shows that PUB increases code size by 20-100% depending on
the amount of nesting and conditionals present, with the pWCET estimate at an appropriate
probability of exceedance increased by up to 50%. We note that the application of PUB requires
a trusted or certified implementation, since it modifies the code of the original program to create
the version that is tested for timing correctness. Further, the method only works for systems that
use a single-level random replacement cache.

The Extended Path Coverage (EPC) approach proposed in 2015 by Ziccardi et al. [136] also
addresses the issue of path coverage via a hybrid approach. EPC requires that execution time
measurements are made at the basic block level, while also recording the path taken, and that
sufficient coverage is obtained to provide an Execution Time Profile (ETP) for each basic block.
The ETPs are then modified to discount any benefit that may have accrued due to the path
taken when the measurements were made. This is done by computing a probabilistic padding
via the SPTA techniques developed by Altmeyer and Davis [7], considering the path actually
taken and the memory accesses in the immediately preceding basic blocks. Synthetic end-to-end
observations for all feasible paths can then be generated by randomly sampling the ETPs for the
relevant basic blocks along each path. These synthetic observations are then fed into MBPTA.
The authors evaluated EPC compared to directly applying MBPTA. For single path code there
was no difference. For multi-path code with a known worst-case path, the EPC method resulted
in pessimism of up to 30%. Comparisons with PUB [70] showed that EPC achieved on average

14Biased convolution combines values from two distributions assuming perfect correlation with respect to the
percentile of the execution time, i.e. largest correlated with largest, smallest with smallest etc.

15 https://www.rapitasystems.com/products/rapitime

https://www.rapitasystems.com/products/rapitime

R. I. Davis and L. Cucu-Grosjean 03:31

similar performance with a +/-30% variation apparent between the two methods. EPC has the
advantage with respect to directly applying MBPTA that it reduces the burden of path coverage,
and the advantage over PUB that it does not require changes to be made to the executable code
in order for measurements to be taken. EPC does however inherit some of the disadvantages
of SPTA in that it needs to know the addresses of accesses to determine which cache sets they
map to, and so compute the padding. Further, fine grained observations are needed at the basic
block level, and accompanying structural analysis to re-construct the possible paths. EPC was
developed for systems with separate, single level data and instruction caches, given the current
lack of SPTA for multiple levels of cache (discussed in Section 3.4), it is not clear if the method
could be extended to more complex memory hierarchies. Like PUB, EPC only applies to systems
with random replacement caches.

5.2 Summary and Perspectives
A limited amount of research has aimed at addressing the path coverage problem via the use of
hybrid methods [19, 70, 136]. However, these methods have some drawbacks, initial work by Bernat
et al. [19] recognises the key issue of dealing with dependences between the measurements obtained
for different basic blocks, but is unable to provide a practical approach for dealing with them.
Later work on Path Upper Bounding (PUB) [70] requires substantial changes to the executable
code, inflating code sizes by up to 100% and execution times by up to 50%, and requiring a trusted
or certified implementation. Finally, the Extended Path Coverage (EPC) method [136] makes
use of SPTA to compute a probabilistic padding to account for the dependences between the
execution times of basic blocks due to the random replacement cache. EPC thus inherits some of
the disadvantages of SPTA in that it needs to know the addresses of accesses to determine which
cache sets they map to, and so compute the padding. Both PUB and EPC methods only work
with random replacement caches.

In general, the issue of path coverage in relation to MBPTA remains unsolved. One approach
for simple systems with few paths is to apply EVT on a per-path basis, i.e. to traces of observations
taken for each specific path separately, thus producing a pWCET distribution for each path. The
overall pWCET for the program can then be obtained as a tight upper bound on the pWCET
distributions for all of the constituent paths. This envelope approach is well-suited to systems
where there are a limited number of paths and the user can provide input vectors which exercise
all of them. For many systems this is however unrealistic. The alternative is to apply EVT
per-program i.e. to a sample of observations that cover all of the different paths. (Note, all paths
need to be covered or the pWCET estimates can quickly become unsound as shown by Lesage et
al. [85]). This approach raises difficulties in applying MBPTA, since the resulting observations
will most likely form a mixture distribution (with the different distributions from the different
paths contributing to the mixture), and thus care needs to be taken to ensure that sufficient
observations are obtained from the tail of the distribution, i.e the worst-case path(s). This can be
heavily impacted by the frequency of occurrence of different paths during analysis, and thus gives
rise to issues regarding representativity. Further research is needed in this area.

6 Enabling Mechanisms and Techniques

MBPTA methods [34] based on EVT work well when the observations are able to characterise the
different sources of execution time variability and their probability of occurrence. As an example,
consider a program running on hypothetical time-randomised hardware where each instruction
takes an random amount of time to execute, from 1 to 6 cycles, independent of all of the other
instructions. Assume the program has 10 instructions. The overall execution time will behave

LITES

03:32 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

like the sum of the values of 10 fair dice. While the worst-case (i.e. 10 sixes) is unlikely to be
observed (probability ≈ 10−8), EVT is able to estimate the tail of the distribution from a relatively
small number of observations (e.g. 1000). Contrast, this with a hypothetical time-predictable
system, here the execution time might depend on say 10 different input variables (each with values
from 1-6). Let us assume that there is some small variability in overall execution time which
depends on the input values themselves e.g. the overall execution time is 10, 20, 30, 40, 50, or 60;
however, if all 10 inputs take a specific combination of values then there is some conflict in the
hardware which slows processing down and the execution time is 600. The probability of observing
this via random testing of the inputs is ≈ 10−7. In this case, applying EVT on 1000 observations
would most likely result in a prediction based on the small variability that has been observed, but
would obviously not account for the much larger variability that has gone unobserved. As a result,
the pWCET estimate would be unsound. This is an example of a needle-in-a-haystack problem
in testing. The intent of using time-randomised hardware is to avoid hazards similar to the one
described above. These can potentially occur with time-predictable hardware such as LRU caches,
when the unlikely, but not impossible, scenario of multiple input-data dependent accesses mapping
to the same cache set occurs. We note that such hazards, referred to as cache risk patterns, can
also occur with time-randomisation techniques such as random placement (see Section 6.3).

Since the work of Cucu-Grosjean et al. [34], considerable efforts have been expended to support
MBPTA methods via the use of additional hardware and software time-randomisation mechanisms.
These include hardware and software random placement for set-associative random replacement
caches, random permutation buses, degraded test modes, and better random number generators.
In this section, we review the supporting work in these areas.

6.1 Caches and Hardware Random Placement
Fully-associative caches are slower and use more energy than set-associative caches of the same
overall size but a much smaller number of ways. This is due to the extra logic needed to check if a
memory block is in any, as opposed to a small number of, cache lines. Because of this, in practice
caches tend to either be direct mapped or to have 2, 4, 8 or 16 ways. The idea of using a random
placement policy is to provide more randomisation with a set-associative random replacement cache
than is possible with modulo placement, while improving access times and energy consumption
compared to a fully-associative random replacement cache. Random placement can be achieved
in hardware (via a randomised hash function used to control the mapping of memory blocks to
the cache) or via software (through the use of compiler techniques and runtime support that
randomise the positioning of code and data in memory). In each case, a random placement is
selected at the start of each run of the program and remains in place for the duration of that run.
The cache is then flushed between runs ready for a different random placement to be used on the
next run.

The idea of random placement has its origins in the 1990s. In 1993, Schlansker et al. [115] first
proposed random placement as a means of improving the cache miss ratio of matrix operations. In
1999, Topham and Gonzalez [124] proposed the use of polynomial modulus functions (operating
on memory addresses) as a means of pseudo-randomising cache placement, in order to reduce
the number of conflicts. We note that while these methods can avoid systematic conflicts due to
particular code structures, they provide a deterministic mapping that depends on the memory
addresses, and thus always produce the same placement for a given memory layout. (The placement
does not change on each run of the program).

The majority of the work on hardware random placement for random replacement caches was
developed in a series of papers from 2013–2016 by Kosmidis and co-authors including Abella,
Cazorla, Quinones, and later Hernandez [68, 69, 67, 61].

R. I. Davis and L. Cucu-Grosjean 03:33

In 2013, Kosmidis et al. [68] proposed the use of a hardware random placement policy as part
of the cache design. The parametric hash function used aims to avoid systematic collision of two
memory blocks in the same cache set. The evaluation considers random placement applied on top
of set-associative random replacement caches, thus it is difficult to quantify the contribution of
random placement versus random replacement. Where these factors can be separated e.g. for a 1
way – 256 set (i.e. direct mapped) cache with random placement, and a 256 way – 1 set (i.e. fully
associative) random replacement cache, the results show that random placement results in a factor
of 2.6 degradation in execution time performance (measured in terms of the average number of
instructions per cycle) compared to modulo placement. By comparison, in the fully associative
case, random replacement shows approximately 10% degradation in performance compared to
LRU. In a journal extension in 2014, Kosmidis et al. [67] provided a detailed analysis of the
quality of the hash function used for random placement, as well as more detailed evaluation results,
including an investigation into energy consumption and cache access times.

As part of an analysis for caches with random placement and random replacement, Kosmidis
et al. [68] gave formulae for the cache hit probability of a given access in a set-associative random
replacement cache; however, as shown by Davis et al. [41], this formula cannot be used in SPTA
since it may result in a pWCET distribution that is optimistic (i.e. unsound). Similarly, the
formulae given for the cache hit probability assuming caches using random placement, or both
random placement and random replacement also cannot be used in SPTA.

In a number of works, Kosmidis et al. [68, 74, 67]) describe the concept of an Execution Time
Profile (ETP) as defining the different execution times of a program (or instruction) and their
associated probabilities. They state that “the existence of an ETP ensures that each potential
execution time of the program (for MBPTA) or instruction (for SPTA) have an actual probability
of occurrence, which is a sufficient and necessary condition to achieve the desired probabilistic
i.i.d. execution time behaviour” so that MBPTA can be applied. However, this is not entirely
correct. The argument given in more detail in a white paper by Abella et al. [1] shows that the
time-randomised architecture proposed ensures the existence of an ETP for a single path through
the program starting from a fixed initial software and hardware state. Thus the observations for
that path and initial state will be independent and identically distributed (i.i.d.). However, for a
complete program, with multiple paths, this does not necessarily mean that the execution time
observations collected over multiple paths for use in MBPTA will be i.i.d. As a simple example,
consider a program that implements a state machine with states 1-5 that it cycles through in
order. Each state may have an execution time that is quite different from the others e.g. 100± 20,
200± 20, . . . 500± 20, where ±20 represents the random variation and the first value is determined
by the state variable. Now when multiple runs of the program are performed, it cycles through
the states, and hence the execution times observed are not independent, rather there is a strong
correlation between them with a lag of 5. In cases such as this MBPTA may or may not be
applicable; appropriate statistical tests are needed to determine if the execution times observed are
actually i.i.d., as there is no relation between the statistical properties of the execution times of an
instruction and the statistical properties of the execution times of an entire program containing
that instruction. The architecture alone cannot ensure that the execution times will be i.i.d. for
all real-time programs.

Later in 2013, Kosmidis et al. [69] applied MBPTA [34] to a system with multiple levels of cache
that use random replacement along with a random placement policy implemented in hardware [68].
Here, separate L1 instruction and data caches are assumed, with a unified L2 cache. Assuming
latencies for the L2 cache and memory of 10 and 100 cycles respectively, the evaluation shows
that using a second level of cache improves the pWCET estimate at an appropriate probability of
exceedance for the EEMBC benchmark code by 10-90% depending on the size of the working set.

LITES

03:34 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

The authors also give a series of formulae that approximate the probabilities of cache misses for
different cache arrangements. These formulae relate to those from earlier papers [68, 67], which
can be optimistic by orders of magnitude as shown by Davis et al. [41].

Building on the work of Kosmidis et al. [68], in 2014 Slijepcevic et al. [120] considered a
time-randomised (i.e. both random placement and random replacement) last-level cache that is
shared between cores in a multi-core system. The basic idea proposed is that a shared time-
randomised cache makes the cache interference suffered by a task due to co-runners depend only
on the frequency of co-runner cache misses (i.e. evictions) and not on the precise cache lines that
are accessed. The authors present a hardware mechanism that limits the eviction frequency by
enforcing a minimum inter-eviction delay for each core. The pWCET distribution of each task is
then estimated at analysis time with this mechanism limiting its rate of cache misses (i.e. stalling
execution if two misses would otherwise occur too close together), and synthetic co-runners causing
the maximum possible rate of evictions (i.e. separated by exactly the minimum inter-eviction
delay). To avoid problems due to systematic interleaving, the minimum inter-eviction delay is
itself set to a uniform random value with the desired mean. Cache sharing with the proposed
mechanism limiting contention is compared to cache partitioning into 4 partitions of 2 ways each.
The latter results in estimated pWCETs at an appropriate probability of exceedance that are on
average 56% higher.

In 2015, Anwar et al. [9] developed a VHDL implementation of random replacement and the
hardware random placement policy proposed by Kosmidis et al. [68] for instruction and data
caches, and integrated it with an Ion MIPS32 processor core on an FPGA. They used the Mersenne
Twister algorithm, which is considered a good hardware solution for random number generation,
replacing the Multiply With Carry random number generator previously proposed [68]. For a set
of benchmarks operating on arrays and matrices, with nested loops, the authors claim that the
time-randomised hardware gives an improvement of 6% and 19% over LRU for 8-way and direct
mapped caches respectively, when comparing observed execution times. We note; however, that
these figures use the worst-case execution times observed in 30 runs with the time-randomised
hardware; whereas the predicted pWCET at an exceedance probability of 10−3 is consistently
larger than the measurements shown for LRU.

An improved hardware random placement policy called random modulo was described by
Hernandez et al. [61] in 2016. With the parametric hash function for random placement introduced
by Kosmidis et al. [68] there is a finite probability that adjacent memory blocks will be mapped
to the same cache set in some placements and thus conflict with each other. This degrades
performance, particularly for an instruction cache with respect to loop constructs that span a
number of adjacent memory blocks. The random modulo approach seeks to avoid this problem. It
effectively creates a random permutation which maps from addresses in a memory segment (the
same size as a cache way) to cache sets. This mapping retains the property of modulo placement,
whereby memory blocks separated by less than the size of a cache way will not conflict in the
cache. The hardware implementation also has a number of advantages over the parametric hash
function method of Kosmidis et al. [68]; it uses less than 10% of the silicon area and can operate
at a higher frequency. The evaluation of random modulo for instruction and data caches shows
that it provides a significant reduction in the pWCET estimate at an appropriate exceedance
probability, compared to the parametric hash function, with an advantage of 25-62% across the
different EEMBC benchmarks studied.

Later in 2016, Trillia et al. [127] improved the resilience of caches implementing the random
modulo random placement policy described by Hernandez et al. [61]. They note that the original
form of this policy does not result in an even distribution in terms of how often the cache lines are
used. This is due to the fact that the index bits that are used are entirely dependent on the access

R. I. Davis and L. Cucu-Grosjean 03:35

pattern of the program. By the simple expedient of XORing part of the selected random seed
with these index bits, homogeneity of cache line use can be achieved. This has the desirable effect
of making the cache more reliable, since one of the main sources of transistor degradation (called
Hot Carrier Injection) is proportional to the amount of use. The additional XOR gate has no
effect on the maximum operating frequency of the cache, since it is not on the critical path.

In 2018, Benedicte et al. [11] considered the use of random replacement policies in multi-
level caches. They show that performance, in terms of pWCET estimates at an appropriate
probability of exceedance, can be improved by using different policies in the L1 and L2 caches.
They explore the use of random modulo placement [61] in the L1 cache and the use of a parametric
hash function [68] across L2 cache segments combined with either modulo or random modulo
placement within L2 cache segments. These approaches provide an improvement in performance
of approx. 30% compared to using parametric hash functions at both levels.

6.2 Caches and Software Random Placement
The majority of the work on software random placement for random replacement caches was also
developed in a series of papers from 2013–2016 by Kosmidis and co-authors including Abella,
Cazorla, and Quinones [72, 73, 71, 78].

In 2013, Kosmidis et al. [72] proposed the use of compiler techniques and runtime support to
randomise the layout of both code and data in memory; effectively providing a software means of
random placement applicable to hardware with direct mapped caches or set-associative caches
using LRU replacement. The code and data layout in memory is changed before the start of each
run of the program. Due to the deterministic mapping to cache, this has the effect of randomising
the cache lines at which code and data objects start in the cache, thus randomising conflicts
between objects, but not within them. Evaluation on examples from the EEMBC benchmark
suite produce observations of execution times that pass the i.i.d. tests, thus allowing MBPTA to
be applied. Software random placement does however have a number of drawbacks. The results
show that the overheads increase the pWCET estimate at an appropriate exceedance probability
by a factor of 10 for code that contains a loop that is repeated 100 times, and by a factor of 2 if
the loop repeats 1000 times. We note that re-arranging code and data objects at runtime may be
unacceptable in many industry sectors, such as automotive and aerospace. Such a re-arrangement
means that deployed systems could run code and data layouts that have never been tested. This
may reveal some subtle bug in functionality which was dormant in tested configurations, and
could be very difficult to reproduce.

Subsequently, in 2014 Kosmidis et al. [73] acknowledged issues with their software random
placement scheme [72]. This scheme conflicts with the design principles of the ISO26262 standard
for the development of automotive software: “(i) limited use of pointers, (ii) recommendations
against the use of dynamic objects, and (iii) no hidden data flow or control flow”. The authors
therefore proposed an alternative: Static Software Randomisation. Here, the idea is to create
a series of binaries at compile time that have locations for functions and data such that their
mapping to cache follows a random selection. The method chooses random offsets for each function
and data object from the start of the cache. It then finds a suitable ordering of the functions
in memory, with some additional spacing to achieve the desired mapping to cache via modulo
placement without wasting too much memory. The locations of stack frames and global variables
are similarly randomised at compile time. The authors propose creating N binaries, running each
one once, measuring its end-to-end execution time, and using this data as input into MBPTA.
They assume that the estimated pWCET distribution so obtained will apply to all of the binaries.
Then at deployment they propose either (i) a different binary is deployed in each production unit,
or (ii) a single binary is chosen and deployed in all production units. They note that (i) may

LITES

03:36 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

not be acceptable if each individual unit is not fully tested. The authors claim that the pWCET
distributions obtained from their scheme will be valid for case (ii), however, this is not correct.
For the MBPTA method based on EVT to give sound results, it is necessary that the observations
made in the analysis phase are either directly representative of those that could occur during
deployment of the system, or they upper bound a set of values that are representative of those that
could occur during deployment. Neither is the case when observations are taken from different
binaries, which are effectively different systems to the one deployed. In this case, the observations
are not identically distributed, but rather they come from the different distributions associated
with each of the different binaries.

In 2016, Kosmidis et al. [71] investigated the use of static software randomisation applied to
software from an automotive cruise control system running on a single core of an AURIX multi-core
system. Dynamic software randomisation is not possible for this system, since the AURIX platform,
in common with many used in automotive systems, does not permit self-modifying code. Instead,
the authors use static software randomisation where program code, stack and global data are
allocated random locations in memory across different binaries. A pool of different binaries are
used during the analysis phase to obtain observations, with a single binary selected for deployment.
The authors claim this allows EVT-based methods to be applied; however, as discussed above,
this approach is not valid. In particular, the “overall system” used during analysis, which operates
by selecting and then running a binary to obtain a single observation, is not the same as the
system used during operation, which runs the same binary every time. Thus the execution time
observations made at the analysis stage are not identically distributed with respect to those
obtained during deployment, and hence the results of applying EVT-based methods are invalid in
this case. Unfortunately, the authors misunderstand the point of applying tests on the observations
to determine if they are independent and identically distributed (i.i.d.). They apply these tests
on observations from 1000 different binaries used during the analysis phase and then claim that
a positive result enables the use of EVT. This may be the case if the deployed system were the
same as the one used during analysis (i.e. it switched binary every run), but it is not.

A different approach to software random placement called TASA Tool-Chain Agnostic Static
Software randomisation Approach was proposed by Kosmidis et al. [78] in 2016. This approach
randomises the location in memory at which different objects defined in the source code are placed.
To do so, TASA relies on the fact that the compiler generates code and data in the order in which
they appear in the source files. Thus it adds functionally neutral padding code and data and
re-orders the declarations of variables and functions to achieve a degree of randomisation. Stack
frames are also randomised by adding a randomly sized array to the list of local variables and also
by re-ordering those variables. Similarly, the members of compound structures are also shuffled.
TASA has the advantage over previous efforts at software randomisation in that it operates at
the source code level and is thus portable, depending only on the programming language. The
TASA approach relies of creating N binaries to use in the analysis stage (collecting end-to-end
measurements for input into MBPTA) and then deploying a single binary for which it is assumed
the pWCET distribution derived via EVT will apply. Unfortunately, as discussed above this logic
is faulty. The N binaries represent different systems from that which is deployed, and hence the
results from applying EVT are not valid for the deployed system.

6.3 Cache Risk Patterns with Random Placement
A significant issue with both hardware and software random placement is that some randomly
chosen placements may result in a cache risk pattern [106] whereby a number of accesses within a
loop conflict in the cache, thus resulting in a large increase in the execution time for that particular
configuration. Further, the probability of such a pattern occurring can be below that which might

R. I. Davis and L. Cucu-Grosjean 03:37

reasonably be observed in the limited number of execution time observations used in MBPTA,
but above the probability threshold (e.g. 10−9) at which such long execution times can safely be
ignored. Thus random placement can create a needle-in-a-haystack problem, making the results
provided by MBPTA unreliable.

Research aimed at addressing the above problems was developed predominantly by the same
group of researchers who investigated software and hardware random replacement methods (see
Sections 6.1 and 6.2, including Abella, Benedicte, Cazorla, Kosmidis, and later Milutinovic [4, 13,
14, 98, 99, 97].

In 2014, Abella et al. [4] identified the above issue with the random placement scheme of
Kosmidis et al. [68] and suggested taking observations using a smaller cache as a way of revealing
cache risk patterns by making them more likely to occur in the limited number of runs employed
by MBPTA. Analysis is given which aims to compute the reduction in the size of the cache needed
to achieve this. This analysis makes an assumption that a cache risk pattern for a given placement
will always be observed in a run that uses that placement; however, unless the code is single path,
or the loop is executed on every path, then this assumption may not hold. Different runs may
exercise different paths, only a few of which may cause the loop with the cache risk pattern to
execute. Hence the reduction in the size of the cache necessary to achieve sound results may
be substantially greater than that computed using the formulation given in the paper. We note
that the analysis provided by Abella et al. [4] assumes that each unique address is re-mapped
independently by the random placement mechanism. While that may be the case using a hardware
approach to random placement [68], with software random placement schemes [72] code and data
are subject to random placement only at the level of functions and objects. It is not clear if the
method proposed by Abella et al. [4] can be applied in that case; however, it is apparent that the
issue of unobserved large variations in execution time also exists with software random placement
schemes.

In 2016, Benedicte et al. [13] studied the problem of cache risk patterns with hardware random
placement. In particular, they review the analysis given by Abella et al. [4] which determines the
probability Peoi of a particular event of interest (i.e. a cache risk pattern) occurring based on an
approximation using weak compositions theory. The authors present a precise calculation of Peoi
using an approach based on multinomial coefficients. This calculation shows that the value of Peoi
computed by Abella et al. [4] using weak compositions theory may over-estimate the precise value.
Such an over-estimate leads to an under-estimate of the number of runs required to have confidence
that the event will occur during the runs used to collect execution time observations for input into
EVT, thus undermining the soundness of the estimated pWCET distribution. Calculation of the
precise value for Peoi takes significantly longer, and may become intractable due to the need to
enumerate all possible cache allocations of interest. The method is only valid for programs with
“homogeneously accessed objects” in other words, programs where every object (e.g. instruction)
is accessed the same number of times, i.e. in one single outer control loop with no conditional
branches.

The issue of cache risk patterns due to software random placement schemes was also addressed
by Benedicte et al. [14] in 2016. The authors note that unlike hardware random placement,
software random placement works at the level of functions and objects and thus the probability
that a particular object is allocated to a given cache set is dependent on the allocation of previous
objects. They also note that determining a precise model of the probability Peoi of a particular
event of interest (a cache risk pattern) is intractable. Given a number of objects and their sizes,
Monte-Carlo simulation is therefore used to estimate Peoi, and hence whether it is greater than
the required threshold e.g. 10−9, but nevertheless too low to have confidence that the event will
occur during the runs used to collect execution time observations for input into EVT. If so, the

LITES

03:38 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

number of runs R is computed such that the probability that the event will not be seen in R

runs is less than Pconf = 10−9. This is given by the formula R ≥ log(Pconf)/log (1− Peoi). The
evaluation shows that when the number of objects is in the range [5− 60] (depending on cache and
object sizes), then Peoi can fall into the problematic range requiring an increase in the number of
runs. Some examples are given showing that with Peoi = 0.085 then the number of runs needs to
be increased to approx 2500. However, we note that for smaller values of Peoi e.g. 10−6 which
also appears in the evaluation figures for a smaller number of objects, then the number of runs
required such that the probability of not observing the event is less than 10−9 becomes very large
e.g. approx. 2.107, which is unlikely to be attainable in practice. Aside from the potential for
requiring very large numbers of runs, the main drawback of this approach is that, as the authors
note, it only works for programs with homogeneously accessed objects. This severely restricts the
use of the method when realistic programs, e.g. with functions within conditionals and nested
loops, are considered.

In 2016, Milutinovic et al. [98] addressed an issue with the approach of Abella et al. [4] to
identifying cache risk patterns caused by random placement that have a very low probability of
being captured in the observations used in MBPTA. They showed that the approach of Abella et
al.[4] ”only works when the impact on execution time of mapping any subset, bigger than W (the
number of cache ways) is the same”. This is only the case if all of the accesses are made in a
round-robin fashion, for example single path code within a single large loop; however, this is not
the case for programs in general which contain conditionals and other constructs. The method
proposed by the authors aims to solve this problem. It considers all

(
U
x

)
combinations of x out

the U different memory block accesses in the program, where x is varied in the range [W + 1, U].
The probability of a given combination of x accesses mapping to the same cache set is computed
and if this is found to be in the range of interest, then cache simulations are performed with the
given combination of x accesses mapped to the same cache set and other accesses mapped at
random. The simulation runs are used to determine an average miss count for the combination.
This information is used to obtain a set of (miss_count, probability) pairs indicating the number
of misses and their probability, derived from all of the combinations simulated. These points
are plotted on a graph and compared with the probabilistic Worst-Case Miss Count (pWCMC)
distribution obtained using MBPTA. If the pWCMC distribution does not upper bound all of the
(miss_count, probability) points, then the number of observations used in MBPTA is increased
until it does. The complexity of the method makes it intractable for practical programs with large
numbers of memory block accesses due to the number of different combinations involved. For
example 100 distinct memory block accesses and a 4-way cache would require cases where 5 address
mapped to the same cache set are considered, of which there are

(100
5

)
≈ 7e107 combinations. The

authors attempt to deal with this problem by limiting U to the 15 most heavily accessed memory
blocks. In the EEMBC benchmarks used for evaluation, this restriction means that approximately
two thirds of the accesses are covered. No argument is given explaining why this is sufficient to
ensure that the results obtained are sound.

In an extension [99] published in 2017, to their previous work [98] from 2016, Milutinovic
et al. gave an example showing how the original [4] and improved [13] analysis of cache risk
patterns, given by Abella et al. and Benedicte et al. respectively, fails to provide trustworthy
results in cases when accesses are made in a non-homogeneous way. Evaluation using the EEMBC
benchmark suite shows that for all of the benchmarks considered, these works under-estimate the
number of observations required by MBPTA leading to results (i.e. pWCET distributions) that
are untrustworthy below a probability of exceedance that is in the range 0.9 to 0.001 depending on
the benchmark. (By contrast, sound results would be trustworthy down to at least a probability
of exceedance of 10−9). Further, they also evaluate issues of trustworthiness with the earlier

R. I. Davis and L. Cucu-Grosjean 03:39

approach of Milutinovic et al. [98]. They show that issues can occur for simple cases where there
are more addresses accessed in a loop than are considered by the analysis. Comparing the results
for U = 10 to those for U = 15 on the EEBMC benchmarks shows that limiting the number
of addresses considered can lead to either an over- or an under-estimation of the number of
observations required by MBPTA, with under-estimation (occurring in 3 out of the 8 benchmarks)
leading to untrustworthy results at the required probability of exceedance (10−9).

Prior to the above works, many papers were published assuming random placement, but as far
as we can tell they did not check that the number of observations made was sufficient to avoid the
hazards of cache risk patterns described above. The validity of the evaluation results for systems
using random placement in the following papers is therefore questionable: [68, 72, 69, 73, 67, 71,
119, 129, 128, 60, 61, 136].

Subsequently in 2017, Milutinovic et al. [97] recognised some of the problems with their previous
work [98, 99] on identifying cache risk patterns caused by random placement that have a very low
probability of being captured in the observations used in MBPTA. In particular, they note that
“evaluating in the cache simulator all potentially conflictive combinations of addresses is not feasible
in the general case due to its exponential dependence on the number of addresses”. For U = 15
different addresses, exhaustive evaluation via cache simulation is shown to require 27 hours per
benchmark on a compute cluster running 100 jobs in parallel. To address this problem the authors
propose a Time-aware Address Conflict (TAC) approach which aims to identify a list of address
combinations that if mapped to the same cache set can result in a high miss count. The basic
method is the same as that described by Milutinovic et al. [98, 99], but rather than examining
an exhaustive list of conflicting address combinations, only a limited number (i.e. 20) for each
number K of conflicting addresses are considered. Values of K are examined from W + 1 upwards,
where W is the number of cache ways, stopping when the probability of K addresses mapping to
the same cache set is below the cutoff probability. The address combinations on the TAC list are
ranked according to the concept of guilt, which aims to identify those combinations of addresses
which are likely to result in high cache miss counts. Guilt is a heuristic estimate formulated via an
expression which reflects the re-use distance of each address access. This is used to populate an
address guilt matrix which aims to capture the extent to which misses on accesses to some address
A are caused by accesses to some other address B. The TAC approach uses the information in
the address guilt matrix to determine a ranking for different combinations of address accesses.
A small number of the top ranked combinations are then evaluated via cache simulation. This
reduction in the number of combinations considered improves the runtime by orders of magnitude
compared to the exhaustive approach. The approach is shown to be effective, giving the same
results as the exhaustive approach when the number of different addresses considered is limited to
15. Further evaluation on a railway case study considers 10 different test cases defined by specific
input vectors, with the address traces used as input into the method. It appears that the approach
is limited in its applicability to traces of addresses and thus to single paths through a program.
MBPTA can be applied on a per-path basis giving a result that is valid for a single path, and
can also be applied on a per-program basis. It is not clear how, or even if TAC would work on a
per-program basis. We note that the guilt metric is a heuristic, and there is no proof given that
it is guaranteed to always ensure that the address combinations with the highest likelihood of
resulting in cache misses will be examined. Thus the improvement in runtime efficiency appears
to come at a cost in terms of reduced confidence that the resulting pWCET distribution is valid.

In 2018, Milutinovic et al. [100] considered the problem of cache risk patterns due to random
placement policies when applying the Path Upper Bounding (PUB) technique of Kosmidis et
al. [70] (see Section 5.1). Recall that PUB pads the code with extra accesses in such a way that
the pWCET distribution for any path through the modified code upper bounds the pWCET

LITES

03:40 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

distributions for all paths through the original code. Thus only one arbitrary path through the
modified code needs to be exercised to obtain a sound pWCET estimate. The authors apply the
TAC approach [97] (discussed above) to the modified code produced by PUB. They show that
applying PUB can make cache risk patterns due to random placement either more or less likely
to occur, and may in some cases significantly increase the number of observations required by
MBPTA to obtain sound estimates of the pWCET distribution (e.g. from 3000 to 500,000). They
give examples where cache risk patterns lead to an under-estimate of the number of observations
required when using PUB alone, resulting in an estimated pWCET distribution which is unsound
compared to the empirical distribution obtained by taking a large number of observations. The
use of TAC is intended to address this problem.

6.4 Buffers, Buses and other Resources
As well as random replacement caches with/without random placement, other resources have been
investigated and adapted to provide randomised behaviour, with the aim of making systems more
amenable to being analysed using MBPTA techniques. The majority of the work in this area
was published by a group of researchers including Slijepcevic, Cazorla, Kosmidis, Jalle, Abella,
Hernandez, and Quinones from 2013 – 2016 [119, 27, 74, 65, 25, 60].

In 2013, Slijepcevic et al. [119] proposed a Degraded Test Mode (DTM) which when combined
with fault tolerant random replacement caches enables MBPTA to be used to obtain pWCET
distributions which estimate the execution time behaviour of the system in the presence of a given
number of hardware faults that cause some cache lines to become unavailable. The motivation for
this work is that although test methods can verify that processors do not contain faults when
first deployed, degradation can cause latent defects to manifest into permanent faults. Hardware
mechanisms can address such failures to some extent, e.g. by disabling cache lines when a faulty
bit is detected. The rate at which this occurs depends on the technology scale used. With
random placement and a set-associative random replacement cache or a fully-associative random
replacement cache, the authors argue that there is little dependence on the actual cache lines
which are faulty. Thus the degraded test mode configures the cache to have a number of lines
disabled, commensurate with the fault probability per bit over the required lifetime of the system.
MBPTA can then be applied to the system in degraded mode. Due to a lack of dependence on the
location of any failed lines, the resulting pWCET distribution is valid for any set of bit failures in
the cache lines that could be expected during the lifetime of the system.

Also in 2013, Cazorla et al. [27] looked at the requirements placed on the analysis phase runs
of a program on a hardware platform, with the aim of ensuring that the observations of execution
times are representative of or upper bound those for any population of such values that might be
obtained during operation. As discussed in Section 4 representativity is necessary for the estimated
pWCET distribution derived via MBPTA to be valid for future scenarios of operation. The authors
reinforce the point made by Cucu-Grosjean et al. [34] in 2012 that adequate path coverage is
required to ensure that observations from the worst-case path are included. The authors classify a
number of different sources of execution time variation that need to be controlled for. For example,
division operations may take a variable time dependent on the operands. Such variation could
potentially be controlled for by using worst-case values, or in hardware via a worst-case mode,
where such operations always take their worst-case time to execute. Code and data placement in
memory typically affect the mapping to cache, which impacts execution times. Here, the authors
suggest using random placement techniques to ensure representativity; however, as discussed in
Section 6.3, random replacement also has significant problems relating to representativity due to
cache risk patterns.

In 2014, Kosmidis et al. [74] aimed to set out the properties or architectural features that a

R. I. Davis and L. Cucu-Grosjean 03:41

processor needs to have to guarantee that the MBPTA method [34] can be applied. They classify
hardware resources into either jitterless, having no execution time variability, or jittery resources.
Jittery resources may result in latencies that depend on the execution history or the input values or
a combination of the two. They propose that jittery resources should either be assumed to always
take their worst-case latency or be time-randomised. In the evaluation, the authors apply MBPTA
to programs running on a time-randomised architecture with both instruction and data caches
using random placement and random replacement. They use the statistical tests described by
Cucu-Grosjean et al. [34] to check if the execution time observations are i.i.d., and this was shown
to be the case for the EEMBC benchmarks used. The authors claim that “Both tests are passed in
all cases, which proves that the example architecture meets the i.i.d. requirement.”. This claim of
proof is in our view extended too far, rather the experiments show that the observations are i.i.d.,
but only for the particular instances of those benchmarks on the given architecture. There is no
evidence that this would necessarily be the case for any program on the given architecture. Later
work by Lima et al. [88] (discussed in Section 4.3) shows that using a random replacement cache
is not sufficient to guarantee that observations are i.i.d., neither does an LRU cache necessarily
preclude it. We note that in general any hardware resources or software variables that preserve
state between runs of a program could potentially lead to dependences between execution time
observations, breaking the independence property.

A random permutation bus was proposed by Jalle et al. [65] in 2014 as a means of connecting
cores and memory in a multi-core system. With a random permutation bus, the bus arbiter
produces a new random permutation (order for contenders to access the bus) every N rounds,
where N is the number of contenders. The random permutation bus is compared to a lottery
bus (introduced by Lahiri et al. [79] in 2001) that makes a random selection of which contender
gains access to the bus on each round, and a conventional Round-Robin bus. Applying MBPTA,
the authors show that the pWCET estimate at an appropriate exceedance probability is reduced
by between 1.5% and 9.6% for a random permutation bus as compared to a Round-Robin bus. In
the latter case, an assumption is made that every access incurs the worst-case delay.

In 2015, Panic et al. [102] showed how systems that incorporate buses and other resources with
TDMA arbitration may be analysed using MBPTA. The key idea is that the largest difference
between execution times that can be caused by a misalignment of any number of synchron-
ous (blocking) requests with the TDMA cycle is w− 1 where w is the length of the overall cycle as
shown by Kelter et al. [66]. The authors extend this result to multiple TDMA resources showing
that it generalises to LCM(w1, w2, . . .)− 1. Given these results, the simple expedient of analysing
the system using MBPTA and then padding the results by adding the largest difference that could
be caused by misalignment with the TDMA cycle, results in an upper bound. Since the padding is
typically small compared to overall execution times, this method is effective and provides superior
performance to the random permutation bus [65] or forcing all accesses to take the worst-case
time. An extended version of this work was published in 2017 by Panic et al. [103], adding a
discussion of the impact of timing anomalies.

The behaviour of random replacement caches, random permutation bus arbitration, and other
hardware components with time-randomised behaviour depends on the quality of the underlying
random number generator. In 2015, Agirre et al. [5] described a Pseudo-Random Number
Generator (PRNG) designed to provide the random numbers needed to implement these hardware
components. The proposed PRNG uses a Linear-Feedback-Shift-Register (LFSR) design, which
provides a long period (> 260) for the random number sequence. The LFSR design is modified
to produce a 32-bit pseudo random number on each cycle, groups of bits from which are then
used as the random numbers required for different components (e.g. instruction and data cache
etc.). The authors discuss a number of ways in which the basic design can be hardened to meet

LITES

03:42 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

the safety requirements of IEC-61508 SIL 3. These include duplicating the PRNG and checking
via a voter that the outputs match, and also using a watchdog timer to check that new values
have been produced. They report that the PRNG passes 187 out of the 188 tests specified by the
US National Institute of Standards and Technology for assessing randomness properties. Failing
only the Linear Complexity test which is used to determine if the sequence produced is complex
enough to be considered random [109]. The evaluation shows that the observed execution times
for the EEMBC matrix benchmark failed the i.i.d. tests used as part of the MBPTA method when
obtained from a LEON 3 processor prototyped on an FPGA using the default random policy, but
passed those tests when the LFSR PRNG implementation was used.

In 2015, Hernandez et al. [60] took a preliminary look at the changes potentially needed to the
LEON3 multi-core processor in order to support the use of MBPTA. They identify a number of
points: The existing random replacement policy, which can be configured for the caches, uses a
randomisation method that is not of sufficient quality. It is replaced by the PRNG described by
Agirre et al. [5]. Further, hardware enabled random placement is implemented using the method
based on a parametric hash function described by Kosmidis et al. [67]. The core-to-L2 and L2
cache are modified so that requests from one core cannot cause stalls for another core. Finally,
the bus and memory controller arbitration policies are round-robin and FIFO respectively. The
authors suggest that these need to be modified to be either random permutation [65] or lottery
bus [79]; however, this change is not made, instead benchmarks are run on only one core thus
avoiding issues of contention. The brief evaluation shows that the 1000 execution time observations
used for each of the two programs vary by less than 0.001% for rspeed, and by 0.04% for the
matrix benchmark. This tiny variation is due to the fact that the benchmarks fit comfortably in
the cache. The authors draw no conclusions, but suggest that they will in future study further
benchmarks with different cache requirements.

In 2016, Cazorla et al. [25] and Kosmidis et al. [76] summarised the research and development
work on support mechanisms for the MBPTA method [34] developed during the EU PROXIMA
project and described in previous papers.

Also in 2016, Slijepcevic et al. [117] proposed a tree-based Network-on-Chip (NoC) for a
many-core system, adapted with the aim of permitting MBPTA of tasks running on the cores. The
tree-based NoC uses either Round-Robin (with a worst-case mode enabled for analysis), Lottery,
or Random Permutation methods for arbitration at each level in the tree. The evaluation shows
that the tree-based NoC provides higher performance than a bus for clusters of 8 or 16 cores.
Slijepcevic et al. followed this work with a further paper [118] in 2017 on the use of Random
Permutation methods in the routers of a wormhole NoC. The aim being to avoid the systematic
worst-case behaviour which has to be accounted for in the analysis of worst-case traversal times
when deterministic arbitration policies are used. Applying MBPTA, and using a probability of
exceedance of 10−13, the authors show that the pWCET estimates improve on the WCETs for
an equivalent NoC with deterministic routing by on average 22% to 75% for 3x3 and 6x6 NoCs
respectively. (This assumes that the number of in-flight requests are limited, a technique that
improves the analysed performance in the randomised case, but not in the deterministic case).

An alternative approach to implementing random replacement caches was proposed by Benedicte
et al. [12] in 2018. Recall that on a cache miss, the conventional random replacement policy
selects at random any one of the cache lines in the cache set for replacement. With W ways
this means that on a cache miss the probability of eviction is 1/W for each cache line in the
set. Although this form of randomisation is effective in supporting MBPTA, it is also inefficient.
For example, alternate accesses to two addresses that map to the same cache set may cause
mutual evictions even in the case where there are 4-ways available. The authors propose a form of
random permutation to avoid this problem and thus improve performance. With this Random

R. I. Davis and L. Cucu-Grosjean 03:43

Permutations Replacement (RPR) method a random permutation is generated for each cache
set. This permutation determines the order in which all of the ways in the set will be subject to
eviction. Once all of the ways have been evicted then another random permutation is chosen and
so on. This has the advantage that any repeating sequence of K < W distinct address accesses can
only result in a maximum of K − 1 evictions. (This worst-case can happen across the boundary
of two permutations). The authors describe an efficient hardware implementation of the RPR
mechanism which trades off the number of distinct permutations used against the number of
bits required for implementation. The evaluation shows that the approach results in pWCET
estimates at an appropriate probability of exceedance that are on average 24% better than those
for conventional random replacement for the Mälardalen benchmarks studied, and 16% better on
average for a railway case study.

6.5 Summary and Perspectives
The concept of an “MBPTA-compliant” platform has been pursued in many publications with
the intent that any program running on the platform will be amenable to analysis using MBPTA
methods. While a commendable goal, recent research indicates that there is no such panacea.
Time-randomised architectures are neither necessary nor sufficient for the application of MBPTA
methods based on EVT. Rather the combination of input values and hardware states, the program,
and the hardware platform all influence whether MBPTA methods can be applied. Appropriate
statistical tests are needed on the sample of execution time observations to determine if the method
can be applied, with goodness-of-fit tests used to determine if the estimated pWCET distribution
is a close match to the empirical distribution of the maxima or peaks over threshold. While
time-randomised architectures may make it more likely that MBPTA methods can be applied,
they cannot guarantee it. Neither do time-predictable (deterministic) architectures preclude the
use of MBPTA methods [112, 16, 53, 54, 88, 87]. Time-randomised architectures may help in
avoiding hazards due to pathological cases where large variations in execution time can occur
very rarely (i.e. below the level at which they can reasonable be observed in testing) without
being made up of a combination of smaller variations that can be observed (see the hypothetical
example at the start of Section 6). However, time-randomisation does not always achieve this and
can sometimes make the situation worse, as has been shown in the case of random placement.

The work on random placement policies (reviewed in Sections 6.1 and 6.2) has a number
of issues. Randomising the mapping of memory blocks to cache sets across different runs of a
program has been shown to lead to cache risk patterns which may not be detected during testing
and analysis, but which can seriously impact execution times at much higher probabilities than are
acceptable in terms of the resulting timing overruns. Despite work by Abella et al. [4], Benedicte
et al. [13, 14], and Milutinovic et al. [98, 99, 97] there are as yet no viable practical solutions to
this problem that can guarantee to produce trustworthy results for realistic programs. Static
Software Randomisation [73, 71, 78] where a single randomly chosen placement is used in the
deployed system with various different random placements used in testing and timing verification,
appears to misinterpret the requirements of MBPTA methods that build upon EVT. For these
methods to give sound results, it is necessary that the observations made in the analysis phase are
either directly representative of those that could occur during operation, or upper bound them
as noted by Cazorla et al. [27]. This is not the case when observations are taken from different
binaries, which effectively constitute different systems. Such observations are not identically
distributed with respect to those from the system during operation, and hence it is invalid to
use the estimated pWCET distribution obtained via EVT in this case. Finally, while hardware
random placement requires custom hardware [9], dynamic software random placement [72] goes
counter to engineering practice, conflicting with the design principles set out in standards such

LITES

03:44 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

as ISO26262. Such re-arrangement of code and data objects at runtime means that deployed
systems could run code and data layouts that have never been tested. This is unacceptable in
many industries.

7 Case Studies, Benchmarks and Evaluation

Many papers surveyed in the previous sections include some form of evaluation. In this section, we
review work that specifically focuses on performance evaluation, through the use of case studies,
benchmarks, or evaluation frameworks. In addition, we review papers that provide a critique of
SPTA and MBPTA methods and the open challenges that remain.

7.1 Critiques
In 2014, Reineke [108] made a critical technical comparison between deterministic analysis of
LRU caches and probabilistic analysis of random replacement caches. He derives a number of
logical conclusions, considering first random replacement and then random placement versus
deterministic alternatives. Conclusion 1: LRU is preferable to random replacement in that it
always has better guaranteed performance compared to the simple re-use distance formula for
SPTA given by Davis et al. [39]. (We note that this is no longer the case with more effective
SPTA techniques [7, 6]). Regarding MBPTA, Reineke [108] notes that the measurement protocol
introduced by Cucu-Grosjean et al. [34] flushes the cache on program start and also prevents all
input-dependent memory accesses from accessing the cache. Thus for a given path the sequence of
accesses going to the cache is the same on every run, independent of the input data. Under that
assumption, the behaviour of an LRU cache is fixed for a given path and so the program has only
one execution time for each path. Conclusion 2 follows: MBPTA can be more efficiently employed
on top of an LRU cache. With random placement, Reineke [108] shows that no independent
non-zero probabilities of a cache hit can be assigned to accesses with a stack distance greater
than zero. Conclusion 3 follows: random placement would require complex conditional static
probabilistic analysis and is not amenable to current analysis techniques. Regarding MBPTA,
Reineke [108] shows that with random placement, MBPTA cannot necessarily detect that there
may be rare layouts (e.g. with a probability of 10−6) that result in a large number of cache
misses. Such layouts may not be observed in the runs used in the analysis phase of MBPTA.
Conclusion 4 follows: random placement is not suitable for use with MBPTA. (We note that the
same conclusion has also been reached by Maxim et al. [92] by considering the reproducibility
property of a measurement protocol required to ensure the convergence of any set of measurements
towards a representative, and thus sufficient, number of execution time observations for EVT-based
estimation of the pWCET distribution).

The technical critique given by Reineke [108] was discussed by Mezzetti et al. [96] later in 2015.
Regarding the use of SPTA techniques with random replacement caches (Conclusion 1), they
point to the more effective SPTA methods developed by Altmeyer and Davis [7], published after
Reineke’s paper, which show that the guaranteed performance of random replacement caches is
incomparable with that for LRU caches. With respect to SPTA and random placement (Conclusion
3), they agree that while it is true that current SPTA approaches cannot be used with random
placement, future advances may be possible along this line. To the best of our knowledge, as
yet no such advances have been made. Regarding the use of MBPTA with random replacement
caches (Conclusion 2), the authors note that random replacement has better performance than
LRU when the stack distance of accesses exceeds the number of cache ways, since in that case
LRU treats all accesses as misses. With respect to MBPTA and random placement (Conclusion 4)
they note the work on identifying the potential for cache risk patterns [4] as a possible means of
addressing this issue.

R. I. Davis and L. Cucu-Grosjean 03:45

In 2015, Stephenson et al. [123] outlined a certification argument structure aimed at providing
an appropriate argument for the use of MBPTA methods [34] in an industrial context. This makes
use of Goal Structuring Notation (GSN) to provide a modular structure showing the relationships
between different parts of the required argument that have different concerns. The required
argument is broken down into a number of elements relating to execution time measurement,
soundness of the MBPTA method, soundness of the timing data extraction, and uncertainty
mitigation. Further details of what is required for the “sound method” argument are then discussed.
These include the need for testing to adequately sample the path or paths that represent the
worst-case, and a number of factors related to the statistical methods used. Such factors include
the use of appropriate parameter values in hypothesis testing, e.g. in the i.i.d. test, and testing the
hypothesis that the tail of the distribution matches a Gumbel distribution. The authors point out
that a lack of confidence in the values of the parameters used could lead to a lack of confidence in
the overall method. Similarly, confidence is needed that the size of the sample of observations
used is sufficient. They also note that “The application of the MBPTA method requires providing
evidence that the hypothesis on which it stands hold in the context of use.” and that currently the
parameters used are based on general practice for statistical approaches.

Subsequently in 2017, Gil et al. [49] discussed the open challenges in MBPTA. They identified
three main areas:
1. How to ensure that a representative set of observations is obtained? This involves determining

the requirements for representativity, generating appropriate test vectors that will result in
representative observations, checking that coverage of the program and hardware states are
sufficient for representativity, and determining how many observations are needed.

2. How to ensure a trustable application of EVT? This involves demonstrating that the methods
used to obtain EVT configuration parameters are reliable, and that the application of those
methods is reproducible.

3. How to interpret the results of EVT? This involves understanding the uncertainties in the overall
measurement and analysis process, and determining an appropriate exceedance probability to
use.

7.2 Case Studies and Evaluation
In 2011, Santos et al. [113] investigated the composition of statistical models of execution time for
components, and how this is affected by different architectural features. They considered pairs
of components c1 and c2, and examined whether the simple convolution of the execution time
distributions obtained for the components in isolation (which is valid assuming independence)
gives a good approximation of the joint distribution obtained when c2 is executed immediately
following c1. They used the Kolmogorov-Smirnov goodness-of-fit test to test the hypothesis that
the two distributions are the same. The evaluation used code from the MiBench suite, with
the SimpleScalar tool chain used to simulate modern processors with features such as out-of-
order execution. Out of 100 compositions (pairs and triples) only 3 resulted in rejection of the
null hypothesis. (The null hypothesis is that the distribution formed from convolution of the
distributions for single components obtained independently is the same as the distribution obtained
by running the components consecutively). They also investigated which of 37 different hardware
configuration parameters had the strongest influence on the difference between the distribution
obtained via convolution and that directly measured. The re-order buffer had the most influence
overall; however, for the cases where the null hypothesis was rejected the branch predictor had
the most influence.

Time composability was also investigated by Kosmidis et al. [75] in 2013 in relation to software
running on a system with fully-associative random replacement caches. They showed that the
cache interference due to some other software component B running between invocations of a

LITES

03:46 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

particular component A, can be characterised in terms of the maximum number of cache evictions
that B can cause. This is limited to at most the number of distinct addresses u that the code in B
accesses. They propose using a micro-benchmark to characterise the maximum impact that any
such code B with u distinct accesses can have on the pWCET distribution of A. Equation (2) in
the paper aims to compute the number e of evictions required to evict at least u distinct entries
from the cache. (We note that with random replacement no such guarantee can be made; instead,
the formula approximates the number of evictions required such that the expected number of
distinct entries evicted is u). This formula is used to determine how many evictions a micro-
benchmark should make to upper bound the impact that the interfering code in B can have on
the subsequent execution time of the code in A by evicting at most u useful lines from the cache.
The improvements found in the pWCET estimates at an appropriate probability of exceedance
compared to flushing the cache were 5-10% for a 4Kbyte cache and 10-25% for a 32Kbyte cache
for programs from the Mälardalen benchmark suite.

Later in 2013, Kosmidis et al. [77] applied the MBPTA method developed by Cucu-Grosjean et
al. [34] (see Section 4.1) to systems that include buffer resources. They showed that resources with
deterministic behaviour such as FIFO buffers do not create different probabilities of execution
time outcomes for any given sequence of events, but rather propagate execution time variability
or jitter. (We note that this result is somewhat unsurprising, since such buffers have deterministic
behaviour any single fixed pattern of inputs yields a single fixed pattern of outputs).

In 2014, Abella et al. [2] compared deterministic and probabilistic methods of estimating
the WCET / pWCET distribution using code from the Maladarlen benchmark suite [56]. This
work compares classical static deterministic timing analysis using the Heptane tool for an LRU
cache to SPTA and MBPTA for a random replacement cache. The comparisons investigate the
sensitivity of the different approaches to cache line size and associativity. The SPTA method used
is the initial approach derived by Davis et al. [39] (see Section 3.3) that uses only reuse distances,
and provides a simple multi-path analysis. The MBPTA method used is the one developed by
Cucu-Grosjean et al. [34] (see Section 4.1). The authors only consider single-path benchmarks.
They found that in this case the results for MBPTA were less pessimistic compared to simulation
than those from SPTA. We note that it would be interesting to see these comparisons repeated
using the more sophisticated SPTA methods subsequently developed by Altmeyer et al. [7, 6], as
well as for multi-path programs using the SPTA derived by Lesage et al. [83, 82] (see Section 3.3).

In 2013, Wartel et al. [129] applied the MBPTA method developed by Cucu-Grosjean et
al. [34] (see Section 4.1) to an Integrated Modular Avionics case study. The software for the
case study comprises five functions from an application that performs data concentration and
maintenance of the flight control computers. This software was run on a simulator composed of a
PowerPC MPC755 instruction set and pipeline emulator combined with a time accurate cache
simulation. The memory hierarchy comprised separate 32KB, 8-way set-associative write-through
L1 caches, and a 64KB, 8-way set-associative unified L2 copy-back cache. The caches used both
random replacement and random placement. MBPTA was successfully applied, with only a few
hours needed to extract the measurements and analyse the resulting observations to produce
estimated pWCET distributions. The pWCET estimates at appropriate exceedance probabilities
resulted in values between 0.1% and 3.8% greater than the highest observed execution time for an
equivalent configuration with caches using LRU replacement and modulo placement. We note that
it is not clear if these figures include the overheads of random placement, which were previously
shown to be considerably higher by Kosmidis et al. [68] (see Section 6.1).

In a further avionics case study in 2015, Wartel et al. [128] applied the MBPTA method of
Cucu-Grosjean et al. [34] to two different programs. The first performs data concentration and
maintenance of the flight control computers, while the second computes an estimation of the centre

R. I. Davis and L. Cucu-Grosjean 03:47

of gravity of the aircraft. The programs were run on a cycle accurate timing simulator which models
the MPC755 architecture. The case study investigates two different hardware configurations. The
first is a single core that uses software random placement of functions and stack frames with LRU
caches. The second is a multi-core that uses hardware randomisation (random replacement caches,
random placement, and a random permutation bus arbiter). In both cases the observations of
execution times pass the i.i.d. tests enabling the MBPTA method to be applied. The results
show that software randomisation increases the pWCET estimate at an appropriate exceedance
probability by 12% for the first application compared to the maximum observed value for an
equivalent system with modulo placement. In the multi-core case, the increases were 15% and 28%
for the two applications. The authors note that the observed execution times in the multi-core
case were relatively independent of the load running on the other processors, and that this was
not the case with an equivalent system using a Round-Robin bus arbiter where the execution
times varied by more than a factor of 3. We note that this is a consequence of the fact that
Round-Robin is work-conserving whereas random permutation is effectively a variation on TDMA,
which re-orders the slots allocated to each core on each cycle. A more interesting comparison
would have been with traditional TDMA.

In 2015, Lesage et al. [85] introduced a framework that can be used to evaluate the precision
of MBPTA. This is difficult to do with complex programs and hardware due to the difficulty
in obtaining a ground truth in terms of the precise pWCET distribution. Instead of providing
real measurements as input to the MBPTA method developed by Cucu-Grosjean et al. [34] (see
Section 4.1), the proposed framework instead provides realistic data from synthetic tasks. Re-
strictions on the abstract model used enable the precise pWCET distribution to be computed
and used as a reference. The technique operates by first creating an Abstract Syntax Tree (AST)
representing the program. Execution Time Profiles (ETPs) are then obtained for basic blocks, via
measurements of the real program. These are attached to the AST, which is used to represent a
synthetic task. To evaluate the MBPTA method, the synthetic task is “executed”, i.e. a random
path is chosen through the task and values from the ETPs for the basic blocks visited by that
path are chosen at random. The overall synthetic execution time is then passed to MBPTA as
an observation. With this model, the precise pWCET distribution can be computed from the
AST via a tree-based analysis. For the simple synthetic tasks considered, the path randomisation
used is sufficient to ensure path coverage. With full path coverage, the MBPTA method provides
a tight and sound bound on the execution time obtained from the computed (precise) pWCET
distribution at an exceedance probability of 10−9. Further evaluation was performed removing
nodes (and hence complete paths) from the AST, these experiments show that a lack of path
coverage quickly degrades the soundness of the results with optimistic execution time predictions
appearing and becoming more prevalent as the number of omitted nodes is increased. This
illustrates the critical importance of achieving path coverage when analysing real systems. Some
aspects of the approach reported are favourable to current MBPTA techniques, for example the
random choice of values from the ETPs, and the use of completely independent ETPs for basic
blocks avoids path and state dependences which may be present with real programs running on a
real system. The authors suggest that the framework could be adapted to model different forms
of dependences in future, for example dependences between successive runs, and dependences
between the ETPs for successive blocks.

In 2017, Mezzetti et al. [94] applied the EPC method [136] (see Section 5.1) to a railway
application; a simplified European Train Control System. They describe how EPC was integrated
into an industrial tool chain (Rapita RVS16). Recall, that EPC collects observations at the basic

16 See https://www.rapitasystems.com/

LITES

03:48 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

block level. It then uses probabilistic padding computed using SPTA techniques derived by
Altmeyer and Davis [7] to increase the executions times observed to account for any advantage
that may have accrued due to the path taken to that block. Observations can then be synthesised
for all paths. The authors note that although EPC does not require that all paths are exercised
when obtaining the execution times for basic blocks, as shown by Lesage et al. [85], all paths
do need to be covered by the synthesised observations. In practice the number of paths may be
very large, the authors therefore make use of semantic information in the form of flow facts to
reduce the number of paths considered as feasible, accounting for maximum loop iterations and
correlations between conditionals. This is highly effective in the case of the railway application
studied, reducing the number of paths considered from 12996 to just 26. The hardware platform
used is an FPGA prototype implementing a modified LEON3/4 architecture, with random modulo
placement [61] and random replacement caches. We note that there is no mention of whether
the issue of cache risk patterns previously identified with random placement was addressed (see
Section 6.3). The results of a simple control experiment indicate that the EPC method leads to
approx. 10-20% over-approximation of the pWCET at an appropriate exceedance probability,
compared to exhaustively exercising all paths and using MBPTA. With the railway case study,
unfortunately the worst-case path could not be exercised during testing; however, from analysis of
a similar path that was executed, the authors estimate the over-approximation at around 30%.
They note that only 23% of basic blocks needed padding, and that padding increases the original
observations by on average 10%, and up to 400% in the worst-case.

In 2017, Fernandez et al. [48] reported on a case study using software random placement [72] (see
Section 6.2) in support of MBPTA. These techniques were applied to an application that controls
the active optics of a space telescope. This application runs on a LEON3 processor with separate
L1 data and instruction caches and a unified write-back L2 cache. The evaluation shows that
the maximum observed execution time is changed little by the overheads of dynamic software
randomisation. Further, the pWCET estimate at a probability of exceedance of 10−15 is only
approx. 2% larger than the maximum observed execution time for the original version, and hence
substantially less than the 20% engineering margin that the authors claim is typically applied in
this system. We note that in this work there is no mention of any mitigation of the issues of cache
risk patterns (see Section 6.3) that can occur with software random placement.

In a 2-page paper in 2017, Cros et al. [33] reported on a case study applying MBPTA to a
space application (Thrust Vector Control). They used a LEON3 processor with random modulo
placement [61] and an FPU modified to have fixed latency operations in analysis mode. The
results show that the pWCET at a probability of exceedance of 10−6 is 1.5 times larger than the
maximum observed execution time for the equivalent deterministic system. This equates to the
50% engineering margin that the authors claim is usually applied in this system. The values for
an exceedance probability of 10−9, 10−12, and 10−15 were approx. 1.75, 2.0, and 2.2 times larger
respectively.

The use of the MBPTA method developed by Cucu-Grosjean et al. [34] (see Section 4.1) was
extended to multi-core hardware (a 4-core LEON 3 platform implemented on an FPGA) by Diaz
et al. [43] in 2017. The key challenge here is to address the additional contention delay on memory
requests due to tasks running on the other cores. With the proposed method, the task under
analysis is run on a single core in isolation, i.e. with no contenders, and execution time observations
recorded. To account for possible contention, Performance Monitoring Counters (PMCs) are
used to record the number of requests of different types. Two approaches are then used to add
on appropriate upper bounds on the additional delays that could be caused by contention. A
fully time composable (fTC) approach includes the maximum possible delay that any contending
tasks on other cores could cause. A partially time composable (pTC) approach matches up

R. I. Davis and L. Cucu-Grosjean 03:49

each memory request of the task under analysis with the worst-case additional delays that could
be caused by specific contending tasks, taking into account the maximum number of delays of
different types that they may cause. pTC provides a tighter bound than fTC, but requires specific
information about the contenders. The experimental evaluation shows that the results from
MBPTA for tasks running in isolation are a few percent above the maximum observed value, thus
the remaining evaluation which factors in contention reveals mainly the effectiveness of the fTC
and pTC approaches. The pTC approach provides good results with a bound of less than 1.5
times the observed multi-core value for the benchmarks considered. The fTC approach is much
more pessimistic with bounds 12 times larger.

Also in 2017, Silva et al. [116] evaluated the reliability and tightness of the estimated pWCET
distributions derived by MBPTA via fitting (i) GEV and (ii) Gumbel distributions using the Block
Maxima approach. They used the L-moments method to fit a GEV distribution, and the Maximum
Likelihood Estimator to fit a Gumbel distribution. The evaluation assesses reliability in terms of
whether the pWCET estimate at a probability of exceedance of 10−15 and its confidence intervals
are above the High Water Mark (HWM), i.e. the maximum, obtained from 108 observations used
for validation. The tightness is assessed by comparing the pWCET estimate at a probability of
exceedance of 10−7 with the maximum values observed from 106 and 108 samples. Experiments were
performed on the bsort, insertsort, and bs sorting algorithms from the Mälardalen benchmark suite
using input data that selected the worst-case path (effectively single path examples). Variability
in run times was therefore only due to hardware randomisation in the execution platform. This
was an FPGA implementation of a dual-core processor with a randomised bus and a random
replacement cache. The experiments show that using a GEV distribution, there is significant
variability in the pWCET estimates at a probability of exceedance of 10−15 for different analysis
sample sizes (from 3 to 100 blocks of size 50). Further, since the HWM was often within the
confidence interval, and so could be above the pWCET estimate, the results were not reliable.
Fitting to a Gumbel distribution, however, provided reliable results which were also tight, i.e. only
a few percent higher than the HWM. Further experiments were also performed using synthetic
input data from GEV distributions with specific shape parameters in the range −1/2 to +1/2.
In all cases, fitting to a GEV proved unreliable. For shape parameters that were negative or
zero, using a Gumbel distribution was reliable and provided reasonably tight results. For positive
shape parameters, fitting to a Gumbel distribution is not appropriate and indeed it produced
results that were optimistic. The evaluation also showed that the Continuous Ranked Probability
Score (CRPS) metric used in the method derived by Cucu-Grosjean et al. [34] to determine
when sufficient samples have been obtained for analysis resulted in reliable results, but could
be improved upon. Improvements could be achieved either by using a smaller threshold, or via
assessing convergence using plots of the pWCET estimate and confidence intervals versus sample
size, as shown in the paper. We note that fitting a distribution minimises the absolute error rather
than attempting to minimise the over-approximation while avoiding any under-approximation.
Fitting a Gumbel distribution to data from a distribution with a finite maximum (which would be
better represented by a reversed Weibull distribution) typically results in an over-approximation.
The authors consider this over-approximation to be indicative of the reliability of the method
when using a Gumbel distribution; however, we would caution against drawing such a conclusion.
In these cases, the distribution is an over-approximation because there is a mismatch with the
shape parameter. This results in a fitted distribution which is pessimistic at small probabilities
of exceedance. This pessimism is not necessarily an indicator that the method is reliable per
se (i.e. always produces sound results). Indeed, for cases where the shape parameter is positive,
using a Gumbell distribution produces results which are optimistic.

LITES

03:50 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

In 2018, Reghenzani et al. [107] described chronovise, an open source software framework for
MBPTA. chronovise is a static C++ library that supports the Block Maxima, Peak-over-Threshold
and MBPTA-CV [3] approaches.

7.3 Summary and Perspectives

Evaluation of the MBPTA method introduced by Cucu-Grosjean et al. [34] on avionics case
studies at Airbus [129, 128] has shown both the applicability of the method to real systems, and
also that the use of random replacement caches comes at a relatively small performance penalty
compared to using deterministic replacement policies such as LRU. Recent work (discussed in
section 4.2) shows that MBPTA methods can also be successfully applied to systems running on
time-predictable architectures. For example Berezovskyi et al. [16, 15] successfully apply MBPTA
methods to programs running on an NVIDIA Kepler GK104 GPU, and Guet et al. [53, 54] to
benchmarks running on an Intel Xeon with 4 cores and 3 levels of cache. Initial work by Diaz et
al. [43] in 2017, shows how the MBPTA approach can be extended to a multi-core system.

The important issue of proving the validity and correctness of the results from MBPTA has
been investigated by Lesage et al. [85]. They showed that a lack of path coverage quickly degrades
the soundness of the results, with optimistic execution time predictions appearing and becoming
more prevalent as the number of omitted paths increases. Mezzetti et al. [94] addressed the path
coverage problem using the EPC method [136] and demonstrated its effectiveness on a railway
application.

Silva et al. [116] evaluated the reliability and tightness of the pWCET estimates derived using
MBPTA by fitting GEV and Gumbel distributions, concluding that using GEV is unreliable (with
large confidence intervals), while Gumbel can provide results that are reliable and tight in those
cases where it is applicable. To show that it is applicable; however, requires checking against the
maxima of a very large number of observations obtained in a validation phase. It is important
to note here that fitting a distribution minimises the absolute error rather than attempting to
minimise the over-approximation while avoiding any under-approximation. Fitting a Gumbel
distribution to data from a distribution with a finite maximum, which would be better represented
by a reversed Weibull distribution, typically results in a fitted distribution which is pessimistic at
small probabilities of exceedance. This pessimism is not necessarily an indicator that the method
is reliable per se (i.e. always produces sound results). Indeed, for cases where the shape parameter
is positive, using a Gumbell distribution is likely to produce results which are optimistic.

8 Conclusions

In this survey, we reviewed research into probabilistic timing analysis techniques for hard real-
time systems. We covered the main subject areas: static probabilistic timing analysis (SPTA),
measurement-based probabilistic timing analysis (MBPTA), and hybrid methods (HyPTA), as
well as reviewing supporting mechanisms and techniques, case studies, and evaluations.

8.1 Open Issues

We conclude by identifying open issues, key challenges and possible directions for future research.
We present these open issues and challenges as a series of questions. While there has been
progress in some of these areas, as highlighted in this survey, comprehensive solutions are currently
tantalizingly out-of-reach. Further research is needed to secure a sound and comprehensive basis
for the potential subsequent development and deployment of industry strength tools.

R. I. Davis and L. Cucu-Grosjean 03:51

1. How much hardware time-randomisation is needed to ease the use of MBPTA methods in
practice? Is custom time-randomised hardware with random replacement caches, random
permutation buses etc. really necessary?

2. What are the hazards involved in applying MBPTA methods to systems comprising time-
predictable COTS hardware that use entirely deterministic policies, and how can these hazards
be overcome?

3. How can we solve the path coverage problem such that the user of MBPTA methods is not
required to provide a measurement protocol that exercises all possible paths through the code?
What level of coverage is needed for the MBPTA methods to provide sound results?

4. How can we apply MBPTA to multi-path programs? Do we have to apply MBPTA to each
path individually and then combine the results to obtain a valid upper bound? Or is it
possible to use measurements from different paths as input into EVT and still obtain sound
results? (There is an argument that doing so makes it much harder to ensure representativity).

5. How can we solve the representativity problem such that the sample of observations used as
input to MBPTA result in a pWCET distribution that correctly characterises the behaviour of
the system during any future scenario of operation?

6. Given that testing can continue to produce execution time observations almost indefinitely,
how do we know when sufficient observations have been obtained for an accurate estimate of
the pWCET distribution to be derived?

7. How can we validate that a MBPTA implementation actually produces correct results?
8. How can we provide MBPTA for systems where execution time observations exhibit depend-

ences?
9. How to apply MBPTA methods to systems using multi-core processors where there is substantial

contention for shared hardware resources (e.g. interconnect, memory hierarchy, caches, DRAM
etc.) between programs running on different cores?

10. How to apply MBPTA methods to systems that make use of multi-threading on a single core,
and thus interleave the execution of a number of programs resulting in interference on shared
hardware resources?

11. How can we mechanise MBPTA so that, for example block sizes and thresholds can be selected
automatically?

12. How can we convince certification authorities that estimated pWCET distributions derived via
MBPTA methods are safe?

8.2 Directions for Future Research
We end this survey with a discussion of an important direction for future real-time systems research
which probabilistic analysis techniques may be able contribute to.

There is a continuing trend in industry sectors including avionics, automotive electronics,
consumer electronics, and robotics away from development and deployment on single-core processors
towards using significantly more powerful and complex Common-Off-The-Shelf (COTS) multi-core
and many-core hardware platforms. This trend is driven by requirements on size, weight and power
consumption, increasing cost pressures and the demand for more complex and capable functionality
delivered through software. The use of COTS multi-core hardware poses significant challenges
in terms of verifying timing behaviour and ensuring that real-time constraints are met. These
challenges stem from the complexity of the architecture and the way in which hardware resources
such as the interconnect and the memory hierarchy are shared between different processing
cores. Some researchers are seeking to address these problems through approaches based on
partitioning and separation (e.g. single-core equivalence [91]), while others aim for solutions based
on considering the explicit interference on each hardware resource from co-running programs and

LITES

03:52 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

how this demand can be served by the available resource supply [8, 37]. There is the potential for
probabilistic timing analysis and probabilistic schedulability analysis techniques (reviewed in a
companion survey [38]) to play a role in the timing verification of such complex real-time systems.

There are a number of ways in which the interference effects of cross-core contention can be
considered within a framework of probabilistic timing verification:

By running synthetic “worst-case” contenders on other cores during the analysis phase. The
idea being to account for the worst-case cross-core interference that could possibly occur
irrespective of the actual co-runners, within the estimated pWCET distributions. The difficulty
with this context-independent approach lies in determining which contenders, or combination
of contenders, actually produce the worst-case interference for a given program. Further, the
cross-core interference assumed may be very pessimistic, i.e. much larger than can actually
occur in the operational system with the real co-runners.
By running the real co-runners during the analysis phase. This approach has the advantage that
it can potentially avoid some of the pessimism in the above context-independent approach. The
estimated pWCET distributions obtained would only apply for the specific set of co-runners.
Thus they would be context-dependent. This approach has the disadvantage that it makes
the problem of representativity even more acute, since different combinations and timings of
co-runners need to be considered.
By using isolation or partial isolation techniques (implemented in either software or hardware)
to limit or bound the interference that can occur due to contention for shared resources in a
way that is independent of the actual behaviour of the co-runners. Synthetic contenders can
then be used to generate this maximum interference at analysis time enabling sound upper
bounding of the pWCET distributions that can occur during normal operation of the system.
By running the program under analysis in isolation with all the other cores idle. In this case,
the estimated pWCET distributions obtained would not include the impact of any co-runners.
Instead, these effects would need to be integrated at a later stage, for example within some
form of probabilistic schedulability analysis. The advantage of this approach is that it reduces
the issues of representativity to the single core case; however, difficulties remain in soundly
including the effects of cross-core contention without the results becoming either unsound or
highly pessimistic.
By running the complete system and applying statistical analysis (e.g. based on EVT) to
response times, rather than execution times (see Section 7 of the companion survey [38]
for a review of the initial work in this area). This approach again raises difficulties with
representativity; however, it has the advantage that it treats the entire system as a grey box
requiring less detailed information about the hardware and software behaviour.

Since the initial work of Burns and Edgar [22] in 2000 on probabilistic timing analysis, significant
progress has been made in the development of both measurement-based and static probabilistic
timing analysis techniques. However, there are still many important unanswered questions and
open issues that need to be addressed. In particular, work on probabilistic timing analysis and
probabilistic schedulability analysis for multi-core and many-core systems is in its infancy with
opportunities for significant advances addressing an important research challenge.

Acknowledgements. The research that went into writing this survey was funded, in part, by
the Inria International Chair program and the ESPRC grant MCCps (EP/P003664/1). EPSRC
Research Data Management: No new primary data was created during this study.

The authors would like to thank David Griffin and Alan Burns for their comments on an
earlier draft of this survey.

R. I. Davis and L. Cucu-Grosjean 03:53

References
1 J. Abella, F. J. Cazorla, E. Quinones, and

T. Vardanega. Measurement-based prob-
abilistic timing analysis and i.i.d prop-
erty. White Paper Version 2. Technical
report http://www.proartis-project.eu/
publications/MBPTA-white-paper, BSC, July
2014.

2 J. Abella, D. Hardy, I. Puaut, E. Quiñones, and
F. J. Cazorla. On the Comparison of Determin-
istic and Probabilistic WCET Estimation Tech-
niques. In Proceedings of the Euromicro Confer-
ence on Real-Time Systems (ECRTS), pages 266–
275, July 2014. doi:10.1109/ECRTS.2014.16.

3 J. Abella, M. Padilla, J. Del Castillo, and F. J.
Cazorla. Measurement-Based Worst-Case Exe-
cution Time Estimation Using the Coefficient
of Variation. ACM Trans. Des. Autom. Elec-
tron. Syst., 22(4):72:1–72:29, June 2017. doi:
10.1145/3065924.

4 J. Abella, E. Quiñones, F. Wartel, T. Vardanega,
and F. J. Cazorla. Heart of Gold: Making the
Improbable Happen to Increase Confidence in
MBPTA. In Proceedings of the Euromicro Con-
ference on Real-Time Systems (ECRTS), pages
255–265, 2014. doi:10.1109/ECRTS.2014.33.

5 I. Agirre, M. Azkarate-askasua, C. Hernandez,
J. Abella, J. Perez, T. Vardanega, and F. J.
Cazorla. IEC-61508 SIL 3 Compliant Pseudo-
Random Number Generators for Probabilistic
Timing Analysis. In Proceedings of the Eur-
omicro Conference on Digital System Design
(DSD), pages 677–684, August 2015. doi:10.
1109/DSD.2015.26.

6 S. Altmeyer, L. Cucu-Grosjean, and R. I. Davis.
Static probabilistic timing analysis for real-
time systems using random replacement caches.
Springer Real-Time Systems, 51(1):77–123, 2015.
doi:10.1007/s11241-014-9218-4.

7 S. Altmeyer and R. I. Davis. On the Correctness,
Optimality and Precision of Static Probabilistic
Timing Analysis. In Proceedings of the Confer-
ence on Design, Automation and Test in Europe
(DATE), pages 26:1–26:6, 2014. URL: http://dl.
acm.org/citation.cfm?id=2616606.2616638.

8 S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza,
V. Nelis, and J. Reineke. A Generic and Compos-
itional Framework for Multicore Response Time
Analysis. In Proceedings of the International
Conference on Real-Time Networks and Systems
(RTNS), pages 129–138, 2015. doi:10.1145/
2834848.2834862.

9 H. Anwar, C. Chen, and G. Beltrame. A prob-
abilistically analysable cache implementation on
FPGA. In IEEE International New Circuits
and Systems Conference (NEWCAS), pages 1–4,
June 2015. doi:10.1109/NEWCAS.2015.7181984.

10 I. Bate and U. Khan. WCET Analysis of Mod-
ern Processors Using Multi-criteria Optimisation.
Empirical Softw. Engg., 16(1):5–28, February
2011.

11 P. Benedicte, C. Hernandez, J. Abella, and F. J.
Cazorla. Design and integration of hierarchical-
placement multi-level caches for real-time sys-
tems. In Proceedings of the Conference on

Design, Automation and Test in Europe (DATE),
pages 455–460, March 2018. doi:10.23919/DATE.
2018.8342052.

12 P. Benedicte, C. Hernandez, J. Abella, and F. J.
Cazorla. RPR: A Random Replacement Policy
with Limited Pathological Replacements. In Pro-
ceedings of ACM Symposium on Applied Comput-
ing (SAC), pages 593–600, 2018. doi:10.1145/
3167132.3167197.

13 P. Benedicte, L. Kosmidis, E. Quinones,
J. Abella, and F. J. Cazorla. Modelling the
confidence of timing analysis for time random-
ised caches. In Proceedings of the IEEE Inter-
national Symposium on Industrial Embedded Sys-
tems (SIES), pages 1–8, May 2016. doi:10.1109/
SIES.2016.7509421.

14 P. Benedicte, L. Kosmidis, E. Quiñones,
J. Abella, and F. J. Cazorla. A confidence as-
sessment of WCET estimates for software time
randomized caches. In Proceedings of the IEEE
International Conference on Industrial Inform-
atics (INDIN), pages 90–97, July 2016. doi:
10.1109/INDIN.2016.7819140.

15 K. Berezovskyi, F. Guet, L. Santinelli, K. Blet-
sas, and E. Tovar. Measurement-Based Prob-
abilistic Timing Analysis for Graphics Processor
Units. In Proceedings of the International Con-
ference on the Architecture of Computing Sys-
tems (ARCS), pages 223–236, April 2016. doi:
10.1007/978-3-319-30695-7_17.

16 K. Berezovskyi, L. Santinelli, K. Bletsas, and
E. Tovar. WCET Measurement-based and Ex-
treme Value Theory Characterisation of CUDA
Kernels. In Proceedings of the International
Conference on Real-Time Networks and Systems
(RTNS), pages 279–288, 2014. doi:10.1145/
2659787.2659827.

17 G. Bernat, A. Burns, and M. Newby. Probabil-
istic Timing Analysis: An Approach Using Cop-
ulas. J. Embedded Comput., 1(2):179–194, April
2005. URL: http://dl.acm.org/citation.cfm?
id=1233760.1233763.

18 G. Bernat, A. Colin, and S. Petters. pwcet: A
tool for probabilistic worst-case execution time
analysis of real-time systems. Technical report,
Department of Computer Science, University of
York, 2003.

19 G. Bernat, A. Colin, and S. M. Petters. WCET
analysis of probabilistic hard real-time systems.
In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS), pages 279–288, 2002. doi:
10.1109/REAL.2002.1181582.

20 B. Braams, S. Altmeyer, and A. D. Pimentel.
EDiFy: An execution time distribution finder.
In Proceedings of the Design Automation Con-
ference (DAC), pages 1–6, June 2017. doi:10.
1145/3061639.3062233.

21 S. Bunte, M. Zolda, M. Tautschnig, and
R. Kirner. Improving the Confidence in
Measurement-Based Timing Analysis. In Pro-
ceedings of the IEEE International Symposium
on Object/component/service-oriented Real-time
distributed Computing (ISORC), pages 144–151,
March 2011. doi:10.1109/ISORC.2011.27.

LITES

http://www.proartis-project.eu/publications/MBPTA-white-paper
http://www.proartis-project.eu/publications/MBPTA-white-paper
http://dx.doi.org/10.1109/ECRTS.2014.16
http://dx.doi.org/10.1145/3065924
http://dx.doi.org/10.1145/3065924
http://dx.doi.org/10.1109/ECRTS.2014.33
http://dx.doi.org/10.1109/DSD.2015.26
http://dx.doi.org/10.1109/DSD.2015.26
http://dx.doi.org/10.1007/s11241-014-9218-4
http://dl.acm.org/citation.cfm?id=2616606.2616638
http://dl.acm.org/citation.cfm?id=2616606.2616638
http://dx.doi.org/10.1145/2834848.2834862
http://dx.doi.org/10.1145/2834848.2834862
http://dx.doi.org/10.1109/NEWCAS.2015.7181984
http://dx.doi.org/10.23919/DATE.2018.8342052
http://dx.doi.org/10.23919/DATE.2018.8342052
http://dx.doi.org/10.1145/3167132.3167197
http://dx.doi.org/10.1145/3167132.3167197
http://dx.doi.org/10.1109/SIES.2016.7509421
http://dx.doi.org/10.1109/SIES.2016.7509421
http://dx.doi.org/10.1109/INDIN.2016.7819140
http://dx.doi.org/10.1109/INDIN.2016.7819140
http://dx.doi.org/10.1007/978-3-319-30695-7_17
http://dx.doi.org/10.1007/978-3-319-30695-7_17
http://dx.doi.org/10.1145/2659787.2659827
http://dx.doi.org/10.1145/2659787.2659827
http://dl.acm.org/citation.cfm?id=1233760.1233763
http://dl.acm.org/citation.cfm?id=1233760.1233763
http://dx.doi.org/10.1109/REAL.2002.1181582
http://dx.doi.org/10.1109/REAL.2002.1181582
http://dx.doi.org/10.1145/3061639.3062233
http://dx.doi.org/10.1145/3061639.3062233
http://dx.doi.org/10.1109/ISORC.2011.27

03:54 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

22 A. Burns and S. Edgar. Predicting computa-
tion time for advanced processor architectures.
In Proceedings of the Euromicro Conference on
Real-Time Systems (ECRTS), pages 89–96, 2000.
doi:10.1109/EMRTS.2000.853996.

23 A. Burns and D. Griffin. Predictability as an
emergent behaviour. In Proceedings of the Work-
shop on Compositional Theory and Technology
for Real-Time Embedded Systems (CRTS), pages
27–29, 2011.

24 S. Bünte, M. Zolda, and R. Kirner. Let’s get less
optimistic in measurement-based timing analysis.
In Proceedings of the IEEE International Sym-
posium on Industrial Embedded Systems (SIES),
pages 204–212, June 2011. doi:10.1109/SIES.
2011.5953663.

25 F. J. Cazorla, J. Abella, J. Andersson, T. Vard-
anega, F. Vatrinet, I. Bate, I. Broster,
M. Azkarate-Askasua, F. Wartel, L. Cucu,
F. Cros, G. Farrall, A. Gogonel, A. Gianarro,
B. Triquet, C. Hernandez, C. Lo, C. Maxim,
D. Morales, E. Quinones, E. Mezzetti, L. Kos-
midis, I. Aguirre, M. Fernandez, M. Slijepcevic,
P. Conmy, and W. Talaboulma. PROXIMA:
Improving Measurement-Based Timing Analysis
through Randomisation and Probabilistic Ana-
lysis. In Proceedings of the Euromicro Confer-
ence on Digital System Design (DSD), pages 276–
285, August 2016. doi:10.1109/DSD.2016.22.

26 F. J. Cazorla, E. Quiñones, T. Vardanega,
L. Cucu, B. Triquet, G. Bernat, E. Berger,
J. Abella, F. Wartel, M. Houston, L. Santinelli,
L. Kosmidis, C. Lo, and D. Maxim. PROARTIS:
Probabilistically Analyzable Real-Time Systems.
ACM Transactions on Embedded Computing Sys-
tems, 12(2s):94:1–94:26, May 2013. doi:10.1145/
2465787.2465796.

27 F. J. Cazorla, T. Vardanega, E. Quiñones, and
J. Abella. Upper-bounding Program Execution
Time with Extreme Value Theory. In Proceed-
ings of the Workshop on Worst-Case Execution
Time Analysis (WCET), pages 64–76, 2013. doi:
10.4230/OASIcs.WCET.2013.64.

28 C. Chen and G. Beltrame. An Adaptive Markov
Model for the Timing Analysis of Probabilistic
Caches. ACM Trans. Des. Autom. Electron.
Syst., 23(1):12:1–12:24, August 2017. doi:10.
1145/3123877.

29 C. Chen, J. Panerati, and G. Beltrame. Effects
of online fault detection mechanisms on Probab-
ilistic Timing Analysis. In Proceedings of IEEE
International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems
(DFT), pages 41–46, September 2016. doi:10.
1109/DFT.2016.7684067.

30 C. Chen, J. Panerati, I. Hafnaoui, and
G. Beltrame. Static probabilistic timing analysis
with a permanent fault detection mechanism.
In Proceedings of the IEEE International Sym-
posium on Industrial Embedded Systems (SIES),
pages 1–10, June 2017. doi:10.1109/SIES.2017.
7993373.

31 C. Chen, L. Santinelli, J. Hugues, and
G. Beltrame. Static probabilistic timing ana-
lysis in presence of faults. In Proceedings of
the IEEE International Symposium on Industrial

Embedded Systems (SIES), pages 1–10, May 2016.
doi:10.1109/SIES.2016.7509422.

32 S. Coles. An Introduction to Statistical Model-
ing of Extreme Values. Springer, 2001. doi:
10.1007/978-1-4471-3675-0.

33 F. Cros, L. Kosmidis, F. Wartel, D. Morales,
J. Abella, I. Broster, and F. J. Cazorla. Dy-
namic software randomisation: Lessons learned
from an aerospace case study. In Proceedings of
the Conference on Design, Automation and Test
in Europe (DATE), pages 103–108, March 2017.
doi:10.23919/DATE.2017.7926966.

34 L. Cucu-Grosjean, L. Santinelli, M. Houston,
C. Lo, T. Vardanega, L. Kosmidis, J. Abella,
E. Mezzetti, E. Quiñones, and F. J. Cazorla.
Measurement-Based Probabilistic Timing Ana-
lysis for Multi-path Programs. In Proceedings
of the Euromicro Conference on Real-Time Sys-
tems (ECRTS), pages 91–101, July 2012. doi:
10.1109/ECRTS.2012.31.

35 L. David and I. Puaut. Static determination
of probabilistic execution times. In Proceedings
of the Euromicro Conference on Real-Time Sys-
tems (ECRTS), pages 223–230, June 2004. doi:
10.1109/EMRTS.2004.1311024.

36 R. A. Davis and T. Mikosch. The extremogram:
A correlogram for extreme events. Bernoulli,
15(4):977–1009, November 2009. doi:10.3150/
09-BEJ213.

37 R. I. Davis, S. Altmeyer, L. S. Indrusiak,
C. Maiza, V. Nelis, and J. Reineke. An extens-
ible framework for multicore response time ana-
lysis. Springer Real-Time Systems, 54(3):607–
661, July 2018. doi:10.1007/s11241-017-9285-
4.

38 R. I. Davis and L. Cucu-Grosjean. A Survey of
Probabilistic Schedulability Analysis Techniques
for Hard Real-Time Systems. Leibniz Transac-
tions on Embedded Systems (LITES), 6(1):04:1–
04:53, May 2019. doi:10.4230/LITES-v006-
i001-a004.

39 R. I. Davis, L. Santinelli, S. Altmeyer, C. Maiza,
and L. Cucu-Grosjean. Analysis of Probabilistic
Cache Related Pre-emption Delays. In Proceed-
ings of the Euromicro Conference on Real-Time
Systems (ECRTS), pages 168–179, July 2013.
doi:10.1109/ECRTS.2013.27.

40 R. I. Davis, J. Whitham, and D. Maxim. Static
Probabilistic Timing Analysis for Multicore Pro-
cessors with Shared Cache. In Proceedings of
the Real-Time Scheduling Open Problems Sem-
inar (RTSOPS), pages 3–5, 2013.

41 R.I. Davis. Improvements to Static Probabil-
istic Timing Analysis for Systems with Random
Cache Replacement Policies. In Proceedings of
the Real-Time Scheduling Open Problems Sem-
inar (RTSOPS), pages 22–24, July 2013.

42 J-F. Deverge and I. Puaut. Safe measurement-
based WCET estimation. In Proceedings of the
Workshop on Worst-Case Execution Time Ana-
lysis (WCET), 2005.

43 E. Díaz, M. Fernández, L. Kosmidis, E. Mezzetti,
C. Hernandez, J. Abella, and F. J. Cazorla. MC2:
Multicore and Cache Analysis via Deterministic
and Probabilistic Jitter Bounding, pages 102–118.

http://dx.doi.org/10.1109/EMRTS.2000.853996
http://dx.doi.org/10.1109/SIES.2011.5953663
http://dx.doi.org/10.1109/SIES.2011.5953663
http://dx.doi.org/10.1109/DSD.2016.22
http://dx.doi.org/10.1145/2465787.2465796
http://dx.doi.org/10.1145/2465787.2465796
http://dx.doi.org/10.4230/OASIcs.WCET.2013.64
http://dx.doi.org/10.4230/OASIcs.WCET.2013.64
http://dx.doi.org/10.1145/3123877
http://dx.doi.org/10.1145/3123877
http://dx.doi.org/10.1109/DFT.2016.7684067
http://dx.doi.org/10.1109/DFT.2016.7684067
http://dx.doi.org/10.1109/SIES.2017.7993373
http://dx.doi.org/10.1109/SIES.2017.7993373
http://dx.doi.org/10.1109/SIES.2016.7509422
http://dx.doi.org/10.1007/978-1-4471-3675-0
http://dx.doi.org/10.1007/978-1-4471-3675-0
http://dx.doi.org/10.23919/DATE.2017.7926966
http://dx.doi.org/10.1109/ECRTS.2012.31
http://dx.doi.org/10.1109/ECRTS.2012.31
http://dx.doi.org/10.1109/EMRTS.2004.1311024
http://dx.doi.org/10.1109/EMRTS.2004.1311024
http://dx.doi.org/10.3150/09-BEJ213
http://dx.doi.org/10.3150/09-BEJ213
http://dx.doi.org/10.1007/s11241-017-9285-4
http://dx.doi.org/10.1007/s11241-017-9285-4
http://dx.doi.org/10.4230/LITES-v006-i001-a004
http://dx.doi.org/10.4230/LITES-v006-i001-a004
http://dx.doi.org/10.1109/ECRTS.2013.27

R. I. Davis and L. Cucu-Grosjean 03:55

Springer International Publishing, Cham, 2017.
doi:10.1007/978-3-319-60588-3_7.

44 J. L. Diaz, J. M. Lopez, M. Garcia, A. M. Cam-
pos, Kanghee Kim, and L. L. Bello. Pessim-
ism in the stochastic analysis of real-time sys-
tems: concept and applications. In Proceed-
ings of the IEEE Real-Time Systems Symposium
(RTSS), pages 197–207, December 2004. doi:
10.1109/REAL.2004.41.

45 S. Edgar and A. Burns. Statistical analysis of
WCET for scheduling. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS),
pages 215–224, December 2001. doi:10.1109/
REAL.2001.990614.

46 P. Embrechts, C. Kluppelberg, and T. Mikosch.
Modelling extremal events for insurance and Fin-
ance. Springer, 1997. doi:10.1007/978-3-642-
33483-2.

47 I. Fedotova, B. Krause, and E. Siemens. Applic-
ability of Extreme Value Theory to the Execution
Time Prediction of Programs on SoCs. In Pro-
ceedings of the International Conference on Ap-
plied Innovations in IT (ICAIIT), March 2017.

48 M. Fernandez, D. Morales, L. Kosmidis, A. Bard-
izbanyan, I. Broster, C. Hernandez, E. Quinones,
J. Abella, F. Cazorla, P. Machado, and L. Fossati.
Probabilistic timing analysis on time-randomized
platforms for the space domain. In Proceedings of
the Conference on Design, Automation and Test
in Europe (DATE), pages 738–739, March 2017.
doi:10.23919/DATE.2017.7927087.

49 S. Jimenez Gil, I. Bate, G. Lima, L. Santinelli,
A. Gogonel, and L. Cucu-Grosjean. Open
Challenges for Probabilistic Measurement-Based
Worst-Case Execution Time. IEEE Embedded
Systems Letters, PP(99):1–1, 2017. doi:10.1109/
LES.2017.2712858.

50 D. Griffin, I. Bate, B. Lesage, and F. Sob-
oczenski. Evaluating Mixed Criticality Schedul-
ing Algorithms with Realistic Workloads. In
Proceedings of Workshop on Mixed Criticality
(WMC), 2015.

51 D. Griffin and A. Burns. Realism in Statistical
Analysis of Worst Case Execution Times. In Pro-
ceedings of the Workshop on Worst-Case Execu-
tion Time Analysis (WCET), pages 44–53, 2010.
doi:10.4230/OASIcs.WCET.2010.44.

52 D. Griffin, B. Lesage, A. Burns, and R. I. Davis.
Static Probabilistic Timing Analysis of Random
Replacement Caches Using Lossy Compression.
In Proceedings of the International Conference
on Real-Time Networks and Systems (RTNS),
pages 289–298, 2014. doi:10.1145/2659787.
2659809.

53 F. Guet, L. Santinelli, and J. Morio. On the Reli-
ability of the Probabilistic Worst-Case Execution
Time Estimates. In Proceedings of the European
Congress on Embedded Real Time Software and
Systems (ERTS), January 2016. URL: https:
//hal.archives-ouvertes.fr/hal-01289477.

54 F. Guet, L. Santinelli, and J. Morio. Probabilistic
analysis of cache memories and cache memories
impacts on multi-core embedded systems. In Pro-
ceedings of the IEEE International Symposium
on Industrial Embedded Systems (SIES), pages 1–
10, May 2016. doi:10.1109/SIES.2016.7509420.

55 F. Guet, L. Santinelli, and J. Morio. On the Rep-
resentativity of Execution Time Measurements:
Studying Dependence and Multi-Mode Tasks. In
Jan Reineke, editor, Proceedings of the Work-
shop on Worst-Case Execution Time Analysis
(WCET), volume 57 of OASICS, pages 3:1–3:13.
Schloss Dagstuhl - Leibniz-Zentrum fuer Inform-
atik, 2017. doi:10.4230/OASIcs.WCET.2017.3.

56 J. Gustafsson, A. Betts, A. Ermedahl, and B. Lis-
per. The Mälardalen WCET Benchmarks – Past,
Present and Future. In Proceedings of the Work-
shop on Worst-Case Execution Time Analysis
(WCET), pages 137–147, July 2010.

57 J. Hansen, S. A. Hissam, and G. A. Moreno.
Statistical-based WCET estimation and valida-
tion . In Proceedings of the Workshop on Worst-
Case Execution Time Analysis (WCET), volume
252, 2009.

58 D. Hardy and I. Puaut. Static Probabilistic
Worst Case Execution Time Estimation for Ar-
chitectures with Faulty Instruction Caches. In
Proceedings of the International Conference on
Real-Time Networks and Systems (RTNS), pages
35–44, 2013. doi:10.1145/2516821.2516842.

59 D. Hardy and I. Puaut. Static Probab-
ilistic Worst Case Execution Time Estima-
tion for Architectures with Faulty Instruction
Caches. Springer Real-Time Systems, 51(2):128–
152, March 2015. doi:10.1007/s11241-014-
9212-x.

60 C. Hernandez, J. Abella, F. J. Cazorla, J. An-
dersson, and A. Gianarro. Towards making a
LEON3 multicore compatible with probabilistic
timing analysis. In Proceedings of the Data Sys-
tems In Aerospace Conference (DASIA), May
2015.

61 C. Hernandez, J. Abella, A. Gianarro, J. An-
dersson, and F. J. Cazorla. Random Modulo: A
New Processor Cache Design for Real-time Crit-
ical Systems. In Proceedings of the Design Auto-
mation Conference (DAC), pages 29:1–29:6, 2016.
doi:10.1145/2897937.2898076.

62 K. Höfig. Failure-Dependent Timing Analysis -
A New Methodology for Probabilistic Worst-Case
Execution Time Analysis, pages 61–75. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. doi:
10.1007/978-3-642-28540-0_5.

63 T. Hsing. On Tail Index Estimation Using
Dependent Data. The Annals of Statistics,
19(3):1547–1569, 1991. URL: http://www.jstor.
org/stable/2241962.

64 M. Ivers and R. Ernst. Probabilistic Network
Loads with Dependencies and the Effect on
Queue Sojourn Times, pages 280–296. Springer
Berlin Heidelberg, 2009. doi:10.1007/978-3-
642-10625-5_18.

65 J. Jalle, L. Kosmidis, J. Abella, E. Quiñones,
and F. J. Cazorla. Bus Designs for Time-
probabilistic Multicore Processors. In Proceed-
ings of the Conference on Design, Automation
and Test in Europe (DATE), pages 50:1–50:6,
2014. URL: http://dl.acm.org/citation.cfm?
id=2616606.2616668.

66 T. Kelter, H. Falk, P. Marwedel, S. Chatto-
padhyay, and A. Roychoudhury. Static Ana-
lysis of Multi-core TDMA Resource Arbitration

LITES

http://dx.doi.org/10.1007/978-3-319-60588-3_7
http://dx.doi.org/10.1109/REAL.2004.41
http://dx.doi.org/10.1109/REAL.2004.41
http://dx.doi.org/10.1109/REAL.2001.990614
http://dx.doi.org/10.1109/REAL.2001.990614
http://dx.doi.org/10.1007/978-3-642-33483-2
http://dx.doi.org/10.1007/978-3-642-33483-2
http://dx.doi.org/10.23919/DATE.2017.7927087
http://dx.doi.org/10.1109/LES.2017.2712858
http://dx.doi.org/10.1109/LES.2017.2712858
http://dx.doi.org/10.4230/OASIcs.WCET.2010.44
http://dx.doi.org/10.1145/2659787.2659809
http://dx.doi.org/10.1145/2659787.2659809
https://hal.archives-ouvertes.fr/hal-01289477
https://hal.archives-ouvertes.fr/hal-01289477
http://dx.doi.org/10.1109/SIES.2016.7509420
http://dx.doi.org/10.4230/OASIcs.WCET.2017.3
http://dx.doi.org/10.1145/2516821.2516842
http://dx.doi.org/10.1007/s11241-014-9212-x
http://dx.doi.org/10.1007/s11241-014-9212-x
http://dx.doi.org/10.1145/2897937.2898076
http://dx.doi.org/10.1007/978-3-642-28540-0_5
http://dx.doi.org/10.1007/978-3-642-28540-0_5
http://www.jstor.org/stable/2241962
http://www.jstor.org/stable/2241962
http://dx.doi.org/10.1007/978-3-642-10625-5_18
http://dx.doi.org/10.1007/978-3-642-10625-5_18
http://dl.acm.org/citation.cfm?id=2616606.2616668
http://dl.acm.org/citation.cfm?id=2616606.2616668

03:56 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

Delays. Springer Real-Time Systems, 50(2):185–
229, March 2014. doi:10.1007/s11241-013-
9189-x.

67 L. Kosmidis, J. Abella, E. Quinones, and F. J.
Cazorla. Efficient Cache Designs for Probabil-
istically Analysable Real-Time Systems. IEEE
Transactions on Computers, 63(12):2998–3011,
December 2014. doi:10.1109/TC.2013.182.

68 L. Kosmidis, J. Abella, E. Quiñones, and F. J.
Cazorla. A cache design for probabilistically
analysable real-time systems. In Proceedings of
the Conference on Design, Automation and Test
in Europe (DATE), pages 513–518, March 2013.
doi:10.7873/DATE.2013.116.

69 L. Kosmidis, J. Abella, E. Quiñones, and F. J.
Cazorla. Multi-level Unified Caches for Probab-
ilistically Time Analysable Real-Time Systems.
In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS), pages 360–371, December
2013. doi:10.1109/RTSS.2013.43.

70 L. Kosmidis, J. Abella, F. Wartel, E. Quiñones,
A. Colin, and F. J. Cazorla. PUB: Path
Upper-Bounding for Measurement-Based Prob-
abilistic Timing Analysis. In Proceedings of
the Euromicro Conference on Real-Time Sys-
tems (ECRTS), pages 276–287, July 2014. doi:
10.1109/ECRTS.2014.34.

71 L. Kosmidis, D. Compagnin, D. Morales,
E. Mezzetti, E. Quiñones, J. Abella, T. Vard-
anega, and F. J. Cazorla. Measurement-Based
Timing Analysis of the AURIX Caches. In Pro-
ceedings of the Workshop on Worst-Case Execu-
tion Time Analysis (WCET), 2016.

72 L. Kosmidis, C. Curtsinger, E. Quiñones,
J. Abella, E. Berger, and F. J. Cazorla. Prob-
abilistic timing analysis on conventional cache
designs. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE),
pages 603–606, March 2013. doi:10.7873/DATE.
2013.132.

73 L. Kosmidis, E. Quiñones, J. Abella, G. Far-
rall, F. Wartel, and F. J. Cazorla. Containing
Timing-Related Certification Cost in Automot-
ive Systems Deploying Complex Hardware. In
Proceedings of the Design Automation Confer-
ence (DAC), pages 22:1–22:6, 2014. doi:10.1145/
2593069.2593112.

74 L. Kosmidis, E. Quiñones, J. Abella,
T. Vardanega, I. Broster, and F. J. Cazorla.
Measurement-Based Probabilistic Timing Ana-
lysis and Its Impact on Processor Architecture.
In Proceedings of the Euromicro Conference on
Digital System Design (DSD), pages 401–410,
August 2014. doi:10.1109/DSD.2014.50.

75 L. Kosmidis, E. Quiñones, J. Abella, T. Vard-
anega, and F. J. Cazorla. Achieving timing
composability with measurement-based prob-
abilistic timing analysis. In Proceedings
of the IEEE International Symposium on
Object/component/service-oriented Real-time
distributed Computing (ISORC), pages 1–8,
June 2013. doi:10.1109/ISORC.2013.6913193.

76 L. Kosmidis, E. Quiñones, J. Abella, T. Vard-
anega, C. Hernandez, A. Gianarro, I. Broster,
and F. J. Cazorla. Fitting processor architectures

for measurement-based probabilistic timing ana-
lysis. Microprocessors and Microsystems, 2016.
doi:10.1016/j.micpro.2016.07.014.

77 L. Kosmidis, T. Vardanega, J. Abella,
E. Quiñones, and F. J. Cazorla. Applying
Measurement-Based Probabilistic Timing Ana-
lysis to Buffer Resources. In Proceedings
of the Workshop on Worst-Case Execution
Time Analysis (WCET), pages 97–108, 2013.
doi:10.4230/OASIcs.WCET.2013.97.

78 L. Kosmidis, R. Vargas, D. Morales, E. Quiñones,
J. Abella, and F. J. Cazorla. TASA: Toolchain-
Agnostic Static Software randomisation for crit-
ical real-time systems. In IEEE/ACM Inter-
national Conference on Computer-Aided Design
(ICCAD), pages 1–8, November 2016. doi:10.
1145/2966986.2967078.

79 K. Lahiri, A. Raghunathan, and G. Laksh-
minarayana. LOTTERYBUS: a new high-
performance communication architecture for
system-on-chip designs. In DAC, pages 15–20,
2001. doi:10.1109/DAC.2001.156100.

80 S. Law and I. Bate. Achieving Appropriate Test
Coverage for Reliable Measurement-Based Tim-
ing Analysis. In Proceedings of the Euromicro
Conference on Real-Time Systems (ECRTS),
pages 189–199, July 2016. doi:10.1109/ECRTS.
2016.21.

81 M. R. Leadbetter, G. Lindgren, and H. Rootzen.
Conditions for the convergence in distribu-
tion of maxima of stationary normal processes.
Stochastic Processes and their Applications, 8(2),
1978.

82 B. Lesage, D. Griffin, S. Altmeyer, L. Cucu-
Grosjean, and R. I. Davis. On the analysis of ran-
dom replacement caches using static probabilistic
timing methods for multi-path programs. Real-
Time Systems, December 2017. doi:10.1007/
s11241-017-9295-2.

83 B. Lesage, D. Griffin, S. Altmeyer, and R. I.
Davis. Static Probabilistic Timing Analysis for
Multi-path Programs. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS),
pages 361–372, December 2015. doi:10.1109/
RTSS.2015.41.

84 B. Lesage, D. Griffin, R. I. Davis, and S. Alt-
meyer. On the application of Static Probabilistic
Timing Analysis to Memory Hierarchies. In Pro-
ceedings of the Real-Time Scheduling Open Prob-
lems Seminar (RTSOPS), 2014.

85 B. Lesage, D. Griffin, F. Soboczenski, I. Bate,
and R. I. Davis. A Framework for the Evaluation
of Measurement-based Timing Analyses. In Pro-
ceedings of the International Conference on Real-
Time Networks and Systems (RTNS), pages 35–
44, 2015. doi:10.1145/2834848.2834858.

86 Y. Liang and T. Mitra. Cache modeling in prob-
abilistic execution time analysis. In Proceedings
of the Design Automation Conference (DAC),
pages 319–324, June 2008.

87 G. Lima and I. Bate. Valid Application of EVT
in Timing Analysis by Randomising Execution
Time Measurements. In Proceedings of the IEEE
Real-Time and Embedded Technology and Applic-
ations Symposium (RTAS), April 2017.

http://dx.doi.org/10.1007/s11241-013-9189-x
http://dx.doi.org/10.1007/s11241-013-9189-x
http://dx.doi.org/10.1109/TC.2013.182
http://dx.doi.org/10.7873/DATE.2013.116
http://dx.doi.org/10.1109/RTSS.2013.43
http://dx.doi.org/10.1109/ECRTS.2014.34
http://dx.doi.org/10.1109/ECRTS.2014.34
http://dx.doi.org/10.7873/DATE.2013.132
http://dx.doi.org/10.7873/DATE.2013.132
http://dx.doi.org/10.1145/2593069.2593112
http://dx.doi.org/10.1145/2593069.2593112
http://dx.doi.org/10.1109/DSD.2014.50
http://dx.doi.org/10.1109/ISORC.2013.6913193
http://dx.doi.org/10.1016/j.micpro.2016.07.014
http://dx.doi.org/10.4230/OASIcs.WCET.2013.97
http://dx.doi.org/10.1145/2966986.2967078
http://dx.doi.org/10.1145/2966986.2967078
http://dx.doi.org/10.1109/DAC.2001.156100
http://dx.doi.org/10.1109/ECRTS.2016.21
http://dx.doi.org/10.1109/ECRTS.2016.21
http://dx.doi.org/10.1007/s11241-017-9295-2
http://dx.doi.org/10.1007/s11241-017-9295-2
http://dx.doi.org/10.1109/RTSS.2015.41
http://dx.doi.org/10.1109/RTSS.2015.41
http://dx.doi.org/10.1145/2834848.2834858

R. I. Davis and L. Cucu-Grosjean 03:57

88 G. Lima, D. Dias, and E. Barros. Extreme
Value Theory for Estimating Task Execution
Time Bounds: A Careful Look. In Proceedings
of the Euromicro Conference on Real-Time Sys-
tems (ECRTS), July 2016.

89 Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean.
A New Way About Using Statistical Analysis
of Worst-case Execution Times. SIGBED Rev.,
8(3):11–14, September 2011. doi:10.1145/
2038617.2038619.

90 Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean. A
trace-based statistical worst-case execution time
analysis of component-based real-time embedded
systems. In Proceedings of the IEEE Confer-
ence on Emerging Technologies Factory Automa-
tion (ETFA), pages 1–4, September 2011. doi:
10.1109/ETFA.2011.6059190.

91 R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha,
and H. Yun. WCET(m) Estimation in Multi-core
Systems Using Single Core Equivalence. In Pro-
ceedings of the Euromicro Conference on Real-
Time Systems (ECRTS), pages 174–183, July
2015. doi:10.1109/ECRTS.2015.23.

92 C. Maxim, A. Gogonel, I. Asavoae, M. Asavoae,
and L. Cucu-Grosjean. Reproducibility and rep-
resentativity: mandatory properties for the com-
positionality of measurement-based WCET es-
timation approaches. SIGBED Review, 14(3):24–
31, 2017. doi:10.1145/3166227.3166230.

93 A. Melani, E. Noulard, and L. Santinelli. Learn-
ing from probabilities: Dependences within real-
time systems. In Proceedings of the IEEE Con-
ference on Emerging Technologies Factory Auto-
mation (ETFA), pages 1–8, September 2013. doi:
10.1109/ETFA.2013.6648013.

94 E. Mezzetti, M. Fernandez, A. Bardizbanyan,
I Agirre, , J. Abella, T. Vardanega, and F. J.
Cazorla. EPC Enacted: Integration in an In-
dustrial Toolbox and Use Against a Rialway Ap-
plication. In Proceedings of the IEEE Real-Time
and Embedded Technology and Applications Sym-
posium (RTAS), April 2017.

95 E. Mezzetti, N. Holsti, A. Colin, G. Bernat, and
T. Vardanega. Attacking the sources of unpre-
dictability in the instruction cache behavior. In
Proceedings of the International Conference on
Real-Time Networks and Systems (RTNS), 2008.

96 E. Mezzetti, M. Ziccardi, T. Vardanega,
J. Abella, E. Quiñones, and F. J. Cazorla. Ran-
domized Caches Can Be Pretty Useful to Hard
Real-Time Systems. Leibniz Transactions on
Embedded Systems, 2(1):01–1–01:10, 2015. doi:
10.4230/LITES-v002-i001-a001.

97 a. Milutinovic, j. Abella, i. Agirre, M. Azkarate-
Askasua, E. Mezzetti, T. Vardanega, and F. J.
Cazorla. Software Time Reliability in the
Presence of Cache Memories, pages 233–249.
Springer International Publishing, Cham, 2017.
doi:10.1007/978-3-319-60588-3_15.

98 S. Milutinovic, J. Abella, and F. J. Cazorla.
Modelling Probabilistic Cache Representative-
ness in the Presence of Arbitrary Access Patterns.
In Proceedings of the IEEE International Sym-
posium on Object/component/service-oriented
Real-time distributed Computing (ISORC), pages

142–149, May 2016. doi:10.1109/ISORC.2016.
28.

99 S. Milutinovic, J. Abella, and F. J. Cazorla. On
the assessment of probabilistic WCET estimates
reliability for arbitrary programs. EURASIP
Journal on Embedded Systems, 2017(1):28, April
2017. doi:10.1186/s13639-017-0076-8.

100 S. Milutinovic, J. Abella, E. Mezzetti, and F. J.
Cazorla. Measurement-based Cache Representat-
iveness on Multipath Programs. In Proceedings
of the Design Automation Conference (DAC),
pages 123:1–123:6, 2018. doi:10.1145/3195970.
3196075.

101 S. Milutinovic, E. Mezzetti, J. Abella, T. Vard-
anega, and F. J. Cazorla. On uses of extreme
value theory fit for industrial-quality WCET
analysis. In Proceedings of the IEEE Interna-
tional Symposium on Industrial Embedded Sys-
tems (SIES), pages 1–6, June 2017. doi:10.1109/
SIES.2017.7993402.

102 M. Panic, J. Abella, C. Hernandez, E. Quiñones,
T. Ungerer, and F. J. Cazorla. Enabling TDMA
Arbitration in the Context of MBPTA. In Pro-
ceedings of the Euromicro Conference on Digital
System Design (DSD), pages 462–469, August
2015. doi:10.1109/DSD.2015.68.

103 M. Panić, J. Abella, E. Quiñones, C. Hernandez,
T. Ungerer, and F. J. Cazorla. Adapting TDMA
arbitration for measurement-based probabilistic
timing analysis. Microprocessors and Microsys-
tems, 52:188–201, 2017. doi:10.1016/j.micpro.
2017.06.006.

104 B. Pasdeloup. Static probabilistic timing analysis
of worst-case execution time for random replace-
ment caches. Technical report, Inria, 2014.

105 J. Pickands. Statistical Inference Using Extreme
Order Statistics. Ann. Statist., 3(1):119–131,
January 1975. doi:10.1214/aos/1176343003.

106 E. Quinones, E. D. Berger, G. Bernat, and F. J.
Cazorla. Using Randomized Caches in Prob-
abilistic Real-Time Systems. In Proceedings of
the Euromicro Conference on Real-Time Sys-
tems (ECRTS), pages 129–138, July 2009. doi:
10.1109/ECRTS.2009.30.

107 F. Reghenzani, G. Massari, and Fornaciari W.
chronovise: Measurement-Based Probabilistic
Timing Analysis framework. Journal of Open
Source Software, 3(28), June 2018. doi:10.
21105/joss.00711.

108 J. Reineke. Randomized Caches Considered
Harmful in Hard Real-Time Systems. Leib-
niz Transactions on Embedded Systems, 1(1):03–
1–03:13, 2014. doi:10.4230/LITES-v001-i001-
a003.

109 A. Rukhin, J. Soto, J. Nechvatal, E. Barker,
S. Leigh, M. Levenson, D. Banks, A. Heckert,
J. Dray, S. Vo, A. Rukhin, J. Soto, M. Smid,
S. Leigh, M. Vangel, A. Heckert, J. Dray, and
L. E. Bassham. Statistical test suite for random
and pseudorandom number generators for cryp-
tographic applications, NIST special publication,
2010.

110 L. Santinelli, F. Guet, and J. Morio. Revising
Measurement-Based Probabilistic Timing Ana-
lysis. In Proceedings of the IEEE Real-Time

LITES

http://dx.doi.org/10.1145/2038617.2038619
http://dx.doi.org/10.1145/2038617.2038619
http://dx.doi.org/10.1109/ETFA.2011.6059190
http://dx.doi.org/10.1109/ETFA.2011.6059190
http://dx.doi.org/10.1109/ECRTS.2015.23
http://dx.doi.org/10.1145/3166227.3166230
http://dx.doi.org/10.1109/ETFA.2013.6648013
http://dx.doi.org/10.1109/ETFA.2013.6648013
http://dx.doi.org/10.4230/LITES-v002-i001-a001
http://dx.doi.org/10.4230/LITES-v002-i001-a001
http://dx.doi.org/10.1007/978-3-319-60588-3_15
http://dx.doi.org/10.1109/ISORC.2016.28
http://dx.doi.org/10.1109/ISORC.2016.28
http://dx.doi.org/10.1186/s13639-017-0076-8
http://dx.doi.org/10.1145/3195970.3196075
http://dx.doi.org/10.1145/3195970.3196075
http://dx.doi.org/10.1109/SIES.2017.7993402
http://dx.doi.org/10.1109/SIES.2017.7993402
http://dx.doi.org/10.1109/DSD.2015.68
http://dx.doi.org/10.1016/j.micpro.2017.06.006
http://dx.doi.org/10.1016/j.micpro.2017.06.006
http://dx.doi.org/10.1214/aos/1176343003
http://dx.doi.org/10.1109/ECRTS.2009.30
http://dx.doi.org/10.1109/ECRTS.2009.30
http://dx.doi.org/10.21105/joss.00711
http://dx.doi.org/10.21105/joss.00711
http://dx.doi.org/10.4230/LITES-v001-i001-a003
http://dx.doi.org/10.4230/LITES-v001-i001-a003

03:58 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

and Embedded Technology and Applications Sym-
posium (RTAS), April 2017.

111 L. Santinelli and Z. Guo. On the Criticality of
Probabilistic Worst-Case Execution Time Mod-
els, pages 59–74. Springer International Pub-
lishing, Cham, 2017. doi:10.1007/978-3-319-
69483-2_4.

112 L. Santinelli, J. Morio, G. Dufour, and D. Jac-
quemart. On the Sustainability of the Extreme
Value Theory for WCET Estimation. In Pro-
ceedings of the Workshop on Worst-Case Execu-
tion Time Analysis (WCET), pages 21–30, 2014.
doi:10.4230/OASIcs.WCET.2014.21.

113 M. Santos, B. Lisper, G. Lima, and V. Lima. Se-
quential Composition of Execution Time Distri-
butions by Convolution. In Proceedings of the
Workshop on Compositional Theory and Techno-
logy for Real-Time Embedded Systems (CRTS),
pages 30–37, November 2011. URL: http://www.
es.mdh.se/publications/2215-.

114 C. Scarrott and A. MacDonald. A review of ex-
treme value threshold estimation and uncertainty
quantification. REVSTAT–Statistical Journal,
10(1):33–60, 2012.

115 M. Schlansker, R. Shaw, and S. Sivaramakrish-
nan. Randomization and associativity in the
design of placement-insensitive caches. Hewlett
Packard Laboratories, 1993.

116 K. P. Silva and R. Silva de Oliveira L. F. Ar-
caro. On Using GEV or Gumbel Models when
Applying EVT for Probabilistic WCET Estima-
tion. In Proceedings of the IEEE Real-Time Sys-
tems Symposium (RTSS), 2017.

117 M. Slijepcevic, M. Fernandez, C. Hernandez,
J. Abella, E. Quinones, and F. J. Cazorla. pT-
NoC: Probabilistic Time-Analyzable Tree-Based
NoC for Mixed Criticality Systems. In Proceed-
ings of the Euromicro Conference on Digital Sys-
tem Design (DSD), 2016.

118 M. Slijepcevic, C. Hernandez, J. Abella, and F. J.
Cazorla. Boosting Guaranteed Performance in
Wormhole NoCs with Probabilistic Timing Ana-
lysis. In Proceedings of the Euromicro Confer-
ence on Digital System Design (DSD), pages 440–
444, August 2017. doi:10.1109/DSD.2017.71.

119 M. Slijepcevic, L. Kosmidis, J. Abella,
E. Quiñones, and F. J. Cazorla. DTM:
Degraded Test Mode for Fault-Aware Prob-
abilistic Timing Analysis. In Proceedings
of the Euromicro Conference on Real-Time
Systems (ECRTS), pages 237–248, July 2013.
doi:10.1109/ECRTS.2013.33.

120 M. Slijepcevic, L. Kosmidis, J. Abella,
E. Quiñones, and F. J. Cazorla. Time-analysable
non-partitioned shared caches for real-time
multicore systems. In Proceedings of the Design
Automation Conference (DAC), pages 1–6, June
2014. doi:10.1145/2593069.2593235.

121 J. E. Smith and J. R. Goodman. A Study of In-
struction Cache Organizations and Replacement
Policies. In Proceedings of the 10th Annual Inter-
national Symposium on Computer Architecture,
ISCA ’83, pages 132–137, New York, NY, USA,
1983. ACM. doi:10.1145/800046.801648.

122 J. E. Smith and J. R. Goodman. Instruc-
tion Cache Replacement Policies and Organiz-
ations. IEEE Transactions on Computers, C-
34(3):234–241, March 1985. doi:10.1109/TC.
1985.1676566.

123 Z. Stephenson, J. Abella, and T. Vardanega. Sup-
porting industrial use of probabilistic timing ana-
lysis with explicit argumentation. In Proceedings
of the IEEE International Conference on Indus-
trial Informatics (INDIN), pages 734–740, July
2013. doi:10.1109/INDIN.2013.6622975.

124 N. Topham and A. Gonzalez. Randomized cache
placement for eliminating conflicts. IEEE Trans-
actions on Computers, 48(2):185–192, February
1999. doi:10.1109/12.752660.

125 N. Tracey, J. Clark, K. Mander, and J. McDer-
mid. An automated framework for structural test-
data generation. In Proceedings 13th IEEE In-
ternational Conference on Automated Software
Engineering, pages 285–288, October 1998. doi:
10.1109/ASE.1998.732680.

126 N. Tracey, J. A. Clark, and K. Mander. The
way forward for unifying dynamic test-case gen-
eration: The optimisation-based approach. Pro-
ceedings of the IFIP International Workshop
on Dependable Computing and Its Applications
(DCIA)., 1998.

127 D. Trilla, C. Hernandez, J. Abella, and F. J.
Cazorla. Resilient random modulo cache memor-
ies for probabilistically-analyzable real-time sys-
tems. In IEEE International Symposium on
On-Line Testing and Robust System Design
(IOLTS), pages 27–32, July 2016. doi:10.1109/
IOLTS.2016.7604666.

128 F. Wartel, L. Kosmidis, A. Gogonel, A. Bal-
dovino, Z. Stephenson, B. Triquet, E. Quiñones,
C. Lo, E. Mezzetta, I. Broster, J. Abella, L. Cucu-
Grosjean, T. Vardanega, and F. J. Cazorla. Tim-
ing analysis of an avionics case study on complex
hardware/software platforms. In Proceedings of
the Conference on Design, Automation and Test
in Europe (DATE), pages 397–402, March 2015.

129 F. Wartel, L. Kosmidis, C. Lo, B. Triquet,
E. Quiñones, J. Abella, A. Gogonel, A. Baldovin,
E. Mezzetti, L. Cucu, T. Vardanega, and F. J.
Cazorla. Measurement-based probabilistic tim-
ing analysis: Lessons from an integrated-modular
avionics case study. In Proceedings of the IEEE
International Symposium on Industrial Embed-
ded Systems (SIES), pages 241–248, June 2013.
doi:10.1109/SIES.2013.6601497.

130 J. Wegener and F. Mueller. A Comparison of
Static Analysis and Evolutionary Testing for the
Verification of Timing Constraints. Real-Time
Systems, 21(3):241–268, November 2001.

131 J. Wegener, H. Sthamer, B. F. Jones, and D. E.
Eyres. Testing real-time systems using genetic
algorithms. Software Quality Journal, 6(2):127–
135, June 1997. doi:10.1023/A:1018551716639.

132 I. Wenzel, R. Kirner, B. Rieder, and P. Puschner.
Measurement-Based Timing Analysis. In Lever-
aging Applications of Formal Methods, Veri-
fication and Validation, pages 430–444, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

133 R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdin-

http://dx.doi.org/10.1007/978-3-319-69483-2_4
http://dx.doi.org/10.1007/978-3-319-69483-2_4
http://dx.doi.org/10.4230/OASIcs.WCET.2014.21
http://www.es.mdh.se/publications/2215-
http://www.es.mdh.se/publications/2215-
http://dx.doi.org/10.1109/DSD.2017.71
http://dx.doi.org/10.1109/ECRTS.2013.33
http://dx.doi.org/10.1145/2593069.2593235
http://dx.doi.org/10.1145/800046.801648
http://dx.doi.org/10.1109/TC.1985.1676566
http://dx.doi.org/10.1109/TC.1985.1676566
http://dx.doi.org/10.1109/INDIN.2013.6622975
http://dx.doi.org/10.1109/12.752660
http://dx.doi.org/10.1109/ASE.1998.732680
http://dx.doi.org/10.1109/ASE.1998.732680
http://dx.doi.org/10.1109/IOLTS.2016.7604666
http://dx.doi.org/10.1109/IOLTS.2016.7604666
http://dx.doi.org/10.1109/SIES.2013.6601497
http://dx.doi.org/10.1023/A:1018551716639

R. I. Davis and L. Cucu-Grosjean 03:59

and, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Sten-
ström. The Worst-case Execution-time Prob-
lem Overview of Methods and Survey of Tools.
ACM Transactions on Embedded Computing Sys-
tems, 7(3):36:1–36:53, May 2008. doi:10.1145/
1347375.1347389.

134 N. Williams. WCET measurement using modi-
fied path testing. In Proceedings of the Work-
shop on Worst-Case Execution Time Analysis
(WCET), volume 1 of OpenAccess Series in In-
formatics (OASIcs), 2005. doi:10.4230/OASIcs.
WCET.2005.809.

135 N. Williams and M. Roger. Test generation
strategies to measure worst-case execution time.
In ICSE Workshop on Automation of Software
Test, pages 88–96, May 2009. doi:10.1109/IWAST.
2009.5069045.

136 M. Ziccardi, E. Mezzetti, T. Vardanega,
J. Abella, and F. J. Cazorla. EPC: Extended
Path Coverage for Measurement-Based Probab-
ilistic Timing Analysis. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS),
pages 338–349, December 2015. doi:10.1109/
RTSS.2015.39.

A Appendix: Measurement Protocols

In this appendix, we briefly discuss measurement protocols and test vector generation, since
they underpin approaches to measurement-based timing analysis. We use the term scenario of
operation to mean a potentially repeating sequence of runs of a program, starting from a feasible
initial hardware state and progressing via a valid evolution of the program’s input values. To
run a program over a particular scenario of operation, a measurement protocol needs to provide
information about the initial hardware configuration, which is used to set up the initial hardware
state, and a sequence of input values, referred to as a test vector, which are input to the program
as it iterates over a number of runs. The aim of a measurement protocol is to exercise the program
in ways that are relevant to the parameter being measured. For example, if the parameter being
measured is a code coverage metric, then the measurement protocol would aim to use a set of
scenarios and test vectors designed to exercise paths that cover all of the statements (or all of the
conditions) in the code. In the case of the WCET, the set of scenarios and test vectors need to
be designed to exercise the longest paths through the code, assuming that those paths can be
identified in some way. The major difficulty in designing an appropriate measurement protocol is
in choosing which scenarios and hence which test vectors to use.

Search-based techniques were successfully applied to the problem of automatic test data
generation for structural code coverage by Tracey et al. [125] in 1998. While measurement
protocols designed for code coverage can potentially provide a useful starting point for the WCET
problem, in general even MC-DC coverage is insufficient. Further, full path-coverage is typically
unattainable due to issues of tractability, although some programs for high integrity systems may
be simple enough that all paths can be covered. Structural coverage offers a more attractive
starting point for hybrid measurement-based analysis which records execution times at the level of
simple functions or sub-programs as discussed by Deverge and Puaut [42] in 2005; however, there
are still issues with how these execution times are combined due to dependences on the previous
history of execution.

Search techniques developed by Wegener et al. [131] in 1997, Tracey et al. [126] in 1998, Wegener
and Mueller [130] in 2001, and multi-criteria optimisation developed by Bate and Khan [10] in 2011
have also been investigated in the context of test data generation with the aim of finding input
values that result in large execution times. The basic idea is to use an evolutionary algorithm to
mutate or evolve a population of test data, with the fitness function determined by the execution
time of the program with that data as input. Multi-criteria optimisation works in a similar
way, but takes into account additional criteria such as the number of cache misses as well as the
execution time.

In 2005, Williams [134] proposed a static analysis tool that seeks to determine a set of test
vectors that exercise every path. This was later extended in 2009 by Williams and Roger [135]
with the aim of avoiding the need for full path coverage, for example by maximising loop counts.

LITES

http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.4230/OASIcs.WCET.2005.809
http://dx.doi.org/10.4230/OASIcs.WCET.2005.809
http://dx.doi.org/10.1109/IWAST.2009.5069045
http://dx.doi.org/10.1109/IWAST.2009.5069045
http://dx.doi.org/10.1109/RTSS.2015.39
http://dx.doi.org/10.1109/RTSS.2015.39

03:60 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

In 2008, Wenzel et al. [132] described a tool for measurement-based timing analysis that uses
a combination of test data reuse, random search, heuristics and model checking. It partitions
the program into user defined segments (to ease path complexity), with instructions inserted at
segment boundaries to ensure a consistent hardware state. In 2011, Bunte et al. [21] showed that
commonly used metrics for functional testing including statement coverage, decision coverage,
and MC/DC coverage are insufficient to obtain safe WCET estimates. Instead, they propose
a balanced path metric which ensures that all feasible pairs of basic blocks are exercised in
combination. This metric is shown to be much more effective than the common code coverage
metrics, but is still not completely safe. Later in 2011, Bunte et al. [24] explored the combination
of model checking, used to produce a set of test vectors that provide basic block coverage, and a
genetic algorithm, which aims to modify these test vectors to maximise execution times. They
evaluated this combined approach using the relative safety metric developed previously [21].

Recent work by Law and Bate [80] in 2016, aimed at maximising loop bounds and achieving
path coverage at the level of individual functions. The techniques proposed make use of simulated
annealing in combination with fitness functions that target branch coverage and loop counts
as well as execution time. They show that this approach is more effective in providing WCET
approximations than fitness functions based solely on maximising execution time.

While these methods are effective in finding large execution times, there are no guarantees
that test data which results in the worst-case execution time will be found.

Further related work in 2017 by Braams et al. [20] presented EDiFy, a measurement-based
framework that aims to derive the execution time distribution of a program via exhaustive
evaluation of the program inputs. Since the execution time distribution depends on the distribution
of input values, the input value distribution is assumed to be provided for each independent input
variable and also the conditional distribution for any dependent variables. EDiFy addresses issues
of tractability via a combination of static analysis and an anytime algorithm. Static analysis is
used to reduce the state-space by pruning irrelevant input variables, and clustering variable ranges
where the execution time is guaranteed to be the same. The anytime algorithm makes use of a
logarithmic traversal function over the variable ranges. This ensures rapid convergence and an
early tight approximation of the execution time distribution. Execution times are obtained by
running the program with the selected input values.

Although we have touched upon issues of test data generation and measurement protocols
in the above discussion a comprehensive review of research in this area is outside of the scope
of this survey. As far as we are aware, to date there has only been very limited work done on
the problem of defining appropriate measurement protocols to support MBPTA. The majority of
works on MBPTA (see Section 4) aim at analysing single paths and focus on obtaining sufficient
observations for the path under analysis. They then rely on additional knowledge to identify the
worst-case paths or existing functional testing to provide sufficient path coverage. A pWCET
distribution for the program is then constructed using an envelope over the pWCET distributions
for individual paths, i.e. the per-path method (see Section 2.3). Cucu-Grosjean et al. [34] note that
full path coverage is a pre-requisite to obtaining sound results from MBPTA. This is backed up by
the empirical work of Lesage et al. [85] which shows that omitting some paths can quickly degrade
the estimated pWCET distribution output by MBPTA leading to optimistic (i.e. unsound) results.
Hybrid methods (see Section 5) go some way to addressing the path coverage problem; however,
they are limited in their applicability. Further research is clearly needed to define appropriate
measurement protocols that can fully support MBPTA methods, while also addressing issues of
representativity.

A Survey of Probabilistic Schedulability Analysis
Techniques for Real-Time Systems
Robert I. Davis
University of York, UK and Inria, France
rob.davis@york.ac.uk

Liliana Cucu-Grosjean
Inria, France
liliana.cucu@inria.fr

Abstract
This survey covers schedulability analysis tech-
niques for probabilistic real-time systems. It reviews
the key results in the field from its origins in the late
1980s to the latest research published up to the end
of August 2018. The survey outlines fundamental
concepts and highlights key issues. It provides a

taxonomy of the different methods used, and a clas-
sification of existing research. A detailed review is
provided covering the main subject areas as well
as research on supporting techniques. The survey
concludes by identifying open issues, key challenges
and possible directions for future research.

2012 ACM Subject Classification Software and its engineering → Software organization and properties,
Software and its engineering → Software functional properties, Software and its engineering → Real-time
schedulability, Computer systems organization → Real-time systems
Keywords and Phrases Probabilistic, real-time, schedulability analysis, scheduling
Digital Object Identifier 10.4230/LITES-v006-i001-a004
Received 2018-01-04 Accepted 2019-02-26 Published 2019-05-14

1 Introduction

Systems are characterised as real-time if, as well as meeting functional requirements, they are
required to meet timing requirements. Real-time systems may be further classified as hard real-
time, where failure to meet their timing requirements constitutes a failure of the system, or soft
real-time, where failure to meet timing requirements leads only to a degraded quality of service.
Today, both hard and soft real-time systems are found in many diverse application areas including:
automotive, aerospace, medical systems, robotics, and consumer electronics.

Real-time systems are typically implemented via a set of programs, also referred to as tasks,
which are executed on a recurring basis. Verifying the timing correctness of a real-time system is
typically framed as a two step process:

Timing Analysis seeks to characterise the amount of time which each task can take to execute
on the hardware platform. Typically, this is done by estimating, as a single value, an upper
bound on the Worst-Case Execution Time (WCET) of the task.
Schedulability Analysis seeks to characterise the end-to-end response time of functionality
involving one or more tasks, taking into account the way in which the tasks are scheduled and
any interference between them. An upper bound on the Worst-Case Response Time (WCRT)
can then be compared to the deadline for that function to determine if end-to-end timing
requirements can be guaranteed.

The concept of probabilistic real-time systems departs in two main ways from the classical model
described above. Firstly, it recognises that the execution times of tasks may exhibit significant
variability due to hardware effects (e.g. caches, branch prediction, pipelines, and other hardware
acceleration features) as well as due to different input values and paths taken through the code.

© Robert I. Davis and Liliana Cucu-Grosjean;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 6, Issue 1, Article No. 4, pp. 04:1–04:53
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5772-0928
mailto:rob.davis@york.ac.uk
mailto:liliana.cucu@inria.fr
https://doi.org/10.4230/LITES-v006-i001-a004
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

04:2 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

Thus the WCET may be substantially larger than typical execution times and may rarely occur.
Much of the work on the analysis of probabilistic real-time systems therefore models the execution
time of each task using a probability distribution with distinct probabilities associated with each
possible value of execution time. Secondly, the timing requirements are such that deadlines are no
longer considered to require absolute guarantees, but rather the probability of the deadline being
exceeded must be below some specified threshold. (In practice, there may also be constraints on
the number of consecutive deadlines that can be missed and hence on the probability that such a
black-out period exceeds a certain length).

The concept of probabilistic real-time systems spans both the traditional classifications of hard
and soft real time systems. In the case of a hard real-time system, failure to meet a deadline may
constitute a failure of the system; however, provided that the probability of such a failure occurring
is sufficiently small, for example leading to a failure rate of no more than 10−7, 10−8, or 10−9

per hour of operation, then it may still be acceptable to the system designers. This stems from
the observation that the mechanical and electrical components of systems are typically designed
with similar failure rates in mind (measured in terms of the number of failures per hour or billion
hours). Thus engineering the timing behaviour of a system function to ensure a much smaller
failure rate would have little or no impact on overall reliability and availability, while it could
potentially require the provision of much more costly hardware. Acceptable failure rates depend
on the criticality level assigned to the system function, as an example in the automotive standard
ISO-26262 each Automotive Safety Integrity Level (ASIL) is associated with an observable failure
rate. These are 10−9 per hour for ASIL D, 10−8 for ASIL C and B, and 10−7 for ASIL A. (Note, the
relationship between failure rates per hour of operation and appropriate thresholds on probabilities
of failure for individual tasks depend on various factors considered in fault tree analysis, including
any mitigations and recovery mechanisms that may be applied in the event of a timing failure [62]).

We note that traditional analysis techniques can still be applied in cases where a very low level
of deadline misses are permissible; however, since the reasoning used can only argue that either all
deadlines will be met or not, then the results produced can in some cases be very conservative, thus
requiring substantial hardware over-provision compared to the results of probabilistic schedulability
analysis1 expressed in terms of probabilities or probability distributions.

In the case of soft real-time systems, failure to meet a deadline and the consequent late response
represents a degradation in the quality of service provided or the utility of the results produced.
Here, probabilistic schedulability analysis can be used to characterise the expected quality of
service that the system will provide.

This survey classifies and reviews probabilistic schedulability analysis techniques for real-time
systems, where one or more task parameters are modelled as random variables, i.e. via probability
distributions. Probabilistic schedulability analysis aims to determine for a set of tasks with
parameters described by probability distributions, scheduled according to a given policy (for
example fixed priority preemptive scheduling or Earliest Deadline First (EDF)) if those tasks can
be guaranteed to meet their timing requirements, described in terms of probabilistic deadlines (i.e.
deadlines with associated thresholds on the maximum acceptable probability of a deadline miss),
or to simply compute the probability of deadline failure.

Much of the literature on probabilistic schedulability analysis models task execution times
via probability distributions, while other works consider probabilistic Worst-Case Execution
Time (pWCET) distributions. The latter can be derived via probabilistic timing analysis, us-

1 In this survey, we adopt the widely used term “probabilistic schedulability analysis” noting that it can easily
be misinterpreted. To clarify, while the results produced are expressed in terms of probabilities or probability
distributions, the analysis methods themselves are deterministic in the sense of always producing the same
results from the same inputs, unlike, for example, randomised search techniques.

R. I. Davis and L. Cucu-Grosjean 04:3

ing analytical methods referred to as Static Probabilistic Timing Analysis (SPTA) [35, 53, 11,
10, 85, 84] or statistical methods referred to as Measurement-Based Probabilistic Timing Ana-
lysis (MBPTA) [32, 58, 66, 44, 150, 135, 133, 88, 87]. Probabilistic timing analysis techniques are
reviewed in detail in a companion survey [52].

Research into probabilistic schedulability analysis can be classified into eight main categories.
This classification forms the basis for the main sections of this survey. Note, for ease of reference
we have numbered the categories to match the sections, starting at 3.
3. Probabilistic Response Time Analysis: these methods compute the probability distribution of

the response time of each task, or the jobs of each task. These response time distributions can
then be compared to the deadlines to determine if the timing requirements are met.

4. Probabilistic Analysis assuming Servers: these methods assume that each task is allocated a
proportion of the processor bandwidth via a server. This has the advantage of isolating the
tasks from interfering with one another, which simplifies the schedulability analysis.

5. Real-Time Queuing Theory: these methods estimate the fraction of deadlines that will be met
from queue length dependent lead-time profiles. These profiles describe the time to go to the
deadline and the distribution of queue lengths obtained via queueing theory.

6. Probabilities from Faults: works in this category assume additional execution time or load on
the system from fault recovery operations as a consequence of faults that occur according to
some probability distribution.

7. Statistical Analysis of Response Times: works in this category differ from those above in
that they use statistical techniques based on observations of response times to predict the
probability of deadline failure.

8. Probabilistic Analysis of Mixed Criticality Systems: these methods analyse mixed criticality
systems using a richer representation (e.g. execution times described by probability distributions)
rather than discrete WCET estimates for different levels of criticality.

9. Miscellaneous: research in this category explores different aspects of scheduling probabilistic
real-time systems, including tasks with precedence constraints, the imprecise computational
model, randomised job dropping, priority assignment policies, component based scheduling,
and multiprocessor scheduling.

10. Addressing Issues of Intractability: the methods reviewed in this section aim to significantly
reduce the runtime of probabilistic schedulability analysis techniques.

The research in these categories is summarised by authors and citations in Table 1. Note the
sub-categories correspond to the subsections of this survey.

It is interesting to note how research in the different categories has progressed over time.
Figure 1 illustrates the number of papers reviewed in each of the main categories covered by this
survey that were published in 3-year time intervals from 1988 to 2018. (This figure is best viewed
online in colour). A number of observations can be drawn from Figure 1. Firstly, the volume of
research into probabilistic schedulability analysis has greatly increased since its origins in the late
1980s / early 1990s. The number of publications on the main theme of probabilistic response time
analysis (Section 3) has steadily increased during this time. Work on server-based analysis and
real-time queueing theory (Sections 4 and 5) have produced a small number of papers over most
of the time period. By contrast, work on probabilities derived from faults (Section 6) began in
1999, with a peak in 2003 - 2006, and fewer publications in recent years, Categories of more recent
interest (i.e. publications since 2007) include statistical analysis (Section 7) and addressing issues
of tractability (Section 10). However, the hot topic in recent years, albeit with mainly preliminary
publications, is work on probabilistic approaches to mixed criticality systems (Section 8). This
area has shown a rapid expansion in the number of publications since 2015.

Before moving to the sections of this survey which review the literature, we first discuss (in
Section 2) fundamental concepts and issues pertaining to probabilistic schedulability analysis.

LITES

04:4 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

Table 1 Summary of publications from different authors in the categories described in the main sections
and subsections of this survey.

3 Probabilistic Response Time Analysis
3.1 Analysis for Periodic Tasks with No Backlog
Woodbury and Shin [152], Tia et al. [143], Atlas and Bestavros [13], Gardner et al. [60], Tanasa et al. [141]
3.2 Analysis for Periodic Tasks with Backlog
Diaz et al. [54, 55], Lopez et al. [93], Kim et al. [76], Ivers and Ernst [70], Tanasa et al. [140]
3.3 Analysis for More Complex Task Models
Cucu-Grosjean and Tovar [41], Cucu-Grosjean [40], Maxim et al. [105], Maxim and Cucu-Grosjean [106],
Maxim and Bertout [104], Santinelli and Cucu-Grosjean [130, 131], Santinelli et al. [136], Khan et al. [74],
Santinelli [129], Carnevali et al. [34], Ben-Amor et al. [23], Markovic et al. [103]

4 Probabilistic Analysis assuming Servers
4.1 Analysis for Server-based Systems
Abeni and Buttazzo [2, 3, 4] , Kaczynski et al. [72], Manica et al. [99], Abeni et al. [6, 5], Palopoli et
al. [122, 120, 121], Frias et al. [59, 146]

5 Real-Time Queueing Theory
5.1 Analysis based on Real-Time Queuing Theory
Barrer [20], Panwar et al. [123], Lehoczky [83], Doytchinov et al. [56], Hansen et al. [67], Zhu et al. [154],
Gromoll and Kruk [63], Kruk at al. [79]

6 Probabilities from Faults
6.1 Analysis of Fault Recovery on Processors
Burns et al. [33, 30], Broster and Burns [27, 26], Kim and Kim [75], Aysan et al. [18], Short and
Proenza [138], Santinelli et al. [134]
6.2 Analysis of Fault Recovery on CAN
Navet et al. [117], Broster et al. [28, 29], Aysan et al. [19] Axer et al. [17] , Davis and Burns [48], Nolte et
al. [119], Zeng et al. [153]

7 Statistical Analysis of Response Times
7.1 Statistical Estimation
Navet et al.[116], Lu et al. [96, 97, 94, 95], Liu et al. [91], Maxim et al. [111]

8 Probabilistic Analysis of Mixed Criticality Systems
8.1 Analysis for Mixed Criticality Systems
Santinelli and George [132], Guo et al. [64], Maxim et al. [107, 108], Alahmad and Gopalakrishnan [9, 8],
Draskovic et al. [57], Abdeddaim and Maxim [1], Kuttler et al. [80]

9 Miscellaneous
9.1 Task Graphs and Precedence Constraints
Manolache et al. [100, 101, 102], Hua et al. [69]
9.2 Multiprocessor Analysis
Nissanke et al. [118], Leulseged and Nissanke [86], Mills and Anderson [113, 112], Liu et al.[92], Wang et
al. [149, 148] , Ren et al. [128]
9.3 Miscellaneous Models and Techniques
Hu et al. [68], Hamann et al. [65], Kim et al. [77], Gopalakrishnan [61]
9.4 Position Papers
Quinton et al. [125], Cucu-Grosjean [42, 43]

10 Addressing Issues of Intractability
10.1 Re-sampling
Refaat et al. [127], Maxim et al. [110, 109], Milutinovic et al. [114]
10.2 Analytical Methods and Other Techniques
Chen and Chen [36] von der Bruggen et al. [147], Chen et al. [37]

R. I. Davis and L. Cucu-Grosjean 04:5

0

5

10

15

20

25

30

1987-1990 1991-1994 1995-1998 1999-2002 2003-2006 2007-2010 2011-2014 2015-2018

N
um

be
r o

f p
ub

lic
at

io
ns

Publication Date

10 Efficient Computation / Issues of Intractability
9 Miscellaneous
8 Probabilistic Analysis of Mixed Criticality Systems
7 Statistical Analysis of Response Times
6 Probabilities from Faults
5 Real-Time Queueing Theory
4 Probabilistic Analysis assuming Servers
3 Probabilistic Response Time Analysis

Figure 1 Intensity of research in the different categories corresponding to Sections 3 to 10 of this
survey.

Note that conventional schedulability analysis techniques aimed at systems where task parameters
are specified by single values rather than probability distributions are outside of the scope of this
survey, they are reviewed in detail in a number of prior works [137, 49, 45].

2 Fundamentals and Key Issues

The term probabilistic real-time systems is used to refer to real-time systems where one or more
of the task parameters (e.g. execution time, period, etc.) are described by random variables.
Although a parameter, such as the execution time of a task, is described i.e. modelled by a random
variable, this does not necessarily mean that the actual parameter itself exhibits random behaviour
or that there is necessarily any underlying random element to the system that determines its
behaviour. The actual behaviour of the parameter may depend on complex and unknown or
uncertain behaviours of the overall system. As an example, the outcome of a coin toss can be
modelled as a random variable with heads and tails each having a probability of 0.5 of occurring,
assuming that the coin is fair. However, the actual process of tossing a coin does not actually have
a random element to it. The outcome could in theory be predicted to a high degree of accuracy
if there were sufficiently precise information available about the initial state and the complex
behaviour and evolution of the overall physical processes involved. There are, however, many
useful results that can be obtained by modelling the outcome of a coin toss as a random variable.
The same is true in the analysis of probabilistic real-time systems.

LITES

04:6 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

In this survey we use calligraphic characters to denote random variables. As an example,
the discrete probability distribution of the execution time X of a task may be described by a
Probability Mass Function (PMF)

X =
(

1 2 4
0.85 0.1 0.05

)
(1)

indicating that there is a probability of 0.85 that the execution time will be 1, a probability of 0.1
that it will be 2, and a probability of 0.05 that it will be 4. Thus the Cumulative Distribution
Function (CDF) is given by:

FX (x) = P (X ≤ x) =


0 if x = 0
0.85 if x = 1
0.95 if x = 2
0.95 if x = 3
1 otherwise

 (2)

Further, the Complementary Cumulative Distribution Function (1-CDF) or Exceedance Function
is given by:

F̄X (x) = P (X > x)


1 if x = 0
0.15 if x = 1
0.05 if x = 2
0.05 if x = 3
0 otherwise

 (3)

Timing requirements in probabilistic real-time systems are typically specified in terms of
probabilistic deadlines. In contrast to conventional timing requirements where only a relative
deadline is specified, probabilistic timing requirements also prescribe a limit or threshold on the
maximum acceptable probability that the deadline will be missed. Extending the simple example
above, let us assume that the task has a period of 10 and a deadline of 3, and is the only task in
the system. In that case it would have a Deadline Miss Probability of 0.05 (which can be obtained
directly from the 1 - CDF) and would therefore be viewed as schedulable if the threshold on the
probability of deadline failure were specified as 0.1.

In the above example, with a single task, schedulability analysis deriving the probabilistic
response time distribution is trivial, since the response time distribution is the same as the
execution time distribution. However, once multiple tasks are considered, then execution time
distributions need to be combined in some way to form a probabilistic response time distribution,
and this gives rise to issues relating to independence.

2.1 Independence
I Definition 1. Two random variables X and Y are probabilistically independent if they describe
two events such that knowledge of whether one event did or did not occur does not change the
probability that the other event occurs. Stated otherwise, the joint probability is equal to the
product of their probabilities P ({X = x} ∩ {Y = y}) = P (X = x) · P (Y = y).

In our context this means that the execution times of two jobs of the same or different tasks
are independent if the event that the execution time of the first job takes a particular value x has
no effect on the probability that the execution time of the second job will take some value y. If
this is not the case, then the execution times of the two jobs are said to be dependent.

R. I. Davis and L. Cucu-Grosjean 04:7

Much of the literature on probabilistic schedulability analysis assumes that the random variables
describing the execution times of jobs of the same or different tasks are independent. When the
assumption of independence holds, then the basic convolution operator ⊗ can be used to determine
the sum Z = X ⊗ Y of the independent random variables X and Y where:

P{Z = z} =
k=+∞∑
k=−∞

P{X = k}P{Y = z − k} (4)

For example, if both X and Y are given by
(

2 10
0.6 0.4

)
, then we have:

(
2 10
0.6 0.4

)
⊗
(

2 10
0.6 0.4

)
=
(

4 12 20
0.36 0.48 0.16

)
(5)

Issues of dependence are of great importance in probabilistic schedulability analysis, since an
assumption of independence when it does not in fact exist can easily result in the computation of
unsound2 i.e. optimistic probabilities of a deadline miss. As an example, adapted from the work
of Ivers and Ernst [70], consider how the execution time distributions X and Y for the jobs of two
tasks may be combined to obtain a response time distribution. Here, we assume that task τX
has the higher priority and runs first and we are interested in the response time of task τY which
is released at the same time as task τX , but runs once task τX has completed. If the execution
times of the two jobs are independent, then the response time distribution may be obtained via
convolution as given in (5) above. Thus assuming a deadline of 10 the probability of a deadline
miss is 0.64, whereas with a deadline of 15 the probability of a deadline miss would be 0.16. If the
execution times are instead perfectly positively correlated, then whenever task τX executes for
2 time units then so does task τY , and similarly if τX executes for 10 time units, then so does
task τY . In this case, the response time can only take two values: 4 and 20, with probabilities of
0.6 and 0.4 respectively. Thus, compared to the independent case, the probability of missing a
deadline of 15 is increased to 0.4, whereas the probability of missing a deadline of 10 is decreased
to 0.6. If instead the execution times are perfectly negatively correlated, then whenever task τX
executes for 2 time units then task τY executes for 10 time units, and vice-versa. In this case
the response time is always 12. Interestingly, while the probability of missing a deadline of 15
is reduced to zero, missing a deadline of 10 is now certain; it has a probability of 1, which is
higher than in the case of either independence or positive correlation. This simple example serves
to illustrate that the correctness of probabilistic schedulability analysis, and the response time
distributions produced, crucially hinges upon the dependences between task execution times. The
difficulty is that in practice the actual execution times of jobs of the same or different tasks are
unlikely to be independent, rather they may exhibit correlation emanating from history dependent
software states (e.g. static local variables) or history dependent hardware states (e.g. shared cache
lines within the memory hierarchy), and also from dependences due to common or correlated
input values that change only slowly over time.

2.2 pWCET Distributions
Some recent works on probabilistic schedulability analysis assume that the execution time behaviour
of tasks is characterised by a probabilistic Worst-Case Execution Time (pWCET) distribution.

2 In this survey, we use the adjective sound to indicate a description, an analysis, or a probability distribution
that provides information about the system that is not optimistic with respect to its timing behaviour. Thus
the information provided may be precise, or it may be pessimistic.

LITES

04:8 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

This term has been used widely in the literature, with a number of different definitions given.
Below, we provide an overarching definition of the pWCET distribution.

I Definition 2. The probabilistic Worst-Case Execution Time (pWCET) distribution for a task is
the least upper bound, in the sense of the greater than or equal to operator � (defined below), on
the execution time distribution of the jobs of the task for every valid scenario of operation, where
a scenario of operation is defined as an infinitely repeating sequence of input states (including
both input values and software state variables) and initial hardware states that characterise a
feasible way in which recurrent execution of the task may occur.

I Definition 3. (From Diaz et al. [55]) The probability distribution of a random variable X is
greater than or equal to (i.e. upper bounds) that of another random variable Y (denoted by X � Y)
if the Cumulative Distribution Function (CDF) of X is never above that of Y, or alternatively,
the 1-CDF of X is never below that of Y. Similarly, the probability distribution of a random
variable X is less than or equal to (i.e. lower bounds) that of another random variable Y (denoted
by X � Y) if the Cumulative Distribution Function (CDF) of X is never below that of Y, or
alternatively, the 1-CDF of X is never above that of Y.

Graphically, Definition 2 means that the 1 - CDF of the pWCET distribution is never below
that of the execution time distribution for any specific scenario of operation. Hence the 1 - CDF
or exceedance function of the pWCET distribution may be used to determine an upper bound on
the probability p that the execution time of a randomly selected job of the task will exceed an
execution time budget x, for any chosen value of x. This upper bound is valid for any feasible
scenario of operation.

Figure 2 Exceedance function or 1-CDF for the pWCET distribution of a task, and also execution
time distributions for specific scenarios of operation.

Figure 2 illustrates the execution time distributions for a number of different scenarios of
operation (solid lines), the precise pWCET distribution (red dashed line) which is the least upper
bound (i.e. the point-wise maxima of the 1 - CDF) for all of these distributions, and also some

R. I. Davis and L. Cucu-Grosjean 04:9

arbitrary upper bound pWCET distribution (red dotted line) which is a pessimistic estimate of
the precise pWCET. Also shown (on the y-axis) is an upper bound p on the probability that any
randomly selected job of the task will have an execution time that exceeds x (on the x-axis). The
value x is referred to as the pWCET estimate at a probability of exceedance of p. (More formally,
the precise upper bound pWCET distribution is given by supθ∈Θ F̄θ where F̄θ is the 1 - CDF for
scenario of operation θ, and Θ is the space of all valid scenarios of operation).

Note that the greater than or equal to relation � between two random variables does not
provide a total order, i.e. for two random variables X and Z it is possible that X � Z and Z � X.
Hence the precise pWCET distribution may not correspond to the execution time distribution for
any specific scenario. This can be seen in Figure 2, considering the execution time distributions
X , Y and Z. It is the case that X � Y, but X � Z and Z � X.

We note that the term pWCET is open to misinterpretation and is often misunderstood. To
clarify, it does not refer to the probability distribution of the worst-case execution time, since the
WCET is a single value. Rather informally, following Definition 2, the pWCET may be thought of
as the “worst-case” (in the sense of upper bound) probability distribution of the execution time
for any scenario of operation.

It is interesting to consider the use and interpretation of the pWCET distribution for a task.
Let us assume that the task will be run repeatedly a potentially unbounded number of times, and
that a fixed execution time budget of x applies to each run. Further, we assume that this budget
is enforced by the operating system, and therefore that any job of the task that has not completed
within an execution time of x is terminated and assumed to have failed. The pWCET distribution
provides the following information, by reading off the probability of exceedance p associated with
the execution time budget x (see Figure 2):
(i) An upper bound p on the probability (with a long-run frequency interpretation) equating

to the number of jobs expected to exceed the execution time budget divided by the total
number of jobs in a long (tending to infinite) time interval.

(ii) An upper bound p on the probability that the execution time budget will be exceeded
by a randomly selected job. (This is broadly equivalent to the above long-run frequency
interpretation).

Contrast this with the binary information provided by the WCET. If x is greater than or equal to
the WCET, then we can expect the budget to never be exceeded. If x is less than the WCET,
then we expect the budget to be exceeded on some runs, but we have no information on how
frequently this may occur.

We note that some researchers have interpreted the pWCET distribution as giving the
probability or confidence (1−p) that the WCET does not exceed some value x. This interpretation
can be confusing, since the meaning of the WCET is normally taken to be the largest possible
execution time that could be realised on any single job of the task. Instead, in line with Definition 2
and (i) above, we view the 1 - CDF of the pWCET distribution as providing, for any chosen value x
for the execution time budget, an associated upper bound probability p (with a long-run frequency
interpretation) equating to the number of jobs of the task expected to exceed the execution time
budget x, divided by the total number of jobs of the task executing in a long time interval.

2.3 pWCET distributions and dependences

There are two main ways of obtaining pWCET distributions: via Static Probabilistic Timing
Analysis (SPTA) or via Measurement-Based Probabilistic Timing Analysis (MBPTA). (A detailed
discussion and review of these methods is given in the companion survey [52] on probabilistic
timing analysis).

LITES

04:10 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

The aim of SPTA methods is to construct an upper bound on the pWCET distribution of a
task by applying static analysis techniques to the code, supplemented by information about input
values, along with an abstract model of the hardware behaviour. For static analysis to produce a
non-degenerate3 pWCET distribution there typically has to be some part of the system or its
environment that contributes random or probabilistic timing behaviour. SPTA methods for tasks
running on time-randomised hardware (e.g. with a random replacement cache) effectively consider
each path through the code. For each path, these methods construct a pWCET distribution that
upper bounds the probability distribution of the execution time for that path, considering all
possible initial hardware states and all possible input states that cause execution of the path.
The upper bound pWCET distributions for every path are then combined using an envelope
function (taking the point-wise maximum over the 1-CDFs) to determine an upper bound on the
pWCET distribution for the task that is valid independent of the path taken. (More sophisticated
SPTA methods analyse sub-paths and use appropriate join operations at path convergence to
compute tighter upper bounds on the pWCET distribution of the task).

The upper bound pWCET distribution for a task derived by SPTA (as described above)
upper bounds the pWCET distributions for every path through the code. Similarly, the pWCET
distribution for each path upper bounds the execution time distribution for every input state
that drives that path, and every initial hardware state that could occur at the start of that path.
Hence, by construction the pWCET distribution derived by SPTA is probabilistically independent
of the input state chosen or the path taken4. This has implications for the use that can be made of
the pWCET distribution. Firstly, it can be used to bound the behaviour of any randomly selected
job of the task. Secondly, since the pWCET distribution is independent of the input state, which
may have strong dependences and correlations with the input states for previous jobs, it can be
composed using basic convolution to upper bound the execution time behaviour of multiple jobs
in a sequence. It can therefore be used to derive probabilistic worst-case response time (pWCRT)
distributions, which can then be compared to deadlines to determine the probability of a deadline
miss.

We note that the actual execution times for a sequence of jobs of a task, which exercise the same
or different paths, may well show strong correlations and dependences. It is the modelling of the
execution times via an appropriate pWCET distribution which enables probabilistic independence
to be assumed. (This is similar to the conventional case of a single WCET which can similarly be
used in this way, even though the actual execution times of different jobs have strong dependences).

The aim of Measurement-Based Probabilistic Timing Analysis (MBPTA) methods is to make
a statistical estimate of the pWCET distribution of a task. This estimate is derived from a sample
of execution time observations obtained by executing the task on the actual hardware or on a
cycle-accurate simulator5 according to an appropriate measurement protocol. The measurement
protocol executes the task multiple times according to some sequence(s) of feasible input states
and initial hardware states, thus sampling one or more possible scenarios of operation.

Provided that the sample of execution time observations passes appropriate statistical tests,
then Extreme Value Theory (EVT) [39] can be used to derive a statistically valid estimate of the
probability distribution of the extreme values of the execution time distribution, i.e. to estimate
the pWCET distribution. By modelling the shape of the distribution of the extreme execution
times, EVT is able to predict the probability of occurrence of execution time values that exceed

3 A degenerate distribution has only a single possible value.
4 This holds provided that the random values generated, for example by the random number generator within a

random replacement cache, are also independent.
5 A cycle-accurate simulator provides the same timing behaviour as the actual hardware, accurate to a single
processor clock cycle.

R. I. Davis and L. Cucu-Grosjean 04:11

any that have been observed. (For a basic introduction to the use of EVT in this context, see the
companion survey [52] on probabilistic timing analysis. More detailed information about EVT
can be found in Stuart Coles’ textbook on the subject [39]).

I Definition 4. A sample of input states and initial hardware states used for analysis is repres-
entative of the population of states that may occur during a future scenario of operation if the
property of interest (i.e. the pWCET distribution) derived from the sample of states used for
analysis matches or upper bounds the property that would be obtained from the population of
states that occur during the entire scenario of operation.

I Definition 5. As determined by MBPTA, the estimated pWCET distribution for a task (or
path through a task) is a statistical estimate of the probability distribution of the extreme values
of the execution time of that task (or path), valid for any future scenarios of operation that are
properly represented by the sample of input states and initial hardware states used in the analysis.

Ideally, MBPTA would provide a pWCET distribution that is valid for any of the many possible
future scenarios of operation; however, an important issue here is that there may not be one
single distribution of input states and hardware states that is representative of all possible future
scenarios of operation. This issue of representativity is a key open problem in research on the
practical use of MBPTA, see Section 2.3 of the companion survey [52] on probabilistic timing
analysis for a further discussion of this issue.

There are two main ways of applying MBPTA, referred to as per-path and per-program:
1. Per-path: MBPTA is applied at the level of paths. A measurement protocol is used to exercise

all feasible paths through the program, then the execution time observations are divided into
separate samples according to the path that was executed. EVT is then used to estimate the
pWCET distribution for each path. The pWCET distribution for the program as a whole is
then estimated by taking an upper bound (an envelope or point wise maxima on the 1 - CDFs)
over the set of pWCET estimates for all paths.

2. Per-program (or task): MBPTA is applied at the level of the program i.e. the task. A
measurement protocol is again used to exercise all paths. In this case, all of the execution time
observations are grouped together into a single sample. EVT is then applied to that sample,
thus estimating directly the pWCET distribution for the entire program.

With MBPTA, if the per-path approach is used, and it is known that the execution times for
each path vary only due to random elements in the hardware, and do not otherwise vary across
different input states that are in the same equivalence class (i.e. that drive the same path), then
probabilistic independence of the pWCET distribution is assured. (Recall that with the per-path
approach, the pWCET estimate for the task is an upper bound over the pWCET distributions for
all of its paths). Probabilistic independence of the pWCET distribution means that it can be used
to characterise the behaviour of any randomly selected job of the task, and also composed using
basic convolution to upper bound the interference from multiple jobs in probabilistic schedulability
analysis.

In other cases, the execution times obtained for a path may be dependent on the particular input
states used to drive it. These input states may themselves exhibit dependences and correlations.
Further, with the per-program approach, there may be dependences and correlations between
the paths taken on consecutive jobs of the task, as happens with a software state machine. For
systems with such dependences, then, assuming that the set of input states used during analysis
is representative of those occurring during operation, the estimated pWCET distribution will still
be valid in terms of characterising the extreme execution time behaviour of a randomly chosen
single job of the task. However, it will typically not be valid to compose the pWCET distributions

LITES

04:12 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

using basic convolution. The reason is that the pWCET distribution is not necessarily a valid
estimate for the extreme execution time values of a job conditional on specific execution times
having occurred for previous jobs.

As an example, consider a program E that implements a software state machine with four
states and hence four paths that runs on time-randomised hardware. Here the main factor which
affects the execution time of the program is the path taken, which is determined by the value of
a software state variable. For this program, all valid scenarios of operation involve the software
state variable cycling through its four possible values in order, and hence the four possible paths
executing in order on any four consecutive runs of the program. Further, assume that there is
some variability in the execution time of each path due to an independent random element in the
hardware (e.g. a random number generator), which contributes either 5 or 10 time units to the
execution time for the path, with a probability of 0.5 in each case. The execution times of the
four paths are (i) 10 or 15, (ii) 20 or 25, (iii) 30 or 35, and (iv) 40 or 45. Note, each path has a
probability of 0.25 of being taken in a randomly chosen execution of the program.

The precise pWCET distribution valid for any scenario of operation is:

pWCETper−program =
(

0 10 15 20 25 30 35 40 45
1 0.875 0.75 0.625 0.5 0.375 0.25 0.125 0

)
Using the per-program approach, MBPTA may tightly upper bound this distribution. While

using the per-path approach, the pWCET distribution obtained would tightly upper bound the
following distribution for the longest path.

pWCETper−path =
(

0 40 45
1 0.5 0

)
We note that while the pWCETper−program distribution is valid to describe the execution time

behaviour of a randomly chosen job of the task, convolution of this distribution is not valid to
describe the overall execution time of two or more jobs. This is because the distribution is not valid
conditional on the execution times observed for previous jobs. For example, if an execution time
of 30 or 35 is observed for a specific job, then the execution time of the next job will necessarily
be either 40 or 45 (each with a probability of 0.5) due to the behaviour of the software state
machine. The probability that the total execution time of two consecutive jobs exceeds 70 is
therefore 0.1875, whereas the value computed by applying convolution to the pWCETper−program
distribution is 0.15625, which is optimistic due to an incorrect assumption of independence. In
this simple example optimism can be avoided by using the pWCETper−path distribution, which
would also be obtained by SPTA; however, this discards information and so gives a pessimistic
result, indicating that the probability of the total execution time of two consecutive jobs exceeding
70 is 1.

2.4 Probabilistic Inter-arrival Times
As well as probabilistic execution times and pWCETs, a few works on probabilistic schedulability
analysis have also considered tasks with inter-arrival times characterised by random variables (see
Section 4.1) or probabilistic Minimum Inter-arrival Times (pMIT) (see Section 3.3).

I Definition 6. The probabilistic Minimum Inter-arrival Time (pMIT) distribution for a task is
the greatest lower bound, in the sense of the less than or equal to operator � (see Definition 3),
on the inter-arrival time distribution of the jobs of the task for every valid scenario of operation,
where a scenario of operation is defined as an infinitely repeating sequence of job arrivals that
characterise a feasible way in which recurrent execution of the task may occur.

R. I. Davis and L. Cucu-Grosjean 04:13

For example, the pMIT of a task τi may be described by Ti =
(

5 10
0.2 0.8

)
meaning that the

probabilistic minimum inter-arrival time is lower bounded such that a job of τi has a probability
of 0.8 of arriving 10 or more time units after the previous job, and a probability of 1.0 of arriving
5 or more time units after the previous job.

The pMIT distribution provides the following information, by reading off the probability of
exceedance p (from the 1 - CDF) associated with a limit t on the inter-arrival time:
(i) An upper bound p on the probability (with a long-run frequency interpretation) equating to

the number of jobs that are expected to have an inter-arrival time of less than t, divided by
the total number of jobs in a long (tending to infinite) time interval.

(ii) An upper bound p on the probability that the inter-arrival time of a randomly selected job
will be less than t. (This is broadly equivalent to the above long-run frequency interpretation).

This contrasts with the sporadic task model which simply assumes that the minimum inter-
arrival time is bounded by some value Ti (which would be 5 in the above example), but gives no
information about how often longer inter-arrival times may occur.

The majority of works surveyed that model inter-arrival times as random variables assume that
the inter-arrival times between jobs of the same task and between consecutive jobs of one task and
consecutive jobs of another task are independent. For example, one practical application described
by Maxim and Cucu-Grosjean [106] is vehicle reverse parking systems. Here, the inter-arrival time
of the sensing task is randomised to avoid the possibility of systematic and repeated interference
between the parking sensors of two vehicles that are reversing towards each other.

We note, however, that dependences are easily possible as a consequence of particular imple-
mentations. For example, the inter-arrival times of a task could follow a fixed pattern due to the
operation of a software state machine which sets the next arrival time. This would give a fixed
but repeating sequence, such as (5, 10, 5, 10, . . .). Further, two tasks could have inter-arrival times
that are generated by a simple algorithm from the output values of a random number generator.
They would have pMITs that are easily found from the properties of the random number generator
and the algorithm used. In this case, the inter-arrival times of jobs of the same task would be
independent, but the inter-arrival times between consecutive jobs of the two tasks would be in
lock step i.e. correlated and dependent.

As with execution times and pWCETs, work on probabilistic schedulability analysis that
considers tasks with inter-arrival times or pMITs characterised by random variables must take
great care to either ensure that arrival times are independent or to handle dependences correctly.

2.5 Probabilistic Real-Time Constraints
In classical real-time systems, timing constraints are typically specified in terms of task deadlines.
The relative deadline Di of a task τi is inherited by all of it’s jobs. The deadline Di specifies
the maximum elapsed time that is permitted from the release of a job of the task until that job
completes its execution. The time from the release to the completion of a job is referred to as
its response time. The worst-case response time Ri of a task τi is the longest possible response
time of any of its jobs. If it can be proven, via schedulability analysis, that all jobs of a task will
always complete by their deadlines, i.e. that Ri ≤ Di, then the task is said to be schedulable. If
all the tasks in a system are schedulable, then the system itself is said to be schedulable.

Building upon these concepts, probabilistic real-time constraints are typically expressed in the
form of probabilistic deadlines defined as follows:

I Definition 7. The probabilistic deadline of a task τi is given by the combination of a relative

LITES

04:14 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

deadline Di with a single (deterministic) value and a threshold ρi specifying the maximum
acceptable probability that the deadline may be exceeded.

The concept of a probabilistic deadline has, in a few works, been extended to relative deadlines
that may take a number of different values each with an associated probability, expressed as a
discrete random variable Di. Again, a threshold ρi specifies the maximum acceptable probability
that the deadline may be exceeded. In this survey, we use the term probabilistic deadline to refer
to the simpler form defined above with a single value for Di, and make a clear distinction when
describing work that considers deadlines as random variables.

In the classical view of hard real-time systems any deadline miss is sufficient to make a task,
and hence the system unschedulable, thus the pattern and probability of deadline misses are not
considered relevant. By contrast, in probabilistic real-time systems there are a number of different
ways in which the probability of a deadline miss can be considered and interpreted:
1. As a probability with a long-run frequency interpretation equating to the expected number of

missed deadlines divided by the total number of deadlines in a long (tending to infinite) time
interval.

2. As the probability that a randomly selected job will miss its deadline, which is broadly
equivalent to the long-run frequency interpretation.

3. As a bound on the probability that any specific job will miss its deadline.
These interpretations can be made considering the jobs belonging to (i) a specific task, (ii) a group
of tasks that comprise a given application, or (iii) the system as a whole (i.e. all tasks). In the
latter cases, there would be a threshold on the probability of deadline misses for each application,
or a single threshold for the system as a whole; rather than thresholds for each task.

In the literature, the term Deadline Miss Probability (DMP) is often used to refer to the long-run
frequency interpretation. This quantity is typically computed for task sets that are strictly periodic
and thus have a behaviour which repeats after the hyperperiod or Least Common Multiple (LCM)
of the task periods. In contrast, the term Worst-Case Deadline Failure Probability (WCDFP) is
used to mean a bound on the probability that any specific job of a task will miss its deadline.
This quantity is typically computed by reference to the probabilistic Worst-Case Response
Time (pWCRT) of a task.

I Definition 8. The probabilistic Response Time (pRT) of a job τi,j of task τi, denoted by Ri,j ,
describes the probability distribution of the response time of the j-th job of that task, indexed
from the start of the hyperperiod.

I Definition 9. The probabilistic Worst-Case Response Time (pWCRT) of a task τi, denoted by
Ri, is an upper bound on the worst-case response time distribution for any job of the task.

Note the pWCRT of a task can be computed for both periodic and sporadic tasks by taking
into account the worst-case arrival pattern.

If the tasks are strictly periodic (with a single value for their periods), then the deadline miss
probability for a task can be computed by taking the average of the deadline miss probabilities of
all of its jobs activated during a hyperperiod as follows:

I Definition 10. The Deadline Miss Probability DMPi for a task τi is given by :

DMPi = 1
nLCM

nLCM∑
j=1

P (Ri,j > Di) (6)

where nLCM is the number of jobs of task τi activated during the hyperperiod.

R. I. Davis and L. Cucu-Grosjean 04:15

I Definition 11. The Worst-Case Deadline Failure Probability WCDFPi for task τi is an upper
bound on the probability that any single job of the task misses its deadline, computed directly
from the pWCRT distribution Ri and the deadline Di of the task as follows:

WCDFPi = P (Ri > Di) (7)

There are advantages and disadvantages to using the DMP and the WCDFP formulations. For
strictly periodic task sets, it is possible to compute the DMP over the hyperperiod. (Note, this
calculation becomes more complex if the task model permits a backlog of outstanding execution at
the end of the hyperperiod, see Section 3.2). For sporadic task sets the DMP formulation is not
viable. This is because the deadline miss probability for the periodic case does not provide an
upper bound on that for the sporadic case. As an example, consider a system with two tasks with
minimum inter-arrival times T1 = 10 and T2 = 15. Sporadic behaviour of task τ1 which aligns
every release of that task with a job of τ2 may result in a larger deadline miss probability than
strictly periodic behaviour with a period of 10. This can be seen by considering the degenerate
case where both tasks have an execution time and a deadline of 1 with task τ1 having the higher
priority. With all releases synchronised, i.e. both periods set to 15, task τ2 never meets its deadline,
while if task τ1 is released more frequently with a period of 10, and task τ2 has a period of 15,
then the deadline miss probability for task τ2 becomes 0.5. Attempting to account for all possible
phasings of jobs of sporadic tasks leads to problems of intractability, hence a different approach is
needed.

The WCDFP formulation potentially introduces some pessimism, since the relationship between
task periods means that not all jobs of a task may be subject to the maximum interference from
other tasks; however, it provides a valid upper bound on the probability of deadline misses for
systems where not all tasks have strictly periodic releases (i.e. for the sporadic task model).

Hard real-time systems in many application domains can in practice tolerate a small number of
consecutive deadline misses, but cannot tolerate long black-out periods when no deadlines are met.
In the literature on deterministic schedulability analysis these issues have been investigated in
work on weakly-hard real-time systems [24, 25], m-k firm deadlines [126], skip-over [78] techniques,
and typical worst-case analysis [7]. The problem of reconciling requirements on the length of
potential black-out periods (i.e. the number of consecutive missed deadlines) and a probabilistic
treatment of deadline misses has, as far as we are aware, received little attention in the literature.

There are a number of issues here, which reflect long-run versus short-run viewpoints and the
underlying issue of independence. We illustrate these problems via a simple example. Assume that
we have two periodic task systems A and B, both with a hyperperiod that equates to four jobs of
the task that we are interested in analysing. Further, let the probability that each of these jobs
misses its deadline be as follows: system A (0.75, 0.75, 0.25, 0.25) and system B (0.5, 0.5, 0.5, 0.5).
For both systems, the DMP for the task is 0.5; however, for system A, the WCDFP is 0.75, whereas
for system B it is 0.5. Further, in order to reason about the probability of a black-out period
equating to two consecutive deadline misses, we need to know if the response time distributions for
the jobs, and hence the probabilities of deadline misses are independent or if they are correlated
in some way. The probability that the first two jobs in the hyperperiod of system A both miss
their deadlines would be 0.5625 if independence is assumed; however, it could be as high as 0.75 if
the response times of the two jobs are positively correlated. We note that the response times of
consecutive jobs of the same task may fail to be independent as a direct result of their execution
times being dependent (e.g. due to dependences on shared software or hardware states, shared or
correlated input variables etc.) or as an indirect result of interference from jobs of another task
that exhibit execution time dependences.

LITES

04:16 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

2.6 Summary
In this section we described the fundamental building blocks used in probabilistic schedulability
analysis, namely execution time distributions, response time distributions, and probabilistic
deadlines. We also discussed the key underlying assumption in much of the literature on this topic:
the independence of task execution times or pWCET distributions. We return to this issue in the
conclusions. The next eight sections review the existing literature on probabilistic schedulability
analysis.

3 Probabilistic Response Time Analysis

In this section we review work on probabilistic response time analysis. Comparing the probability
distribution of the response time of a job of a task to its deadline enables the probability of a
deadline miss for the job to be determined. For a task set with periodic release times, considering
all these values for each job of the task over the hyperperiod (Least Common Multiple of task
periods) enables the deadline miss probability for the task to be computed. Alternatively, some
works derive the probabilistic worst-case response time distribution with respect to any job of the
task, thus directly providing an upper bound on the worst-case deadline failure probability valid
for any job. This latter approach works for both periodic and sporadic task sets.

In the following subsections, we classify and review papers according to the underlying task
models that they support.

3.1 Analysis for Periodic Tasks with No Backlog
Initial work on probabilistic response time analysis focused on a simple task model where: (i) all
tasks are periodic, (ii) the execution times of the jobs of each task are independent of those of
other jobs of the same or different tasks, (iii) there is no backlog at the end of the hyperperiod,
i.e. the worst-case processor utilisation is ≤ 1 and so the processor is guaranteed to be idle at the
end of the hyperperiod.

In 1988, Woodbury and Shin [152] introduced analysis that computes the deadline miss
probability for periodic tasks. The analysis assumes that tasks can be described in terms of
multiple paths, each of which has a single deterministic execution time and a probability of
occurrence. Thus each job of a task effectively has a probability distribution for its execution time,
composed from the information about the paths. The analysis iterates over the hyperperiod in steps
equating to the Greatest Common Denominator of the task periods. It computes the execution
time remaining from higher priority jobs at the start of each step, and the joint distribution
of the execution time of the jobs released at the start of the step. This information is used to
derive the response time distribution for each job in the hyperperiod, and hence the probability of
deadline failure for each task over the entire hyperperiod (i.e. considering all of its jobs). The
technique is suitable for scheduling policies where the priority of a job does not change between
releases (i.e. fixed priority or EDF). We note that it is arguable whether meaningful analysis can
be obtained by assuming that the probability of taking a given path is known, and that the paths
taken by different jobs are independent. In practice, the path taken is typically determined by the
inputs, which are unlikely to be independent, for example sensor values may change only slowly
over time. Further, formulating the analysis on the basis of paths can lead to tractability issues,
since the number of paths could in practice be very large.

Probabilistic Time-Demand Analysis (PTDA) for fixed priority preemptive scheduling was
proposed by Tia et al. [143] in 1995, based on the time-demand analysis technique given for
the simpler case of WCETs by Lehoczky et al. [81]. With PTDA, at each scheduling point the
cumulative probability distribution is computed (via convolution) for all job releases up to that
point. This enables a bound to be computed on the probability that the task can meet its deadline.

R. I. Davis and L. Cucu-Grosjean 04:17

The authors also propose a transform-task method of scheduling where part of the execution time
distribution of each task (up to some specified value) is treated as a simple periodic task and
guaranteed by time-demand analysis [81]. The remaining part of the distribution is considered as
an additional sporadic task and runs under a sporadic server [139]. An alternative approach using
EDF and slack stealing is also considered.

Statistical Rate-Monotonic Scheduling (SRMS) was introduced in 1998 by Atlas and Bestav-
ros [13]. This method assumes that when a job is released then its execution time becomes
known. SRMS consists of two parts, (i) admission control and (ii) a fixed priority (rate-monotonic)
scheduling algorithm. The basic idea is to aggregate the capacity available to execute jobs of a
task over multiple periods, equating to the so called superperiod given by the period of the next
lower priority task. Jobs of a task are admitted if they can be executed within the remaining
budget for the superperiod, and there is time available to do so before the deadline of the job,
taking into account higher priority interference. Admitted jobs are then scheduled according to
fixed priorities with rate-monotonic priority assignment. The authors show how the probability of
admission can be computed for each period of a task within its superperiod. This allows quality
of service guarantees to be computed in terms of the probability that a randomly selected job of a
task will meet its deadline over an arbitrarily long time interval. Aside from the independence
assumptions, the main drawback of SRMS is the requirement that job execution times become
known upon release. In practice this is unlikely to be the case, however, in some cases execution
times could be estimated from the input values.

Stochastic Time-Demand Analysis (STDA) for fixed priority scheduling, was developed in 1999
by Gardner et al. [60]. They note an issue with the prior work by Tia et al. on PTDA [143] in
that it is only valid if there is no backlog at the deadline of a task. The problem is similar to the
classical case of fixed priority scheduling with arbitrary deadlines [82]. All jobs in a priority level-i
busy period need to be considered, since the first job is not necessarily the one that exhibits the
worst-case behaviour. The authors provide an analysis based on the priority level-i busy period
and the backlog present at subsequent releases of each job. They remark that the worst-case
pattern of releases might not necessarily be following synchronous release of all tasks. They explore
this aspect by considering different phasing in simulation, but did not find any cases where the
probability of deadline failure was higher for random phasing than in the synchronous case. The
convolution operations required as part of STDA are also discussed. Here, the authors indicate
that the Fourier transform may be used to reduce complexity from O(N2) to O(NlogN) where N
is the number of points in each distribution. To use a fast Fourier transform, the distributions
must have the same number of points and the same sampling rate.

In 2015, Tanasa et al. [141] studied the problem of determining probabilistic worst-case response
time (pWCRT) distributions and hence deadline miss probabilities for a set of periodic tasks
with execution times described by random variables. This work differs from earlier publications
in that it describes the distributions via continuous variables and tightly approximates them
with polynomial functions. This enables an analytical approach to be taken to their integration.
The authors provide methods to compute the response time distribution for each job in the
hyperperiod. They also introduce a method to compute the joint distribution between two jobs
i.e. the probability that the response time of job k1 ≤ r1 AND the response time of job k2 ≤ r2.
The methods used have exponential complexity and are thus limited in their application. In the
evaluation, the maximum utilisation is limited to 85% for the experiments examining the univariate
distributions and to no more than 40% for the joint distributions, using small hyperperiods of
25 or so jobs. The authors highlight an interesting observation, that even when the execution
time distributions are continuous, the response time distributions may be disjoint, containing
gaps where there are values that cannot be obtained. This occurs as a result of an additional
preemption from a higher priority task that has a minimum as well as a maximum execution time.

LITES

04:18 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

3.2 Analysis for Periodic Tasks with Backlog
In contrast to classical task models, task sets containing a number of tasks with execution times
described by random variables can usefully have a total worst-case processor utilisation that
exceeds 1. This means that there is a backlog, meaning outstanding task execution with a finite
probability of occurrence, at the end of each hyperperiod. This backlog makes the analysis
of probabilistic response times for each job in the hyperperiod much more complex. Diaz et
al. addressed this problem in two seminal papers published in 2002 [54] and 2004 [55]. This work
has since been built upon by a number of other authors. Note the papers surveyed in this section
also assume independence between the execution times of jobs of the same and different tasks,
with the exception of the work of Ivers and Ernst [70] which addresses the important issue of
dependences.

In 2002, Diaz et al. [54] noted that prior work on PTDA [143] and SDTA [60] assumes that
the worst-case occurs for a job in the first busy period following synchronous release; however,
this is not necessarily correct when the worst-case processor utilisation exceeds 1, and may lead to
an under estimation of the response time distributions. They show that the backlog at the start of
each hyperperiod is stationary provided that the average utilisation is less than 1. As the backlog
at the end of one hyperperiod depends only on the backlog at the start of the previous hyperperiod,
it can be modelled as a Markov chain. The authors show how to compute the stationary backlog,
and use this backlog via a method of convolution (adding the execution of preempting jobs) and
shrinking (shifting the distribution left and then accumulating the probabilities for all negative
values at zero) to compute the response time distributions for each job of a given task over
the hyperperiod. (A useful illustrative example is given in later work by the same authors [55]).
By taking the average of these distributions, the response time distribution for the task can be
computed and hence a bound on its deadline miss probability determined. We note that the
method requires that the release times of jobs are fixed (i.e. periodic rather than sporadic), and
when the hyperperiod is large then finding the stationary backlog can be computationally very
expensive.

Subsequent research into the same problem by Diaz et al. [55] in 2004 discussed the concept of
pessimism in probabilistic analysis, and introduced the concept of greater than or equal to between
random variables (See Section 2, Definition 3). The authors note that any approximations in
the analysis, for example of response time distributions, must result in distributions that are
greater than or equal to the precise distribution in order to ensure soundness. They prove various
properties with respect to their analysis, including that approximating the backlog and execution
time distributions with distributions that are greater than or equal to (�) the precise distributions
produces sound results, i.e. there is no under-approximation of response time distributions. We
note that this concept is similar to the one of sustainability introduced later for deterministic
schedulability analysis by Baruah and Burns [21].

Diaz et al. [55] highlighted and addressed three issues with their previous work [54]:
(i) When the maximum utilisation exceeds 1, then the steady state backlog has an infinitely

long tail.
(ii) Starting with zero backlog and iterating over a number of hyperperiods, the backlog becomes

closer and closer to the steady state backlog; however, the estimation remains optimistic.
(iii) Probability distributions with a large number of points require a very large amount of

memory and processing resource.
The problem of the infinite tail is solved via truncation and accumulation of the probabilities
for larger values at ∞. A solution to the problem of a large number of points is suggested,
accumulating values to the right, effectively a sound form of re-sampling (see Section 10.1 for
later work in this area). The authors also show how blocking due to shared resource accesses

R. I. Davis and L. Cucu-Grosjean 04:19

can be accommodated as an extension to the task model by taking a supremum over all of the
distributions for the execution time of relevant resource accesses. They also provide a sketch proof
that the priority assignment algorithm of Audsley [15], which is optimal in the deterministic case,
remains optimal when execution times are described by probability distributions and schedulability
is defined as meeting the probabilistic deadline for each task. This was later confirmed by the
work of Maxim et al. [105]. In 2008, Lopez et al. [93] extended the work of Diaz et al. [54, 55]
providing: (i) a set of transformations that can be made to the parameters of a system which
are guaranteed to result in a response time distribution greater than or equal to (�) that for the
original system; (ii) addressing issues related to the use of finite precision arithmetic; (iii) handling
release jitter, by assuming the deterministic worst-case and its effect on the release times of jobs.

In 2005, Kim et al. [76] built upon the analysis framework set out by Diaz et al. [54, 55].
They discuss three solutions to obtaining the stationary backlog, an exact solution for the
Markov matrix which has a high computational cost, and two approximate solutions. The first
approximate solution truncates the matrix; however, the way in which truncation affects accuracy
is unresolved. The second approximation involves iteratively computing the backlog over a number
of hyperperiods, and examining its convergence. The number of iterations needed to provide a
given level of accuracy is however unknown in advance. The evaluation shows that the deadline
miss probability computed over the hyperperiod may be considerably smaller than that computed
for jobs in the busy period following a critical instant, e.g. via SDTA [60]. The complexity of
backlog computation is shown to be O(j2m2) per job, where j is the number of the job and m is
the number of points in the execution time distribution. In their conclusions the authors claim
that the method could be indirectly applied to sporadic task systems by modeling them as a
periodic system with periods equal to minimum inter-arrival times, and that this would give a
safe approximation. We note that this assertion is not correct, as shown by the example given in
Section 2.5.

The important problem of dependences between the execution times of jobs of the same task
and jobs of different tasks was first addressed by Ivers and Ernst [70] in 2009. They presented an
analysis that accounts for the effect of unknown dependences between the execution times of jobs of
tasks in a system using fixed priority preemptive scheduling. The authors give a motivating example
which illustrates how dependences can have a marked effect on the response time distribution.
Their simple example, which we presented as an exemplar in Section 2, shows that considering a
worst-case convolution (i.e. matching the largest values from each distribution) is in general not
sufficient to determine the worst-case deadline miss probability. The authors introduce a method
based on probability boxes which soundly bounds the response time distribution in the presence
of unknown dependences. The approach uses the concept of copulas to model the relationship
between marginal distributions and the joint distribution of two random variables, and Frechet
bounds that give upper and lower bounds on the relationship between the marginal distributions
and the joint distribution. Probabilistic bounds are then given on the sum of the two random
variables. These bounds have been shown to be sound and point-wise tight [151]. The method of
Diaz et al. [54, 55] is then lifted to probability boxes, enabling sound and tight bounds on the
response time distributions to be computed for systems with unknown dependences between job
execution times. Worked examples show that assuming independence when it does not exist can
easily result in substantial optimism in the results.

In 2013, Tanasa et al. [140] provided a probabilistic analysis of the response times of messages
transmitted via the dynamic segment of FlexRay. The system model assumes that messages are
queued for transmission periodically, but are subject to variable queuing jitter, stemming from
the task that queues them, and that this jitter may be modelled via some probability distribution.
The method determines the deadline miss ratio for each message over the hyperperiod of message

LITES

04:20 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

periods and the FlexRay cycle. To achieve this it first computes the possible backlog vectors
at the end of the time interval by constructing a transition graph linking the backlog vector at
the start of the interval to those backlog vectors that can possible stem from it at the end of
the interval. We note that this transition graph may be very large depending on the length of
the hyperperiod, the number of messages, and the number of possibilities in terms of different
values of jitter. The authors use an MILP formulation to compute the transition graph and the
vectors. As a second step, the method computes the probability that message instances miss their
deadlines on each transition. In the third step, the deadline miss probability is computed by
iterating over a number of hyperperiods. This provides an under approximation as the backlog
converges towards a stationary value (see the earlier work of Diaz et al. [54]). The method is
computationally expensive and the authors implement part of it on a TeslaM2050GPU with 448
cores to help speed up processing.

3.3 Analysis for More Complex Task Models
Following initial work on periodic tasks, researchers have explored more complex task models.
The majority of the research published in this area emanates from Cucu-Grosjean and co-authors.
This includes work [41] on sporadic task models where inter-arrival times are described by random
variables, and subsequently the development by Maxim and Cucu-Grosjean of analysis [106]
for tasks with execution times, inter-arrival times and deadlines that are described by random
variables. Further work by Maxim et al. [105] explored issues of priority assignment. Note all of
the research described in this section assumes that task parameters such as execution times and
inter-arrival time are independent.

The first work in this area, by Cucu-Grosjean and Tovar [41] in 2006, considered a model
where tasks have constant execution times, but their inter-arrival times are modelled by random
variables and have known probability distributions. The authors introduce a method of computing
the probabilistic worst-case response time distribution for tasks under fixed priority preemptive
scheduling. This model is useful for message streams where the message length is fixed, or varies
very little, but the inter-arrival times may vary widely. In 2008, Cucu-Grosjean [40] applied the
method to the problem of deriving response time distributions for CAN messages where message
arrivals are assumed to be independent and described by probability distributions in a range
between some minimum and maximum values. The analysis assumes that the maximum utilisation
of the system is less than 1, thus avoiding issues relating to backlog.

In 2011, Maxim et al. [105] investigated three related problems of priority assignment in fixed
priority preemptive systems where task execution times are described by random variables. They
define the deadline miss probability for a job of a task, and the deadline miss probability6 for a
task, which is effectively the expected deadline miss probability over all of the jobs in some long
interval of time, for example the hyperperiod. The three priority assignment problems involve:
(i) Finding a priority assignment that results in the deadline miss probability of each task being

below the threshold specified for that task.
(ii) Finding a priority assignment that minimises the maximum deadline miss probability over

all tasks.
(iii) Finding a priority assignment that minimises the average deadline miss probability over all

tasks.
The authors give an example showing that rate-monotonic priority assignment is not optimal for
problem (i) in the case of implicit deadline tasks. Optimal solutions to problems (i) and (ii) are

6 Referred to as the deadline miss ratio in [105].

R. I. Davis and L. Cucu-Grosjean 04:21

given using a greedy approach similar to the optimal priority assignment algorithm of Audsley [15].
A greedy approach is shown to be non-optimal for problem (iii), and a tree-based search is proposed
as a potential solution.

In 2013, Maxim and Cucu-Grosjean [106] introduced exact probabilistic response time analysis
for tasks which may have their worst-case execution times, inter-arrival times and deadlines
described by independent random variables. The scheduler is assumed to be fixed priority
preemptive. Deadlines are assumed to be constrained, i.e. not greater than the inter-arrival time
to the next job of the same task. The authors show that for the task model considered, where
incomplete tasks are aborted at their deadline, the worst-case response time distribution of any
job of a task occurs for the first job in the synchronous busy period. The method presented is
exponential in the number of tasks and the size of the random variables. They note that as the
problem is a superset of the non-cyclic Generalised Multi-Frame (GMF) task model [115] there
cannot be a pseudo-polynomial time exact test. Re-sampling techniques [109] are shown to be
effective in reducing the complexity of the method in practice (see Section 10). The method
iteratively computes the response time distribution by considering each preemption following
synchronous release. For each preempting job, it convolves the pWCET distribution of that job
with the tail of the current response time distribution from the preemption point onwards. The
result is scaled by the probability of the job preempting at that time. This is repeated for all
possible preemption times for the job, and the resulting distributions coalesced. Iteration then
moves on to the next preempting job. Iteration ends when the next possible preemption is later
than the final point in the current response time distribution, or the deadline of the task under
analysis is exceeded. The probability of a deadline miss can then be found by subtracting the
deadline distribution from the final response time distribution, with the probability mass strictly
greater than zero giving the probability of a deadline miss. The analysis has been implemented
in a publicly available simulator and analysis tool called PanSim [104]. Note, motivation for
variable inter-arrival times comes from an automotive application where ultra-sound parking
sensors randomise their sampling frequency to avoid the reduced effectiveness that would occur if
the same sampling frequency were used by two vehicles reversing back-to-back.

In 2016 Ben-Amor et al. [23] derived probabilistic schedulability analysis for tasks with
precedence constraints with execution times described by random variables, scheduled under
EDF. They built upon the work by Chetto et al. [38] for tasks with deterministic parameters,
deriving an equivalent schedulability analysis for the probabilistic case. This includes proposing
a new comparison operator between distributions for probabilistic response times (or execution
times) and deadlines that are also described by independent random variables. This comparison
is equivalent to the method of subtracting the deadline distribution used by Maxim et al. [106].
The authors note that the greater than or equal to operator (�) of Diaz et al. [55] cannot be
used for such comparisons, since it would give optimistic results. For example, consider the two

distributions R =
(

1 3
0.9 0.1

)
and D =

(
2 4
0.8 0.2

)
. Even though D � R, there is still a

non-zero probability that the deadline is missed. This occurs when the response time has a value
of 3 and the deadline has a value of 2. Assuming independence, then such a combination has a
probability of 0.08 of occurring.

In 2018, Markovic et al. [103] presented a probabilistic schedulability analysis for the limited
preemption model where each task is scheduled using fixed priorities and preemption is only
permitted at fixed preemption points. A key aspect of this problem is the selection of preemption
points for each task from a larger set of possible preemption points. The system model used
assumes that each task is divided into sub-tasks, separated by possible preemption points. Further,
the execution time of each sub-task and the preemption overhead of allowing preemption at a

LITES

04:22 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

particular point are represented by pWCET distributions. The authors utilise the approach of
Diaz et al. [54], adapted along the lines of existing deterministic analysis for limited preemptive
systems, to form a probabilistic schedulability analysis for limited preemption scheduling with
fixed preemption points. Further, they propose an algorithm for preemption point selection, with
the aim of minimising the deadline failure probability. This algorithm iterates over a number
of confidence levels, starting at 1.0 and decrementing by a small step. The confidence level is
used to reduce the pWCET distributions for sub-tasks and preemption point overheads to scalar
values. This is done by taking the minimum value that does not have a probability of being
exceeded that is more than the confidence level. This reduction of the random variables to scalar
values enables an existing deterministic method to be used for preemption point selection. Once a
set of preemption points have been selected then probabilistic schedulability analysis is used to
determine the corresponding probability of deadline failure. The final preemption point selection
is the one with the smallest probability of deadline failure found in any of the iterations. We note
that by starting with a confidence level of 1.0, the algorithm is guaranteed to always find feasible
solutions when the equivalent deterministic approach would do so.

Probabilistic Real-Time Calculus (an extension of Real-Time Calculus [142]) was proposed
in 2011 by Santinelli and Cucu-Grosjean [130] with an extended journal version published in
2015 [131]. The authors study a task model where both execution times and inter-arrival times
are described by independent random variables. A component model is used, with composability
according to an assume-guarantee abstraction providing the basis for schedulability analysis. The
model describes the resource demand of a task via a probabilistic upper bounding function (or
curve). This curve upper bounds the cumulative demand as a function of the interval length t such
that the probability that the actual demand exceeds the bound is less than a given probability
threshold. Similarly, the resource supply (or service) is described by a lower bounding function (or
curve) such that the probability that the actual supply is less than the bound is less than a
given probability threshold. Different request and service curves may be obtained for different
probability thresholds. The authors provide an algebra using Real-Time Calculus that facilitates
the composition of systems from components and associated probabilistic schedulability analysis.
The early work from 2011 [130] provides analysis for fixed priority scheduling, with extensions
to EDF and hierarchical scheduling given later in 2011 by Santinelli et al. [136]. The journal
extension [131] published in 2015 provides detailed proofs for the previous schedulability results.
The same component-based formulation was also considered by Khan et al. [74] in 2012 in the
context of multiprocessor scheduling, with identical cores, an interconnect (e.g. a TDMA bus),
and a fixed partitioning of tasks between cores. They propose a mapping between the level of
assurance (ASIL) needed for the safety of a function and its components and the probability
threshold used. In 2016, Santinelli [129] proposed a component-based formulation for networks,
similar to that previously proposed for tasks and processors [130, 131]. Here, the author considers
the probability distribution for message payloads and inter-arrival times. We note that possible
dependences between these distributions are not considered. The performance of the network is
calculated for the case of AFDX switches implementing FIFO queues.

In 2014, Carnevali et al. [34] proposed computing the probability of deadline misses within
a time interval t, based on modelling tasks using Stochastic Timed Petri Nets. They consider
fixed-priority non-preemptive scheduling of periodic tasks. Task execution times are modelled via
Erlang distributions, the parameters of which are selected to tightly upper bound the pWCET
distribution for the task obtained via EVT. This enables regenerative transient analysis based on
stochastic state classes to be used to compute the probability that each task misses a deadline
within a time t.

R. I. Davis and L. Cucu-Grosjean 04:23

3.4 Summary and Perspectives
Probabilistic response time analysis aims to compute either the response time distribution for
each job over a relevant interval (such as the hyperperiod for a set of periodic tasks) or the worst-
case response time distribution obtained for the worst-case scenario in terms of job releases (for
sporadic tasks). Deadline miss probabilities and hence schedulability can then be determined via
comparison between response time distributions and deadlines. We highlight three important
threads of research in this area:
1. Diaz et al. [54] showed how to compute the probabilistic response time distributions for a set

of jobs of periodic tasks taking into account the potential backlog accruing at the end of the
hyperperiod. They also proved key properties required to ensure that the results obtained
from probabilistic response time analysis are sustainable over-approximations [55].

2. Ivers and Ernst [70] showed that considering a worst-case convolution (i.e. matching the largest
values from each distribution) is not sufficient to obtain a sound response time distribution
when there are dependences between task execution times. They extended the approach of
Diaz et al. [54, 55] to tasks with execution times that are related via unknown dependences.

3. Maxim and Cucu-Grosjean [106] proved that for systems with constrained deadlines where
incomplete tasks are aborted at their deadline then the worst-case response time distribution
is assumed by the first job of each task following synchronous release. Using this result, they
derived probabilistic response time analysis for systems where execution times, inter-arrival
times, and deadlines are all described by independent random variables.

In a further thread of research, Santinelli and various co-authors [130, 136, 131, 129] explored
a probabilistic extension to Real-Time Calculus. We note that this approach relies heavily on
the assumption that both the execution times and inter-arrival times of consecutive jobs are
independent.

Two key problems that remain with probabilistic response time analysis are the tractability of
the analysis for task sets of practical sizes (see Section 10 for initial work in this area), and issues
relating to dependences between execution times.

4 Probabilistic Analysis assuming Servers

In this section, we review probabilistic schedulability analysis for tasks that are run within servers.
Servers provide a partitioning of the available processor time and thus isolate the execution of
each task from interference due to other tasks running on the same processor. This is useful in
simplifying the analysis and in removing concerns regarding dependences between the execution
times of jobs of different tasks.

4.1 Analysis for Server-based Systems
The majority of the research in this area has been published by Abeni and co-authors, including
the seminal initial work [2, 3] from the late 1990s that also introduced the Constant Bandwidth
Server, subsequent research that considers execution times [4, 121] and also inter-arrival times [6,
99, 122] described by independent random variables, and more recent work [59, 5] that considers
dependences between the execution times of jobs of the same task.

In 1998 and 1999, Abeni and Buttazzo [2, 3] provided analysis for soft real-time tasks that
have (i) variable execution times according to some probability distribution and fixed inter-arrival
times, or (ii) fixed execution times and variable inter-arrival times according to some probability
distribution. Jobs of a task are executed under a Constant Bandwidth Server (also introduced in
the paper). This ensures independence between tasks, since each task can only utilise the capacity

LITES

04:24 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

of its own server. The authors provide statistical guarantees determining the probability that
jobs of a task will meet their deadlines. This is achieved by modelling the Constant Bandwidth
Server as a queue and determining the stationary solution of the Markov chain for those cases
where the queue is stable. Conditions for stability of the queue comprise ensuring that the average
utilisation does not exceed the server bandwidth. The output is the probability distribution of the
response time by which the jobs will finish. This can then be used to determine the probability
of meeting deadlines and hence the quality of service of the soft real-time tasks. Subsequently
in 2001, Abeni and Buttazzo [4] extended their earlier work [2] on variable execution times, by
relaxing the assumption that the server period must exactly divide the task period. They show
how to handle inter-arrival times that are expressed as a probability distribution by approximating
this distribution in accordance with the value of the server period. With this approximation,
larger server periods generally introduce more pessimism, but have the advantage of resulting in a
smaller number of context switches.

The more complex model where tasks have both execution times and arrival times modelled
via random variables with known probability distributions was addressed by Kaczynski et al. [72]
in 2007. They assume that there is no minimum time between arrivals for an aperiodic task and
thus motivate the use of servers to prevent unbounded interference on other tasks. The authors
extend the method introduced by Diaz et al. [54] (see Section 3.2) to this model, using a server
for each task.

In 2012, Abeni et al. [6] considered tasks with both execution times and inter-arrival times
described by probability distributions. Jobs of these tasks are scheduled via resource reservations
where each task has its own server. The authors present an efficient algorithm to compute a bound
on the probability of deadline failure. As part of the method, the inter-arrival time distributions
are soundly approximated by simpler distributions limited to multiples of the server periods.
Further, incomplete execution time distributions can be handled, provided that the remaining
probability for values over some limit is known. The method provides a valid bound provided
that the expected utilisation of each task does not exceed the capacity of its server. Evaluation
shows that the bound produced is sound and that the over-approximation is small compared
to exact analysis, which takes over 1000 times longer in some cases. In further works in 2012,
Manica et al. [99] and Palopoli et al. [122] also considered tasks with both execution times and
inter-arrival times described by probability distributions. Manica et al. [99] derived a model for
tasks scheduled by a Constant Bandwidth Server. They show that the model takes the form of a
Quasi-Birth-Death Process that can be solved using a numerical algorithm to determine a bound
on the probability of a deadline miss. Palopoli et al. [122] used a conservative model for the
evolution of a periodic task scheduled via a periodic server to construct a closed-form bound on
the probability of a deadline miss. The model again takes the form of a Quasi-Birth-Death Process
which enables efficient numerical computation of the probabilities required. For tasks with implicit
deadlines, the model is further simplified allowing analytical calculation of a lower bound on the
probability of meeting the deadline. This bound enables server bandwidth to be appropriately
sized in order to meet requirements on the maximum permitted probability of deadline failure.
Evaluation shows that the approximation error in the closed-form solution is high when the server
bandwidth is close to the expected utilisation of the task, but reduces to acceptable levels as
the bandwidth increases. In the former case, the probability of a deadline miss is in any case
high (> 60%), and so the cases where the approximation error is large are unlikely to be those
that are of practical interest. An important limitation of the methods proposed by Manica et
al. [99] and Palopoli et al. [122] relates to their pessimism due to the fact that the model used
neglects the server budget that may be shared between consecutive jobs of a task.

R. I. Davis and L. Cucu-Grosjean 04:25

In 2016, Palopoli et al. [121] considered periodic tasks with execution times described by
probability distributions. Jobs of these tasks are scheduled via resource reservations where each
task has its own Constant Bandwidth Server. They model the evolution of a task scheduled via
a resource reservation as a Discrete-Time Markov Chain that takes the form of a Quasi-Birth
Death Process. The outcome of the analysis is an expression for the steady state probability of
meeting the deadline. This is used to construct a numerical algorithm and also an analytical
bound that can be used to determine the probability of meeting the deadline. The evaluation
compares the performance of the analytical bound, the numerical algorithm, and the authors’
previous method [6]. The results show that the analytical bound has a runtime that can be orders
of magnitude faster, and provides a high degree of accuracy in the cases where the bandwidth
provided by the server is sufficient such that the probability of meeting the deadline is high (> 90%).
Further, the performance of the numerical algorithm can be tuned using a scaling factor, trading-off
between runtime and accuracy. The effectiveness of the approach is demonstrated using a case
study involving the playback of two video streams.

In 2017, Frias et al. [59] noted that many real-time applications exhibit a wide variation in
execution times and are resilient to occasional deadline misses. Such systems have previously been
afforded probabilistic schedulability guarantees based on the use of a resource reservation scheduler
and the assumption that execution times are independent and identically distributed (i.i.d.). They
consider robotic applications where the execution time of the vision algorithms depends on the
complexity of the scene while also exhibiting a random behaviour due to a random element of
the search. Thus the i.i.d. assumption does not hold. Instead execution times may be described
via a Hidden Markov Model (HMM). The authors show how to identify the different modes of
execution, and for each mode the distribution of execution times, which are independent within
the mode. The Markov Computation Time Model (MCTM) used enables an accurate estimation
of the probability of missing deadlines. The effectiveness of the approach is evaluated on a robot
vision case study (a lane detection algorithm for a robotic car) where it is shown to provide
accurate results. By comparison analysis based on an i.i.d. assumption leads to significant and
optimistic under-estimation of the probability of missing deadlines. In a further short paper in 2017,
Abeni et al. [5] show how the MCTM can be derived from a set of execution time measurements
using the theory of HMM. Here, a task is modelled as having a number of states (modes) with
probabilities for transitions between them. In each state the execution time is described by a
different probability distribution, while within a state, the execution times are i.i.d. The method
is able to estimate the number of modes from the raw execution time data. Assuming the number
of states is known, then existing techniques (Baum-Welch algorithm) can be used to estimate
the transition probability matrix and the probability distributions for the different modes. The
authors therefore propose a method of finding the correct number of states via a gradient-like
approach based on cross validation of the likelihood. The approach is validated on the robot vision
case study (discussed above). It is also shown to recover a single state, as expected, for standard
i.i.d. processes.

A software tool called PROSIT that supports the design and analysis of real-time systems
based on the idea of probabilistic deadlines was initially described by Palopoli et al. [120] in 2015,
with a more extensive description of a later version of the tool given by Frias et al. in 2018 [146].
PROSIT provides analysis for fixed priority preemptive scheduling of periodic tasks with execution
times described by random variables, based on the analysis of Diaz et al. [54, 55]. It also provides
an analysis of server-based scheduling of periodic and aperiodic tasks with execution times and
potentially also inter-arrival times described by random variables. Here, the execution times
can either be i.i.d. or a Markov process. The tool implements the various analyses proposed by
Palopoli et al. [122] and Frias et al. [59] . In the case of server-based scheduling, PROSIT can be
used to optimise the reservations (server budgets) for periodic tasks so as to optimise the global
quality of service.

LITES

04:26 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

4.2 Summary and Perspectives
In this section, we reviewed work on probabilistic schedulability analysis for tasks that are run
within servers that provide a partitioning of the available processor time. The use of servers
has the advantage that the execution of each task is isolated from interference by other tasks;
however, it has the disadvantage that jobs requiring a long execution time cannot directly make
use of spare capacity freed up by jobs of other tasks that have a shorter than expected execution
time. Arguably, this removes one of the main advantages of probabilistic schedulability analysis,
which can otherwise take advantage of that fact that it is unlikely that jobs of multiple tasks will
simultaneously require their worst-case or near to worst-case execution times.

We highlight the important thread of research initiated by Abeni et al. [2, 3] on probabilistic
schedulability analysis for tasks that are run within servers, and the subsequent extensions of
the analysis by Abeni et al. [6], Manica et al. [99], and Palopoli et al. [122] to tasks with both
execution times and inter-arrival times described by independent random variables. While the
use of servers removes issues of dependences between tasks, the issue of dependences between
jobs of the same task remain. In practice, it is often the case that jobs of the same task exhibit
dependences between their execution times, due to input variables that change only slowly over
time, as well as execution starting from similar software and hardware states. Only in the recent
work of Frias et al. [59] has this issue of dependences begun to be investigated. The analysis
derived by Palopoli et al. [122] and Frias et al. [59] has recently been implemented in a software
tool called PROSIT [146].

5 Real-Time Queueing Theory

In this section, we review research based on Queuing Theory, which is the mathematical study of
queues with the aim of deriving information about queue lengths and waiting times. Problems
in queuing theory are typically described in Kendall’s notation [73] A/B/C where A is the
distribution of arrival times, B is the distribution of service (execution) times, and C is the number
of servers. For example M/G/1 implies a Poisson or Markovian (M) arrival process, a General (G)
execution time distribution, and a single (1) server.

5.1 Analysis based on Real-Time Queuing Theory
The majority of the research in this area has been published by Lehoczky and co-authors, including
the seminal paper [83] on Real-Time Queuing Theory from 1996, and its later mathematical
formalisation [56]. Subsequent work has investigated the impact of quantisation on EDF queues [67,
154], and extended the analysis to systems where jobs can be reneged, i.e. the remaining work of
a job is discarded if its deadline is reached before it has completed execution [79].

The origins of work in this area can be traced back to the 1950s. In 1957, Barrer [20] considered
the problem of queues with jobs that arrive according to a Poisson process, have execution times
that follow an exponential distribution, i.e. an M/M/1 queue in Kendall’s notation [73], and have
a single fixed deadline. This work computes the ratio of the rate at which jobs miss their deadlines
and are discarded to the arrival rate. In 1988, Panwar et al. [123] considered the problem of
single-server queues with deadlines on jobs which become known on their arrival. The aim here is
to schedule the jobs so that the fraction of jobs served within their deadline is maximised. The
authors show that the Shortest Time to Extinction (STE) policy is optimal for this problem, for a
class of non-preemptive M/G/1 queues that are work-conserving, i.e. do not permit inserted idle
time, and where execution times are i.i.d random variables. The STE policy schedules the ready
job with the earliest deadline that is still in the future. Jobs with expired deadlines are discarded.

R. I. Davis and L. Cucu-Grosjean 04:27

They also showed that when inserted idle time is permitted, then policies from the STEI class are
the best possible. (An STEI policy either schedules the job with the earliest unexpired deadline,
or inserts idle time).

Real-Time Queueing Theory was introduced in 1996 by Lehoczky [83] as a means of analysing
soft real-time systems where tasks have execution times that exhibit a large amount of variation.
In such systems, using deterministic upper bounds on response times would lead to the system
being significantly under-utilised on average. The method extends heavy traffic queueing theory
utilizing the fact that the number of tasks in the queue behaves like reflected Brownian motion
under heavy traffic. The theory can estimate the lead-time profile (meaning the time to go until
the deadline) for the tasks in the queue, based on the distributions of arrival time, execution time,
and deadline, and the queueing policy (EDF and processor sharing policies were considered). The
fraction of missed deadlines can be derived from the queue-length dependent lead-time profiles
and the distribution of queue lengths obtained via queueing theory. We note that the heavy
traffic phenomenon occurs only for processor utilisations close to 1, which implies long queues
and which may imply large latencies. Real-Time Queueing Theory was subsequently placed on
firm mathematical foundations by Doytchinov et al. [56] in 2001. The heavy traffic constraint was
subsequently relaxed by Zhu et al. [154]. Thus the main limitation in applying real-time queueing
theory is that the probability distributions for all tasks must belong to the same family.

In 2002, Hansen et al. [67] examined the effect that quantisation has on EDF queues with a
stochastic traffic model (arrival times, execution times and deadlines). Instead of using precise
relative deadlines, this method quantises them, assigning tasks the next smaller deadline from
a small set. The authors found via simulation that using just 3 bits (8 quantisation bins) was
sufficient to obtain performance for Q-EDF close to that of EDF. They found that a log bin
quantisation was more effective than a uniform one, since the log bins provide better granularity
for small deadlines. The small number of bits required is important for network scheduling where
this information takes up bandwidth. Also in 2002, following on from the work of Hansen et
al. [67], Zhu et al. [154] aimed to optimise the set of quantisation bins used by Q-EDF. Using
Real-Time Queueing Theory [83] they proved properties of a deadline distribution that would
result in the worst-case behaviour for Q-EDF. It has tasks with deadlines that are at either end
of the quantisation bins, leading to the maximum priority inversion. Hence they found that to
minimise the maximum number of deadline misses for an arbitrary distribution of deadlines with
the same minimum, maximum, and mean, one should create the bins by dividing the deadline
range in a uniform way. Further they showed that with uniform bins 3-bits (8 bins) were sufficient
for the performance of Q-EDF to converge to that of EDF in practical cases.

An alternative scheduling policy to EDF was examined by Gromoll and Kruk [63] in 2007.
They considered processor sharing where all active jobs in the queue receive an equal share of the
available processor time, and used heavy traffic queueing theory to obtain approximations for the
lead-time profile and the profile of times in the queue.

The analysis given by Lehoczky [83] and Doytchinov et al. [56] assumes that late jobs continue
to execute. Complementary work by Kruk et al. [79] in 2011 presented a heavy-traffic analysis of
the behaviour of a single queue under an EDF scheduling policy adapted so that when the deadline
of a job is reached, if the job has not yet completed, then its remaining work is discarded (referred
to as reneged). The performance metric used is the fraction of work that is lost (reneged) due
to missed deadlines. The authors show that this metric is minimised by using EDF scheduling.
The evolution of the lead-time distribution of jobs in the queue is described by a measure-valued
process. The heavy traffic limit of this process is shown to be a deterministic function of the
limit of the scaled workload process which in turn is identified to be a doubly reflected Brownian
motion. The fraction of reneged work in a heavily loaded system and the fraction of late work

LITES

04:28 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

in the corresponding system without reneging are compared using formulas based on the heavy
traffic approximations. These formulas closely match simulation results, which show that the
amount of work lost (i.e. reneged or late) due to deadline misses is reduced by a factor of one to
two orders of magnitude if remaining work is discarded at the deadline.

5.2 Summary and Perspectives

In this section, we reviewed work on real-time queuing theory. The analysis used requires that the
traffic intensity / processor utilisation is close to 1, where the queues are long, and the latencies
may be high, which might not be acceptable in real systems. We note that although the theory
does not characterise system behaviour at lower traffic intensities, the probability of deadline
misses decreases as the traffic intensity decreases, all other parameters being equal. Thus the
results for heavy traffic can serve as bounds on the behaviour at lower intensities.

We highlight the important thread of research initiated by Lehoczky [83] and Doytchinov et
al. [56] on real-time queueing theory and its subsequent extension by Kruk at al. [79] to an EDF
scheduler that discards any incomplete jobs when their deadlines expire. The main limitation of
real-time queuing theory is that it requires job execution times, arrival times, and deadlines to be
independent, which may not be the case in real systems.

6 Probabilities from Faults

In this section we review work on probabilistic schedulability analysis where random variables are
used to represent the occurrence of some form of fault. Initial research focused on faults occurring
in tasks running on a processor and the impact of fault recovery operations; however, the main
thread of research in this area concerns Controller Area Network (CAN), a broadcast bus that is
widely used in the automotive industry for in-vehicle networks.

6.1 Analysis of Fault Recovery on Processors

Research into probabilistic schedulability analysis for systems with faults was initiated by Burns
and co-authors [33, 30, 27, 26], who considered the impact of fault recovery operations on tasks
running on a processor.

In 1999, Burns et al. [33] addressed fault tolerant hard real-time systems. They introduced
the concept of a probabilistic guarantee on schedulability for a fixed priority preemptive system.
This is achieved by incorporating the cost of fault recovery (e.g. re-running a task, recovery block,
executing since the last check point) into the analysis, along with the minimum time between
faults. It is assumed that a single fault causes a detectable error in a single task. Sensitivity
analysis is then used to determine a threshold on the minimum time between faults that can be
tolerated by the system, while still meeting all deadlines. This threshold and the lifetime of the
system are then used as parameters in a fault model which determines the probability that no
two faults will occur closer together than the threshold during the lifetime of the system. Faults
are modelled as a homogeneous Poisson process which enables this probability to be analytically
computed, or upper and lower bounded using a simpler approach. We note that the approach
is potentially somewhat pessimistic, since the schedulability analysis considers only a critical
instant corresponding to synchronous release, whereas over much of the lifetime of the system
the phasing of tasks may be such that a higher fault rate could be tolerated. Nevertheless, the
method provides a valid lower bound on the probability that all jobs will meet their deadlines
over the lifetime of the system.

R. I. Davis and L. Cucu-Grosjean 04:29

Further work by Burns et al. [30] in 2003 looked at how conventional response time analysis [71,
14] could be extended to provide probabilistic guarantees. They remarked on the limitations of a
deterministic approach: (i) in fault tolerant systems, fault arrivals are inherently stochastic, (ii)
more complex applications have widely varying execution times, (iii) even for simple applications,
advanced processor architectures (with cache, pipelines etc.) lead to wide variability in execution
times. The authors present two methods of accounting for fault arrivals in response time analysis.
The first method computes the maximum schedulable periodic fault rate from modified response
time equations using sensitivity analysis [124]. An upper bound can then be derived on the
probability of failure due to faults arriving closer together than the maximum tolerated rate. The
second method computes the response time assuming no faults and then determines the maximum
number of faults that could occur in that time with a probability higher than a specified threshold
on the probability of failure. This number of faults is then added and the extended response time
computed. This process iterates until it converges or the deadline is exceeded.

In 2004, Broster and Burns [27, 26] presented a simple method for computing probabilistic
worst-case response times when there is just one task that has arrivals described by a probability
distribution. This method is based on the approach taken to probabilistic modelling of fault
arrivals on CAN [28] (see Section 6.2). The method works by computing the response times R0

i to
Rmi for task τi assuming 0 to m random arrivals of the higher priority task with random behaviour.
It then determines the probability that each response time occurs. For example to obtain response
time R2, there must be exactly two arrivals within that interval, excluding the case where there
are no arrivals in R0

i or exactly one arrival in R1
i , since the latter cases result in a smaller response

time. Once the probability of each response time has been computed, then the probability of
deadline failure can be determined.

Also in 2004, Kim and Kim [75] presented a method of probabilistic schedulability analysis
for harmonic task systems under Dual-Modular Temporal Redundancy (DMTR). DMTR utilises
two processors to simultaneously run duplicates of each task, with execution split into sub-tasks
that execute in defined time slots. At the end of each time slot, comparisons are made between
the outputs of the sub-task duplicates. If they are the same, then processing proceeds with the
next sub-task, otherwise the duplicates are re-executed and comparisons made between the four
outputs (two new and two previous). If two or three matching outputs are found, then processing
can proceed, otherwise the duplicate sub-tasks are executed again. A maximum of three time slots
can be used for each sub-task, corresponding to three separate temporary data areas available to
the processor. The authors derive a probabilistic schedulability analysis for the DMTR model,
assuming transient faults that occur according to a Markov model with arrivals according to a
Poisson process and an exponentially distributed duration. The approach is formulated using
state transition probability matrices. The authors use their formulation to determine the optimal
number of sub-slots to use given a fixed checkpointing overhead. They note that there are issues
with the complexity of the analysis and restrict their examples and evaluation to three tasks.

In 2011, Aysan et al. [18] provided a probabilistic schedulability analysis for tasks, running
under fixed priority preemptive scheduling, that are subject to faults in the form of error bursts.
The model of recovery is that errors detected at the end of a task lead to the subsequent execution
of an alternate, or the re-running of the original task. The error model analysed consists of bursts
of errors occurring with a minimum inter-arrival time (TE), with each burst having a duration
described by a probability distribution and a number of errors within it separated by an intra-burst
minimum inter-arrival time. Sensitivity analysis is used to compute the minimum value for TE for
each burst length in the distribution such that the task set remains schedulable if error bursts of
that duration are separated by at least TE . For each burst length and associated minimum value
of TE , the probability of the system remaining schedulable over its lifetime is computed, based

LITES

04:30 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

on a Poisson distribution of events (burst arrivals). This information is then used to compose
the overall probability of the system remaining schedulable for its lifetime. The analysis takes
account of the fact that errors may impact both the task of interest (whose schedulability is being
checked) and higher priority tasks that may execute within its response time.

Error occurrence described by a two-state discrete Markov model was considered by Short
and Proenza in 2013 [138]. This model specifies two states G and B (Good and Bad) and the
probabilities for the transitions between them. Further, associated with each state is the probability
of error occurrence while in that state. This model is a general one that can describe bursts
of errors with probabilistic inter-arrival times between the start of each consecutive burst, and
probabilistic inter-arrival times between the errors within a burst. The authors derive an efficient
closed-form bound on the maximum number of errors occurring in an arbitrary time interval t
according to this model, subject to a required confidence level or probability r. This bound can be
used to provide a function giving the number of errors that must be tolerated as a function of t for
the system to operate with a probability of failure that is no more than 1− r. The authors show
how this function can be incorporated into standard schedulability analysis for EDF providing a
“one-shot” analysis that can determine if a simple fault tolerant EDF-scheduled system can operate
with a probability of deadline failure that is lower than 1− r. We note that a similar approach
could be applied to fixed priority scheduling by integrating the bound into response time analysis.

In 2016, Santinelli et al. [134] discussed the idea of a C-Space (the space of task execution times
that lead to a feasible, i.e. schedulable system) and how it can be adapted to a probabilistic model
of execution times. The authors consider separate pWCET distributions resulting from (i) no-
fault (or LO-safe) and (ii) fault (or HI-safe) behaviour for each task. These pWCET distributions
are used to determine discrete execution time budgets with a probability of being exceeded of,
for example, 10−9 for each task, assuming (i) no-fault and (ii) fault behaviour. The C-Space
can then be used to indicate the probability of each combination of execution time budgets
being exceeded (assuming i.i.d. execution times), and hence whether a particular set of execution
time budgets can be considered feasible for a given combination of behaviours that have to be
accommodated (for example task τ1 considering LO-safe behaviour with no faults, and task τ2
considering HI-safe behaviour with faults).

6.2 Analysis of Fault Recovery on CAN
Controller Area Network (CAN) is a broadcast bus used for in-vehicle networks. Messages sent on
CAN have a bounded length and are transmitted according to a fixed priority non-preemptive
scheduling policy, with the message ID also representing the message priority (see Davis et al. [50]
for full details of the protocol and its analysis). CAN has strong error checking mechanisms
that can detect faults that result in bit-errors on the bus and so cause message corruption. The
protocol ensures that any message that fails to be transmitted correctly will be later re-sent.
Hence faults result in an additional load on the bus due to re-transmissions, which can potentially
result in deadline misses. Even though CAN is a deterministic protocol and the messages have
bounded lengths, the random occurrence of faults means that analysis techniques are needed that
can determine the probability of messages failing to meet their deadlines. A significant thread
of research in this area began with the work of Navet et al. [117] in 2000. This was built upon
by Broster et al. [28, 29], and Davis and Burns [48], and later adapted to more complex message
arrival functions by Axer et al. [17].

In 2000, Navet et al. [117] proposed a fault model for messages on CAN based on random
arrivals, where faults are assumed to occur according to a Poisson distribution. They introduce
the idea of a tolerable error threshold, corresponding to the maximum number of errors that a
message can tolerate before it becomes unable to meet its deadline. This threshold is then used in
a calculation of the worst-case deadline failure probability (WCDFP).

R. I. Davis and L. Cucu-Grosjean 04:31

Subsequently, in 2002, Broster et al. [28, 29] extended the work of Navet et al. [117], correcting
and improving upon the WCDFP analysis. (We note that this work is based on early analysis
of CAN that contains a number of flaws, but the method could easily use the correct equations
that were derived by Davis et al. [51] in 2007). The analysis works by deriving the probability
p(Rm|K) that a worst-case response time of Rm|K occurs, where Rm|K corresponds to the
worst-case response time for message m when exactly K faults occur between it being queued
for transmission and transmission completing, i.e. within the response time of the message. The
calculation of Rm|K assumes the worst-case scenario, i.e. the maximum delay due to blocking,
maximum interference from higher priority messages, and maximum bit stuffing. The probability
that K faults occur in a given time interval is obtained from the Poisson distribution of faults.
The probability p(Rm|K) is computed for values of K from zero to the maximum number of faults
that the message can tolerate without missing its deadline. The sum of these probabilities lower
bounds the probability that the message will be successfully transmitted by its deadline, hence
subtracting this sum from 1 gives an upper bound on the worst-case deadline failure probability.
We note that due to the worst-case assumptions in the response time calculation, this WCDFP
may be significantly larger than the actual probability of deadline failure averaged over a large
number of instances of the message. In 2012, Axer et al. [17] extended the approach of Broster et
al. [28] to more complex arrival functions for messages, including the case where messages have
arbitrary deadlines.

The work of Broster et al. [28, 29] was improved upon by Axer and Ernst [16] in 2013. They
considered the probabilistic schedulability analysis of messages on CAN assuming a Poisson
distribution of faults. They present a method of probabilistic response time analysis based on the
use of probability distributions representing queueing delays, busy period lengths, and response
times. The key idea is to represent the worst-case total transmission time for each message
including its re-transmission due to faults as a probability distribution, based on the probability of
k faults occurring within transmission of that specific message. This is possible since the Poisson
fault model is memoryless. The schedulability analysis derives from the deterministic response
time analysis for CAN [51] adapted to consider probability distributions. The authors show how
to compute the longest priority level-i busy period that can occur with a probability that is above
some small threshold of interest. The response time distributions for each message of priority i
in the busy period are then computed using a process of convolution and splitting. An upper
bound on the probability that the response time of any message of priority i in the busy period
will exceed an arbitrary time t (e.g. its deadline) can then be obtained from these distributions.
Evaluation shows that the results given by the analysis are very close to the empirical distribution
obtained via Monte Carlo simulation. Further, the probability of failure using typical fault rates
for CAN is approximately one order of magnitude better than can be obtained via the analysis of
Broster et al. [28, 29]. The reason being that the latter approach pessimistically assumes that the
largest possible re-transmission time (for any higher priority message) occurs on every fault.

In 2009, Davis and Burns [48] introduced algorithms that determine Robust Priority Assign-
ments (RPA) [47] for messages sent over CAN. They also investigated a probabilistic variant of this
problem. This work builds on prior analysis of the worst-case deadline failure probability (WCDFP)
for CAN messages in the presence of faults by Navet et al. [117] and Broster et al. [28, 29]. The
authors derive a Probabilistic RPA algorithm which determines a robust and optimal priority
ordering, in the sense that it returns a priority ordering which minimises the maximum WCDFP
over all messages, provided that a schedulable priority ordering exists. The algorithm builds on
the optimal priority assignment algorithm of Audsley [15]. A case study example shows that using
the Probabilistic RPA algorithm can result in a worst-case failure rate that is orders of magnitude
better than that obtained using deadline monotonic priority assignment (e.g. a failure rate of 1 in
28,500 compared to values in the range 1 in 500 to 1 in 1000).

LITES

04:32 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

With CAN, the physical layer employs bit stuffing to ensure that there are enough transitions in
polarity to maintain synchronisation between the nodes on the network. Thus within each message
transmission, a bit of opposite polarity is inserted after every five consecutive bits of the same
polarity. This increases the transmission time of the messages. In 2003, Nolte et al. [119] provided
a probabilistic worst-case response time analysis for messages on CAN. They used distributions
of the number of stuff bits, as opposed to worst-case values, to calculate probabilistic response
times based on the critical instant. The authors assume independence between the distributions
of the number of stuff bits for different messages and between those numbers for instances of the
same message. We note that it is unlikely that such independence would exist in practice. For
example consider the situation at start up, when the vehicle is not moving. Many of the signals in
the CAN messages may be at their default values e.g. zero, which incur a large number of stuff
bits. Further many values (temperatures, pressures etc.) change only slowly over time, thus it is
reasonable to expect a strong correlation between the values in one instance of a message and the
next, and hence a strong correlation between the numbers of stuff bits.

A probabilistic analysis for CAN messages and end-to-end latencies in an automotive system
was presented by Zeng et al. [153] in 2009. They build upon the basic approach of Diaz et
al. [54, 55] (see Section 3.2), with a number of approximations and adaptations for distributed
systems connected via CAN. Task execution times are assumed to be independent and described by
probability distributions. Similarly, the transmission times of CAN messages are also assumed to
be independent and described by probability distributions, in this case accounting for the varying
levels of bit-stuffing assuming variable message contents. The key approximation introduced for
CAN involves handling the lack of synchronisation between messages sent by different ECUs. (The
entire system is not simply periodic). This is done by approximating all messages sent by a remote
ECU via a single characteristic message that has a probability distribution and values for its
transmission time equating to the number of messages of priority i or higher that may be released
at the same time. For example if there are two messages with periods of 10 and 40 sent by the
ECU, then the characteristic message will have a period of 10 (the greatest common denominator)
and a probability distribution indicating 1 message with a probability of 0.75 and 2 messages with
a probability of 0.25. The authors note that this introduces some inaccuracy into the analysis
and it may be quite pessimistic for long intervals of time. Further, there is also the potential for
optimistic (i.e. unsound) results. The analysis is, however, intended as an approximation to be
used in design space exploration rather than as an upper bound. The characteristic message is
given an offset and random jitter to account for the lack of synchronisation between messages
transmitted by different ECUs. Messages sent by the same ECU as the message under analysis are
treated as individual messages, since their phasing with respect to the message of interest is known.
Blocking due to lower priority messages is also accounted for by assuming that the probability
of such messages being transmitted is uniform over the hyperperiod. Again, the authors note
this is a potential source of inaccuracy. The analysis method follows that of Diaz et al. [54, 55],
first the stationary backlog is computed at the start of the hyperperiod (of messages on the ECU
that transmits the message under analysis), then the backlog at the release time of each message
instance is computed, and finally, the response time distribution of each message instance within
the hyperperiod. These are averaged to obtain the response time distribution of the message.
The evaluation considers a 69 message case-study based on an experimental vehicle. The results
show that the stochastic analysis provides results that are close to those obtained via simulation
averaged over 108 different relative phasings. The analysis is subsequently extended to end-to-end
latency (i.e. tasks communicating across multiple ECUs and two CAN buses). Again, the analysis
results are a close fit to those obtained via extensive system level simulation. The key advantage
of the stochastic analysis over simulation is its speed e.g. 8 seconds of analysis versus 20 hours of
simulation. This means that the analysis is much better suited for use in design space exploration.

R. I. Davis and L. Cucu-Grosjean 04:33

Building on their prior work on probabilistic schedulability analysis for tasks [18], in 2012 Aysan
et al. [19] derived probabilistic schedulability analysis for CAN under a general fault model. This
model considers fault bursts of a duration described by a probability distribution. The analysis
proceeds in three steps: (i) For each potential burst duration in the distribution, sensitivity analysis
is used to determine the minimum inter-arrival time T burstE of errors within that burst such that
the system remains schedulable. (ii) An upper bound is computed on the probability of a smaller
inter-arrival time than T burstE occurring within the burst for each duration. These bounds are then
used to determine an upper bound on the probability that the minimum tolerable inter-arrivals
times for errors are violated for all potential fault durations over the mission duration. (iii) Finally,
the probability of unschedulability is computed from the probability of two bursts occurring too
close together and the probability of the minimum tolerable inter-arrival time of errors within a
burst being violated.

6.3 Summary and Perspectives
In this section we reviewed work on probabilistic schedulability analysis where random variables
are used to represent the occurrence of some form of fault. Beginning with initial work by
Burns et al. [33] in 1999, we can trace an important thread of research providing probabilistic
schedulability analysis for fixed priority systems, in particular Controller Area Network (CAN),
under an assumed fault model [117, 28, 29, 48, 16, 17]. This work derives effective estimates of the
worst-case probability of deadline failure, and provides the tools needed to assign message priorities
in such a way as to make the system as robust as possible to the occurrence of faults. The main
issue with this line of research is whether the fault models used reflect reality; however, the method
is sufficiently flexible to incorporate any reasonable fault model where the probability of some
number of faults is monotonically non-decreasing in the length of the time interval considered.

7 Statistical Analysis of Response Times

Previous sections reviewed work on probabilistic schedulability analysis based on analytical models
of the system. By contrast, in this section we review work that takes a statistical approach,
treating the system as a “black box” and making observations of response times from which an
estimation of the response time distribution and hence deadline miss probabilities can be derived.

One of the key methods used in this thread of research is Extreme Value Theory (EVT). An
overview of the use of EVT in measurement-based probabilistic timing analysis can be found in
the companion survey [52], with more detailed information given in Stuart Coles’ textbook on
the subject [39]. Here, we provide a brief synopsis, focusing on the Extreme Value Theorem (or
Fisher–Tippett–Gnedenko theorem). This theorem states that if the normalised maximum of a
sequence of i.i.d. random variables converges, then the limit distribution belongs to either the Gum-
bel, Frechet, or reversed Weibull family of distributions. In practice, EVT may be applied using the
Block Maxima method as follows: (i) obtain a representative sample of observations (e.g. response
times), (ii) check using appropriate statistical tests that the sample of observations collected is
analysable using EVT, (iii) divide the sample into blocks of observations of a fixed size, and take
the maxima for each block, (iv) fit a Generalised Extreme Value (GEV) distribution (i.e. reversed
Weibull, Gumbel, or Frechet distribution, depending on the shape parameter) to the distribution
of the maxima, (v) check the goodness of fit between the distribution of the maxima and the fitted
GEV distribution. The GEV distribution so obtained then approximates (estimates) the distribu-
tion of the extreme values of the sampled distribution. We note that if the underlying (measured)
distribution is badly behaved, then the normalised maximum may not converge to any of the limit
distributions, in which case the method is not applicable. This can be determined by appropriate
statistical tests.

LITES

04:34 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

7.1 Statistical Estimation

A number of authors have sought to apply statistical methods to estimate response time distribu-
tions and deadline miss probabilities. The main thread of research in this area comes from Lu,
Nolte, and their co-authors [96, 97, 94, 95] with a recent investigation into the soundness of such
approaches by Maxim et al. [111].

The theory of Large Deviations [144] was applied by Navet et al. [116] in 2007 to the problem
of estimating the mean or the sum of the response times of a series of aperiodic jobs. This method
makes use of frequency histograms of response times that are obtained via measurement. It
assumes that the response times of jobs of an aperiodic task are i.i.d. The authors note that
this is not the case with the response times of periodic tasks, since the interference from other
tasks follows a pattern over the hyperperiod due to the release times of higher priority tasks. The
method provides an estimation of the probability that the mean response time of a sequence of n
jobs of the task will exceed some value x, for all values of x.

In 2010, Lu et al. [96] introduced a method of estimating probabilistic worst-case response
times (pWCRT) using Extreme Value Theory (EVT). They record observations of response times,
obtained from simulation. EVT is then applied to these observations, using the Block Maxima
method, with the distribution of the maxima fitted to a Gumbel distribution using a χ-squared
test. The authors present an algorithm which searches for an appropriate block size to use, while
enforcing a minimum of 30 blocks. The results are compared to those obtained via a Monte-Carlo
search (i.e. keeping the largest response time found from a set of randomised simulations) and
also via meta-heuristic search applied on top of Monte-Carlo simulation. The evaluation considers
three system models (M1-M3) indicative of those used in robotic control systems. Here, tasks
exhibit strong dependences through asynchronous message passing, shared global variables, and
runtime changes to task periods and priorities. The system models used in the evaluation vary
in complexity. The validation model based on M1 is amenable to conventional response time
analysis techniques, and so an exact worst-case response time could be determined. By contrast,
M3 has intricate dependences via message passing, global shared variables, and changes in task
periods and priorities. The evaluation results show that the EVT-based approach requires far
fewer simulation runs (approx. 6% as many) to produce meaningful results compared to the
Monte-Carlo and search-based methods. Following on from this work, Lu et al. [97, 94, 95] refined
the method, using a form of simple random sampling to break dependences between observations.
They also sought to ensure that the pWCRT value returned by their tool (RapidRT) for a given
probability of exceedance is an upper bound with an appropriate level of confidence. This is
done by repeating the process of obtaining observations and applying EVT n times to produce n
pWCRT distributions. The set of values at a probability of exceedance of 10−9 from each of these
distributions is then checked to see if it complies with a normal distribution. If so, the pWCRT
value returned is the one that corresponds to the desired level of confidence (e.g. 3σ ≈ 99.7%). In
their final work in this area, Lu et al. [95] evaluated their method using a case study based on
an industrial robotic control system with the results compared against a state of the art method
based on using meta-heuristic search to guide Monte Carlo simulation to determine parameters
that will lead to long response times. Note such simulation requires a detailed model of the system.
Four levels of system complexity were explored containing from 40-60 tasks, 7-12 queues, and in
the case of the most complex system, run-time priority and period changes, unbounded message
passing, and task offsets. The proposed method was shown to bound the estimates obtained via
meta-heuristic search and Monte Carlo simulation, with no more than 15% pessimism.

Subsequent work in 2013 by Liu et al. [91] applied EVT to the problem of estimating the
worst-case response times of messages on a CAN bus. Due to the scheduling policy used, the
distribution of observations and their maxima show multiple peaks. Such distributions are difficult

R. I. Davis and L. Cucu-Grosjean 04:35

to analyse, since they cannot be fitted to the known EVT distributions. To address this problem
the authors use a filtering method which aims to reduce the distributions to single peaks by
discarding observations below a threshold. (This threshold is set such that the mean value of
observations above the threshold is greater than or equal to their median value). Evaluation shows
that the method provides results that are only a few percent pessimistic compared to response
time analysis for CAN [50] using computed worst-case values.

The soundness and precision of applying statistical techniques to determine the probabilistic
worst-case response time (pWCRT) distribution of tasks was investigated by Maxim et al. [111]
in 2015. They noted that to obtain meaningful results, a ground truth is required. In other
words the pWCRT must be known. This is far from simple, and may not be possible for tasks
in a real system. Therefore they constructed a simulation of task behaviour based on pWCET
distributions, which could potentially be obtained from a real system. The approach obtains
the ground truth via probabilistic worst-case response time analysis using the method given by
Maxim et al. [106] (see Section 3.3), which determines precise pWCRT distributions from the input
pWCETs. The ground truth is compared to a number of statistical approaches. These include
fitting to Normal, reversed Weibull, and Gumbel distributions, and an EVT-based approach using
the Block Maxima method. The evaluation shows that fitting to a Normal or reversed Weibull
distribution is unsound with approximately half of the pWCRTs under-estimating the probability
of a deadline failure. Fitting to a Gumbel distribution produced better results in this respect with
about 10% unsound results. Using the EVT-based approach, none of the results were unsound;
however, there was an increase in pessimism compared to directly fitting a Gumbel distribution.

7.2 Summary and Perspectives
In this section we reviewed research that takes a statistical approach to estimating response time
distributions. Of particular note is the work by Lu et al. [96, 97, 94, 95] and Maxim et al. [111].
The former showing that EVT can provide meaningful predictions of the tail of response time
distributions even in the case of systems with intricate dependences, and the latter showing that
the results from EVT are sound compared to the ground truth, while those from directly fitting a
distribution to the observations are not.

All of the work reviewed in this area has focused on single processor systems. For tasks
running on COTS multi-core platforms there are significant difficulties involved in obtaining
precise worst-case response times via analytical methods due to issues of cross-core contention.
The application of statistical methods to directly predict the extreme values of the response time
distributions for tasks in such systems could potentially provide some solutions to this problem.
This is an interesting area for future research.

8 Probabilistic Analysis of Mixed Criticality Systems

The term Mixed Criticality System (MCS) is used to describe real-time systems where applications
with different criticality levels (meaning different levels of assurance required against failure) are
integrated onto the same hardware platform. This integration gives rise to research questions in
terms of how to reconcile the conflicting requirements of sharing for efficient resource usage and
separation for reasons of assurance [31]. In 2007, Vestal [145] described a mixed criticality task
model whereby LO-criticality tasks have a single worst-case execution time estimate C(LO), and
HI-criticality tasks have two estimates C(LO) and C(HI), with the latter, larger estimate obtained
via methods that give a higher level of confidence / assurance that it will not be exceeded. (For
example C(LO) might be an upper bound on the longest execution time observed during testing,
while C(HI) may be a conservative value obtained via detailed static timing analysis). The timing

LITES

04:36 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

constraints placed on the system require that all tasks meet their deadlines provided the C(LO)
budgets are not exceeded; however, if a HI-criticality task exceeds its C(LO) budget, then it is
only required that the HI-criticality tasks meet their deadlines, assuming that they execute for at
most their C(HI) budgets. This required behaviour reflects the different failure rates that may
be acceptable at different criticality levels (see the discussion in Section 1). For more information
on research into scheduling mixed criticality systems, see the survey by Burns and Davis [31].

In this section we review recent research on probabilistic schedulability analysis for MCS. These
methods typically use a richer representation based on execution time or pWCET distributions,
rather than the discrete execution time budgets C(LO) and C(HI) at different criticality levels
assumed by Vestal’s model [145]. Here, one may consider the C(LO) and C(HI) budgets from
Vestal’s model as two points on the x-axis of the 1 - CDF of a pWCET distribution (see Figure 2
in Section 2), each with an associated probability of exceedance (i.e. the corresponding y-axis
value).

8.1 Analysis for Mixed Criticality Systems
Research into probabilistic schedulability analysis for mixed criticality systems is in its infancy
with a small number of papers published from 2015 onwards. The majority of these works are
short papers that have appeared in workshops. A necessarily brief review of them is given below.

In 2015, Santinelli and George [132] presented preliminary work on probabilistic schedulability
analysis for MCS scheduled using EDF. They investigated how schedulability varies with task
execution times, referred to as the probabilistic C-space. Later the same year, Guo et al. [64]
extended the mixed criticality task model with a single exceedance probability value for the
low assurance budget of each HI-criticality task, and used probabilistic analysis to improve
schedulability.

In 2016, Maxim et al. [107] adapted probabilistic response time analysis from [106] (see
Section 3.3) to fixed priority preemptive scheduling of MCS using the Adaptive Mixed Critical-
ity (AMC) and Static Mixed Criticality (SMC) schemes [22]. They compared this analysis to the
equivalent deterministic methods, highlighting the performance gains that can be obtained by
utilising more detailed information about worst-case execution time estimates described in terms
of probability distributions. This work was extended by Maxim et al. [108] to provide a more
precise analysis, and also to examine by how much the execution time budgets of LO-criticality
tasks can be increased by employing probabilistic rather than deterministic schedulability analysis
methods.

In 2016, Alahmad and Gopalakrishnan [9, 8] studied the problem of scheduling mixed criticality
job sets with execution times described by random variables. The aim of this work is to compute
implementable scheduling policies that meet the probabilistic timing constraints. The problem
is modelled as a Constrained Markov Decision Process (CMDP), with feasible policies obtained
using a linear program.

In 2016, Draskovic et al. [57] examined fixed priority preemptive scheduling of MCS of periodic
tasks with execution times described by random variables. They employed the method of Diaz
et al. [54] (see Section 3.2) to compute the probability of a deadline miss for every job in the
hyperperiod, and from that the overall deadline failure rate. They also computed the expected
time before a change to HI-criticality mode, and showed that this expected time depends on the
LO-criticality execution time budget allocated to HI-criticality tasks. A smaller budget results
in a lower probability of deadline failure, but a shorter expected time before a transition to
HI-criticality mode.

In 2017, Abdeddaim and Maxim [1] derived probabilistic response time analysis for mixed
criticality tasks under fixed priority preemptive scheduling, adapting the techniques of Maxim and

R. I. Davis and L. Cucu-Grosjean 04:37

Cucu-Grosjean [106] (see Section 3.3) to the MCS model. The analysis computes the probability of
deadline misses for each task in each criticality mode. This work does not assume any monitoring,
hence lower criticality tasks are assumed to continue executing in higher criticality modes.

In 2017, Kuttler et al. [80] introduced an algorithmic approach to probabilistic schedulability
analysis called symbolic scheduling. They considered an extension of AMC [22] where the priorities
of LO-criticality tasks are reduced (to below that of any HI-criticality task) when the system
switches to HI-criticality mode. Assuming this behaviour, they calculate the probability of each job
of a LO-criticality task meeting its deadline. The method applies to periodic tasks. Conceptually,
it considers every possible combination of execution times, forming a tree where each path from
root to leaf represents a possible behaviour of the system. The disadvantage of this naive approach
is that the tree quickly becomes very large. Symbolic scheduling is therefore used, whereby
paths that may have different execution times but agree on the order of jobs and their success or
otherwise in meeting deadlines are combined. The evaluation shows that considering only the
probabilistic worst-case response time (i.e. the behaviour at the critical instant) can be pessimistic
in its estimate of the probability of LO-criticality jobs missing their deadlines.

8.2 Summary and Perspectives
In this section we reviewed research on probabilistic schedulability analysis for Mixed Criticality
Systems (MCS). These methods consider MCS described using execution time or pWCET distribu-
tions rather than the conventional C(LO) and C(HI) WCET estimates / execution time budgets
of Vestal’s model [145]. This additional information provides the potential for improvements in
schedulability and in the size of the budgets that can be afforded to different tasks, see for example
the work of Maxim et al. [108]. MCS are a hot topic of real-time systems research. A probabilistic
view of MCS would appear to provide an excellent match to requirements that are specified in
terms of levels of assurance and failure rates. We note, however, that research in this area is
currently in its infancy with a small number of works starting in 2015, the majority of which are
workshop papers or other short publications. (For a comprehensive review of other research into
MCS see the survey by Burns and Davis [31]).

9 Miscellaneous

In this section, we review research that explores miscellaneous aspects of scheduling and schedulab-
ility analysis for probabilistic real-time systems, including task graphs and precedence constraints,
analysis for multiprocessor systems, miscellaneous models and techniques, and position papers.

9.1 Task Graphs and Precedence Constraints
The majority of the research in this area was published by Manolache et al. in a series of
papers [100, 101, 102] from 2001 to 2008.

In 2001, Manolache et al. [100] presented a method of analysing systems with precedence
relations between tasks described by task graphs, and task execution times described by probability
distributions. They assume that the tasks are periodic with a reasonably small hyperperiod. The
method is applicable only to non-preemptive scheduling algorithms such as fixed priority and EDF
that do not alter job priorities between scheduling points (i.e. task release times and deadlines).
It is assumed that if a job misses its deadline, then it is aborted. The first step in the analysis is
to divide the hyperperiod into so called Priority Monotonic Intervals (PMI) de-marked by job
release times and deadlines. The stochastic process is then constructed and analysed at the same
time, thus reducing memory requirements. A stochastic process state consists of the index of the

LITES

04:38 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

currently running job, the start time of the job, and the indices of the ready jobs. The number of
next states depends on the number of possible execution times of the job. As this number can
be very large, states are grouped together, while still preserving the Markovian property. States
are processed in order, by PMI first, and then within a PMI by highest priority ready job. The
method thus determines the expected deadline miss probability for each task. Evaluation shows
that the method is effective for tasks sets of cardinality up to 20 and hyperperiods from 360 to
5040. Subsequently, in 2004, Manolache et al. [101] extended their earlier work [100] to the case
where tasks may continue to execute beyond their deadlines. Such overruns are restricted by
limiting the maximum number of jobs of the same task that can exist in the system at any given
time. On the release of a task, if this limit would be exceeded, then there are two options: discard
the oldest job of the task, or reject the new job. Evaluation shows that rejecting the new job leads
to much greater complexity, since a bound is removed on the number of successor states. The
authors also discuss possible extensions to preemptive scheduling, but note that the complexity of
the method would be greatly increased. Later, in 2008, Manolache et al. [102] proposed a solution
to the problem of task priority assignment and mapping in a multiprocessor system. The task
model is the same as in their previous works [100, 101]. The method is based on a Tabu search,
with various approximations used to reduce the complexity of computing estimates of the deadline
miss probability and thus the fitness function used in the search.

In 2003, Hua et al. [69] proposed a method of using probabilistic descriptions of task execution
times to optimise other parameters of interest in multimedia systems, such as energy consumption.
The model considered is a task graph, where the tasks in the graph are executed in a fixed order,
and must be completed by a given deadline. The application i.e. the task graph is executed
periodically. The system must meet a completion ratio condition, effectively a threshold on
the expected proportion of a large number of instances of the task graph that will meet their
deadlines. A simple formula is given for computing the completion ratio based on the execution
time distributions. This formula has exponential complexity, since it effectively considers all
combinations of possible task execution times from the distributions. An approximation is therefore
used that starts with each task assigned its WCET, and then while the deadline is not met, it
removes the largest value from one of the task execution time distributions. This lowers the overall
execution time, but decreases the completion ratio. Eventually, either the task graph is deemed
schedulable with an acceptable completion ratio, or the completion ratio becomes too small. The
value to remove is chosen in a greedy way, by selecting the one that gives the largest reduction in
overall execution time, weighted by how much the completion ratio is reduced. The authors also
describe an offline/online algorithm for minimising energy consumption via dynamic voltage and
frequency scaling (DVFS). The aim here is to either drop jobs or to extend their execution to
reduce energy consumption, while meeting the specified threshold on the completion ratio. We
note that it is implicitly assumed that the execution time of a job becomes known at the point
when it is released, which may not be possible to achieve in practice.

9.2 Multiprocessor Analysis
Below, we cover the few works on probabilistic schedulability analysis for multiprocessor systems.
The relative absence of work in this area contrast strongly with the wealth of research into con-
ventional schedulability analysis techniques for multiprocessor systems, (see Davis and Burns [49]
for a survey).

In 2002, Nissanke et al. [118] and Leulseged and Nissanke [86] described a probabilistic
framework for investigating the schedulability of tasks on a multiprocessor, with execution times
and deadlines modelled via probability distributions. Each task has a fixed period, and its
behaviour is represented by points on a cartesian graph of remaining execution time versus laxity.

R. I. Davis and L. Cucu-Grosjean 04:39

A set of non-zero probabilities characterise the task as arriving with a certain execution time and
laxity. Between arrival times, remaining computation times and laxities are also described by
probabilities, but evolve according to the scheduling algorithm, reaching either negative laxity
indicating a missed deadline or zero remaining computation time indicating completion. By
knowing the probability of realising each scenario, and the competition between tasks at the
same priority, the probability of a task being executed is computed. This enables calculation
of the execution patterns of all tasks over the hyperperiod, enabling the various properties of
interest to be derived. The movement of tasks through this scheduling domain depends on the
probability of m processors being assigned tasks to execute that are in a particular state (specified
by laxity and execution time), and also on the arrival rate. Overall, the framework can be used to
determine performance indicators such as expected deadline failure rate, success rate, number of
tasks executing, number of tasks at a particular point etc. The authors propose that a probabilistic
scheduling policy could be determined by prescribing a probability to executing tasks based on
their location in the scheduling domain. These probabilities could be obtained by solving an
optimisation problem with the aim of maximising some performance indicator of interest, such as
the expected success rate.

In 2010, Mills and Anderson [112] extended prior work on tardiness bounds for global
EDF (GEDF) scheduling to tasks with execution times described by i.i.d. random variables.
For such systems, they derived a bound on expected mean tardiness for all tasks. Subsequently in
2011, Mills and Anderson [113] generalised their previous work to address tasks with stochastic
execution times (specified via mean and variance) scheduled via sporadic servers under GEDF
or any other global scheduling algorithm with bounded tardiness. They proved a worst-case
tardiness bound when the system has a worst-case utilisation that is bounded by the number of
processors, and an expected or average-case tardiness bound when the average-case utilisation
is bounded by the number of processors. This latter bound does not require knowledge of the
task’s WCET, or even for the WCET to be bounded. Hence the average-case tardiness bound can
be computed on the basis of the mean and variance obtained from representative execution time
observations. An example shows that the computed tardiness bounds are much tighter that those
derived previously [112].

In 2014, Liu et al. [92] considered how to deal with dependencies between the execution times
of jobs of a task. They build upon the work of Mills and Anderson [113], thus assuming that
tasks are scheduled via sporadic servers under GEDF. The key idea is to represent the stochastic
execution times of the task via two components: (i) a fixed threshold, and (ii) an excess over that
threshold. The idea is that by tuning the threshold to an appropriate level, the non-zero excesses
over the threshold become independent. (This notion is similar to the one of extremal independence,
where extreme execution time values are sufficiently rare and far apart as to be independent).
Using an independence threshold for each task enables the system designer to balance the need
for a tractable probabilistic analysis based on modeling execution times as independent random
variables, and the need to avoid a pessimistic provision based on deterministic worst-case reasoning.
The authors integrate the concept of independence thresholds into the prior approach of Mills and
Anderson [113]. They present a measurement process based on statistical tests of independence
that is able to find the smallest threshold such that dependences are effectively eliminated. Finally,
they show via an MPEG video decoding case study that the overall approach is highly effective,
on average achieving a two-fold reduction in the required server execution time budgets compared
to deterministic worst-case provisioning.

In 2015 and a later journal extension in 2017, Wang et al. [149, 148] proposed a task partitioning
algorithm for fixed priority preemptive scheduling of tasks with execution times described by
independent random variables on a homogeneous multi-core platform. They explored four different

LITES

04:40 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

heuristics that quantify the degree of harmonicity among the tasks assigned to a processor. These
are mean-based, variance-based, cumulative distribution-based, and distribution sum-based. The
evaluation shows that these heuristics significantly outperform existing (deterministic) methods
in terms of the number of cores required to ensure that probabilistic timing guarantees are
met (i.e. that all tasks meet their deadlines with an acceptable probability). Later work by Ren et
al. [128] built upon the above work addressing some of its drawbacks. In particular, the partitioning
approach employed by Wang et al. [149, 148] can suffer from fragmentation. Ren et al. address
this issue by combining a consideration of both harmonicity and probabilistic workload. Their
approach first orders the tasks by decreasing expected utilisation and selects the highest expected
utilisation task as a reference task. It then selects tasks to add to the subset containing the
reference task based on harmonicity. Tasks are added until no further task can be added without
the subset failing the probabilistic schedulability test for a single processor. The selected subset
of tasks is then assigned to one processor and the method repeats for the remaining unassigned
tasks. Evaluation using synthetic task sets shows that this approach is both more effective and
has a shorter average runtime than the previous partitioning approach of Wang et al. [149, 148].

9.3 Miscellaneous Models and Techniques
In this subsection we review work relating to miscellaneous models and techniques such as
randomised job dropping and imprecise computation.

In 2001, Hu et al. [68] studied fixed priority preemptive systems with task execution times
described by random variables. They argue that finding the probability of each task missing
its deadline does not give the full picture for a system and can be misleading. Instead, they
propose that the probability of failures is assessed over state cycles corresponding to the intervals
between job releases for periodic tasks. They reason that a state is only feasible if all of the
jobs that are ready in that state meet their deadlines. (A job with a long deadline may thus
affect the feasibility of multiple states). The overall probability of system feasibility is assessed
by determining the expected number of feasible states over the total number of states in the
hyperperiod, or as an approximation a shorter interval such as the task period. The focus on
states ensures that correlations between different jobs missing their deadlines are captured. We
note that this method does not consider the backlog at the end of the hyperperiod and thus is
only applicable if the worst-case processor utilisation does not exceed 1. Constrained deadline
periodic tasks are assumed. The method is also extended to EDF. The complexity of the method
is exponential in the number of values in the execution time distributions, with the exponent
being the number of releases of the task within the hyperperiod. It therefore seems unlikely that
the method is viable for systems that do not have both a small number of tasks and a short
hyperperiod.

Also in 2001, Hamann et al. [65] integrated a probabilistic description of execution times with
the imprecise computation model based on mandatory and optional components [90]. They assume
that each task is composed of a single mandatory part that must be guaranteed to complete by
its deadline and multiple optional parts for which only soft (probabilistic) guarantees are required.
It is assumed that the execution time distribution is provided for each part of a task, and that the
WCET is known for the mandatory part. A simple analysis is given that determines the size of
the reservation required to guarantee the mandatory part and to provide the desired probabilistic
guarantee that a required percentage of the optional parts complete. This is achieved by convolving
the execution time distributions, hence their independence is assumed. The approach is motivated
by multimedia examples involving the decoding of MPEG frames, with I and P frames mandatory
and B frames optional.

R. I. Davis and L. Cucu-Grosjean 04:41

In 2002, Kim et al. [77] proposed an alternative to task-level or job-level isolation based on
randomised dropping. The motivation for this approach is that isolation does not allow sharing of
processing resources when a job executes in less time than reserved for it. In the model addressed in
this work, periodic tasks are assumed to have independent execution times with known probability
distributions, and are assigned an execution time budget that they can use without triggering the
dropping mechanism. Typically this corresponds to the expected or average execution time. Job
scheduling is via EDF; however, each job also has one or more trigger values on the execution time
that it uses. When one of these trigger values is reached, there is an associated probability that
the job will be dropped. By tuning these values and the probabilities of dropping, the interference
on other jobs can be limited in a probabilistic way. The authors propose a stochastic analysis for
their model, based on a Markov process. They derive the Markov chain over multiple hyperperiods,
and compute the stationary backlog distribution. This is then used to determine the response
time distribution and deadline miss probability for each job, and hence also for each task. The
randomised dropping is modelled as an adjustment to the execution time distribution for each
task. Evaluation shows that the method is successful in achieving a high probability of deadlines
being met in an otherwise overloaded system.

In 2009, Gopalakrishnan [61] explored the idea of sharp utilisation thresholds in fixed priority
preemptive scheduling of periodic tasks. They show that for task sets chosen uniformly at random,
there is a transition around some utilisation U where the probability of an implicit deadline task
set being schedulable under rate-monotonic scheduling changes from 1 to 0. The width of this
transition depends on the cardinality of the task set and tends to a sharp threshold (i.e. an interval
of zero width) as the number of tasks tends to infinity. A similar result giving a sharp synthetic
utilisation (or density) threshold was obtained for aperiodic tasks, where a task’s density is given
by its execution time divided by its relative deadline. This work provides a highly efficient means
of admitting task sets at runtime based on a simple utilisation-based test, while ensuring that
there is a high probability that the task sets will be schedulable. For soft real-time systems this
approach could be much more effective than using hard utilisation bounds [89], below which there
are no task sets that are unschedulable.

9.4 Position Papers
The following works discuss some requirements for probabilistic schedulability analysis to be useful
in practice, as well as issues relating to independence.

In 2012, Quinton et al. [125] set out four requirements (or conditions) that must be satisfied
by probabilistic analysis for it to be useful: (i) it must be efficient enough to scale to real
systems, (ii) it must provide meaningful results for system designers, (iii) the model used must be
practical (i.e. simple enough to be provided by the designer) or automatically generated, (iv) any
assumptions made by the analysis must be formally described so they can be validated. They
note that most existing probabilistic approaches determine the distribution of response times,
but can say nothing about the behaviour of the system in a short and bounded time window. In
other words, they cannot answer the question, “can deadline misses occur in a burst?” (See the
discussion in Section 2.5).

In 2013, Cucu-Grosjean [42] considered different types of independence in the context of
probabilistic real-time systems. A key aspect of this work is the discussion covering the definition
of, and the differences between, probabilistic execution time distributions (pET) of jobs and
probabilistic worst-case execution time distributions (pWCET) of tasks. The author notes that
since the pWCET distribution upper bounds all the pET distributions for the jobs of a task (in
the sense of the greater than or equal to operator � on random variables defined in [55]), then the
pWCET distribution of a task is by definition probabilistically independent with respect to jobs

LITES

04:42 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

of the same or different tasks. They also highlight the differences between independence between
tasks (as required by the Liu and Layland model [89]), probabilistic independence between
random variables (needed so that basic convolution may be used to determine probabilistic
response times), and statistical independence between observations of execution times. In a
paper accompanying an invited talk at the ETR summer school in 2013, Cucu-Grosjean [43]
discusses different types of independence (probabilistic, statistical) [42] and also recaps the work
on probabilistic schedulability analysis [54] and probabilistic WCET analysis [44] for real-time
systems, re-sampling techniques [109], and priority assignment policies [105].

9.5 Summary and Perspectives
In this section, we reviewed works that explore different aspects of scheduling and schedulability
analysis for probabilistic real-time systems. Here, we highlight the work of Liu et al. [92] that
provides a means of dealing with dependencies between the execution times of jobs of a task
via an independence threshold, and the work of Gopalakrishnan [61] that provides a simple but
highly effective probabilistic admission test for soft real-time task sets. We note that while there is
substantial literature on conventional schedulability analysis for multiprocessor systems (see Davis
and Burns [49] for a survey), with a handful of exceptions, research into probabilistic schedulability
analysis has focused on uniprocessor systems. Further, there are now a large number of papers
focused on providing conventional schedulability analysis for tasks running on multi-core platforms,
taking into account the effects of contention for shared hardware resources (interconnect, memory
hierarchy, I/O system etc.) between tasks running in parallel on different cores. There appears to
be little if any published work on probabilistic schedulability analysis for such systems. This is an
important area that could benefit from future research.

10 Addressing Issues of Intractability

Much of the research into probabilistic schedulability analysis relies on combining execution time
distributions via basic convolution. A naive assessment of basic convolution would assume that it
has exponential complexity O(mn) where m is the number of points in each distribution and n is
the number of distributions convolved. While this is correct in terms of the theoretical worst-case,
in practice the range of values in each distribution is such that the overall complexity is far lower.
For example, assuming that the largest (integer) value in an execution time distribution is N , then
the number of points in the intermediate distribution after m convolutions is at most mN , and
hence the overall complexity of m convolutions is O(Nm2). Nevertheless, probabilistic response
time analysis involving realistic numbers of tasks with a spread of periods of a few orders of
magnitude can involve significant computation. In this section, we review works that seek to
reduce the amount of computation required, while in some cases trading faster calculation for
pessimism in the results.

10.1 Re-sampling
Re-sampling reduces the number of values present in a discrete probability distribution, and
therefore reduces the amount of computation required in convolution operations involving that
distribution. This improvement in efficiency comes at a cost of reduced accuracy or pessimism in
the results.

In 2010, Refaat et al. [127] presented a method of reducing the complexity of the analysis
of Diaz et al. [54, 55] and Kim et al. [76] by re-sampling the execution time distributions used.
Their method involves taking k random samples from the probability distribution and assigning

R. I. Davis and L. Cucu-Grosjean 04:43

the probability for all excluded points to the worst-case value from the distribution, which is
always kept. This method provides a sound but pessimistic approximation [55]. Subsequently,
later in 2010, Maxim et al. [110] presented an alternative approach to re-sampling execution time
distributions that improves on the method introduced by Refaat et al. [127]. This approach keeps
the k − 1 values with the largest probability as well as the largest value. It then reassigns the
probability mass for each removed point to the retained point with the next larger value. This
is a sound approximation, with less pessimism than assigning the probability mass of excluded
points to the worst-case value.

Building on the earlier work in this area, in 2012, Maxim et al. [109] considered the need
for re-sampling probabilistic worst-case execution time (pWCET) distributions when computing
probabilistic worst-case response time (pWCRT) distributions. This computation involves repeated
use of the convolution operator. The runtime of convolution of arbitrary distributions can grow
rapidly, as the number of points (distinct execution times) in the existing distribution can in the
worst case be multiplied by the number of points in each pWCET distribution that is convolved
onto it. In theory, this leads to an exponential growth in the runtime. In practice, the number of
points in a discrete distribution cannot exceed max-et – min-et, where max-et and min-et are the
maximum and minimum values in the distribution. The authors address the complexity issues
with convolution by introducing sound ways of re-sampling the distributions created. A sound
re-sampling is one that does not move probability values right-to-left, thus never allocating them
to a smaller execution time. Although moving some values left-to-right introduces pessimism,
it ensures that the pWCRT produced over-approximates that which would be obtained without
re-sampling. The work considers uniform spacing, a re-sampling technique that is widely used
in other contexts. This method selects sample points that are uniformly spaced in terms of
probabilities, i.e. at equally spaced percentiles throughout the distribution. It provides a good
fit in terms of overall pessimism; however, the shape of the tail, which is important in pWCRT
calculation, can be heavily compromised. Two new re-sampling techniques are introduced: reduced
pessimism re-sampling, which seeks to minimise the probability mass moved to larger execution
time values, and domain quantisation, which re-samples at equally spaced points in the execution
time domain. Domain quantisation has the desirable property that it greatly reduces the number
of points in the distributions produced after convolution, and also provides a good fit to the tail of
the pWCET distributions. Evaluation shows that it gives the best compromise between runtime
and accuracy.

In 2015, Milutinovic et al. [114] examined methods of speeding up the discrete convolution
operations that are used a large number of times in SPTA. They consider methods that are
precision preserving, such as power operations used when the same distribution needs to be
convolved multiple times, and precision non-preserving methods such as re-sampling as proposed
by Maxim et al. [109]. They found that the precision preserving techniques speeded up convolution
by approximately a factor of two, while the precision non-preserving techniques traded off a
minimal amount of over-approximation (< 3%) for an order of magnitude increase in speed.

10.2 Analytical Methods and Other Techniques
While re-sampling, which reduces the number of values present in a discrete probability distribu-
tion, makes a trade-off between efficiency and precision in probabilistic schedulability analysis
calculations, analytic methods can result in greater improvements in runtime while retaining better
precision. In some cases, full precision can be retained while still making substantial improvements
in runtime efficiency.

In 2017, Chen and Chen [36] considered the problem of probabilistic response time analysis
and the computational complexity involved in repeated use of the convolution operator. They

LITES

04:44 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

proposed a more efficient approach to computing the probability of deadline misses, based on
using the moment generating function (mgf) of random variables, and Chernoff bounds for the
probability that the sum of a number of random variables (e.g. the execution times of multiple
jobs) exceeds some bound (e.g. the deadline). The authors demonstrate how this approach can be
applied to probability distributions consisting of two values representing normal operation, and
abnormal operation in the event of a soft error. They also show how the approach can be extended
to distributions with more values, and to give the probability of l consecutive deadline misses. The
evaluation compares the proposed method to exact analysis [106] and to exact analysis with re-
sampling [109] applied. The results show that the proposed method is able to efficiently determine
slightly pessimistic bounds on the probability of deadline misses without the need to derive the
whole response time distribution, which can be inefficient. Exact analysis was not suitable for
more than 10 tasks in the experiments considered, while re-sampling, limiting the distributions to
a maximum of 100 values, resulted in highly pessimistic deadline miss probabilities (e.g 1) for task
set utilisation values > 70%.

In 2018, von der Bruggen et al. [147] considered the problem of determining the worst-case
probability of deadline misses for tasks under fixed priority preemptive scheduling. They note
that traditional convolution-based approaches to computing pWCRT distributions quickly become
intractable as the number of jobs within the deadline of a lower priority task that is being analysed
increases. To address this problem, they present a novel approach based on using multinomial
distributions, which they further improve via the use of a pruning technique. This method retains
full precision and is viable for much larger task sets than previous approaches. In the evaluation,
the technique is used for systems of up to 35 tasks and is shown to be viable for up to 100 tasks.
These task sets have a range of periods spanning two orders of magnitude. Hence there can be
up to 100 jobs of each higher priority task within the response time of the lower priority task
under analysis. The authors also present two methods based on analytical upper bounds based
on Hoeffding’s inequality and Bernstein’s inequality. These methods offer further substantial
improvements in runtime (two orders of magnitude faster than the precise multinomial-based
approach), but trade off some precision in the results.

Later in 2018, Chen et al. [37] studied the problem of determining the expected deadline miss
rate for tasks under fixed priority preemptive scheduling. The task model used assumes that
each task has a normal execution time and a longer abnormal execution time that occurs when
dealing with fault conditions. As the faults are assumed to be independent, the execution time
distribution for each task is i.i.d. Further, the probabilities for the different execution times
reflect the probability of fault occurrence. The authors make the realistic assumption that job
execution continues even if a deadline is missed. (By contrast, some other works assume that jobs
are aborted on reaching their deadline). The authors show that this difference in behaviour can
have a substantial effect in increasing the expected deadline miss rate, since the overrun of a
job affects the probability of the next job meeting its deadline. They derive an upper bound on
the expected deadline miss rate. This is done by considering the probability that a task has j
consecutive deadline misses within the same busy period, for all values of j up to some limit. The
method leverages the authors’ prior work [36, 147] to determine the probability of j consecutive
deadline misses. Using the convolution-based approach [147] results in bounds that are tighter
with respect to the simulation results, compared to using the analytical bound [36]. The trade-off
is however a significantly greater runtime.

10.3 Summary and Perspectives
Issues of tractability were once considered a substantial roadblock to the use of probabilistic
schedulability analysis on practical systems. This issue has been addressed, first by methods
based on re-sampling [109] that can reduce the amount of computation required to perform

R. I. Davis and L. Cucu-Grosjean 04:45

convolution (the basic operation used repeatedly in many probabilistic schedulability analyses)
while trading off additional pessimism in the results. More recently, analytical approaches have
been developed that have a much shorter runtime, but still trade off pessimism in the results [36].
Finally, the work of von der Bruggen et al. [147] in 2018, provides an approach which promises an
efficient method of computing deadline miss probabilities for large task sets without a significant
trade-off in precision.

11 Conclusions

In this survey, we reviewed research into schedulability analysis for probabilistic real-time systems.
We covered the main subject areas including probabilistic response time analysis, probabilistic
analysis assuming execution time servers, real-time queuing theory, probabilities emanating
from fault models, statistical analysis of the response times, and probabilistic analysis of mixed
criticality systems; as well as reviewing supporting mechanisms and analyses that address issues
of intractability.

We now conclude by identifying open issues, key challenges and possible directions for future
research. We present these as a series of questions and statements.

How to determine the (worst-case) execution time distribution for a task? This is the subject
of probabilistic timing analysis, see the companion survey [52] for a detailed discussion. We
note that in some cases the variation of the execution times over time may be such that using a
single valid distribution may be too pessimistic (e.g. when the system exhibits different modes
of behaviour).
How to handle issues relating to dependences between the execution times of jobs of (i) the
same task, and (ii) jobs of different tasks? The impact of these dependences may vary based
on how strong they are. Appropriate statistical studies are needed to investigate the types of
dependences and their impact on probabilistic schedulability analysis. Analyses are needed
that can address dependencies.
How to reconcile requirements on the maximum length of black-out periods (number of
consecutive missed deadlines) with a probabilistic treatment of deadline failures? This problem
relates to dependences between response times that may occur due to dependences between
the execution times of jobs of the task considered, and due to dependences in the amount of
interference from other tasks.
How to provide probabilistic schedulability analysis based on probabilistic Worst-Case Execu-
tion Time (pWCET) distributions when there are dependences between execution times of
consecutive jobs? This is particularly problematic in the case of pWCET distributions derived
via MBPTA techniques (see the discussion in Section 2.3).
How to provide appropriate solutions for multiprocessor schedulability analysis? While there
is a wealth of research into conventional schedulability analysis for multiprocessor systems,
research into probabilistic schedulability analysis has, with only a few exceptions, focussed on
uniprocessor systems.
How to adapt probabilistic models, using the richer description given by pWCET distributions,
in the context of Mixed Criticality Systems. Although expanding rapidly (see Figure 1), work
in this area is still in its infancy.
How to adapt the current statistical approaches such as Extreme Value Theory in the context
of response time analysis? The use of EVT has shown some promise in this area, but has not
been explored in detail.

LITES

04:46 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

How to ensure that probabilistic schedulability analysis methods are viable for use in practical
systems? Issues here include validation of the methods, and ensuring that they can be applied
to problems of a practical size.

Since the initial work in the late 1980s and 1990s, significant progress has been made in the
development of probabilistic schedulability analysis techniques. However, there are still important
unanswered questions and open issues to be resolved, as well as a number of interesting areas
for future research that are only beginning to be explored. We end this survey with a brief
discussion of an important direction for future real-time systems research which probabilistic
analysis techniques may be able contribute to.

There is a continuing trend in industry sectors including avionics, automotive electronics,
consumer electronics, and robotics away from development and deployment on single-core processors
towards using significantly more powerful and complex Common-Off-The-Shelf (COTS) multi-core
and many-core hardware platforms. This trend is driven by requirements on size, weight and power
consumption, increasing cost pressures and the demand for more complex and capable functionality
delivered through software. The use of COTS multi-core hardware poses significant challenges
in terms of verifying timing behaviour and ensuring that real-time constraints are met. These
challenges stem from the complexity of the architecture and the way in which hardware resources
such as the interconnect and the memory hierarchy are shared between different processing
cores. Some researchers are seeking to address these problems through approaches based on
partitioning and separation (e.g. single-core equivalence [98]), while others aim for solutions based
on considering the explicit interference on each hardware resource from co-running programs and
how this demand can be served by the available resource supply [12, 46]. There is the potential
for probabilistic schedulability analysis and probabilistic timing analysis techniques (reviewed in a
companion survey [52]) to play a role in the timing verification of such complex real-time systems.

Work on probabilistic timing analysis and probabilistic schedulability analysis for multi-core
and many-core systems is in its infancy with opportunities for significant advances addressing this
important research challenge.

Acknowledgements. The research that went into writing this survey was funded, in part, by
the Inria International Chair program and the ESPRC grant MCCps (EP/P003664/1). EPSRC
Research Data Management: No new primary data was created during this study.

References
1 Y. Abdeddaim and D. Maxim. Probabilistic

Schedulability Analysis for Fixed Priority Mixed
Criticality Real-Time Systems. In Proceedings of
the Conference on Design, Automation and Test
in Europe (DATE), 2017.

2 L. Abeni and G. Buttazzo. Integrating mul-
timedia applications in hard real-time systems.
In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS), pages 4–13, December 1998.
doi:10.1109/REAL.1998.739726.

3 L. Abeni and G. Buttazzo. QoS guarantee us-
ing probabilistic deadlines. In Proceedings of
the Euromicro Conference on Real-Time Systems
(ECRTS), pages 242–249, 1999. doi:10.1109/
EMRTS.1999.777471.

4 L. Abeni and G. Buttazzo. Stochastic analysis of
a reservation based system. In Proceedings 15th
International Parallel and Distributed Processing

Symposium. IPDPS 2001, pages 946–952, April
2001. doi:10.1109/IPDPS.2001.925049.

5 L. Abeni, D. Fontanelli, L. Palopoli, and B. Vil-
lalba Frías. A Markovian model for the compu-
tation time of real-time applications. In Proceed-
ings of IEEE International Instrumentation and
Measurement Technology Conference (I2MTC),
pages 1–6, May 2017. doi:10.1109/I2MTC.2017.
7969878.

6 L. Abeni, N. Manica, and L. Palopoli. Efficient
and Robust Probabilistic Guarantees for Real-
time Tasks. J. Syst. Softw., 85(5):1147–1156,
May 2012. doi:10.1016/j.jss.2011.12.042.

7 Z. Alabedin, H. Hammadeh, S. Quinton, and
R. Ernst. Extending typical worst-case analysis
using response-time dependencies to bound dead-
line misses. In Proceedings of the IEEE & ACM
International Conference on Embedded Software

http://dx.doi.org/10.1109/REAL.1998.739726
http://dx.doi.org/10.1109/EMRTS.1999.777471
http://dx.doi.org/10.1109/EMRTS.1999.777471
http://dx.doi.org/10.1109/IPDPS.2001.925049
http://dx.doi.org/10.1109/I2MTC.2017.7969878
http://dx.doi.org/10.1109/I2MTC.2017.7969878
http://dx.doi.org/10.1016/j.jss.2011.12.042

R. I. Davis and L. Cucu-Grosjean 04:47

(EMSOFT), pages 10:1–10:10, 2014. doi:10.
1145/2656045.2656059.

8 B. Alahmad and S. Gopalakrishnan. A Risk-
Constrained Markov Decision Process Approach
to Scheduling Mixed-Criticality Job Sets. In
Proceedings of Workshop on Mixed Criticality
(WMC), 2016.

9 B. Alahmad and S. Gopalakrishnan. Risk-aware
scheduling of dual criticality job systems using de-
mand distributions. Leibniz Transactions on Em-
bedded Systems. In Leibniz Transactions on Em-
bedded Systems (LITES), 2016.

10 S. Altmeyer, L. Cucu-Grosjean, and R. I. Davis.
Static probabilistic timing analysis for real-
time systems using random replacement caches.
Springer Real-Time Systems, 51(1):77–123, 2015.
doi:10.1007/s11241-014-9218-4.

11 S. Altmeyer and R. I. Davis. On the Correctness,
Optimality and Precision of Static Probabilistic
Timing Analysis. In Proceedings of the Confer-
ence on Design, Automation and Test in Europe
(DATE), pages 26:1–26:6, 2014. URL: http://dl.
acm.org/citation.cfm?id=2616606.2616638.

12 S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza,
V. Nelis, and J. Reineke. A Generic and Compos-
itional Framework for Multicore Response Time
Analysis. In Proceedings of the International
Conference on Real-Time Networks and Systems
(RTNS), pages 129–138, 2015. doi:10.1145/
2834848.2834862.

13 A. Atlas and A. Bestavros. Statistical rate
monotonic scheduling. In Real-Time Systems
Symposium, 1998. Proceedings., The 19th IEEE,
pages 123–132, December 1998. doi:10.1109/
REAL.1998.739737.

14 N. Audsley, A. Burns, M. Richardson, K. Tindell,
and A. J. Wellings. Applying new scheduling
theory to static priority pre-emptive schedul-
ing. Software Engineering Journal, 8(5):284–292,
1993.

15 N.C. Audsley. On priority assignment in fixed pri-
ority scheduling. Information Processing Letters,
79(1):39–44, 2001. doi:10.1016/S0020-0190(00)
00165-4.

16 P. Axer and R. Ernst. Stochastic response-
time guarantee for non-preemptive fixed-priority
scheduling under errors. In Proceedings of the
Design Automation Conference (DAC), pages 1–
7, May 2013. doi:10.1145/2463209.2488946.

17 P. Axer, M. Sebastian, and R. Ernst. Probab-
ilistic response time bound for CAN messages
with arbitrary deadlines. In Proceedings of the
Conference on Design, Automation and Test in
Europe (DATE), pages 1114–1117, March 2012.
doi:10.1109/DATE.2012.6176662.

18 H. Aysan, R. Dobrin, S. Punnekkat, and R. Jo-
hansson. Probabilistic Schedulability Guaran-
tees for Dependable Real-Time Systems under
Error Bursts. In Proceedings of IEEE Interna-
tional Conference on Trust, Security and Privacy
in Computing and Communications, pages 1154–
1163, November 2011. doi:10.1109/TrustCom.
2011.157.

19 H. Aysan, R. Dobrin, S. Punnekkat, and
J. Proenza. Probabilistic scheduling guaran-
tees in distributed real-time systems under er-

ror bursts. In Proceedings of the IEEE Confer-
ence on Emerging Technologies Factory Automa-
tion (ETFA), pages 1–9, September 2012. doi:
10.1109/ETFA.2012.6489644.

20 D. Y. Barrer. Queuing with Impatient Custom-
ers and Ordered Service. Operations Research,
5(5):650–656, 1957. doi:10.1287/opre.5.5.650.

21 S. Baruah and A. Burns. Sustainable Schedul-
ing Analysis. In Proceedings of the IEEE Real-
Time Systems Symposium (RTSS), pages 159–
168, 2006. doi:10.1109/RTSS.2006.47.

22 S. K. Baruah, A. Burns, and R. I. Davis.
Response-time analysis for mixed criticality sys-
tems. In Proceedings of the IEEE Real-Time
Systems Symposium (RTSS), pages 34–43. IEEE,
2011.

23 S. Ben-Amor, D. Maxim, and L. Cucu-Grosjean.
Schedulability Analysis of Dependent Probabil-
istic Real-time Tasks. In Proceedings of the In-
ternational Conference on Real-Time Networks
and Systems (RTNS), pages 99–107. ACM, 2016.
doi:10.1145/2997465.2997499.

24 G. Bernat, A Burns, and A Liamosi. Weakly hard
real-time systems. IEEE Transactions on Com-
puters, 50(4):308–321, April 2001. doi:10.1109/
12.919277.

25 G. Bernat and R. Cayssials. Guaranteed on-
line weakly-hard real-time systems. In Proceed-
ings of the IEEE Real-Time Systems Symposium
(RTSS), pages 25–35, December 2001. doi:10.
1109/REAL.2001.990593.

26 I. Broster and A. Burns. 1st International Work-
shop on Probabilistic Analysis Techniques for
Real-Time and Embedded Systems (PARTES).
In Random Arrivals in Fixed Priority Analysis,
2004.

27 I. Broster and A. Burns. Work-in-Progress of the
IEEE Real-Time Systems Symposium. In Ap-
plying Random Arrival Models to Fixed Priority
Analysis, December 2004.

28 I. Broster, A. Burns, and G. Rodriguez-Navas.
Probabilistic analysis of CAN with faults. In Pro-
ceedings of the IEEE Real-Time Systems Sym-
posium (RTSS), pages 269–278, 2002. doi:10.
1109/REAL.2002.1181581.

29 I. Broster, A. Burns, and G. RodrÍguez-Navas.
Timing Analysis of Real-Time Communication
Under Electromagnetic Interference. Springer
Real-Time Systems, 30(1):55–81, 2005. doi:10.
1007/s11241-005-0504-z.

30 A. Burns, G. Bernat, and I. Broster. A Prob-
abilistic Framework for Schedulability Analysis,
pages 1–15. Springer Berlin Heidelberg, Ber-
lin, Heidelberg, 2003. doi:10.1007/978-3-540-
45212-6_1.

31 A. Burns and R. I. Davis. A Survey of Re-
search into Mixed Criticality Systems. ACM
Comput. Surv., 50(6):82:1–82:37, November 2017.
doi:10.1145/3131347.

32 A. Burns and S. Edgar. Predicting computa-
tion time for advanced processor architectures.
In Proceedings of the Euromicro Conference on
Real-Time Systems (ECRTS), pages 89–96, 2000.
doi:10.1109/EMRTS.2000.853996.

33 A. Burns, S. Punnekkat, L. Strigini, and D. R.
Wright. Probabilistic scheduling guarantees for

LITES

http://dx.doi.org/10.1145/2656045.2656059
http://dx.doi.org/10.1145/2656045.2656059
http://dx.doi.org/10.1007/s11241-014-9218-4
http://dl.acm.org/citation.cfm?id=2616606.2616638
http://dl.acm.org/citation.cfm?id=2616606.2616638
http://dx.doi.org/10.1145/2834848.2834862
http://dx.doi.org/10.1145/2834848.2834862
http://dx.doi.org/10.1109/REAL.1998.739737
http://dx.doi.org/10.1109/REAL.1998.739737
http://dx.doi.org/10.1016/S0020-0190(00)00165-4
http://dx.doi.org/10.1016/S0020-0190(00)00165-4
http://dx.doi.org/10.1145/2463209.2488946
http://dx.doi.org/10.1109/DATE.2012.6176662
http://dx.doi.org/10.1109/TrustCom.2011.157
http://dx.doi.org/10.1109/TrustCom.2011.157
http://dx.doi.org/10.1109/ETFA.2012.6489644
http://dx.doi.org/10.1109/ETFA.2012.6489644
http://dx.doi.org/10.1287/opre.5.5.650
http://dx.doi.org/10.1109/RTSS.2006.47
http://dx.doi.org/10.1145/2997465.2997499
http://dx.doi.org/10.1109/12.919277
http://dx.doi.org/10.1109/12.919277
http://dx.doi.org/10.1109/REAL.2001.990593
http://dx.doi.org/10.1109/REAL.2001.990593
http://dx.doi.org/10.1109/REAL.2002.1181581
http://dx.doi.org/10.1109/REAL.2002.1181581
http://dx.doi.org/10.1007/s11241-005-0504-z
http://dx.doi.org/10.1007/s11241-005-0504-z
http://dx.doi.org/10.1007/978-3-540-45212-6_1
http://dx.doi.org/10.1007/978-3-540-45212-6_1
http://dx.doi.org/10.1145/3131347
http://dx.doi.org/10.1109/EMRTS.2000.853996

04:48 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

fault-tolerant real-time systems. In Depend-
able Computing for Critical Applications 7, 1999,
pages 361–378, November 1999. doi:10.1109/
DCFTS.1999.814306.

34 L. Carnevali, A. Melani, L. Santinelli, and
G. Lipari. Probabilistic Deadline Miss Analysis
of Real-Time Systems Using Regenerative Tran-
sient Analysis. In Proceedings of the Interna-
tional Conference on Real-Time Networks and
Systems (RTNS), pages 299:299–299:308, 2014.
doi:10.1145/2659787.2659823.

35 F. J. Cazorla, E. Quiñones, T. Vardanega,
L. Cucu, B. Triquet, G. Bernat, E. Berger,
J. Abella, F. Wartel, M. Houston, L. Santinelli,
L. Kosmidis, C. Lo, and D. Maxim. PROARTIS:
Probabilistically Analyzable Real-Time Systems.
ACM Transactions on Embedded Computing Sys-
tems, 12(2s):94:1–94:26, May 2013. doi:10.1145/
2465787.2465796.

36 K. H. Chen and J. J. Chen. Probabilistic
schedulability tests for uniprocessor fixed-priority
scheduling under soft errors. In Proceedings of
the IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 1–8, June 2017.
doi:10.1109/SIES.2017.7993392.

37 Kuan-Hsun Chen, Georg von der Bruggen, and
Jian-Jia Chen. Analysis of Deadline Miss Rates
for Uniprocessor Fixed-Priority Scheduling. In
Proceedings of the IEEE International Con-
ference on Embedded and Real-Time Comput-
ing Systems and Applications (RTCSA), August
2018.

38 H. Chetto, M. Silly, and T. Bouchentouf. Dy-
namic Scheduling of Real-time Tasks Under Pre-
cedence Constraints. Springer Real-Time Sys-
tems, 2(3):181–194, September 1990. doi:10.
1007/BF00365326.

39 S. Coles. An Introduction to Statistical Model-
ing of Extreme Values. Springer, 2001. doi:
10.1007/978-1-4471-3675-0.

40 L. Cucu. Preliminary results for introducing de-
pendent random variables in stochastic feasibility
analysis on CAN. In Proceedings of IEEE Inter-
national Workshop on Factory Communication
Systems (WFCS), pages 271–274, Dresden, Ger-
many, May 2008. IEEE. doi:10.1109/WFCS.2008.
4638759.

41 L. Cucu and E. Tovar. A Framework for the
Response Time Analysis of Fixed-priority Tasks
with Stochastic Inter-arrival Times. SIGBED
Rev., 3(1):7–12, January 2006. doi:10.1145/
1279711.1279714.

42 L. Cucu-Grosjean. Independence a misunder-
stood property of and for probabilistic real-time
systems. In Real-Time Systems: the past, the
present and the future, pages 29–37, 2013.

43 L. Cucu-Grosjean. Probabilistic real-time
scheduling. In ETR 2013-Ecole d’été temps réel,
2013.

44 L. Cucu-Grosjean, L. Santinelli, M. Houston,
C. Lo, T. Vardanega, L. Kosmidis, J. Abella,
E. Mezzetti, E. Quiñones, and F. J. Cazorla.
Measurement-Based Probabilistic Timing Ana-
lysis for Multi-path Programs. In Proceedings

of the Euromicro Conference on Real-Time Sys-
tems (ECRTS), pages 91–101, July 2012. doi:
10.1109/ECRTS.2012.31.

45 R. I. Davis. A review of fixed priority and EDF
scheduling for hard real-time uniprocessor sys-
tems. ACM SIGBED Review, 11(1):8–19, 2014.

46 R. I. Davis, S. Altmeyer, L. S. Indrusiak,
C. Maiza, V. Nelis, and J. Reineke. An extens-
ible framework for multicore response time ana-
lysis. Springer Real-Time Systems, 54(3):607–
661, July 2018. doi:10.1007/s11241-017-9285-
4.

47 R. I. Davis and A. Burns. Robust Priority As-
signment for Fixed Priority Real-Time Systems.
In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS), pages 3–14, December 2007.
doi:10.1109/RTSS.2007.11.

48 R. I. Davis and A. Burns. Robust priority assign-
ment for messages on Controller Area Network
(CAN). Springer Real-Time Systems, 41(2):152–
180, 2009. doi:10.1007/s11241-008-9065-2.

49 R. I Davis and A. Burns. A survey of hard real-
time scheduling for multiprocessor systems. ACM
Computing Surveys (CSUR), 43(4):35, 2011.

50 R. I Davis, A. Burns, R. J. Bril, and J. J. Lukkien.
Controller Area Network (CAN) schedulability
analysis: Refuted, revisited and revised. Springer
Real-Time Systems, 35(3):239–272, 2007.

51 R. I. Davis, A. Burns, R. J. Bril, and J. J.
Lukkien. Controller Area Network (CAN)
schedulability analysis: Refuted, revisited and re-
vised. Real-Time Systems, 35(3):239–272, 2007.
doi:10.1007/s11241-007-9012-7.

52 R. I. Davis and L. Cucu-Grosjean. A Survey
of Probabilistic Timing Analysis Techniques for
Hard Real-Time Systems. Leibniz Transactions
on Embedded Systems (LITES), 6(1):03:1–03:60,
May 2019. doi:10.4230/LITES-v006-i001-a003.

53 R. I. Davis, L. Santinelli, S. Altmeyer, C. Maiza,
and L. Cucu-Grosjean. Analysis of Probabilistic
Cache Related Pre-emption Delays. In Proceed-
ings of the Euromicro Conference on Real-Time
Systems (ECRTS), pages 168–179, July 2013.
doi:10.1109/ECRTS.2013.27.

54 J. L. Diaz, D. F. Garcia, K. Kim, C-G. Lee, L. Lo
Bello, J. M. Lopez, S. L. Min, and O. Mirabella.
Stochastic analysis of periodic real-time systems.
In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS), pages 289–300, 2002. doi:
10.1109/REAL.2002.1181583.

55 J. L. Diaz, J. M. Lopez, M. Garcia, A. M. Cam-
pos, Kanghee Kim, and L. L. Bello. Pessim-
ism in the stochastic analysis of real-time sys-
tems: concept and applications. In Proceed-
ings of the IEEE Real-Time Systems Symposium
(RTSS), pages 197–207, December 2004. doi:
10.1109/REAL.2004.41.

56 B. Doytchinov, J. Lehoczky, and S. Shreve.
Real-time queues in heavy traffic with earliest-
deadline-first queue discipline. The Annals of
Applied Probability, 11(2):332–378, 2001. doi:
10.1214/aoap/1015345295.

57 S. Draskovic, P. Huang, and L. Thiele. On
the Safety of Mixed-Criticality Scheduling. In
Proceedings of Workshop on Mixed Criticality
(WMC), 2016.

http://dx.doi.org/10.1109/DCFTS.1999.814306
http://dx.doi.org/10.1109/DCFTS.1999.814306
http://dx.doi.org/10.1145/2659787.2659823
http://dx.doi.org/10.1145/2465787.2465796
http://dx.doi.org/10.1145/2465787.2465796
http://dx.doi.org/10.1109/SIES.2017.7993392
http://dx.doi.org/10.1007/BF00365326
http://dx.doi.org/10.1007/BF00365326
http://dx.doi.org/10.1007/978-1-4471-3675-0
http://dx.doi.org/10.1007/978-1-4471-3675-0
http://dx.doi.org/10.1109/WFCS.2008.4638759
http://dx.doi.org/10.1109/WFCS.2008.4638759
http://dx.doi.org/10.1145/1279711.1279714
http://dx.doi.org/10.1145/1279711.1279714
http://dx.doi.org/10.1109/ECRTS.2012.31
http://dx.doi.org/10.1109/ECRTS.2012.31
http://dx.doi.org/10.1007/s11241-017-9285-4
http://dx.doi.org/10.1007/s11241-017-9285-4
http://dx.doi.org/10.1109/RTSS.2007.11
http://dx.doi.org/10.1007/s11241-008-9065-2
http://dx.doi.org/10.1007/s11241-007-9012-7
http://dx.doi.org/10.4230/LITES-v006-i001-a003
http://dx.doi.org/10.1109/ECRTS.2013.27
http://dx.doi.org/10.1109/REAL.2002.1181583
http://dx.doi.org/10.1109/REAL.2002.1181583
http://dx.doi.org/10.1109/REAL.2004.41
http://dx.doi.org/10.1109/REAL.2004.41
http://dx.doi.org/10.1214/aoap/1015345295
http://dx.doi.org/10.1214/aoap/1015345295

R. I. Davis and L. Cucu-Grosjean 04:49

58 S. Edgar and A. Burns. Statistical analysis of
WCET for scheduling. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS),
pages 215–224, December 2001. doi:10.1109/
REAL.2001.990614.

59 B. Frias, L. Palopoli, L. Abeni, and D. Fontan-
elli. Probabilistic Real-Time Guarantees: There
is Life Beyond the i.i.d. Assumption. In Pro-
ceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS),
April 2017.

60 M. K. Gardner and J. W. S. Liu. Analyz-
ing Stochastic Fixed-Priority Real-Time Systems,
pages 44–58. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1999. doi:10.1007/3-540-49059-0_
4.

61 S. Gopalakrishnan. Sharp utilization thresholds
for some real-time scheduling problems. CoRR,
abs/0912.3852, 2009. URL: http://arxiv.org/
abs/0912.3852.

62 D. Griffin, I. Bate, B. Lesage, and F. Sob-
oczenski. Evaluating Mixed Criticality Schedul-
ing Algorithms with Realistic Workloads. In
Proceedings of Workshop on Mixed Criticality
(WMC), 2015.

63 H. Christian Gromoll and Łukasz Kruk. Heavy
traffic limit for a processor sharing queue with
soft deadlines. The Annals of Applied Probabil-
ity, 17(3):1049–1101, June 2007. doi:10.1214/
105051607000000014.

64 Z. Guo, L. Santinalli, and K. Yang. EDF
Schedulability Analysis on Mixed-Criticality Sys-
tems with Permitted Failure Probability. In Pro-
ceedings of the IEEE International Conference
on Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2015.

65 C. J. Hamann, J. Loser, L. Reuther, S. Schon-
berg, J. Wolter, and H. Hartig. Quality-assuring
scheduling-using stochastic behavior to improve
resource utilization. In Proceedings of the IEEE
Real-Time Systems Symposium (RTSS), pages
119–128, December 2001. doi:10.1109/REAL.
2001.990603.

66 J. Hansen, S. A. Hissam, and G. A. Moreno.
Statistical-based WCET estimation and valida-
tion . In Proceedings of the Workshop on Worst-
Case Execution Time Analysis (WCET), volume
252, 2009.

67 J. P. Hansen, J. P. Lehoczky, H. Zhu, and
R. Rajkumar. Quantized EDF Scheduling in
a Stochastic Environment. In Proceedings of
the 16th International Parallel and Distributed
Processing Symposium, IPDPS ’02, pages 279–,
Washington, DC, USA, 2002. IEEE Computer So-
ciety. URL: http://dl.acm.org/citation.cfm?
id=645610.660905.

68 X. S. Hu, Tao Zhou, and E. H. M. Sha. Estim-
ating probabilistic timing performance for real-
time embedded systems. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems,
9(6):833–844, December 2001. doi:10.1109/92.
974897.

69 S. Hua, G. Qu, and S. S. Bhattacharyya. Explor-
ing the probabilistic design space of multimedia
systems. In in IEEE International Workshop on

Rapid System Prototyping, 2003, pages 233–240,
2003.

70 M. Ivers and R. Ernst. Probabilistic Network
Loads with Dependencies and the Effect on
Queue Sojourn Times, pages 280–296. Springer
Berlin Heidelberg, 2009. doi:10.1007/978-3-
642-10625-5_18.

71 M. Joseph and P. Pandya. Finding response times
in a real-time system. The Computer Journal,
29(5):390–395, 1986.

72 G. A. Kaczynski, L. Lo Bello, and T. Nolte. De-
riving exact stochastic response times of peri-
odic tasks in hybrid priority-driven soft real-time
systems. In Proceedings of the IEEE Confer-
ence on Emerging Technologies Factory Automa-
tion (ETFA), pages 101–110, September 2007.
doi:10.1109/EFTA.2007.4416759.

73 D. G. Kendall. Stochastic Processes Occurring
in the Theory of Queues and their Analysis by
the Method of the Imbedded Markov Chain. The
Annals of Mathematical Statistics, 24(3):338–354,
September 1953. doi:10.1214/aoms/1177728975.

74 D. A. Khan, L. Santinelli, and L. Cucu-Grosjean.
Modeling uncertainties in safety-critical real-time
systems: A probabilistic component-based ana-
lysis. In Proceedings of the IEEE Interna-
tional Symposium on Industrial Embedded Sys-
tems (SIES), pages 166–175, June 2012. doi:
10.1109/SIES.2012.6356582.

75 J. K. Kim and B. K. Kim. Probabil-
istic Schedulability Analysis of Harmonic Multi-
Task Systems with Dual-Modular Temporal
Redundancy. Springer Real-Time Systems,
26(2):199–222, March 2004. doi:10.1023/B:
TIME.0000016130.91111.75.

76 K. Kim, J. L. Diaz, L. Lo Bello, J. M. Lopez,
C-G. Lee, and S. L. Min. An Exact Stochastic
Analysis of Priority-Driven Periodic Real-Time
Systems and Its Approximations. IEEE Trans.
Comput., 54(11):1460–1466, November 2005. doi:
10.1109/TC.2005.174.

77 K. Kim, L. Lo Bello, S. L. Min, and O. Mirabella.
On Relaxing Task Isolation in Overrun Hand-
ling to Provide Probabilistic Guarantees to Soft
Real-Time Tasks with Varying Execution Times.
In Proceedings of the Euromicro Conference on
Real-Time Systems (ECRTS), pages 193–, Wash-
ington, DC, USA, 2002. IEEE Computer Soci-
ety. URL: http://dl.acm.org/citation.cfm?
id=787256.787354.

78 G. Koren and D. Shasha. Skip-Over: algorithms
and complexity for overloaded systems that allow
skips. In Proceedings of the IEEE Real-Time Sys-
tems Symposium (RTSS), pages 110–117, Decem-
ber 1995. doi:10.1109/REAL.1995.495201.

79 L. Kruk, J. Lehoczky, K. Ramanan, and
S. Shreve. Heavy traffic analysis for EDF queues
with reneging. The Annals of Applied Probability,
21(2):484–545, 2011. doi:10.1214/10-AAP681.

80 M. Kuttler, M. Roitzsch, C-J Hamann, and
Marcus Volp. Probabilistic Analysis of Low-
Criticality Execution. In Proceedings of Work-
shop on Mixed Criticality (WMC), 2017.

81 J. Lehoczky, L. Sha, and Y. Ding. The rate
monotonic scheduling algorithm: exact charac-
terization and average case behavior. In Pro-

LITES

http://dx.doi.org/10.1109/REAL.2001.990614
http://dx.doi.org/10.1109/REAL.2001.990614
http://dx.doi.org/10.1007/3-540-49059-0_4
http://dx.doi.org/10.1007/3-540-49059-0_4
http://arxiv.org/abs/0912.3852
http://arxiv.org/abs/0912.3852
http://dx.doi.org/10.1214/105051607000000014
http://dx.doi.org/10.1214/105051607000000014
http://dx.doi.org/10.1109/REAL.2001.990603
http://dx.doi.org/10.1109/REAL.2001.990603
http://dl.acm.org/citation.cfm?id=645610.660905
http://dl.acm.org/citation.cfm?id=645610.660905
http://dx.doi.org/10.1109/92.974897
http://dx.doi.org/10.1109/92.974897
http://dx.doi.org/10.1007/978-3-642-10625-5_18
http://dx.doi.org/10.1007/978-3-642-10625-5_18
http://dx.doi.org/10.1109/EFTA.2007.4416759
http://dx.doi.org/10.1214/aoms/1177728975
http://dx.doi.org/10.1109/SIES.2012.6356582
http://dx.doi.org/10.1109/SIES.2012.6356582
http://dx.doi.org/10.1023/B:TIME.0000016130.91111.75
http://dx.doi.org/10.1023/B:TIME.0000016130.91111.75
http://dx.doi.org/10.1109/TC.2005.174
http://dx.doi.org/10.1109/TC.2005.174
http://dl.acm.org/citation.cfm?id=787256.787354
http://dl.acm.org/citation.cfm?id=787256.787354
http://dx.doi.org/10.1109/REAL.1995.495201
http://dx.doi.org/10.1214/10-AAP681

04:50 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

ceedings of the IEEE Real-Time Systems Sym-
posium (RTSS), pages 166–171, December 1989.
doi:10.1109/REAL.1989.63567.

82 J. P. Lehoczky. Fixed priority scheduling of peri-
odic task sets with arbitrary deadlines. In Pro-
ceedings of the IEEE Real-Time Systems Sym-
posium (RTSS), pages 201–209, December 1990.
doi:10.1109/REAL.1990.128748.

83 J. P. Lehoczky. Real-time queueing theory.
In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS), pages 186–195, December
1996. doi:10.1109/REAL.1996.563715.

84 B. Lesage, D. Griffin, S. Altmeyer, L. Cucu-
Grosjean, and R. I. Davis. On the analysis of ran-
dom replacement caches using static probabilistic
timing methods for multi-path programs. Real-
Time Systems, December 2017. doi:10.1007/
s11241-017-9295-2.

85 B. Lesage, D. Griffin, S. Altmeyer, and R. I.
Davis. Static Probabilistic Timing Analysis for
Multi-path Programs. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS),
pages 361–372, December 2015. doi:10.1109/
RTSS.2015.41.

86 A. Leulseged and N. Nissanke. Probabilistic
Analysis of Multi-processor Scheduling of Tasks
with Uncertain Parameters. In Proceedings of
the IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Ap-
plications (RTCSA), pages 103–122, 2003. doi:
10.1007/978-3-540-24686-2_7.

87 G. Lima and I. Bate. Valid Application of EVT
in Timing Analysis by Randomising Execution
Time Measurements. In Proceedings of the IEEE
Real-Time and Embedded Technology and Applic-
ations Symposium (RTAS), April 2017.

88 G. Lima, D. Dias, and E. Barros. Extreme
Value Theory for Estimating Task Execution
Time Bounds: A Careful Look. In Proceedings
of the Euromicro Conference on Real-Time Sys-
tems (ECRTS), July 2016.

89 C. L. Liu and J. W. Layland. Scheduling Al-
gorithms for Multiprogramming in a Hard-Real-
Time Environment. J. ACM, 20(1):46–61, Janu-
ary 1973. doi:10.1145/321738.321743.

90 Jane W. S. W. Liu. Real-Time Systems. Prentice
Hall, 1st edition, 2000.

91 M. Liu, M. Behnam, and T. Nolte. An EVT-
based worst-case Response Time Analysis of com-
plex real-time systems. In Proceedings of the
IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 249–258, June
2013. doi:10.1109/SIES.2013.6601498.

92 R. Liu, A. F. Mills, and J. H. Anderson. In-
dependence Thresholds: Balancing Tractability
and Practicality in Soft Real-Time Stochastic
Analysis. In Proceedings of the IEEE Real-
Time Systems Symposium (RTSS), pages 314–
323, December 2014. doi:10.1109/RTSS.2014.
38.

93 J. M. López, J. L. Díaz, J. Entrialgo, and
D. García. Stochastic analysis of real-time sys-
tems under preemptive priority-driven schedul-
ing. Springer Real-Time Systems, 40(2):180–207,
2008. doi:10.1007/s11241-008-9053-6.

94 Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean. A
statistical response-time analysis of complex real-
time embedded systems by using timing traces.
In Proceedings of the IEEE International Sym-
posium on Industrial Embedded Systems (SIES),
pages 43–46, June 2011. doi:10.1109/SIES.2011.
5953676.

95 Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean.
A Statistical Response-Time Analysis of Real-
Time Embedded Systems. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS),
pages 351–362, December 2012. doi:10.1109/
RTSS.2012.85.

96 Y. Lu, T. Nolte, J. Kraft, and C. Norstrom.
Statistical-Based Response-Time Analysis of Sys-
tems with Execution Dependencies between
Tasks. In Proceedings of the IEEE International
Conference on Engineering of Complex Com-
puter Systems (ICECCS), pages 169–179, March
2010. doi:10.1109/ICECCS.2010.55.

97 Y. Lu, T. Nolte, J. Kraft, and C. Norström.
A Statistical Approach to Response-Time Ana-
lysis of Complex Embedded Real-Time Systems.
In Proceedings of the IEEE International Con-
ference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 153–
160, August 2010.

98 R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha,
and H. Yun. WCET(m) Estimation in Multi-core
Systems Using Single Core Equivalence. In Pro-
ceedings of the Euromicro Conference on Real-
Time Systems (ECRTS), pages 174–183, July
2015. doi:10.1109/ECRTS.2015.23.

99 N. Manica, L. Palopoli, and L. Abeni. Numeric-
ally efficient probabilistic guarantees for resource
reservations. In Proceedings of the IEEE Confer-
ence on Emerging Technologies Factory Automa-
tion (ETFA), pages 1–8, September 2012. doi:
10.1109/ETFA.2012.6489566.

100 S. Manolache, P. Eles, and Z. Peng. Memory and
Time-Efficient Schedulability Analysis of Task
Sets with Stochastic Execution Time. In Pro-
ceedings of the Euromicro Conference on Real-
Time Systems (ECRTS), pages 19–, Washing-
ton, DC, USA, 2001. IEEE Computer Soci-
ety. URL: http://dl.acm.org/citation.cfm?
id=871910.871936.

101 S. Manolache, P. Eles, and Z. Peng. Schedulabil-
ity Analysis of Applications with Stochastic Task
Execution Times. ACM Transactions on Embed-
ded Computing Systems, 3(4):706–735, November
2004. doi:10.1145/1027794.1027797.

102 S. Manolache, P. Eles, and Z. Peng. Task Map-
ping and Priority Assignment for Soft Real-time
Applications Under Deadline Miss Ratio Con-
straints. ACM Transactions on Embedded Com-
puting Systems, 7(2):19:1–19:35, January 2008.
doi:10.1145/1331331.1331343.

103 F. Markovic, J. Carlson, R. Dobrin, B. Lisper,
and A. Thekkilakattil. Probabilistic Response
Time Analysis for Fixed Preemption Point Se-
lection. In Proceedings of the IEEE Interna-
tional Symposium on Industrial Embedded Sys-
tems (SIES), pages 1–10, June 2018. doi:10.
1109/SIES.2018.8442099.

http://dx.doi.org/10.1109/REAL.1989.63567
http://dx.doi.org/10.1109/REAL.1990.128748
http://dx.doi.org/10.1109/REAL.1996.563715
http://dx.doi.org/10.1007/s11241-017-9295-2
http://dx.doi.org/10.1007/s11241-017-9295-2
http://dx.doi.org/10.1109/RTSS.2015.41
http://dx.doi.org/10.1109/RTSS.2015.41
http://dx.doi.org/10.1007/978-3-540-24686-2_7
http://dx.doi.org/10.1007/978-3-540-24686-2_7
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1109/SIES.2013.6601498
http://dx.doi.org/10.1109/RTSS.2014.38
http://dx.doi.org/10.1109/RTSS.2014.38
http://dx.doi.org/10.1007/s11241-008-9053-6
http://dx.doi.org/10.1109/SIES.2011.5953676
http://dx.doi.org/10.1109/SIES.2011.5953676
http://dx.doi.org/10.1109/RTSS.2012.85
http://dx.doi.org/10.1109/RTSS.2012.85
http://dx.doi.org/10.1109/ICECCS.2010.55
http://dx.doi.org/10.1109/ECRTS.2015.23
http://dx.doi.org/10.1109/ETFA.2012.6489566
http://dx.doi.org/10.1109/ETFA.2012.6489566
http://dl.acm.org/citation.cfm?id=871910.871936
http://dl.acm.org/citation.cfm?id=871910.871936
http://dx.doi.org/10.1145/1027794.1027797
http://dx.doi.org/10.1145/1331331.1331343
http://dx.doi.org/10.1109/SIES.2018.8442099
http://dx.doi.org/10.1109/SIES.2018.8442099

R. I. Davis and L. Cucu-Grosjean 04:51

104 D. Maxim and A. Bertout. Analysis and Sim-
ulation Tools for Probabilistic Real-Time Sys-
tems. In Proceedings of International Workshop
on Analysis Tools and Methodologies for Embed-
ded and Real-time Systems (WATERS), 2017.

105 D. Maxim, O. Buffet, L. Santinelli, L. Cucu-
Grosjean, and R. I. Davis. Optimal Priority As-
signment Algorithms for Probabilistic Real-Time
Systems. In Proceedings of the International
Conference on Real-Time Networks and Systems
(RTNS), pages 129–138, 2011.

106 D. Maxim and L. Cucu-Grosjean. Response Time
Analysis for Fixed-Priority Tasks with Multiple
Probabilistic Parameters. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS),
pages 224–235, December 2013. doi:10.1109/
RTSS.2013.30.

107 D. Maxim, R. I. Davis, L. Cucu-Grosjean, and
A. Easwaran. Probabilistic Analysis for Mixed
Criticality Scheduling with SMC and AMC. In
Proceedings of Workshop on Mixed Criticality
(WMC). York, 2016.

108 D. Maxim, R. I. Davis, L. Cucu-Grosjean, and
A. Easwaran. Probabilistic Analysis for Mixed
Criticality Systems using Fixed Priority Preempt-
ive Scheduling. In Proceedings of the Interna-
tional Conference on Real-Time Networks and
Systems (RTNS), 2017.

109 D. Maxim, M. Houston, L. Santinelli, G. Bernat,
R. I. Davis, and L. Cucu-Grosjean. Re-sampling
for Statistical Timing Analysis of Real-time Sys-
tems. In Proceedings of the International Con-
ference on Real-Time Networks and Systems
(RTNS), pages 111–120, 2012. doi:10.1145/
2392987.2393001.

110 D. Maxim, L. Santinelli, and L. Cucu-Grosjean.
Improved sampling for statistical timing ana-
lysis of real-time systems. In the 4th Junior
Researcher Workshop on Real-Time Computing,
Toulouse, France, November 2010. URL: https:
//hal.inria.fr/inria-00544651.

111 D. Maxim, F. Soboczenski, I. Bate, and E. To-
var. Study of the Reliability of Statistical Timing
Analysis for Real-time Systems. In Proceedings of
the International Conference on Real-Time Net-
works and Systems (RTNS), pages 55–64, 2015.
doi:10.1145/2834848.2834878.

112 A. F. Mills and J. H. Anderson. A Stochastic
Framework for Multiprocessor Soft Real-Time
Scheduling. In Proceedings of the IEEE Real-
Time and Embedded Technology and Applications
Symposium (RTAS), pages 311–320, April 2010.
doi:10.1109/RTAS.2010.33.

113 A. F. Mills and J. H. Anderson. A Multiprocessor
Server-Based Scheduler for Soft Real-Time Tasks
with Stochastic Execution Demand. In Proceed-
ings of the IEEE International Conference on
Embedded and Real-Time Computing Systems
and Applications (RTCSA), volume 1, pages 207–
217, August 2011. doi:10.1109/RTCSA.2011.30.

114 S. Milutinovic, J. Abella, D. Hardy, E. Quiñones,
I. Puaut, and F. J. Cazorla. Speeding up Static
Probabilistic Timing Analysis. In Proceedings of
the International Conference on the Architecture
of Computing Systems (ARCS), pages 236–247,

March 2015. doi:10.1007/978-3-319-16086-3_
19.

115 N. Tchidjo Moyo, E. Nicollet, F. Lafaye, and
C. Moy. On Schedulability Analysis of Non-cyclic
Generalized Multiframe Tasks. In Proceedings
of the Euromicro Conference on Real-Time Sys-
tems (ECRTS), pages 271–278, July 2010. doi:
10.1109/ECRTS.2010.24.

116 N. Navet, L. Cucu, and R. Schott. Probab-
ilistic Estimation of Response Times Through
Large Deviations. In Work-in Progress of
the 28th IEEE Real-Time Systems Symposium
(RTSS’2007 WiP), Tucson, United States,
December 2007. URL: https://hal.inria.fr/
inria-00191163.

117 N. Navet, Y.-Q. Song, and F. Simonot. Worst-
case Deadline Failure Probability in Real-time
Applications Distributed over Controller Area
Network. J. Syst. Archit., 46(7):607–617, April
2000. doi:10.1016/S1383-7621(99)00016-8.

118 N. Nissanke, A. Leulseged, and S. Chillara.
Probabilistic performance analysis in multipro-
cessor scheduling. Computing Control Engineer-
ing Journal, 13(4):171–179, August 2002. doi:
10.1049/cce:20020403.

119 T. Nolte, H. Hansson, and C. Norstrom. Probab-
ilistic worst-case response-time analysis for the
controller area network. In Proceedings of the
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 200–207,
May 2003. doi:10.1109/RTTAS.2003.1203052.

120 L. Palopoli, L. Abeni, and D. Fontanelli. A
tool for the optimal design of soft real–time sys-
tems. In Proceedings of International Workshop
on Analysis Tools and Methodologies for Embed-
ded and Real-time Systems (WATERS), pages
31–36, 2014.

121 L. Palopoli, D. Fontanelli, L. Abeni, and B. V.
Frías. An Analytical Solution for Probabilistic
Guarantees of Reservation Based Soft Real-Time
Systems. IEEE Transactions on Parallel and
Distributed Systems, 27(3):640–653, March 2016.
doi:10.1109/TPDS.2015.2416732.

122 L. Palopoli, D. Fontanelli, N. Manica, and
L. Abeni. An Analytical Bound for Probabilistic
Deadlines. In Proceedings of the Euromicro Con-
ference on Real-Time Systems (ECRTS), pages
179–188, July 2012. doi:10.1109/ECRTS.2012.
19.

123 S. S. Panwar, D. Towsley, and J. K. Wolf. Op-
timal Scheduling Policies for a Class of Queues
with Customer Deadlines to the Beginning of
Service. J. ACM, 35(4):832–844, October 1988.
doi:10.1145/48014.48019.

124 S. Punnekkat, R. I. Davis, and A. Burns. Sens-
itivity analysis of real-time task sets. In Annual
Asian Computing Science Conference, pages 72–
82. Springer Berlin Heidelberg, 1997.

125 S. Quinton, R. Ernst, D. Bertrand, and
P. Meumeu Yomsi. Challenges and new trends in
probabilistic timing analysis. In Proceedings of
the Conference on Design, Automation and Test
in Europe (DATE), pages 810–815, March 2012.
doi:10.1109/DATE.2012.6176605.

126 P. Ramanathan and M. Hamdaoui. A Dynamic
Priority Assignment Technique for Streams with

LITES

http://dx.doi.org/10.1109/RTSS.2013.30
http://dx.doi.org/10.1109/RTSS.2013.30
http://dx.doi.org/10.1145/2392987.2393001
http://dx.doi.org/10.1145/2392987.2393001
https://hal.inria.fr/inria-00544651
https://hal.inria.fr/inria-00544651
http://dx.doi.org/10.1145/2834848.2834878
http://dx.doi.org/10.1109/RTAS.2010.33
http://dx.doi.org/10.1109/RTCSA.2011.30
http://dx.doi.org/10.1007/978-3-319-16086-3_19
http://dx.doi.org/10.1007/978-3-319-16086-3_19
http://dx.doi.org/10.1109/ECRTS.2010.24
http://dx.doi.org/10.1109/ECRTS.2010.24
https://hal.inria.fr/inria-00191163
https://hal.inria.fr/inria-00191163
http://dx.doi.org/10.1016/S1383-7621(99)00016-8
http://dx.doi.org/10.1049/cce:20020403
http://dx.doi.org/10.1049/cce:20020403
http://dx.doi.org/10.1109/RTTAS.2003.1203052
http://dx.doi.org/10.1109/TPDS.2015.2416732
http://dx.doi.org/10.1109/ECRTS.2012.19
http://dx.doi.org/10.1109/ECRTS.2012.19
http://dx.doi.org/10.1145/48014.48019
http://dx.doi.org/10.1109/DATE.2012.6176605

04:52 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

(M, K)-Firm Deadlines. IEEE Transactions on
Computers, 44(12):1443–1451, December 1995.
doi:10.1109/12.477249.

127 K. S. Refaat and P. E. Hladik. Efficient
Stochastic Analysis of Real-Time Systems via
Random Sampling. In Proceedings of the
Euromicro Conference on Real-Time Systems
(ECRTS), pages 175–183, July 2010. doi:10.
1109/ECRTS.2010.29.

128 J. Ren, R. Bi, X. Su, Q. Liu, G. Wu, and G. Tan.
Workload-aware harmonic partitioned scheduling
for probabilistic real-time systems. In Proceed-
ings of the Conference on Design, Automation
and Test in Europe (DATE), pages 213–218,
March 2018. doi:10.23919/DATE.2018.8342005.

129 L. Santinelli. Probabilistic Component-based
Analysis for Networks: Invited Paper. SIGBED
Rev., 13(3):65–72, August 2016. doi:10.1145/
2983185.2983197.

130 L. Santinelli and L. Cucu-Grosjean. Toward
Probabilistic Real-time Calculus. SIGBED Rev.,
8(1):54–61, March 2011. doi:10.1145/1967021.
1967028.

131 L. Santinelli and L. Cucu-Grosjean. A Probab-
ilistic Calculus for Probabilistic Real-Time Sys-
tems. ACM Transactions on Embedded Comput-
ing Systems, 14(3):52:1–52:30, April 2015. doi:
10.1145/2717113.

132 L. Santinelli and L. George. Probabilities and
Mixed-Criticalities: the Probabilistic C-Space. In
Proceedings of Workshop on Mixed Criticality
(WMC), 2015.

133 L. Santinelli, F. Guet, and J. Morio. Revising
Measurement-Based Probabilistic Timing Ana-
lysis. In Proceedings of the IEEE Real-Time
and Embedded Technology and Applications Sym-
posium (RTAS), April 2017.

134 L. Santinelli, Z. Guo, and L. George. Fault-
aware sensitivity analysis for probabilistic real-
time systems. In Proceedings of IEEE Interna-
tional Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT),
pages 69–74, September 2016. doi:10.1109/DFT.
2016.7684072.

135 L. Santinelli, J. Morio, G. Dufour, and D. Jac-
quemart. On the Sustainability of the Extreme
Value Theory for WCET Estimation. In Pro-
ceedings of the Workshop on Worst-Case Execu-
tion Time Analysis (WCET), pages 21–30, 2014.
doi:10.4230/OASIcs.WCET.2014.21.

136 L. Santinelli, P. M. Yomsi, D. Maxim, and
L. Cucu-Grosjean. A component-based frame-
work for modeling and analyzing probabilistic
real-time systems. In Proceedings of the IEEE
Conference on Emerging Technologies Factory
Automation (ETFA), pages 1–8, September 2011.
doi:10.1109/ETFA.2011.6059013.

137 L. Sha, T. Abdelzaher, K-E. Årzén, A. Cervin,
T. Baker, A. Burns, G. Buttazzo, M. Caccamo,
J. Lehoczky, and A. K. Mok. Real time schedul-
ing theory: A historical perspective. RTSJ, 28(2-
3):101–155, 2004.

138 M. Short and J. Proenza. Towards Efficient Prob-
abilistic Scheduling Guarantees for Real-Time
Systems Subject to Random Errors and Ran-
dom Bursts of Errors. In Proceedings of the

Euromicro Conference on Real-Time Systems
(ECRTS), pages 259–268, July 2013. doi:10.
1109/ECRTS.2013.35.

139 B. Sprunt, L. Sha, and J. Lehoczky. Aperi-
odic task scheduling for Hard-Real-Time systems.
Springer Real-Time Systems, 1(1):27–60, 1989.
doi:10.1007/BF02341920.

140 B. Tanasa, U. D. Bordoloi, P. Eles, and Z. Peng.
Probabilistic Timing Analysis for the Dynamic
Segment of FlexRay. In Proceedings of the
Euromicro Conference on Real-Time Systems
(ECRTS), pages 135–144, July 2013. doi:10.
1109/ECRTS.2013.24.

141 B. Tanasa, U. D. Bordoloi, P. Eles, and Z. Peng.
Probabilistic Response Time and Joint Ana-
lysis of Periodic Tasks. In Proceedings of the
Euromicro Conference on Real-Time Systems
(ECRTS), pages 235–246, July 2015. doi:10.
1109/ECRTS.2015.28.

142 L. Thiele, S. Chakraborty, and M. Naedele. Real-
time calculus for scheduling hard real-time sys-
tems. In IEEE International Symposium on Cir-
cuits and Systems. Emerging Technologies for the
21st Century, volume 4, pages 101–104 vol.4, May
2000. doi:10.1109/ISCAS.2000.858698.

143 T. S. Tia, Z. Deng, M. Shankar, M. Storch,
J. Sun, L. C. Wu, and J. W. S. Liu. Probabilistic
performance guarantee for real-time tasks with
varying computation times. In Proceedings of the
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 164–173,
May 1995. doi:10.1109/RTTAS.1995.516213.

144 S. R. S. Varadhan. Large deviations. The An-
nals of Probability, 36(2):397–419, March 2008.
doi:10.1214/07-AOP348.

145 S. Vestal. Preemptive Scheduling of Multi-
criticality Systems with Varying Degrees of Ex-
ecution Time Assurance. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS),
pages 239–243, 2007. doi:10.1109/RTSS.2007.
47.

146 B. Villalba Frías, L. Palopoli, L. Abeni, and
D. Fontanelli. The PROSIT tool: Toward the
optimal design of probabilistic soft real-time sys-
tems. Software: Practice and Experience, 0(0),
2018. doi:10.1002/spe.2604.

147 G. von der Brüggen, N. Piatkowski, K-H. Chen,
J. J. Chen, and K. Morik. Efficiently Ap-
proximating the Probability of Deadline Misses
in Real-Time Systems. In Proceedings of the
Euromicro Conference on Real-Time Systems
(ECRTS), volume 106, pages 6:1–6:22, 2018. doi:
10.4230/LIPIcs.ECRTS.2018.6.

148 T. Wang, S. Homsi, L. Nui, S. Ren, O. Bai,
G. Quan, and M. Qiu. Harmonicity Aware
Task Partitioning for Fixed Priority Scheduling
of Probabilistic Real-Time Tasks on Multi-Core
Platforms. ACM Transactions on Embedded
Computing Systems, 2016.

149 T. Wang, L. Niu, S. Ren, and G. Quan. Multi-
core fixed-priority scheduling of real-time tasks
with statistical deadline guarantee. In Proceed-
ings of the Conference on Design, Automation
and Test in Europe (DATE), pages 1335–1340,
March 2015.

http://dx.doi.org/10.1109/12.477249
http://dx.doi.org/10.1109/ECRTS.2010.29
http://dx.doi.org/10.1109/ECRTS.2010.29
http://dx.doi.org/10.23919/DATE.2018.8342005
http://dx.doi.org/10.1145/2983185.2983197
http://dx.doi.org/10.1145/2983185.2983197
http://dx.doi.org/10.1145/1967021.1967028
http://dx.doi.org/10.1145/1967021.1967028
http://dx.doi.org/10.1145/2717113
http://dx.doi.org/10.1145/2717113
http://dx.doi.org/10.1109/DFT.2016.7684072
http://dx.doi.org/10.1109/DFT.2016.7684072
http://dx.doi.org/10.4230/OASIcs.WCET.2014.21
http://dx.doi.org/10.1109/ETFA.2011.6059013
http://dx.doi.org/10.1109/ECRTS.2013.35
http://dx.doi.org/10.1109/ECRTS.2013.35
http://dx.doi.org/10.1007/BF02341920
http://dx.doi.org/10.1109/ECRTS.2013.24
http://dx.doi.org/10.1109/ECRTS.2013.24
http://dx.doi.org/10.1109/ECRTS.2015.28
http://dx.doi.org/10.1109/ECRTS.2015.28
http://dx.doi.org/10.1109/ISCAS.2000.858698
http://dx.doi.org/10.1109/RTTAS.1995.516213
http://dx.doi.org/10.1214/07-AOP348
http://dx.doi.org/10.1109/RTSS.2007.47
http://dx.doi.org/10.1109/RTSS.2007.47
http://dx.doi.org/10.1002/spe.2604
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.6
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.6

R. I. Davis and L. Cucu-Grosjean 04:53

150 F. Wartel, L. Kosmidis, C. Lo, B. Triquet,
E. Quiñones, J. Abella, A. Gogonel, A. Baldovin,
E. Mezzetti, L. Cucu, T. Vardanega, and F. J.
Cazorla. Measurement-based probabilistic tim-
ing analysis: Lessons from an integrated-modular
avionics case study. In Proceedings of the IEEE
International Symposium on Industrial Embed-
ded Systems (SIES), pages 241–248, June 2013.
doi:10.1109/SIES.2013.6601497.

151 R. C. Williamson and T. Downs. Probabilistic
arithmetic. I. Numerical methods for calculat-
ing convolutions and dependency bounds. In-
ternational Journal of Approximate Reasoning,
4(2):89–158, 1990. doi:10.1016/0888-613X(90)
90022-T.

152 M. H. Woodbury and K. G. Shin. Evaluation
of the probability of dynamic failure and pro-

cessor utilization for real-time systems. In Pro-
ceedings of the IEEE Real-Time Systems Sym-
posium (RTSS), pages 222–231, December 1988.
doi:10.1109/REAL.1988.51117.

153 H. Zeng, M. Di Natale, P. Giusto, and
A. Sangiovanni-Vincentelli. Stochastic Analysis
of CAN-Based Real-Time Automotive Systems.
IEEE Transactions on Industrial Informatics,
5(4):388–401, November 2009. doi:10.1109/TII.
2009.2032067.

154 H. Zhu, J. P. Hansen, J. P. Lehoczky, and R. Ra-
jkumar. Optimal partitioning for quantized EDF
scheduling. In Proceedings of the IEEE Real-
Time Systems Symposium (RTSS), pages 212–
222, 2002. doi:10.1109/REAL.2002.1181576.

LITES

http://dx.doi.org/10.1109/SIES.2013.6601497
http://dx.doi.org/10.1016/0888-613X(90)90022-T
http://dx.doi.org/10.1016/0888-613X(90)90022-T
http://dx.doi.org/10.1109/REAL.1988.51117
http://dx.doi.org/10.1109/TII.2009.2032067
http://dx.doi.org/10.1109/TII.2009.2032067
http://dx.doi.org/10.1109/REAL.2002.1181576

Elastic Scheduling for Parallel Real-Time Systems∗

James Orr
Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO 63130, USA
james.orr@wustl.edu

Chris Gill
Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO 63130, USA
cdgill@wustl.edu

Kunal Agrawal
Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO 63130, USA
kunal@wustl.edu

Jing Li
New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
jingli@njit.edu

Sanjoy Baruah
Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO 63130, USA
baruah@wustl.edu

Abstract
The elastic task model was introduced by Buttazzo
et al. in order to represent recurrent real-time work-
loads executing upon uniprocessor platforms that
are somewhat flexible with regards to timing con-
straints. In this work, we propose an extension of
this model and apply it to represent recurrent real-
time workloads that exhibit internal parallelism and
are executed on multiprocessor platforms. In our
proposed extension, the elasticity coefficient – the

quantitative measure of a task’s elasticity that was
introduced in the model proposed by Buttazzo et al.
– is interpreted in the same manner as in the ori-
ginal (sequential) model. Hence, system developers
who are familiar with the elastic task model in
the uniprocessor context may use our more general
model as they had previously done, now for real-
time tasks whose computational demands require
them to utilize more than one processor.

2012 ACM Subject Classification Software and its engineering → Real-time schedulability, Computer
systems organization → Real-time system architecture, Computer systems organization → Real-time
system specification, Computer systems organization → Embedded software
Keywords and Phrases Parallel real-time tasks, multiprocessor federated scheduling, elasticity coefficient
Digital Object Identifier 10.4230/LITES-v006-i001-a005
Received 2018-09-24 Accepted 2019-03-08 Published 2019-05-14

1 Introduction

Advances in parallel real-time scheduling theory and concurrency platforms over the last couple of
decades have allowed for previously unachievable combinations of high computational demands
and fine-grained time-scales, in high-performance parallel real-time applications such as those
in autonomous vehicles [13] and real-time hybrid simulation systems [9, 11]. However, current
parallel real-time systems usually assign parallel tasks to fixed sets of processors and release them
at statically determined periodic rates [13, 9, 10]. For systems that need to adjust individual
tasks’ computational requirements at run-time (e.g., control algorithms with multiple modes of

∗ This research was supported in part by NSF grant CCF-1337218 titled “XPS: FP: Real-Time Scheduling of
Parallel Tasks” and NSF CNS1814739 titled “Dynamically Customizable Safety Critical Embedded Systems.”

© James Orr, Chris Gill, Kunal Agrawal, Jing Li, and Sanjoy Baruah;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 6, Issue 1, Article No. 5, pp. 05:1–05:14
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2835-2417
mailto:james.orr@wustl.edu
https://orcid.org/0000-0003-0366-8586
mailto:cdgill@wustl.edu
https://orcid.org/0000-0001-5882-6647
mailto:kunal@wustl.edu
https://orcid.org/0000-0002-6865-7290
mailto:jingli@njit.edu
https://orcid.org/0000-0002-4541-3445
mailto:baruah@wustl.edu
https://doi.org/10.4230/LITES-v006-i001-a005
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de

05:2 Elastic Scheduling for Parallel Real-Time Systems

operation), current approaches may need to incorporate excessive pessimism to support such forms
of dynamic and adaptive resource allocation.

The elastic task model was introduced in [4] with the specific aim of providing dynamic
flexibility during run-time. The model is derived from an analogy to the expansion and contraction
of a contiguous collection of springs when a common force is applied to them all, in order to bring
their cumulative length down below a specified bound. The computational demand of a task is
analogous to the length of a spring, and the available computational capacity to the bound on the
cumulative length of the springs (see [4] for details).

In the elastic task model, each recurrent task is characterized by a worst-case execution
time (WCET), lower and upper bounds on the values that the task period parameter may take,
and an ‘elasticity coefficient’ that represents the flexibility of the task (relative to other tasks)
to reduce its run-time computational demand by increasing its effective period. Given a system
comprising a collection of such tasks executing upon a shared processor, the elastic scheduling
algorithm seeks to choose a value for each task’s period parameter within the task’s specified
range, such that the overall system is schedulable.

The elastic task model was originally defined for task systems such as multimedia systems,
control systems, and ad-hoc communication networks implemented on preemptive uniprocessors [1,
8, 5]. However, today’s high-performance real-time applications (e.g. real-time hybrid simulation [9,
11]) must often execute upon multiprocessor platforms so as to be able to exploit internal parallelism
of these tasks across multiple processors to meet high computational demand. Therefore, the
original elastic task model, as well as algorithms that were developed by Buttazzo et al. [4, 5]
along with accompanying schedulability analysis and run-time scheduling techniques, need to
be appropriately extended in order to be useful for these kinds of high-performance real-time
applications. In this paper, we consider multiprocessor scheduling under the federated scheduling
paradigm (in which each task whose computational demand exceeds the capacity of a single
processor is granted exclusive access to multiple processors); we propose a parallel multiprocessor
extension to the elastic task model, and provide appropriate algorithms for federated schedulability
analysis and federated scheduling of systems represented using our proposed model.

The central idea of elastic scheduling, originally defined by Buttazzo et al. [4], is that if the
overall computational demand of a system exceeds the capacity of the implementation platform to
accommodate it all, then individual tasks’ computational demands are reduced and the available
platform capacity is allocated in a flexible manner to accommodate these reduced demands. Upon
multiprocessor platforms, there are several different interpretations possible, as to what an elastic
manner of distributing the processors may mean. Our proposed extension aligns with earlier work
in the sense that we are interpreting the elasticity coefficient parameters according to the semantics
assigned to them in the uniprocessor context. We believe that this is a critical issue: the elasticity
parameters characterize the relative flexibility –the ‘hard-real-time’ness– of the tasks, and should
bear common interpretation regardless of whether implemented on uni- or multi-processors. We,
therefore, believe that the preservation of this interpretation is one of the major benefits of our
extended model.

The remainder of this paper is organized in the following manner. We briefly provide some
needed background and related work concerning the elastic task model and federated scheduling
in Section 2; and describe the parallel workload model we are proposing for the representation
of parallel elastic tasks. In Section 3 we present a relatively simple and efficient algorithm for
scheduling such tasks upon multiprocessor platforms, which preserves the semantics that were
intended for elastic tasks in the uniprocessor context. We also point out how this simple approach
may result in an unnecessary degree of platform resource under-utilization. In Section 4 we
propose an alternative approach that is able to make more efficient use of the platform to provide

J. Orr et al. 05:3

a superior scheduling solution, at the cost of not being as faithful to the semantics of elasticity
as originally defined for the uniprocessor case. We conclude in Section 5 with a brief summary,
and place this work within a larger context of ongoing research efforts towards achieving dynamic
flexibility in multiprocessor scheduling of parallelizable workloads.

2 Background, Related Work, and Task Model

In this paper, we extend the definition and applicability of real-time elastic scheduling to parallel
real-time systems. We start out in this section by providing some background on both the elastic
task model and the federated paradigm of parallel real-time scheduling on multiprocessor platforms.
Doing so enables us to define our proposed elastic model for the federated scheduling of systems
of parallel real-time tasks.

2.1 The Elastic Task Model
The elastic task model was first proposed by Buttazzo et al. in [4]. Tasks in this model may
dynamically adapt their periods in response to system behavior, in order to keep system-wide util-
ization below a user-specified desired value Ud (which may be at or below a scheduling algorithm’s
threshold, e.g., 1.0 for preemptive uniprocessor EDF scheduling). The task model is a general-
ization of the implicit-deadline sporadic task model [15]: each task τi = (Ci, T (min)

i , T
(max)
i , Ei)

is characterized by a worst-case execution requirement Ci, a minimum (and preferred) period
T

(min)
i , a maximum period T (max)

i , and an elastic coefficient Ei that quantitatively characterizes
how amenable a task is to a change in its period (similar to a measure of a spring’s resistance to
changes in length). A higher elastic coefficient implies a more elastic task, which is more willing
to adapt its period. Any task τi that should not vary its period (and therefore its utilization) at
all can set T (min)

i = T
(max)
i , and τi will act like an ordinary (i.e., not elastic) implicit-deadline

sporadic task with WCET Ci and period T
(min)
i . An actual period must be assigned to each

task; a task’s assigned period is denoted as Ti and must fall within the range [T (min)
i , T

(max)
i].

Furthermore, a task τi is considered to have an implicit deadline where the relative deadline Di of
τi is equal to its actual period, i.e., Di=Ti.

Recall that the utilization Ui of an (ordinary – not elastic) implicit-deadline task τi = (Ci, Ti)
is defined to be the ratio of its WCET to its period (Ui = Ci/Ti), and that the utilization U(Γ) of
an implicit-deadline sporadic task system Γ = {τ1, τ2, . . . , τn} is the sum of the utilizations of all
the tasks in the system (U(Γ) =

∑
τi∈τ Ui). Buttazzo et al. have derived an iterative algorithm

in [4] for task compression which (if possible) finds a way to assign each task τi in a system Γ of
elastic tasks a period Ti in a manner that is compliant with the semantics of spring compression,
such that

∑
i (Ci/Ti) ≤ Ud and T (min)

i ≤ Ti ≤ T
(max)
i for all tasks τi. (As stated above, Ud is a

user-defined threshold, perhaps according to the scheduling algorithm that is used, e.g., Ud = 1 is
suitable for preemptive EDF scheduling.)

Since the introduction of the elastic task model, the uniprocessor version has been expanded
to include constrained deadlines [8], resource sharing [5] and unknown computational load [6]. We
leave their parallel extensions as future work.

2.2 Federated Scheduling and Parallel Real-Time Task Model
Federated scheduling is a parallel real-time scheduling paradigm that was proposed by Li et al. [14]
for scheduling collections of recurrent parallel tasks upon multiprocessor platforms, when one or
more individual tasks may have a computational requirement that exceeds the capacity of a single
processor to entirely accommodate it. Under federated scheduling, such tasks (i.e., those with

LITES

05:4 Elastic Scheduling for Parallel Real-Time Systems

computational requirement exceeding the capacity of a single processor) are granted exclusive
access to a subset of processors; the remaining tasks execute upon a shared pool of processors.

In parallel real-time task systems, the computational requirement of a task τi (the generalization
of the WCET parameter for sequential tasks) is represented by the following two parameters:
1. The work parameter Ci denotes the cumulative worst-case execution time of all the parallel

branches that are executed across all processors. Note that for deterministic parallelizable
code (e.g., as represented in the sporadic DAG tasks model [2]; see [3, Chapter 21] for a
textbook description) this is equal to the worst-case execution time of the code on a single
processor (ignoring communication overhead from synchronizing processors).

2. The span parameter Li denotes the maximum cumulative worst-case execution time of any
sequence of precedence-constrained pieces of code. It represents a lower bound on the duration
of time the code would take to execute, regardless of the number of processors available.
The span of a program is also called the critical-path length of the program, and a sequence of
precedence-constrained pieces of code with cumulative worst-case execution time equal to the
span is a critical path through the program.

Algorithms are known for computing the work and span of a task represented as a DAG, in time
linear in the DAG representation. The relevance of these two parameters arises from well-known
results in scheduling theory concerning the multiprocessor scheduling of precedence-constrained
jobs (i.e., DAGs) to minimize makespan. This problem has long been known to be NP-hard in
the strong sense [16]; i.e., computationally highly intractable. However, Graham’s list scheduling
algorithm [12], which constructs a work-conserving schedule by executing at each instant in time
an available job, if any are present, upon any available processor, performs fairly well in practice.

An upper bound on the makespan of a schedule generated by list scheduling is easily stated.
Given the work and span of the DAG being scheduled, it has been proved in [12] that the makespan
of the schedule for a given DAG upon m processors is guaranteed to be no larger than

work− span
m

+ span (1)

Thus, a good upper bound on the makespan of the list-scheduling generated schedule for a DAG
may be stated in terms of only its work and span parameters. Equivalently, if the DAG represents a
real-time piece of code characterized by a relative deadline parameter D, (work−span

m + span) ≤ D
is a sufficient test for determining whether the code will complete by its deadline upon an
m-processor platform.

A parallel task τi is considered to be a high-utilization task if its utilization Ui = Ci

Ti
> 1 and a

low-utilization task otherwise. Each high-utilization task τi receives mi dedicated processors on
which to run; for implicit-deadlines tasks, we need the resulting makespan to be less than or equal
to Di = Ti; i.e.

Ci − Li
mi

+ Li ≤ Ti

⇔ Ci − Li
mi

≤ Ti − Li

⇔ mi ≥
Ci − Li
Ti − Li

Under federated scheduling, since the number of processors assigned to each high-utilization
task is an integer, we therefore have

mi =
⌈
Ci − Li
Ti − Li

⌉
. (2)

J. Orr et al. 05:5

Under the original federated scheduling model in [14], low-utilization tasks are treated as
sequential and are scheduled using existing mechanisms such as global or partitioned EDF
scheduling.

In this paper, we will consider the federated scheduling of task systems with elastic sporadic
parallel tasks. Recall that each elastic task has a range of acceptable periods within the rage
[T (min)
i , T

(max)
i]. Let U (max)

i = Ci/T
(min)
i and U

(min)
i = Ci/T

(max)
i denote the maximum (i.e.,

desired) and the minimum acceptable utilization for τi. Note that it is possible for some tasks
to be either high-utilization or low-utilization depending on the selected period. We refer to
these as tasks with hybrid-utilization. (Formally hybrid-utilization tasks are tasks such that
T (min) ≤ Ci ≤ T (max).) Scheduling of exclusively low-utilization elastic tasks is easily done via
minor extensions to prior results [4, 5, 7, 8]. We therefore do not consider them for the remainder
of this paper. Instead, henceforth we consider only the scheduling of exclusively high-utilization
tasks. That is, we will consider a system Γ = {τ1, τ2, . . . , τn} of n elastic parallel high-utilization
tasks that is to be scheduled under federated scheduling upon m processors. We consider this
to be a necessary and non-trivial step towards the scheduling of hybrid-utilization tasks, the
treatment of which we leave for future work.

In the remainder of this paper we will often represent a task τi = (Ci, Li, U (max)
i , U

(min)
i , Ei)

by its work and span parameters, its maximum and minimum utilizations,1 and its elasticity
coefficient. We will seek to compute mi, the number of processors that are to be devoted to the
exclusive use of task τi, for each τi such that

∑n
i=1 mi ≤ m.

3 A first attempt at elastic scheduling of parallel tasks

It is fairly straightforward to show that the desired elasticity property on the tasks that were
defined in the original (uniprocessor) elastic tasks model [4] is that

∀ i, j,
(U (max)

i − Ui
Ei

)
=
(U (max)

j − Uj
Ej

)
(3)

That is, the elasticity coefficient Ei of task τi is a scaling factor on the amount by which it may
have its actual utilization reduced from the desired value of U (max)

i .
We use λ to denote the desired equilibrium value for all tasks demonstrated in Expression (3);

for all tasks λ =
(
(U (max)

i − Ui)/Ei
)
. Expression (3) suggests that

Ui ← U
(max)
i − λEi

However, we also require Ui ≥ U (min)
i ; hence for a given value of λ we choose

Ui(λ)← max
(
U

(max)
i − λEi, U (min)

i

)
(4)

Equation (4) suggests an algorithm for the federated scheduling of parallel task system
Γ = {τ1, . . . , τn} upon m processors. It is evident from visual inspection of Equation (4) that
the ‘best’ schedule – the one that compresses tasks’ utilizations the least amount necessary in
order to achieve schedulability – is the one for which λ is the smallest. Now for a given value of λ,
Algorithm 1 can determine, in time linear in the number of tasks, whether the task system can be
scheduled upon the m available processors using federated scheduling.

1 Note that representing the task by its maximum and minimum utilizations is equivalent to representing it by
its minimum and maximum periods, since given Ci, one set of parameters can be derived from the other set.

LITES

05:6 Elastic Scheduling for Parallel Real-Time Systems

Algorithm 1 Elastic-1(Γ,m, λ).

. Γ is the task system and m the number of processors that are available

. λ is the compression factor permitted
m′ ← 0 . Number of processors needed
for (τi ∈ Γ) do

Ui = max
(
U

(max)
i − λEi, U (min)

i

)
. See Eqn 4

Ti = Ci/Ui
mi = d(Ci − Li)/(Ti − Li)e
m′ ← m′ +mi

end for
if (m′ > m) then . Not enough processors.

return unschedulable
else

return 〈m1,m2, . . . ,mn〉 . τi gets mi processors
end if

Note the value of λ can be bounded to the range of [0, φ] where λ = 0 represents all tasks
receiving their maximum utilizations and φ is the maximum value among all tasks of the equation(
U

(max)
i

−U(min)
i

Ei

)
. λ = φ thus represents all tasks receiving their minimum utilization. By bounding

the potential values of λ, we can use binary search within this range and make repeated calls to
Algorithm 1 and thereby determine, to any desired degree of accuracy, the smallest value of λ for
which the system is schedulable.

3.1 Discussion
Semantics-preservation. Algorithm 1 for the federated scheduling of parallel elastic tasks that
we have presented above is semantics preserving in the following sense: the assignment of actual
period values to the tasks (the Ti’s) is done in accordance with Equation (4), which is the same
manner in which periods are assigned in uniprocessor scheduling of elastic tasks. Hence the system
developer who seeks to use our proposed elastic task model to implement flexible parallel tasks
upon multiprocessor platforms need not ‘learn’ new (or additional) semantics for the elasticity
coefficient: this coefficient means exactly the same thing in the parallel multiprocessor case as it
did in the system designer’s previous experiences with sequential uniprocessor tasks (the value of
this parameter for each task is a relative measure of its degrees of tolerance to having its period
increased and its computational demand thereby reduced).

Run-time platform capacity under-utilization. Despite these advantages, however, one can
identify two sources of resource under-utilization by Algorithm 4.

First, observe that the number of processors assigned to a task must be integral, and is hence
equal to the ceiling of an expression. If the expression (Ci − Li)/(Ti − Li), which lies within
the ceiling operator (d·e) when computing the number of processors assigned to task τi, is
not itself an integer, then one could further reduce the actual period (the Ti value) that is
assigned to the task τi and thereby assign τi more computational capacity than is afforded by
Algorithm 1. However, we do not permit this to happen since the resulting assignment may no
longer be semantics-preserving in the sense that different tasks may see a reduction in allocated
capacity that is not consistent with their relative elasticity coefficients. This difference between
d(Ci − Li)/(Ti − Li)e and (Ci − Li)/(Ti − Li) is thus ‘wasted’ capacity.

J. Orr et al. 05:7

Second, consider the case with two identical elastic tasks, and an odd number of processors.
Semantics-preservation dictates that both tasks be treated in the same manner; however, doing
so would correspond to assigning the same number of processors to each task and therefore
leaving one processor unused. More generally, Algorithm 1 may leave up to n− 1 processors
unallocated to n identical tasks.

Thus, the simple semantics-preserving scheme presented in this section may under-utilize platform
resources. In Section 4 we discuss an alternative scheme that makes more efficient use of platform
capacity at the cost of additional complexity in the semantics of elasticity.

4 More resource-efficient scheduling

The notion of semantic preservation with uniprocessor elastic task scheduling presented in Section 3
is simple and intuitive, and very strong: the elasticity coefficient of a task directly indicates the
task’s tolerance to having its period parameter increased. However, as we saw, remaining faithful
to such a strong notion of semantic equivalence comes at the cost of some computing capacity
loss and cannot guarantee full utilization of a platform’s computing capacity. We now consider a
more generalized interpretation of the semantics of uniprocessor elastic tasks. This interpretation
was provided by Chantem et al. [8], who proved that the algorithm of Buttazzo et al. [5] for
scheduling sequential elastic tasks upon preemptive uniprocessors is equivalent to solving the
following constrained optimization problem:

minimize
n∑
i=1

1
Ei

(U (max)
i − Ui)2 (5)

such that:

U
(min)
i ≤ Ui ≤ U (max)

i for all τi, and
n∑
i=1

Ui ≤ Ud

where Ud is the desired system utilization. We believe that this is a somewhat less natural
interpretation of elasticity in task scheduling than the interpretation considered in Section 3: it is
unlikely that a typical system designer is thinking of the elasticity coefficients (the Ei parameters)
that they assign to the individual tasks as coefficients to a quadratic optimization problem.
Nevertheless, we adopt this notion of elastic interpretation in this section; for this interpretation,
we are able to derive a federated scheduling algorithm that makes far more efficient use of platform
computing capacity than was possible under the earlier more intuitive interpretation considered in
Section 3.

Note that sequential elastic task scheduling only considers CPU utilization when attempting to
schedule tasks on a single processor. Specifically, system-wide utilization

∑n
i=1 Ui must stay below

a desired utilization Ud at all times in order to maintain schedulability. As such, task utilizations
are decreased by (when possible) increasing individual task periods in proportion to their fraction
of system-wide elasticity until either (1) an acceptable schedule is found such that

∑n
i=1 Ui ≤ Ud

or (2) each task τi has period Ti = T
(max)
i with

∑n
i=1 Ui > Ud. If a schedule cannot be found the

taskset is declared unschedulable.
In federated scheduling of high-utilization tasks, however, system schedulability is no longer a

function only of cumulative utilization but rather whether n tasks can be successfully scheduled
on m cores. We now give an algorithm for determining processor allocation and schedulability of
a task system that allocates the processors one at a time to the tasks, Algorithm 2. Algorithm 2

LITES

05:8 Elastic Scheduling for Parallel Real-Time Systems

Algorithm 2 Task_compress_par(Γ,m).
1: for (τi ∈ Γ) do
2: mimin

= d(Ci − Li)/Timax
− Li)e . Minimum number of processors

3: mimax
= d(Ci − Li)/(Timin

− Li)e . Maximum number of processors
4: mi = mimin

5: while mi <= mimax
do . Compute the shortest period for τi

6: . for each possible value of mi

7: T(i,mi) = (Ci − Li)/(mi) + Li . T(i,mi) = shortest with mi processors
8: mi = mi + 1
9: end while

10: mi = mimin
. Assign minimum number of processors

11: Ti = T(i,mi) . Assign corresponding shortest period
12: m = m−mimin

. m keeps count of processors remaining
13: end for
14: if (m < 0) then . There weren’t enough processors
15: return unschedulable
16: else if (m == 0) then
17: return processor allocation with mi values
18: end if
19:
20: The remainder of this pseudocode
21: allocates processors one at a time
22:
23: for (τi ∈ Γ) do
24: Determine δi, the potential
25: decrease to Problem 7 for each task
26: end for
27:
28: Make a max heap of all tasks, with the δi values as the key
29:
30: while m > 0 and heap not empty do . Assign remaining processors
31: τmost = heap.pop() . Task that would most benefit
32: mmost = mmost + 1 . Permanently assign processor
33: m = m− 1
34: Tmost = T(most,mmost)
35: if (m > 0 and mmost < mmostmax

) then . Able to receive more processors?
36: Determine δmost, the potential
37: decrease to Problem 7 for task τmost
38: Reinsert τmost into heap
39: end if
40: end while
41: return the processor allocation with mi values

J. Orr et al. 05:9

starts out by determining, for each task τi, the minimum number of processors mimin needed to
be meet its minimum acceptable computational load (i.e., having Ti ← T

(max)
i) in Line 2, and

the number mimax needed to meet its desired computational load (i.e., having Ti ← T
(min)
i) in

Line 3. Since the assigned period Ti satisfies T (min)
i ≤ Ti ≤ T (max)

i , the actual number of CPUs
mi assigned to τi is also bounded by mimin ≤ mi ≤ mimax .

Because of the ceiling function in Equation (2), each range of values for Ti maps to a given mi

for each task. In this work we assume that it is beneficial for each task to run as frequently as
possible. As such, we assign task τi the minimum period Ti available on mi allocated processors.
We denote this period value as T(i,mi), which is derived directly from Equation (2):

T(i,mi) = Ci − Li
mi

+ Li (6)

All possible values of T(i,mi) for mimin
≤ mi ≤ mimax

are computed first and stored in lookup
tables. This is accomplished during the while loop (Lines 5–9) in Algorithm 2.

Next (Lines 10–12), each task is assigned the minimum number of processors it needs, and this
number of processors is subtracted from m; hence at the end of the loop, m denotes the number
of processors remaining for additional assignment (above and beyond the minimum needed per
task). If m < 0 the instance is unschedulable, while if m = 0 there is nothing more to be done –
the system is schedulable with each task receiving its minimum level of service. These conditions
are tested in Lines 14–18 of the pseudocode.

Ifm > 0, however, we will individually assign each of these remainingm processors to whichever
task would benefit ‘the most’ from receiving it. This is determined in the following manner. Similar
to scheduling sequential tasks [8], our goal is to find task utilizations (and therefore periods) that
solve the optimization problem:

minimize
n∑
i=1

1
Ei

(U (max)
i − Ui)2 (7)

such that:

U
(min)
i ≤ Ui ≤ U (max)

i for all τi, and
n∑
i=1

mi ≤ m

In allocating each processor we calculate, for each task τi, a quantity δi which represents the
decrease in 1

Ei
(U (max)

i − Ui)2 if the next processor were to be allocated to task τi – this is done
in Lines 23–26 of Algorithm 2. We then assign the processor to whichever task would see the
biggest decrease. (As a consequence, the objective of the optimization problem 7 would decrease
the most.) To accomplish this efficiently, we

Place the tasks in a max heap indexed on the value of δi (Line 28); and
while there are unallocated processors and the heap is not empty (checked in Line 30)

assign the next processor to the task at the top of the heap (Lines 31–34) and, if this task is
eligible to receive more processors (checked in Line 35), recompute δi for this task (Line 36)
and reinsert into the heap (Line 38).

Run-time complexity. The first for-loop in the algorithm (Lines 1–13 in the pseudocode listing in
Algorithm 2) takes Θ(m∗n) time. The for-loop in Lines 23–26 and the making of the max heap (Line
28) each take Θ(n) time. The running time of the remainder of the algorithm (Lines 30–40) is
dominated by the max-heap operations; the overall running time is therefore Θ(n ∗m+m logn).

LITES

05:10 Elastic Scheduling for Parallel Real-Time Systems

4.1 Proof of Optimality
In this section we prove in Theorem 3 that Algorithm 2 solves the optimization problem given in
Equation (7) optimally. The optimality of Algorithm 2 then follows from the result of Chantem
et al. [8] showing the equivalence of uniprocessor elastic scheduling of sequential tasks with the
optimization problem given in Equation (5).

The dependency amongst the three results in this section – Lemma 1, Lemma 2, and Theorem 3
– is strictly linear: Lemma 1 is needed to prove Lemma 2, which is needed to prove Theorem 3.

I Lemma 1. The utilization Ui of elastic task τi strictly increases towards maximum utilization
as the number of processors mi assigned to it increases.

Proof. Since Ui = Ci/Ti, (and Ci is constant), Ui increases as Ti decreases. By Equation (6),
Ti = ((Ci − Li)/mi) + Li. Ci and Li are constant for task τi. Therefore, Ti strictly decreases
as mi increases. Therefore, an increase of mi decreases Ti and increases Ui. J

I Lemma 2. In assigning processors one at a time (in the while loop of Lines 30–40 of Algorithm 2),
the consecutive assignment of the (k + 1)’st and (k + 2)’nd to the same task τi with k currently
assigned processors will result in diminishing returns of δi, the decrease in 1

Ei
(U (max)

i − Ui)2 for
τi. (i.e., the benefit of assigning a processor to a task is never as high as the already-incurred
benefit of assigning prior processors.)

Proof. This is readily observed by algebraic simplification.2 Let xk be the value of 1
Ei

(U (max)
i −

Uik)2 where Uik is the task utilization with k processors. Let xk+1 be the value of 1
Ei

(U (max)
i −

Uik+1)2 with new utilization Uik+1 after assigning processor k + 1 to τi, and similarly let xk+2 be
the value of 1

Ei
(U (max)

i −Uik+2)2 with new utilization Uik+2 after subsequently assigning processor
k + 2 to τi. From Lemma 1, we know that Uik < Uik+1 < Uik+2 .

Define the benefit of adding processor k+ 1 to τi as δik+1 = xk − xk+1, and the later benefit of
assigning processor k + 2 as δik+2 = xk+1 − xk+2. To prove diminishing returns, we must show
that δik+1 > δik+2 .

Note that the math is equivalent, so we temporarily ignore the constant scalar 1
Ei

. Thus, both

δik+1 = (U (max)
i − Uik)2 − (U (max)

i − Uik+1)2 (8)

and

δik+2 = (U (max)
i − Uik+1)2 − (U (max)

i − Uik+2)2 (9)

are of the form

(x− z)2 − (x− y)2 (10)

where x > y > z. We can therefore say that z + α = y and y + β = x.
Re-stating Equation (10) in terms of z, α, and β, we obtain:

(z + α+ β − z)2 − (z + α+ β − z − α)2

which simplifies to

α2 + 2αβ. (11)

2 The algebra, while straightforward, is rather tedious and the reader may choose to just skim it at first reading.

J. Orr et al. 05:11

Therefore, to prove δik+1 > δik+2 , it is sufficient to show that

α2
k+1 + 2αk+1βk+1 > α2

k+2 + 2αk+2βk+2 (12)

where αk+1, βk+1, αk+2, and βk+2 are (Uik+1 −Uik), (U (max)
i −Uik+1), (Uik+2 −Uik+1), (U (max)

i −
Uik+1), respectively. (These values come from the definitions of α and β and the substitutions
of x, y, and z in Equation (10) into their actual values from Equations 8 and 9.) Note that as
αk+1, βk+1, αk+2, and βk+2 are all positive numbers, Equation (12) will be satisfied if we can
individually prove αk+1 > αk+2 and βk+1 > βk+2, which we now proceed to do.

We first prove βk+1 > βk+2, where

βk+1 = (U (max)
i − Uik+1),

and

βk+2 = (U (max)
i − Uik+2).

We know from above that Uik+2 > Uik+1 . Therefore

(U (max)
i − Uik+1) > (U (max)

i − Uik+2)

and βk+1 > βk+2.
We next prove αk+1 > αk+2. Note that

Ui = Ci

Ti = Ci−Li

mi
+ Li

(13)

Consider Equation (13) which shows the complete derivation of a task’s utilization as a function
of the number of processors assigned to it. By definition, if αk+1

?
> αk+2, 3 then

Uik+1 − Uik
?
> Uik+2 − Uik+1 .

Substituting into Equation (13), this becomes

Ci
Ci−Li

k+1 + Li
− Ci

Ci−Li

k + Li

?
>

Ci
Ci−Li

k+2 + Li
− Ci

Ci−Li

k+1 + Li
.

Factoring out a constant Ci and simplifying, we get

k + 1
Ci + kLi

− k

Ci + kLi − Li
?
>

k + 2
Ci + kLi + Li

− k + 1
Ci + kLi

.

Letting X = Ci + kLi (to enhance readability), this becomes

k + 1
X
− k

X − Li
?
>

k + 2
X + Li

− k + 1
X

.

We can combine fractions and simplify this further to

−kLi +X − Li
X(X − Li)

?
>
−kLi +X − Li
X(X + Li)

.

3 We use
?
> to indicate that the inequality is not yet proved.

LITES

05:12 Elastic Scheduling for Parallel Real-Time Systems

Since −k ∗ Li +X − Li = −kLi + Ci + kLi − Li = Ci − Li > 0 for high-utilization tasks, we
can now factor out −k ∗ Li +X − Li from both sides and are left with asking whether

1
X(X − Li)

?
>

1
X(X + Li)

.

This is unequivocally true. Hence, we prove that αk+1 > αk+2. Therefore, Equation (12) is
satisfied and δik+1 > δik+2 . The Lemma follows. J

I Theorem 3. Algorithm 2 optimally minimizes the optimization problem given in Equation (7).

Proof. For Algorithm 2 to be non-optimal, there must be some point at which our greedy algorithm
and the optimal algorithm diverge. (Algorithm 2 begins optimally with the only valid assignment
of processors to tasks when considering only the minimum amount of processors each task can
have.) Note that each task’s contribution to the sum of Equation (7) is independent of other tasks:
the value of 1

Ei
(U (max)

i − Ui)2 for a given task τi is independent of how many processors have
been assigned to other tasks. Thanks to this property, we need only consider two tasks. Let us
suppose, without loss of generality, that at the point of divergence our greedy algorithm assigns
the processor to τi, while the optimal algorithm would assign the processor to τj .

Because the greedy algorithm assigns the processor to τi, we know that the added bene-
fit (amount decreased from the sum) is greater than if we had given the processor to τj . Hence
the current value of the objective function of optimization problem 7 the greedy algorithm is
necessarily lower than that of the optimal algorithm upon assignment of the number of processors
assigned thus far. By the assumption regarding the non-optimality of our greedy strategy, there
must be some point in the future at which the optimal algorithm makes up the difference since
the optimal solution to a minimization problem must end with the lowest value for the objective
function.

However, we saw in Lemma 2 above that the benefits of assigning a new processor under
the greedy Algorithm 2 diminish. At each iteration, the greedy algorithm chooses to assign the
processor to the task with the greatest available benefit. Because tasks’ benefits are considered
independently and do not change regardless of the allocation of CPUs to other tasks, after the
greedy algorithm assigns the k’th processor to τi, no other task τj will have a higher benefit of
receiving the (k + 1)’st processor than it did when the greedy algorithm elected to give the k’th
processor to τi. Similarly, by Lemma 2 the diminishing returns of assigning multiple processors to
the same task guarantees that the benefit of assigning the (k+ 1)’st task to τi is also less than the
benefit gotten by assigning the k’th processor to τi. Therefore, if the optimal algorithm and the
greedy algorithm diverge and the current value of the objective function of optimization problem 7
for Algorithm 2 is better than the optimal algorithm, it is impossible for the optimal algorithm to
subsequently ‘catch up’ and do better than the greedy algorithm. Hence the current value of the
objective function of optimization problem 7 may never diverge between an optimal algorithm
and our greedy algorithm; the optimality of Algorithm 2 immediately follows. J

This completes the proof of optimality of Algorithm 2 for the federated scheduling of parallel
elastic tasks.

5 Summary & Conclusions

In the two decades since it was first introduced, the elastic task model [4] has proved a useful
abstraction for representing flexibility in the computational demands of recurrent workloads. It
was originally proposed for representing sequential tasks executing upon uniprocessor platforms;

J. Orr et al. 05:13

as high-performance real-time computer applications are increasingly becoming parallelizable (and
need to have their parallelism exploited by being implemented upon multiprocessor platforms in
order to meet timing constraints), there is a need to extend the applicability of the elastic task
model to parallel tasks that execute upon multiprocessor platforms.

In this paper, we have proposed one such extension. The salient features of our model are:
Multiprocessor scheduling under the federated paradigm, in which each task needing more than
one processor is assigned exclusive access to all processors upon which it executes. Federated
scheduling frameworks can generally be implemented in a more efficient manner than global
scheduling (e.g., with less run-time overhead) with only limited loss of schedulability (as
measured by speedup bounds of capacity augmentation bounds).
Representation of a parallel task’s workload using just the cumulative workload (its ‘work’
parameter) and its critical path length (its ‘span’ parameter). Such representation allows for
efficient schedulability analysis in the federated scheduling framework, with a bounded loss
of schedulability as compared to DAG representations (for which schedulability analysis is
strongly NP-hard.
Retention of the elasticity coefficient parameter that was the main innovation introduced in [4]
to capture the flexibility in computational demands.

We have proposed and studied two schemes for assigning processors to tasks in a system of elastic
parallel real-time tasks that are to be scheduled upon a given multiprocessor platform under
federated scheduling. One of these schemes is completely semantics-preserving with respect to
model semantics as introduced in the uniprocessor case [4]; the other allows for some deviation
from uniprocessor semantics and thereby is able to better use the computational capabilities of
the implementation platform.

Possible future extensions of this work include the scheduling of hybrid-utilization tasks, each
of whose potential utilization range is such that it can be treated as either a low-utilization or a
high-utilization task, depending on the system load. This necessarily involves the co-scheduling of
low-utilization and high-utilization tasks. It may also be worth investigating different ways of
scheduling low-utilization tasks on multi-core systems. Buttazzo’s algorithms provide an optimal
way to schedule a task set of low-utilization tasks on a single processor but say nothing about how
to assign low-utilization tasks to multiple processors. Each of these can also be explored with
constrained deadlines and resource sharing.

References
1 P. Antsaklis and J. Baillieul. Guest Editorial Spe-

cial Issue on Networked Control Systems. IEEE
Transactions on Automatic Control, 49(9):1421–
1423, September 2004. doi:10.1109/TAC.2004.
835210.

2 Sanjoy Baruah, Vincenzo Bonifaci, Alberto
Marchetti-Spaccamela, Leem Stougie, and An-
dreas Wiese. A generalized parallel task model for
recurrent real-time processes. In Proceedings of the
IEEE Real-Time Systems Symposium, RTSS 2012,
pages 63–72, San Juan, Puerto Rico, 2012.

3 Giorgio Buttazzo, Enrico Bini, and Darren Buttle.
Rate-Adaptive Tasks: Model, Analysis, and
Design Issuess. In Proceedings of DATE 2014:
Design, Automation and Test in Europe, March
2014.

4 Giorgio C. Buttazzo, Giuseppe Lipari, and Luca
Abeni. Elastic Task Model for Adaptive Rate Con-
trol. In 1998 IEEE Real-Time Systems Symposium
(RTSS), 1998.

5 Giorgio C. Buttazzo, Giuseppe Lipari, Marco Cac-
camo, and Luca Abeni. Elastic Scheduling for Flex-
ible Workload Management. IEEE Trans. Com-
put., 51(3):289–302, March 2002. doi:10.1109/12.
990127.

6 M. Caccamo, G. Buttazzo, and Lui Sha. Elastic
feedback control. In Proceedings 12th Euromicro
Conference on Real-Time Systems. Euromicro
RTS 2000, pages 121–128, 2000. doi:10.1109/
EMRTS.2000.853999.

7 T. Chantem, X. S. Hu, and M. D. Lem-
mon. Generalized Elastic Scheduling. In 2006
27th IEEE International Real-Time Systems Sym-
posium (RTSS’06), pages 236–245, 2006.

8 T. Chantem, X. S. Hu, and M. D. Lemmon. Gen-
eralized Elastic Scheduling for Real-Time Tasks.
IEEE Transactions on Computers, 58(4):480–495,
April 2009. doi:10.1109/TC.2008.175.

9 D. Ferry, G. Bunting, A. Maqhareh, A. Prakash,
S. Dyke, K. Aqrawal, C. Gill, and C. Lu. Real-

LITES

http://dx.doi.org/10.1109/TAC.2004.835210
http://dx.doi.org/10.1109/TAC.2004.835210
http://dx.doi.org/10.1109/12.990127
http://dx.doi.org/10.1109/12.990127
http://dx.doi.org/10.1109/EMRTS.2000.853999
http://dx.doi.org/10.1109/EMRTS.2000.853999
http://dx.doi.org/10.1109/TC.2008.175

05:14 Elastic Scheduling for Parallel Real-Time Systems

time system support for hybrid structural simula-
tion. In 2014 International Conference on Em-
bedded Software (EMSOFT), pages 1–10, October
2014. doi:10.1145/2656045.2656067.

10 David Ferry, Jing Li, Mahesh Mahadevan, Kunal
Agrawal, Christopher Gill, and Chenyang Lu. A
Real-time Scheduling Service for Parallel Tasks.
In Proceedings of the 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Sym-
posium (RTAS), RTAS ’13, pages 261–272, Wash-
ington, DC, USA, 2013. IEEE Computer Society.
doi:10.1109/RTAS.2013.6531098.

11 David Ferry, Amin Maghareh, Gregory Bunt-
ing, Arun Prakash, Kunal Agrawal, Chris Gill,
Chenyang Lu, and Shirley Dyke. On the perform-
ance of a highly parallelizable concurrency plat-
form for real-time hybrid simulation. In The Sixth
World Conference on Structural Control and Mon-
itoring, 2014.

12 R. Graham. Bounds on multiprocessor timing an-
omalies. SIAM Journal on Applied Mathematics,
17:416–429, 1969.

13 J. Kim, H. Kim, K. Lakshmanan, and R. Rajku-
mar. Parallel scheduling for cyber-physical sys-
tems: Analysis and case study on a self-driving
car. In 2013 ACM/IEEE International Conference
on Cyber-Physical Systems (ICCPS), pages 31–40,
April 2013.

14 Jing Li, Abusayeed Saifullah, Kunal Agrawal,
Christopher Gill, and Chenyang Lu. Analysis
Of Federated And Global Scheduling For Paral-
lel Real-Time Tasks. In Proceedings of the 2012
26th Euromicro Conference on Real-Time Systems,
ECRTS ’14, Madrid (Spain), 2014. IEEE Com-
puter Society Press.

15 C. Liu and J. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environ-
ment. Journal of the ACM, 20(1):46–61, 1973.

16 J. Ullman. NP-complete scheduling prob-
lems. Journal of Computer and System Sciences,
10(3):384–393, 1975.

http://dx.doi.org/10.1145/2656045.2656067
http://dx.doi.org/10.1109/RTAS.2013.6531098

	lites-v006-i001-frontmatter
	lites-v006-i001-a001-dellabani
	Introduction
	Timed Systems and Properties
	Local Planning of Interactions
	Definition of the LPS
	Properties of the LPS

	Enforcing Deadlock-Free Planning
	Planning Semantics as Real-Time Controller Synthesis
	Planning Zones
	Infinite Planning Transitions
	Discussion

	Implementation and Experiments
	Implementation
	Benchmarks
	Results

	Related Work
	Conclusion and Future Work

	lites-v006-i001-a002-raymond
	Introduction
	An example
	Contents of the paper

	Existing tools
	The tools
	The Chronos Timing Analyzer
	The Swedish Timing Analyzer
	AbsInt - The aiT Tool
	oRange, the flow fact analyzer of OTAWA

	Some experiments
	Other approaches

	Used techniques and tools
	WCET evaluation with OTAWA
	Linear Relation Analysis with PAGAI
	Principles of LRA
	Applying LRA to our example
	LRA and loop bounds
	The PAGAI prototype analyzer

	Adding and tracing counters
	The proposed workflow
	Instrumented program version
	Tracing back the counters
	Traceability and optimization

	Experiments
	Benchmarks
	Experimental setup
	Lessons learnt
	Linear analysis and flow facts discovery
	Abstract domains
	Loop bounds
	Optimization level and traceability

	Conclusion and future work
	Experiment Results
	Compiler optimization level

	lites-v006-i001-a003-davis
	Introduction
	Conventional Timing Analysis Techniques
	Probabilistic Timing Analysis Techniques

	Fundamental Concepts and Methods
	probabilistic Worst-Case Execution Time (pWCET)
	Overview of Static Probabilistic Timing Analysis (SPTA)
	Overview of Measurement-Based Probabilistic Timing Analysis (MBPTA)

	Static Probabilistic Timing Analysis (SPTA)
	SPTA based on Probabilities from Inputs
	SPTA based on Probabilities from Faults
	SPTA based on Probabilities from Random Replacement Caches
	Summary and Perspectives

	Measurement-Based Probabilistic Timing Analysis (MBPTA)
	EVT and i.i.d. observations
	EVT and observations with dependences
	EVT and representativity
	Summary and Perspectives

	Hybrid Techniques for Probabilistic Timing Analysis (HyPTA)
	HyPTA and the Path Coverage Problem
	Summary and Perspectives

	Enabling Mechanisms and Techniques
	Caches and Hardware Random Placement
	Caches and Software Random Placement
	Cache Risk Patterns with Random Placement
	Buffers, Buses and other Resources
	Summary and Perspectives

	Case Studies, Benchmarks and Evaluation
	Critiques
	Case Studies and Evaluation
	Summary and Perspectives

	Conclusions
	Open Issues
	Directions for Future Research

	Appendix: Measurement Protocols

	lites-v006-i001-a004-davis
	Introduction
	Fundamentals and Key Issues
	Independence
	pWCET Distributions
	pWCET distributions and dependences
	Probabilistic Inter-arrival Times
	Probabilistic Real-Time Constraints
	Summary

	Probabilistic Response Time Analysis
	Analysis for Periodic Tasks with No Backlog
	Analysis for Periodic Tasks with Backlog
	Analysis for More Complex Task Models
	Summary and Perspectives

	Probabilistic Analysis assuming Servers
	Analysis for Server-based Systems
	Summary and Perspectives

	Real-Time Queueing Theory
	Analysis based on Real-Time Queuing Theory
	Summary and Perspectives

	Probabilities from Faults
	Analysis of Fault Recovery on Processors
	Analysis of Fault Recovery on CAN
	Summary and Perspectives

	Statistical Analysis of Response Times
	Statistical Estimation
	Summary and Perspectives

	Probabilistic Analysis of Mixed Criticality Systems
	Analysis for Mixed Criticality Systems
	Summary and Perspectives

	Miscellaneous
	Task Graphs and Precedence Constraints
	Multiprocessor Analysis
	Miscellaneous Models and Techniques
	Position Papers
	Summary and Perspectives

	Addressing Issues of Intractability
	Re-sampling
	Analytical Methods and Other Techniques
	Summary and Perspectives

	Conclusions

	lites-v006-i001-a005-orr
	Introduction
	Background, Related Work, and Task Model
	The Elastic Task Model
	Federated Scheduling and Parallel Real-Time Task Model

	A first attempt at elastic scheduling of parallel tasks
	Discussion

	More resource-efficient scheduling
	Proof of Optimality

	Summary & Conclusions

